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ABSTRACT

Federated Learning (FL) is an emerging distributed machine learning approach
that preserves client privacy by storing data on edge devices. However, data
heterogeneity among clients presents challenges in training models that perform
well on all local distributions. Recent studies have proposed clustering as a solution
to tackle client heterogeneity in FL by grouping clients with distribution shifts
into different clusters. However, the diverse learning frameworks used in current
clustered FL methods make it challenging to integrate various clustered FL methods,
gather their benefits, and make further improvements.
To this end, this paper presents a comprehensive investigation into current clustered
FL methods and proposes a four-tier framework, namely HCFL, to encompass
and extend existing approaches. Based on the HCFL, we identify the remaining
challenges associated with current clustering methods in each tier and propose an
enhanced clustering method called HCFL+ to address these challenges. Through
extensive numerical evaluations, we showcase the effectiveness of our clustering
framework and the improved components. Our code will be publicly available.

1 INTRODUCTION

Federated Learning (FL) is a privacy-focused distributed machine learning approach. In FL, the server
shares the model with clients for local training, and the clients send parameter updates back to the
server. The clients will not share their raw data with servers, ensuring privacy. However, the non-iid
client data distribution leads to significant performance drops for FL algorithms (McMahan et al.,
2016; Li et al., 2018; Karimireddy et al., 2020; 2019). To address data heterogeneity, traditional FL fo-
cuses on training a single global model that performs well across all local distributions (Li et al., 2021;
2018; Tang et al., 2022; Guo et al., 2023a). However, relying solely on a global model may not ad-
equately handle the heterogeneous client distributions. As a remedy, clustered FL methods have been
proposed to group clients into different clusters based on their local distributions. Numerous studies
have demonstrated the superiority of clustered FL methods over single-model FL approaches (Long
et al., 2023; Sattler et al., 2020b; Ghosh et al., 2020; Marfoq et al., 2021; Guo et al., 2023b).
Diverse learning frameworks pose challenges on enhancing the clustered FL. Despite the suc-
cess of current clustered FL methods, the use of diverse learning frameworks poses challenges in
integrating different algorithms, gathering their advantages, and achieving further improvements. For
instance, FedEM (Marfoq et al., 2021) excels in addressing complex mixture distribution scenarios
and performs admirably on challenging tasks. However, it necessitates a predefined number of
clusters, constraining its practicality. In contrast, adaptive clustering techniques such as CFL (Sattler
et al., 2020b) can autonomously determine the number of clusters. Nonetheless, CFL cannot be
seamlessly integrated with soft clustering methods like FedEM, thereby limiting its effectiveness in
handling complex mixture distribution tasks.

Consolidating existing methods as a solution. To tackle these challenges, our aim is to establish
a holistic learning framework for clustered FL methods, allowing us to seamlessly combine their
advantages. Once accomplished, we can easily incorporate existing methods such as FedEM and
CFL to develop an improved approach (see Table 1).
Therefore, we first revisit and summarize existing clustered FL methods. We then introduce HCFL,
a holistic clustered FL algorithm framework with four tiers (as shown in Figure 1). These tiers
address the primary tasks in clustering methods: (1) Cluster Learning and Assignment (tiers 1 and 2),
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Figure 1: Overview of the HCFL. The HCFL encompasses the existing clustered FL algorithms through the
design of four tiers, including cluster formulations, which maximize conditional distribution, joint distribution,
or variable relationships; cluster weights calculation, including soft clustering and hard clustering; adaptive
clustering procedure, including using a predefined number of clusters, automatically adding new clusters,
or merge and remove existing clusters; client distance metrics, including using distance on clients’ local
gradients, clients’ local model parameters, or clients’ local feature norms. The four tiers collaborate to form
a comprehensive clustered FL learning process, as shown in the left part of the figure. For instance, CFL can
be described by the A, D, G, and J, while A, E, and F cover FedEM.

which assigns clients to optimal clusters and learns cluster-specific parameters; (2) Cluster Number
Determination (tiers 3 and 4), which decides the number of clusters. The four tiers within HCFL
constitute a comprehensive clustered FL learning process that incorporates existing methods and
allows for flexible modifications in each tier (see Algorithm 1). It is evident that the enhanced
algorithms exhibit significant performance improvements compared to the original methods, as
demonstrated in Table 1.
In light of the HCFL, we have identified the remaining challenges within each tier that were previously
overlooked by existing clustered FL, as illustrated in Figure 2 in Section 4.1. We then introduce
HCFL+, an enhanced algorithm designed to tackle these remaining challenges. Numerical results
confirm that HCFL+ effectively extends existing methods, achieving a superior balance between
personalization and generalization while delivering strong performance.
We summarize the contribution of this paper as follows:
• We introduce HCFL, a holistic framework for clustered FL that encompass the existing methods.

HCFL enables the integration of existing methods’ benefits by adjusting techniques in each tier.
• We identify four remaining challenges in clustered FL algorithms within each tier of HCFL, and

introduce an improved algorithm called HCFL+ to address these challenges.
• Extensive experiments on different datasets (CIFAR10, CIFAR100, and Tiny-Imagenet) and

various architectures (MobileNet-V2 and ResNet18) demonstrate the effectiveness of our
framework and the improved components of HCFL+.

2 RELATED WORKS

In the field of Federated Learning, FedAvg serves as the de-facto algorithm, employing local
Stochastic Gradient Descent (local SGD) techniques (McMahan et al., 2016; Lin et al., 2020) to
reduce communication costs and protect client privacy. However, FL faces significant challenges
due to distribution shifts among clients, which can hinder the performance of FL algorithms (Li et al.,
2018; Wang et al., 2020; Karimireddy et al., 2020; Jiang & Lin, 2023; Guo et al., 2021). Traditional
FL methods primarily focus on improving the convergence speed of global models and incorporate
bias reduction techniques (Tang et al., 2022; Guo et al., 2023a; Li et al., 2021; 2018). However,
these single-model approaches are often inadequate for handling heterogeneous data distributions,
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especially in cases involving concept shifts (Ke et al., 2022; Guo et al., 2023b; Jothimurugesan et al.,
2023). To address these challenges, researchers have introduced clustered FL algorithms to enhance
the performance of FL algorithms.
Clustered FL groups clients based on their local data distribution, addressing the distribution shift
problem. Most methods employ hard clustering with a fixed number of clusters, grouping clients by
measuring their similarities (Ghosh et al., 2020; Long et al., 2023; Wang et al., 2022b; Stallmann &
Wilbik, 2022). However, hard clustering may not adequately capture complex relationships between
local distributions, and soft clustering paradigms have been proposed to address this issue (Marfoq
et al., 2021; Wu et al., 2023; Ruan & Joe-Wong, 2022; Guo et al., 2023b). In this paper, we propose
a generalized formulation for clustered FL that encompasses current methods and improves them
by addressing issues related to intra-client inconsistency and efficiency.
Another line of research focuses on automatically determining the number of clusters. Current
methods utilize hierarchical clustering (Sattler et al., 2020b;a; Zhao et al., 2020; Briggs et al., 2020;
Zeng et al., 2023; Duan et al., 2021a;b), which measures client dissimilarity using model parameters
or local gradient distances. Some papers enhance these distance metrics by employing various
techniques, such as eigenvectors (Yan et al., 2023) and local feature norms (Wei & Huang, 2023).
FEDCOLLAB (Bao et al., 2023) quantifies client similarity through client discriminators. However,
the requirement for discriminators between every client pair in FEDCOLLAB hinders scalability for
cross-device scenarios with numerous clients. In this paper, we concentrate on cross-device settings,
introducing a holistic adaptive clustering framework enabling cluster splitting and merging. We also
present enhanced weight updating for soft clustering and finer distance metrics for various clustering
principles. For further discussions on related works, please refer to Appendix C.

3 HCFL: REVISITING AND EXTENDING CLUSTERED FL METHODS

Current clustered FL methods typically employ diverse learning frameworks. As a result, existing
methods often face challenges in gathering the advantages of different algorithms for potential
enhancements. To address this issue, as shown in Figure 1, we introduce the HCFL, consisting
of four tiers designed to tackle the primary tasks of clustering methods: (1) Cluster Learning and
Assignment (tiers 1 and 2): Identify which clients should belong to the same clusters and learns
parameters for each cluster. (2) Cluster Number Determinant (tiers 3 and 4): Decide the number of
clusters. As a result, the four tiers of the HCFL form a comprehensive learning process (Algorithm 1),
enabling flexible improvements and the integration of advantages from different algorithms (Table 1).

3.1 TIERS 1 & 2: THE CLUSTER FORMULATIONS AND CLUSTER WEIGHTS CALCULATION

We introduce the first two tiers: Cluster Formulations and Cluster Weights Calculation. Cluster
Formulations defines the objective functions of the clustering methods, aiming to learn the underlying
distributions of each cluster. Cluster Weights Calculation orthogonally helps find the suitable clusters
for each client, whereas hard clustering assigns each client to one cluster, while soft clustering
allows clients to contribute to multiple clusters. We propose the following optimization framework to
encompass these two tiers.

Optimization framework of clustered FL methods. The clustered FL methods can be expressed
as a dual-variable optimization problem that maximizes L(Θ,Ω), with K clusters and M data
sources represented as D1, · · · ,DM :

L(Θ,Ω) =
1

N

M∑
i=1

Ni∑
j=1

log

(
K∑

k=1

ωi;kLk(xi,j , yij ;θk)

)
, s.t.

K∑
k=1

ωi;k = 1, ∀i , (1)

where N =
∑M

i=1 Ni and Ni := |Di|. The parameters to be optimized are clustering weights
Ω = [ω1;1, · · · , ωM,K ], and model parameters Θ = [θ1, · · · ,θK ].

Tier 1: Incorporate existing Cluster Formulations. The existing methods employ clustering
to address diverse tasks, which results in the proposal of various formulations. Our Algorithm 1
encompasses the existing clustering formulations by selecting Lk(xi,j , yij ;θk) as follows:
• Pθk

(yi,j |xi,j). Most existing methods (Marfoq et al., 2021; Ghosh et al., 2020; Long et al., 2023)
can be recovered using this conditional distribution (likelihood functions).

• Pθk
(xi,j , yi,j). FedGMM (Wu et al., 2022) uses this joint probability. 1

1In FedGMM (Wu et al., 2023), θk is split into [θk1 ,νk2 ], and it uses Lk(xi,j , yi,j ;θk) =
Pθk1

(yi,j |xi,j)Pνk2
(xi,j) to model the joint probability.
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Algorithm 1 HCFL: holistic Algorithm Framework of clustered FL.

Require: Number of communication rounds T , initial number of clusters K0, initial parameters ϕ0, and Θ0.
Ensure: Number of clusters KT , trained parameters ϕT , and ΘT .
1: for t = 0, · · · , T − 1 do
2: Sample a subset of clients St, and send Θt+1 to the clients.
3: for Client i in St do
4: Local updates by solving (1). ▷ Tiers 1 and 2
5: Upload local gradients gt+1

i;k to the server.
6: θt+1

k = θt
k − ηg

∑
i∈St g

t+1
i;k , ∀k.

7: Calculate distance matrix Dt, and Dt
k for each cluster k. ▷ Tier 4

8: if Detect cluster ks need to be split then ▷ Tier 3
9: Split clients in cluster ks into two sub-clusters Ss,1 and Ss,2 based on Dt

ks
or Dt.

10: θt+1
ks

= θt
k − ηg

∑
i∈Ss,1

gt+1
i;k .

11: θt+1
Kt+1

= θt
k − ηg

∑
i∈Ss,2

gt+1
i;k .

12: Update ωi;k for corresponding clients.
13: if Detect cluster kd need to be deleted then ▷ Tier 3
14: Delete cluster kd.
15: Update ωi;k for corresponding clients.
16: Update Kt+1 by the current number of clusters.

• Pθk
(xi,j ,yi,j)

Pθk
(xi,j)Pθk

(yi,j)
. FedRC (Guo et al., 2023b) relies on correlations between variables x and y.

Tier 2: Incorporate existing Cluster Weights Calculation. Various methods employ distinct
mechanisms for calculating clustering weights ωi;k. The choice of ωi;k, with either binary values
ωi;k ∈ {0, 1} or continuous values ωi;k ∈ [0, 1], characterizes the dynamic clustering procedure.
• Hard clustering methods employ binary values ωi;k ∈ 0, 1. In these methods, ωi;k is determined

using heuristic techniques, such as parameter distance (Long et al., 2023; Zeng et al., 2023; Sattler
et al., 2020b) or local loss function values (Ghosh et al., 2020).

• Soft clustering approaches permit ωi;k ∈ [0, 1], determined by maximizing L(Θ,Ω)(Marfoq et al.,
2021; Guo et al., 2023b; Wu et al., 2023), or by normalizing local loss values(Ruan & Joe-Wong,
2022). Soft clustering methods do not assume separated clients’ local distributions and can thus
handle complex scenarios, such as mixture distributions (Marfoq et al., 2021; Wu et al., 2023).

3.2 TIERS 3 & 4: THE ADAPTIVE CLUSTERING PROCEDURE AND DISTANCE METRICS

Tiers 3 and 4 illustrate the techniques for Cluster Number Determination. In detail, the adaptive
clustering procedures automatically adjust the number of clusters, while distance metrics control
the adaptive clustering procedures, determining whether clusters should split or merge. The HCFL
allows for different techniques at each tier, enhancing flexibility in choosing the optimal adaptive
clustering methods or converting methods that rely on fixed cluster numbers to adaptive ones.

Tier 3: Adaptive clustering procedures demonstrate how to modify cluster numbers. To auto-
matically determine the number of clusters, current approaches can be categorized into two orthogonal
methods: (1) Splitting clusters to increase the number of clusters (Sattler et al., 2020b;a). (2) Merging
clusters to reduce the number of clusters (Zeng et al., 2023). We unify these approaches at tier 3.

Tier 4: Client distance metrics dictate when cluster numbers should be adjusted. The client’s
distances are utilized to determine whether the current number of clusters should be adjusted.
For instance, when the distance within a cluster is large, the cluster will divide into sub-clusters.
Conversely, if the distances between two clusters are small, these two clusters should be merged.
Existing clustering methods use various metrics such as cosine similarity of local gradients (Sattler
et al., 2020b), gradients from a globally shared network (Zeng et al., 2023), and local feature
norms (Wei & Huang, 2023).

4 HCFL+: TACKLING REMAINING CHALLENGES IN CLUSTERED FL
Section 3 introduces a holistic clustering framework with four tiers to encompass existing methods.
However, each tier still presents challenges that current methods cannot address. In this section, we
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Figure 2: Remaining challenges in clustered FL methods. We identify four key issues in clustered FL
algorithms: (1) inconsistent intra-client clustering weights, (2) efficiency concerns, (3) the absence of adaptive
clustering for soft clustering methods, and (4) the lack of fine-grained distance metrics for various clustering
principles. Clustering principles ASCP and CSCP differ in their approach as follows: ASCP assigns clients with
any shifts into different clusters, while CSCP only assigns clients with concept shifts to different clusters."

outline four key remaining challenges in Figure 2 and introduce HCFL+ to tackle them. Due to
space constraints, we summarize the improved algorithm in Algorithm 2.

4.1 REMAINING CHALLENGES OF THE CLUSTERING IN FL

In this subsection, we identify four remaining challenges of the HCFL. We categorize these
challenges by tiers in the HCFL, as shown in Figure 2. The details are provided below.

Challenges on tier 1: Inconsistent intra-client clustering weights and efficiency concerns. These
challenges can be addressed by improving the clustering formulations.
• Inconsistent intra-client clustering weights. Existing approaches use the same clustering

weights ωi;k for all the samples belonging to client i (Sattler et al., 2020b; Ghosh et al., 2020;
Marfoq et al., 2021; Guo et al., 2023b). However, they overlook cases where the optimal
clustering weights of different samples within the same client can be inconsistent, implying that
ωi,j1;k ̸= ωi,j2;k for certain samples (xi,j1 , yi,j1) and (xi,j2 , yi,j2). See our example here2.

• Efficiency. The current clustered FL methods (Marfoq et al., 2021; Long et al., 2023; Guo et al.,
2023b) require K-fold higher communication or computation costs, hindering overall algorithm
efficiency during deployment.

Challenges on tiers 2 & 3: The absence of adaptive clustering for soft clustering methods. Cur-
rent adaptive clustering methods primarily address hard clustering (Sattler et al., 2020b;a; Zeng et al.,
2023). Hence, there exists a gap between research and practice, as there is a need to automatically
determine the number of clusters for soft clustering methods (Marfoq et al., 2021; Guo et al., 2023b).

Challenges on tier 4: Lack of fine-grained distance metrics for various clustering principles.
The clustering principles determine which clients should be assigned to the same clusters. Existing
clustering methods may use different clustering principles, as described by ASCP and CSCP below:
• ASCP (Any Shift Type Clustering Principle): clients with any distribution shifts are placed into

separate clusters (Marfoq et al., 2021; Wu et al., 2023).
• CSCP (Concept Shift Only Clustering Principle): only clients with concept shifts are assigned to

separate clusters (Guo et al., 2023b).
As discussed in Section 3.2, client distances determine whether the current number of clusters
should be changed, aligning with the role of clustering principles: if the current number of clusters
cannot meet the requirements of the clustering principles, the cluster number should be adjusted.
Consequently, we advocate for distance metrics to be closely tied to distribution shifts, ultimately
aligning with clustering principles. Unfortunately, existing distance metrics, such as those based on
local gradients or local model parameters (Sattler et al., 2020b; Zeng et al., 2023; Long et al., 2023;
Yan et al., 2023), cannot establish a clear link to distribution shifts. As a result, current methods
struggle to satisfy diverse and detailed clustering principles.

4.2 IMPROVE TIER1: INCONSISTENCY AND EFFICIENCY AWARE OBJECTIVE FUNCTIONS

To address tier 1 challenges, specifically, (i) inconsistent intra-client clustering weights and
(ii) efficiency, we propose an extension of the objective function (Eq. (1)), which is defined as
L(ϕ,Θ,Ω, Ω̃) and includes the parameters ϕ, Θ, Ω, and Ω̃.

2When client i’s local distribution is a mixture of two distributions, namely, (xi,j1 , yi,j1) sampled from the
first distribution and (xi,j2 , yi,j2) from the second distribution, the optimal clustering weights for (xi,j1 , yi,j1)
and (xi,j2 , yi,j2) should be distinct.
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• Global shared feature extractor ϕ, and cluster-specific predictors Θ = [θ1, · · · ,θK ].
Dividing the feature extractor ϕ and the predictors {θk} reduces communication and computation
costs since the predictors are lightweight architectures, like linear classifier layers.

• Sample-wise clustering weights Ω = [ω1,1;1 · · · , ωM,NM ;K ] for enhanced training stage
and client-wise clustering weights Ω̃ = [ω̃1;1 · · · , ω̃M ;K ] for testing stage 3. We employ
sample-specific clustering weights (ωi,j;k) during training to ensure that data samples from
the same clients can contribute to different cluster models, resolving the issue of inconsistent
intra-client clustering weights. Furthermore, during testing, when test-time label information
is unavailable, we utilize client-specific weights (ω̃i;k) for each client and cluster.

• Enhance the optimization of ωi,j;k by regularizing the distance between ω̃i;k and ωi,j;k. Moti-
vated by the intuition that “if data from the same clients have similar distributions, the correspond-
ing clustering weights should be similar”, we encourage ω̃i;k and ωi,j;k to be close to each other.

The following objective function is designed to meet our requirements.

L(ϕ,Θ,Ω, Ω̃) =
1

N

M∑
i=1

Ni∑
j=1

log

(
K∑

k=1

ωi,j;kLk(xi,j , yij ;ϕ,θk)

)
︸ ︷︷ ︸

A1

−µ

M∑
i=1

Ni∑
j=1

(
K∑

k=1

ω̃i;k log
ω̃i;k

ωi,j;k

)
︸ ︷︷ ︸

A2

(2)

s.t.
K∑

k=1

ωi,j;k = 1, ∀i, j ,
K∑

k=1

ω̃i;k = 1, ∀i , Ω̃ = argmin
Ω̃

∣∣∣max
Ω
L(ϕ,Θ,Ω, Ω̃)− L(ϕ,Θ, Ω̃, Ω̃)

∣∣∣ , (3)

where A1 term is extended from (1) by using the global shared feature extractor ϕ and the sample-wise
weights ωi,j;k. A2 focuses on regularizing the difference between the sample-wise clustering weights
ωi,j;k and the client-wise clustering weights ω̃i;k. The µ controls the strength of this regularization.
We obtain ω̃i;k by solving (3), where we aim to minimize the impact of replacing ωi,j;k with ω̃i;k.

Optimization of the proposed objective function. Different from heuristic methods used in most
studies to optimize (2) 4. we aim to introduce a more interpretable approach here. In this approach,
we maximize the objective functions (Eq. (2)) to obtain optimization steps. Specifically, we can
update ω̃i;k, ωi,j;k, θk, and ϕ by (4)–(7).

γt+1
i,j;k =

ωt
i,j;kLk(xi,j , yij ;ϕ

t,θt
k)∑K

n=1 ω
t
i,j;nLk(xi,j , yij ;ϕt,θt

n)
, γ̃t+1

i,j;k =
ω̃t
i;kLk(xi,j , yij ;ϕ

t,θt
k)∑K

n=1 ω
t
i;nLk(xi,j , yij ;ϕt,θt

n)
, (4)

ω̃t+1
i;k =

1

Ni

Ni∑
j=1

γ̃t+1
i,j;k , ωt+1

i,j;k =
γt+1
i,j;k

1 + µN
+

µN

1 + µN
ω̃t+1
i;k = µ̃γt+1

i,j;k + (1− µ̃)ω̃t+1
i;k , (5)

θt+1
k = θt

k − η

M∑
i=1

Ni∑
j=1

γt+1
i,j;k

Lk(xij , yij ,ϕt,θt
k)
∇θkLk(xij , yij ,ϕ

t,θt
k) , (6)

ϕt+1 = ϕt − η

M∑
i=1

Ni∑
j=1

K∑
k=1

γt+1
i,j;k

Lk(xij , yij ,ϕt,θt
k)
∇ϕLk(xij , yij ,ϕ

t,θt+1
k ) , (7)

where γi,j;k and γ̃i,j;k are intermediate results for calculating ωi,j;k and ω̃i;k. More detailed proofs
can be found in Appendix A. µ̃ = 1

1+µN serves as a hyperparameter to control the strength of the
penalty term in Equation (2).

Theoretical Results on Linear Representation Learning Case. We examine the convergence
of a linear representation learning problem, as extended from the settings in Collins et al. (2021);
Tziotis et al. (2022). We assume that the clustering weights, denoted as ωi,j;k, are obtained in each
communication round. We assume that local data xi,j ∈ Rd, and the global shared feature extractor
is parameterized by B ∈ Rd×c. For each underlying cluster k, we define θk ∈ Rc, and the labels
for data xi,j belonging to cluster k are given by yi,j = (θ∗

k)
T (B∗)Txi,j + zk, where zk ∼ N (0, σ2)

captures the heterogeneous between K underlying clusters. The global empirical risk is defined
as the mean square error

minB,Θ
1

2N

∑M
i=1

∑Ni
j=1

(
yi,j −

∑K
k=1 ωi,j;kθ

T
k B

Txi,j

)2
, (8)

3Experiments on the effectiveness of sample-wise clustering weights in Figures 4(a) and 4(b).
4IFCA (Ghosh et al., 2020) sets ωi,j;ki,min = 1, ∀j when ki,min = argmink EDi [fi;k(xi,j , yi,j ,ϕ,θk)],

where fi;k is the local loss function. FeSEM (Long et al., 2023) sets ki,min = argmink ∥θk − θi∥2, where
θk,θi represents the model parameters of cluster k and client i, respectively.
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where Θ = [θ1, · · · ,θK ]. Then we can derive the convergence of HCFL+ given the following
theorem. Detailed definitions, assumptions proofs, and discussions refer to Appendix B.

Theorem 4.1 (Convergence of HCFL+). Under Assumption 1- 4, when we have N ≥ K2

d+c , and

mink N̂k ≥ C c3(1+σ2)4 log(M)
E2

0
min

{
1
κ2 , σ̄

2
min

}
for some constant C, we have

dist(B̂t+1, B̂∗) ≤ dist(B̂t, B̂∗)(1−cmin+
57

200
cmax)(1−

1

2
cmax)

−1/2+(
7

100
cmax)(1−

1

2
cmax)

−1/2 , (9)

with the probability at least 1−exp(−90(d+c))−exp(−90c2 log(M)). Here N̂k =
∑M

i=1

∑Ni

j=1 ωi,j;k,

E0 = 1− dist2(B̂0, B̂∗), cmin = ηKmink N̂k

N σ̄2
min,∗E0, and cmax = ηKmaxk N̂k

N σ̄2
min,∗E0.

4.3 IMPROVE TIERS 2 & 3: ADAPTIVE CLUSTERING FOR SOFT CLUSTERING PARADIGMS

Given the limitations of existing adaptive clustering methods, we have extended the clustering weight
update mechanisms to incorporate soft clustering and have verified its effectiveness in Figures 4(c)
and 4(d). The overall process is summarized in Algorithms 4 and 5. In Algorithm 4, the clustering
weights are adjusted after splitting cluster k into two sub-clusters, denoted by k1 and k2. Then we
set ωi,j,k1

= ωi,j,k2
= ωi,j,k/2 for all i and j. In Algorithm 5, the clustering weights are updated

when removing cluster k. For all k
′ ̸= k, we modify ωi,j;k′ as ωi,j;k′ =

ω
i,j;k

′∑
n̸=k ωi,j;n

.
We use the hyperparameter ρ to control cluster splitting. As evidenced in Table 1, a higher ρ results in
fewer clusters, signifying enhanced generalization but reduced personalization. In detail, the cluster
k will split if the following condition is met:

max(Dk)−mean(Dk) ≥ ρ , (10)

where Dk is the distance matrix of cluster k. We identify the need for cluster removal when the
cluster no longer receives the highest clustering weights from any clients. Additional details about
the enhanced adaptive process can be found in Algorithm 2.

4.4 IMPROVE TIER4: FINE-GRAINED DISTANCE METRIC DESIGN

Due to the page limitations, we include most of the details about the method design and practical
implements in Appendix D. As discussed in Section 4.1, various algorithms may group clients into
different clusters based on different clustering principles. Therefore, in this section, we design the
following fine-grained distance metrics for these different clustering principles:

Dk
i,j=

 max {dc, dlf}EDi

[
L̃k(z, y;θk)

]
EDj

[
L̃k(z, y;θk)

]
, ASCP ,

dcEDi

[
L̃k(z, y;θk)

]
EDj

[
L̃k(z, y;θk)

]
, CSCP ,

(11)

where dist is the cos-similarity, dc = maxy
{

dist
(
EDi [P(z|x, y;ϕ)] ,EDj [P(z|x, y;ϕ)]

)}
, and

dlf = dist
(
EDi

[P(z|x;ϕ)] ,EDj
[P(z|x;ϕ)]

)
. The distances above become large only when the

following conditions occur together: (1) Large values of dc indicate concept shifts between clients
i and j; (2) Large dlf indicate significant feature and label distribution differences. (2) Large values

of EDi

[
L̃k(z, y;θk)

]
EDj

[
L̃k(z, y;θk)

]
indicate incorrect clustering weights with high confidence.

The effectiveness of the above distance metrics design is evidenced in Table 2.

5 NUMERICAL RESULTS

In this section, we evaluate the performance of HCFL+ and other clustered FL methods. Additional
experiment results, including hyper-parameter ablation studies, different model architectures, and
additional scenarios, can be found in Appendix E.

5.1 DATASETS AND EXPERIMENT SETTINGS

Diverse distribution shifts scenarios. We establish clients with three types of distribution shifts.
For label distribution shifts, we employ LDA with α = 1.0, as introduced by Yoshida et al. (2019);
Hsu et al. (2019); Reddi et al. (2021). For feature distribution shifts, we adopt the methodology from
CIFAR10-C and CIFAR100-C creation (Hendrycks & Dietterich, 2019). Regarding concept shift,
we draw inspiration from Guo et al. (2023b); Jothimurugesan et al. (2023), and selectively swap
labels based on the parameter β. For example, with β = 0.1 for CIFAR10, two labels per concept are
swapped, while the remaining eight labels remain unchanged. By default, we create three concepts
in the experiments. More details about the construction of scenarios are included in Appendix E.1.
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Table 1: Performance of the adaptive clustering methods on CIFAR10, CIFAR100, and Tiny-Imagenet
datasets. For each algorithm, we present the best Validation and Test accuracies. For clustering methods
that require a fixed number of clusters, we set K = 3. The hyperparameters tol1, tol2, α∗(0), τ , and ρ in
adaptive clustering methods govern the balance between personalization and generalization, as well as the cluster
number. For instance, lower τ in StoCFL or lower ρ in HCFL+ indicate improved personalization and reduced
generalization. KT denotes the cluster number in the final training round, where a larger KT suggests enhanced
personalization and reduced generalization. We emphasize the best results in bold and the worst results in blue.

Algorithm CIFAR10, β = 0.2 CIFAR100, β = 0.2 Tiny-Imagenet, β = 0.2

Val Test KT Val Test KT Val Test KT

FedAvg 49.19 ±2.15 45.42 ±2.42 1 26.01 ±1.15 27.87 ±2.12 1 38.83 ±0.20 39.07 ±0.44 1
FeSEM 45.30 ±0.40 29.01 ±0.79 3 26.37 ±0.64 24.50 ±0.28 3 37.10 ±0.80 30.00 ±2.02 3
IFCA 34.46 ±2.06 23.18 ±2.55 3 26.99 ±3.89 26.20 ±1.56 3 38.52 ±0.30 29.92 ±0.30 3
FedEM 66.49 ±0.69 53.64 ±1.61 3 29.75 ±0.47 24.18 ±0.03 3 42.00 ±0.74 39.25 ±0.31 3
FedRC 63.65 ±2.95 59.41 ±0.19 3 34.56 ±0.79 37.62 ±0.16 3 38.93 ±0.18 39.73 ±0.04 3

CFL
tol1 = 0.4, tol2 = 1.6 61.55 ±1.74 46.88 ±0.35 6 35.05 ±0.35 24.84 ±2.50 4 37.41 ±1.87 30.25 ±0.55 3
tol1 = 0.4, tol2 = 0.8 65.06 ±3.34 45.74 ±4.01 9 36.98 ±3.37 22.00 ±1.88 5 40.36 ±3.55 28.82 ±0.71 4
tol1 = 0.2, tol2 = 0.8 58.92 ±2.09 55.02 ±0.97 4 37.73 ±7.68 31.47 ±0.09 3 35.74 ±0.57 34.41 ±1.92 1

ICFL
α∗(0) = 0.85 77.59 ±0.04 57.38 ±1.91 98 52.73 ±1.03 32.77 ±0.28 100 64.72 ±0.30 34.73 ±0.39 87
α∗(0) = 0.98 60.58 ±1.07 61.18 ±0.78 14 41.49 ±4.11 33.57 ±1.56 40 53.05 ±2.57 35.09 ±0.25 42

StoCFL
τ = 0.05 59.79 ±1.34 57.35 ±0.92 15 29.97 ±0.47 31.40 ±2.16 4 31.85 ±0.08 31.39 ±0.87 1
τ = 0.10 70.84 ±1.58 51.72 ±0.07 54 69.76 ±2.57 9.42 ±0.07 89 67.48 ±1.53 13.03 ±0.67 91

HCFL+ (FeSEM)
ρ = 0.05 87.77 ±1.11 41.85 ±4.11 58 69.25 ±0.69 14.24 ±1.93 67 60.44 ±0.86 23.14 ±1.46 32
ρ = 0.1 85.08 ±0.11 43.34 ±0.94 44 62.32 ±0.23 16.67 ±2.97 38 52.18 ±2.90 32.97 ±1.27 14
ρ = 0.3 79.31 ±3.95 47.62 ±2.90 17 44.49 ±1.57 28.03 ±0.85 8 45.76 ±0.09 36.08 ±1.25 4

HCFL+ (FedEM)
ρ = 0.05 82.45 ±0.13 57.73 ±1.70 22 60.36 ±1.47 22.95 ±1.44 40 63.41 ±0.05 34.24 ±0.33 33
ρ = 0.1 84.64 ±1.47 60.90 ±0.61 16 62.98 ±0.42 26.17 ±1.22 34 59.88 ±0.11 37.17 ±0.37 20
ρ = 0.3 83.67 ±0.72 62.43 ±0.71 10 50.72 ±2.97 32.13 ±0.18 9 45.53 ±0.53 38.64 ±0.23 3

HCFL+ (FedRC)
ρ = 0.05 69.16 ±0.65 67.37 ±0.42 8 39.20 ±0.31 34.38 ±0.64 11 43.78 ±0.31 38.75 ±0.54 10
ρ = 0.1 71.67 ±0.83 68.64 ±0.76 8 39.56 ±0.14 34.62 ±0.78 8 44.26 ±0.10 38.82 ±0.77 6
ρ = 0.3 69.33 ±0.24 69.67 ±1.27 3 39.97 ±0.21 36.50 ±0.28 4 42.60 ±0.21 40.65 ±0.36 3
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(b) HCFL+ (FedEM)
Figure 3: Number of clusters in HCFL+ over com-
munication rounds. We illustrate changes in cluster
numbers across communication rounds for various ρ
values using the CIFAR-10 dataset in our experiments.

Baselines. We use FedAvg (McMahan et al.,
2016) as a single-model FL example. We
consider the most recently published clustered
FL methods as our baselines. For clustered
FL with fixed cluster number, we select
IFCA (Ghosh et al., 2020), FedEM (Marfoq
et al., 2021), FeSEM (Long et al., 2023), and
FedRC (Guo et al., 2023b). For the adaptive
clustering FL methods, we choose CFL (Sattler
et al., 2020b), ICFL (Yan et al., 2023), and
StoCFL (Zeng et al., 2023).

Experiment settings. Unless specifically mentioned, we divide the datasets into 100 clients and ex-
ecute all algorithms for 200 communication rounds. Additional settings are provided in Appendix E.2.
We conducted all experiments using MobileNet-V2 (Sandler et al., 2018) and results on ResNet18
defer to Table 7 of Appendix E.

Evaluation metrics. We present the following metrics to evaluate the personalization and gener-
alization abilities of the algorithms: (1) Validation Accuracy for evaluating personalization: The
average accuracy on local validation datasets that match the distribution of local training sets. (2)
Test Accuracy evaluating generalization: The average accuracy on global shared test datasets.

5.2 RESULTS ON DIVERSE DISTRIBUTION SHIFTS SCENARIOS

In this section, we compare the performance of HCFL+ with other clustered FL methods. We also
perform ablation studies to confirm the effectiveness of HCFL+’s proposed components.

HCFL+ achieves better personalization-generalization trade-offs and comparable performance.
We highlight some key observations in Table 1. A. HCFL+ consistently achieves superior test
accuracy, with validation accuracy surpassing that of baseline methods with a similar number of
clusters. This demonstrates improved efficiency and a better balance between personalization and
generalization. B. Soft clustering methods like HCFL+ (FedEM) and HCFL+ (FedRC) outperform
hard clustering methods in test accuracy, showcasing their superior generalization capabilities. C.
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Figure 4: Ablation studies on Sections 4.2 and 4.3. For Sec 4.2, we evaluated test accuracies of HCFL+ using
different backbones (FedEM and FedRC) and varying values of µ̃, as shown in Figures 4(a) and 4(b). For Sec 4.3,
we present the best Val and Test accuracy achieved by HCFL+ with either FedEM or FedRC as backbones.
“w/ SCWU” indicates the use of soft clustering weight updating mechanisms introduced in Section 4.3. More
detailed results can be found in Tables 5 and 6 in Appendix E.

Table 2: Ablation studies on Sec 4.4. We conducted experiments on the CIFAR10 and CIFAR100 datasets,
showcasing the highest test accuracies, the maximum number of clusters during training (maxt K

t), and the
final number of clusters (KT ) or each algorithm while maintaining a fixed value of ρ = 0.3. We used FedRC
as the backbone, with 3 clusters identified as ideal by CSCP.

Algorithm CIFAR10, β = 0.2 CIFAR10, β = 0.4 CIFAR100, β = 0.2 CIFAR100, β = 0.4

Test Acc maxt K
t KT Test Acc maxt K

t KT Test Acc maxt K
t KT Test Acc maxt K

t KT

HCFL+ 69.67 ±1.27 4.5 3.0 70.13 ±0.42 7.0 6.0 36.50 ±0.28 3.5 3.5 32.22 ±0.20 5.0 4.0
+ ➀ 67.83 ±1.70 9.5 7.0 64.53 ±0.23 10.5 10.0 36.77 ±0.67 9.5 8.5 31.33 ±2.12 11.0 7.5

+ ➁ 56.14 ±8.11 10.5 5.5 50.87 ±2.26 12.5 8.5 34.11 ±1.58 10.0 6.0 32.75 ±0.67 7.5 6.5
+ ➁ 68.52 ±0.64 8.0 6.0 69.47 ±0.15 11.0 8.5 34.65 ±1.16 8.5 5.5 31.61 ±0.54 11.0 7.5
+ ➂ 68.82 ±0.59 5.5 3.5 65.74 ±0.09 7.0 7.0 35.97 ±0.80 4.0 3.5 31.72 ±0.59 4.5 4.0

While baseline methods may achieve higher validation accuracy by separating every client into
different clusters (namely when the value of KT is close to 100), these trained clusters tend to overfit
local distributions, resulting in significantly lower test accuracy. D. The extended algorithms, namely
HCFL+ (FeSEM), HCFL+ (FedEM), and HCFL+ (FedRC), outperform the original methods that
rely on fixed cluster numbers significantly. Additionally, these extended algorithms can automatically
adjust the number of clusters, making the algorithms more practical, as we illustrated in Figure 3.

Ablation studies on Sec 4.2. We perform ablation studies on µ̃, which control the distance between
sample-wise weights ωi,j;k and client-wise weights ω̃i;k in Figures 4(a) and 4(b). A larger µ̃ signifies
a greater difference between ωi,j;k and ω̃i;k. Our results show that HCFL+ (FedEM) prefers smaller
distance between ωi,j;k and ω̃i;k. However, HCFL+ (FedRC) prefers larger µ̃ values, highlighting
the necessity of different clustering weights among samples within the same clients.

Ablation studies on Sec 4.3. In Figures 4(c) and 4(d), we perform ablation studies on the soft
clustering weight updating mechanism (w/ SCWU) introduced in Section 4.3. The term w/o SCWU
refers to using the traditional clustering weight updating mechanism as described in Sattler et al.
(2020b); Zeng et al. (2023). The results demonstrate that our proposed SCWU consistently achieves
better performance in terms of both validation and test accuracies.

Ablation studies on techniques in Sec 4.4. We perform ablation studies to demonstrate the
effectiveness of the designed distance metrics in Sec 4.4. The ablation studies include: ➀ Using
gradient similarity, as in previous works (Sattler et al., 2020b; Yan et al., 2023), instead of distance
on P(z|x;ϕ) and P(z|x, y;ϕ), as we proposed in Equation 11; ➁ Remove EDi

[L̃k(z, y;θk)] and
EDi

[L̃k(z, y;θk)] in (11); ➂ Using mean distances instead of maximum distances in (11). The results
show that HCFL+ consistently achieves the highest test accuracy and produces a number of clusters
closer to the ideal number than other ablation studies.

6 CONCLUSION

In this paper, we introduce HCFL, a comprehensive clustered FL framework that unifies existing
methods while enabling the integration of diverse algorithms to gather the advantages of various
clustered FL approaches. Additionally, we identify persistent challenges unaddressed by current
algorithms and propose HCFL+ as a solution. The HCFL is flexible and can generate numerous
clustered FL methods by altering techniques in each tier. Though we have chosen some typical
components and demonstrated their effectiveness, conducting further performance verification with
more choices in each tier would be beneficial.
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A PROOF OF OPTIMIZATION STEPS

Theorem A.1. Given objective function L(ϕ,Θ,Ω, Ω̃)

L(ϕ,Θ,Ω, Ω̃) =
1

N

M∑
i=1

Ni∑
j=1

log

(
K∑

k=1

ωi,j;kLk(xi,j , yij ;ϕ,θk)

)

+

M∑
i=1

Ni∑
j=1

λi,j

(
K∑

k=1

ωi,j;k − 1

)

− µ

M∑
i=1

Ni∑
j=1

(
K∑

k=1

ω̃i;k log
ω̃i;k

ωi,j;k

)
, (12)

and we define Ω̃ = {ω̃i;k|∀i, k}, then Ω̃ is obtained by

Ω̃ = argmin
Ω̃

∣∣∣max
Ω

L(ϕ,Θ,Ω,Ω)− L(ϕ,Θ, Ω̃, Ω̃)
∣∣∣ . (13)

Then E-M steps are obtained by maximizing L(ϕ,Θ,Ω, Ω̃).

γt+1
i,j;k =

ωt
i,j;kLk(xi,j , yij ;θ

t
k)∑K

n=1 ω
t
i,j;nLk(xi,j , yij ;θt

n)
, (14)

γ̃t+1
i,j;k =

ω̃t
i;kLk(xi,j , yij ;θ

t
k)∑K

n=1 ω
t
i;nLk(xi,j , yij ;θt

n)
, (15)

ω̃t+1
i;k =

1

Ni

Ni∑
j=1

γ̃t+1
i,j;k , (16)

ωt+1
i,j;k =

γt+1
i,j;k

1 + µN
+

µN

1 + µN
ω̃t+1
i;k , (17)

θt+1
k = θt

k − η

M∑
i=1

Ni∑
j=1

γt+1
i,j;k

Lk(xij , yij ,ϕt,θt
k)

∇θk
Lk(xij , yij ,ϕ

t,θt
k) , (18)

ϕt+1 = ϕt − η

M∑
i=1

Ni∑
j=1

K∑
k=1

γt+1
i,j;k

Lk(xij , yij ,ϕt,θt
k)

∇ϕLk(xij , yij ,ϕ
t,θt+1

k ) (19)

13
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Proof. Let’s begin by assuming ω̃t+1
i;k is given for each round t, then we will discuss how to compute

ωt+1
i,j;k. Consider the objective function L(ϕ,Θ,Ω, Ω̃), we have

∂L(ϕ,Θ,Ω, Ω̃)

∂ωi,j;k
=

1

N

Lk(xi,j , yij ;θn)∑K
n=1 ωi,j;nLn(xi,j , yij ;θn)

+ λi,j + µ
ω̃i;k

ωi,j;k
. (20)

Then define

γi,j;k =
ωi,j;kLk(xi,j , yij ;θn)∑K

n=1 ωi,j;nLn(xi,j , yij ;θn)
, (21)

and take ∂L(Θ,Ω)
∂ωi,j;k

= 0 we have

γi,j;k
N

+ µω̃i;k = −λi,jωi,j;k . (22)

Then we have

ωi,j;k = − 1

λi,j

(γi,j;k
N

+ µω̃i;k

)
. (23)

Because we have
∑K

k=1 ωi,j;k = 1, we have

1 = − 1

λi,j

(
1

N
+ µ

)
(24)

λi,j = −1 + µN

N
. (25)

Then we have

ωi,j;k =
γi,j;k

1 + µN
+

µN

1 + µN
ω̃i;k . (26)

Then consider to optimize θk, we have,

∂L(ϕ,Θ,Ω, Ω̃)

∂θk

=
1

N

M∑
i=1

Ni∑
j=1

ωi,j;k∑K
n=1 ωi,j;nLn(xij , yij ;ϕ,θn)

· ∂Lk(xij , yij ;ϕ,θk)

∂θk
, (27)

= − 1

N

M∑
i=1

Ni∑
j=1

γt+1
i,j;k

Lk(xij , yij ;ϕ,θk)
∇θk

Lk(xij , yij ;ϕ,θk) . (28)

Finally, consider to optimize ϕ, we have

∂L(ϕ,Θ,Ω, Ω̃)

∂ϕ

=
1

N

M∑
i=1

Ni∑
j=1

K∑
k=1

ωi,j;k∑K
n=1 ωi,j;nLn(xij , yij ;ϕ,θn)

· ∂Lk(xij , yij ;ϕ,θk)

∂ϕ
, (29)

= − 1

N

M∑
i=1

Ni∑
j=1

K∑
k=1

γt+1
i,j;k

Lk(xij , yij ;ϕ,θk)
∇ϕLk(xij , yij ;ϕ,θk) . (30)

Because if hard to find a close-form solution to ∂L(ϕ,Θ,Ω,Ω̃)
∂θk

= 0 when θk is the parameter of
deep neural networks, we use gradient ascent to optimize θk. The same method is used for feature
extractors ϕ.
Then the remaining thing is how to decide ω̃i;k. From the formulation of objective function, the ω̃i;k

is decided by

Ω̃ = argmin
Ω̃

∣∣∣max
Ω

L(ϕ,Θ,Ω,Ω)− L(ϕ,Θ, Ω̃, Ω̃)
∣∣∣ . (31)
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To solve this problem, firstly, we can transform the definition of L(ϕ,Θ, Ω̃, Ω̃) to

L(ϕ,Θ, Ω̃, Ω̃) =
1

N

M∑
i=1

Ni∑
j=1

log

(
K∑

k=1

ωi,j;kLk(xi,j , yij ;ϕ,θk)

)

+

M∑
i=1

Ni∑
j=1

λi,j

(
K∑

k=1

ωi,j;k − 1

)

− µ

M∑
i=1

Ni∑
j=1

(
K∑

k=1

ω̃i;k log
ω̃i;k

ωi,j;k

)
, (32)

s.t. ωi,j;k = ω̃i;k, ∀i, j, k . (33)

Then by removing the constrains, we can always find

max
Ω

L(ϕ,Θ,Ω, Ω̃) ≥ L̃(ϕ,Θ, Ω̃, Ω̃) . (34)

Then we have

Ω̃ = argmin
Ω̃

∣∣∣max
Ω

L(ϕ,Θ,Ω, Ω̃)− L(ϕ,Θ, Ω̃, Ω̃)
∣∣∣ (35)

= argmin
Ω̃

(
max
Ω

L(ϕ,Θ,Ω, Ω̃)− L(ϕ,Θ, Ω̃, Ω̃)
)

(36)

= argmax
Ω̃

L(ϕ,Θ, Ω̃, Ω̃) (37)

Then we can obtain the results by directly use the proof in (Guo et al., 2023b) and (Marfoq et al.,
2021).

B THEORETICAL STUDY ON LINEAR REPRESENTATION CASE

B.1 DEFINITION AND ASSUMPTIONS

In this section, we target on the effectiveness of split-feature-classifier method. Therefore, we focus
on a case study that clients are solving a linear representation learning problem, similar to the analysis
in Collins et al. (2021); Tziotis et al. (2022), and assume the optimal ωi,j;k is already given. In
detail, we assume local data xi,j ∈ Rd, and ϕ is a global shared projection onto a c-dimensional
subspace Rd, which is parameterized by matrix B ∈ Rd×c. Besides, for each underlying distribution,
we have θk ∈ Rc, and the labels of each sample xi,j belongs to the distribution k is given by
yi,j = θ∗

k
TB∗Txi,j + zk, where θ∗

k and B∗ are ground truth parameters, and zk ∼ N (0, σ2) is to
capture the heterogeneous between K underlying distributions. Under these assumptions, the global
empirical risk is

min
B,Θ

1

2N

M∑
i=1

Ni∑
j=1

(
yi,j −

K∑
k=1

ωi,j;kθ
T
k B

Txi,j

)2

(38)

The distance that measuring the distance between sub-spaces is defined as follows (Jain et al., 2013;
Collins et al., 2021; Tziotis et al., 2022),
Definition B.1. The principal angle distance between the column spaces of B1,B2 ∈ Rd×c is given
by,

dist(B1,B2) =
∥∥∥B̂T

1,⊥B̂2

∥∥∥
2
, (39)

where B̂1,⊥ and B̂2 are orthogonal matrices satisfying span(B̂1,⊥) = span(B1)
⊥, and

span(B̂2) = span(B2).

Definition B.2 (∥A∥2-sub-Gaussian). For a random vector x ∈ Rd and a fixed matrix A ∈ Rd×c,
the vector ATx is called ∥A∥2-sub-Gaussian if yTATx is sub-Gaussian with sub-Gaussian norm
∥A∥2 ∥y∥2 for all y ∈ Rc, i.e., E

[
exp(yTATx)

]
≤ exp(∥A∥22 ∥y∥

2
2 /2).
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Assumption 1 (Sub-Gaussian design). The samples xi,j ∈ Rd are i.i.d. with mean 0, covariance Id,

and are Id-sub-Gaussian, i.e., E
[
ev

Txi,j

]
≤ e∥v∥

2
2/2 for all v ∈ Rd.

Assumption 2 (Underlying distribution diversity). Let σ̄min,∗ be the minimum singular value of any
matrix W̄ ∈ RK×c with rows being a K-sized subset of ground-truth distribution-specific parameters
{θ1, · · · ,θK}. Then σ̄min,∗ > 0.

Assumption 3 (Client normalization). The ground-truth distribution-specific parameters satisfy
∥θ∗

k∥2 =
√
c for all k ∈ [K], and B∗ has orthogonal columns.

Assumption 4 (Binary weights). We assume the value of ωi,j;k is given in {0, 1}.

Assumption 1, 2, 3 are widely used assumptions in the analysis of linear representation learning
problem (Collins et al., 2021; Tziotis et al., 2022). We introduce Assumption 4 to simplify the
analysis, and this assumption match the observation in our numerical experiments that the max
weights maxk[ωi,j;k] usually close to 1 when converge.

B.2 PRELIMINARY AND LEMMAS

We first introduce some important lemmas that we would like to use in the following parts of proof.

Lemma B.3. Given orthogonal matrix B̂ ∈ Rd×c, matrix X ∈ RN×d that each row of X is sub-

Gaussian (Assumption 1), and matrix Ω̄k ∈ RN×d valued by {0, 1}. Then let δk =
12C1;kc

3/2
√

log(M)√
N̂k

,

we have

σmin

(
1

N
B̂T

(
Ω̄T

k ⊙XT
) (

X⊙ Ω̄k

)
B̂

)
≥ N̂k

N
(1− δk) , (40)

with probability at least 1− exp(121c3 log(M)), and N̂k =
∑M

i=1

∑Ni

j=1 1ωi,j;k=1.

Proof. Firstly, we can rewrite

1

N
B̂T

(
Ω̄T

k ⊙XT
) (

X⊙ Ω̄k

)
B̂ =

N̂k

N

M∑
i=1

Ni∑
j=1

(
ωi,j;k√
N̂k

B̂Txi,j

)(
ωi,j;k√
N̂k

B̂Txi,j

)T

, (41)

=
N̂k

N

N∑
ωi,j;k=1

(
1√
N̂k

B̂Txi,j

)(
1√
N̂k

B̂Txi,j

)T

, (42)

where N̂k =
∑M

i=1

∑Ni

j=1 1ωi,j;k=1. Define vi,j;k =
ωi,j;k√

N̂k

B̂Txi,j , by Definition B.2 and Assump-

tion 1, we can observe that each vi,j;k is either
∥∥∥∥ 1√

N̂k

B̂T

∥∥∥∥
2

-sub-Gaussian or vi,j;k = 0. Then we

can define Vk ∈ RN̂k×c, and each row of Vk is vi,j;k that vi,j;k ̸= 0. Then we have

1

N
B̂T

(
Ω̄T

k ⊙XT
) (

X⊙ Ω̄k

)
B̂ =

N̂k

N
VT

k Vk . (43)

Then based on Theorem 4.6.1, Equation (4.22) in Vershynin (2018), we have

σmin

(
1

N
B̂T

(
Ω̄T

k ⊙XT
) (

X⊙ Ω̄k

)
B̂

)
=

N̂k

N
σmin

(
VT

k Vk

)
≥ N̂k

N
(1− δk) (44)

, with probability at least 1 − exp(−
(
δk
√
Nk/C1;k −

√
C
)2

) for constant C1;k. We then set

δk =
12C1;kc

3/2
√

log(M)√
N̂k

, and we have

1− exp(−
(
δk
√
Nk/C1;k −

√
C
)2

) ≥ 1− exp(121c3 log(M)) , (45)

which finish the proof.
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Lemma B.4. Given the objective function defined in Equation (38)

min
B,Θ

1

2N

M∑
i=1

Ni∑
j=1

(
yi,j −

K∑
k=1

ωi,j;kθ
T
k B

Txi,j

)2

, (46)

define the matrix form of xi,j , yi,j , and ωi,j;k by X ∈ RN×d, Y ∈ RN , Ωk ∈ RN , and define
Ω̄k ∈ RN×d by repeat Ωk for d times, we can have the following optimization steps to solve the
above objective function

θt+1
k =

(
1

N
[B̂t]T

(
Ω̄T

k ⊙XT
) (

X⊙ Ω̄k

)
B̂t

)−1(
1

N
[B̂t]T

(
Ω̄T

k ⊙XT
)
(Y ⊙Ωk)

)
, (47)

Bt+1 = B̂t −
K∑

k=1

η

N

((
Ω̄T

k ⊙XT
) (

X⊙ Ω̄k

)
B̂θk −

(
Ω̄T

k ⊙XT
)
(Y ⊙Ωk)

)
θT
k , (48)

B̂t+1 = Bt+1
(
Rt+1

)−1
, (49)

where B̂t+1Rt+1 is the QR factorization of Bt+1.

Proof. We first extend the empirical function via matrices Xi ∈ RNi×d, Yi ∈ RNi , and Ωi;k ∈ RNi ,
Ω̄i;k ∈ RNi×d is repeat Ωi;k ∈ RNi for d times.

L(B,Θ) =
1

2N

M∑
i=1

∥∥∥∥∥
K∑

k=1

Ωi;k ⊙ (Yi −XiB̂θk)

∥∥∥∥∥
2

2

. (50)

Define X ∈ RN×d = [XT
1 , · · · ,XT

M ]T , Ω̄k ∈ RN×d = [Ω̄T
1,k, · · · , Ω̄T

M,k]
T , and Ωk ∈ RN =

[ΩT
1,k, · · · ,ΩT

M,k]
T , then compute the gradients of B̂ and θk,

∂L(B,Θ)

∂B̂
= − 1

N

M∑
i=1

K∑
k=1

(
Ω̄i;k ⊙Xi

)T (
Ωi;k ⊙ (Yi −XiB̂θk)

)
θT
k , (51)

=
1

N

K∑
k=1

((
Ω̄T

k ⊙XT
) (

X⊙ Ω̄k

)
B̂θk −

(
Ω̄T

k ⊙XT
)
(Y ⊙Ωk)

)
θT
k , (52)

∂L(B,Θ)

∂θk
= − 1

N

M∑
i=1

(
Ω̄i;k ⊙XiB̂

)T (
Ωi;k ⊙ (Yi −XiB̂θk)

)
, (53)

=
1

N

(
B̂T

(
Ω̄T

k ⊙XT
) (

X⊙ Ω̄k

)
B̂θk − B̂T

(
Ω̄T

k ⊙XT
)
(Y ⊙Ωk)

)
. (54)

Then we can define the following optimization steps based on the above gradients, similar to the
analysis in Collins et al. (2021).

θt+1
k =

(
1

N
[B̂t]T

(
Ω̄T

k ⊙XT
) (

X⊙ Ω̄k

)
B̂t

)−1(
1

N
[B̂t]T

(
Ω̄T

k ⊙XT
)
(Y ⊙Ωk)

)
, (55)

Bt+1 = B̂t −
K∑

k=1

η

N

((
Ω̄T

k ⊙XT
) (

X⊙ Ω̄k

)
B̂θk −

(
Ω̄T

k ⊙XT
)
(Y ⊙Ωk)

)
θT
k , (56)

B̂t+1 = Bt+1
(
Rt+1

)−1
, (57)

where B̂t+1Rt+1 is the QR factorization of Bt+1. Then the B̂ will be orthogonal matrix at the end
of each optimization step. From Lemma B.3 we know that

(
1
N [B̂t]T

(
Ω̄T

k ⊙XT
) (

X⊙ Ω̄k

)
B̂t
)

is
invertible with high probability, which indicates the feasibility of the above optimization steps.

Lemma B.5. The optimization step of θk can be expressed by the following equation

θk = B̂T B̂∗θ∗
k + Fk +Gk , (58)

where Fk,Gk ∈ Rc are given in Equation (64) and (65).
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Proof. From Lemma B.4 we have

θk =

(
1

N
B̂T

(
Ω̄T

k ⊙XT
) (

X⊙ Ω̄k

)
B̂

)−1(
1

N
B̂T

(
Ω̄T

k ⊙XT
)
(Y ⊙Ωk)

)
. (59)

Based on the fact that Y =
∑K

k=1 Ωk ⊙
(
XB̂∗θ∗

k + Z
)

, Ωk ⊙Ωk = Ωk, Ωk ⊙Ωk′ = 0 we have

θk =

(
1

N
B̂T

(
Ω̄T

k ⊙XT
) (

X⊙ Ω̄k

)
B̂

)−1(
1

N
B̂T

(
Ω̄T

k ⊙XT
)
(Y ⊙Ωk)

)
, (60)

=

(
1

N
B̂T

(
Ω̄T

k ⊙XT
) (

X⊙ Ω̄k

)
B̂

)−1
(

1

N
B̂T

(
Ω̄T

k ⊙XT
)( K∑

n=1

Ωk ⊙Ωn ⊙
(
XB̂∗θ∗

k + Z
)))

,

(61)

=

(
1

N
B̂T

(
Ω̄T

k ⊙XT
) (

X⊙ Ω̄k

)
B̂

)−1(
1

N

(
B̂T

(
Ω̄T

k ⊙XT
) (

X⊙ Ω̄k

)
B̂∗θ∗

k

))
+

(
1

N
B̂T

(
Ω̄T

k ⊙XT
) (

X⊙ Ω̄k

)
B̂

)−1(
1

N

(
B̂T

(
Ω̄T

k ⊙XT
)
(Z⊙Ωk)

))
, (62)

= B̂T B̂∗θ∗
k +

(
1

N
B̂T

(
Ω̄T

k ⊙XT
) (

X⊙ Ω̄k

)
B̂

)−1(
1

N

(
B̂T

(
Ω̄T

k ⊙XT
) (

X⊙ Ω̄k

)
B̂∗θ∗

k

))
−
(

1

N
B̂T

(
Ω̄T

k ⊙XT
) (

X⊙ Ω̄k

)
B̂

)−1(
1

N

(
B̂T

(
Ω̄T

k ⊙XT
) (

X⊙ Ω̄k

)
B̂B̂T B̂∗θ∗

k

))
+

(
1

N
B̂T

(
Ω̄T

k ⊙XT
) (

X⊙ Ω̄k

)
B̂

)−1(
1

N

(
B̂T

(
Ω̄T

k ⊙XT
)
(Z⊙Ωk)

))
. (63)

Then define

Fk =

(
1

N
B̂T

(
Ω̄T

k ⊙XT
) (

X⊙ Ω̄k

)
B̂

)−1(
1

N

(
B̂T

(
Ω̄T

k ⊙XT
) (

X⊙ Ω̄k

)
B̂∗θ∗

k

))
−
(

1

N
B̂T

(
Ω̄T

k ⊙XT
) (

X⊙ Ω̄k

)
B̂

)−1(
1

N

(
B̂T

(
Ω̄T

k ⊙XT
) (

X⊙ Ω̄k

)
B̂B̂T B̂∗θ∗

k

))
,

(64)

Gk =

(
1

N
B̂T

(
Ω̄T

k ⊙XT
) (

X⊙ Ω̄k

)
B̂

)−1(
1

N

(
B̂T

(
Ω̄T

k ⊙XT
)
(Z⊙Ωk)

))
. (65)

Corollary B.6. Define Θ,F,G by the matrices that each row is θk,Fk,Gk, respectively, we have

Θt+1 = Θ∗[B̂∗]T B̂t + Ft +Gt . (66)

Proof. We can easily obtain this result by Lemma B.5.

Lemma B.7. Define

Hk =

(
1√
N

B̂T
(
Ω̄T

k ⊙XT
)) 1√

N

(
X⊙ Ω̄k

) (
Id − B̂B̂T

)
B̂∗ (67)

, N̂k = ΩT
kΩk, and δ = C c3/2

√
log(M)√

mink N̂k

for constant C, we have

∥Hk∥2 ≤ δN̂k√
cN

dist
(
B̂, B̂∗

)
, (68)

K∑
k=1

∥Hkθ
∗
k∥

2
2 ≤

(∑K
k=1 N̂

2
k

KN2

)
δ2 ∥Θ∗∥22 dist

2
(
B̂, B̂∗

)
, (69)

with probability at least 1− exp(−111c2 log(M)).
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Proof. Because we have

Hk =

M∑
i=1

Ni∑
j=1

(
ωi,j;k√

N
B̂Txi,j

)(
ωi,j;k√

N
[B̂∗]T

(
Id − B̂B̂T

)
xi,j

)T

, (70)

=

M∑
i=1

Ni∑
ωi,j;k=1

(
1√
N

B̂Txi,j

)(
1√
N

[B̂∗]T
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, (71)

=
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)
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)
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B̂T X̂T
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)
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X̂k

(
Id − B̂B̂T

)
B̂∗ (73)

where X̂k ∈ RN̂k×d with rows the concatenation of xi,j that ωi,j;k = 1. Here we define
N̂k =

∑M
i=1

∑Ni

j=1 1ωi,j;k=1. Then directly use Lemma 4 of Collins et al. (2021), and define

δ = C c3/2
√

log(M)√
mink N̂k

for constant C, we have

∥Hk∥2 ≤ δN̂k√
cN

dist
(
B̂, B̂∗

)
. (74)

with probability at least 1− exp(−111c2 log(M)). Then we have

K∑
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∥Hkθ
∗
k∥

2
2 ≤

K∑
k=1

∥Hk∥22 ∥θ
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2
2 , (75)

≤ c
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2
k
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)
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2
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)
. (77)

Then the proof finished.

Lemma B.8. Given F defined in Corollary B.6, define δ = C c3/2
√

log(M)√
mink N̂k

, we have

∥Fk∥2 ≤ δ

(1− δ)
√
c
∥θ∗
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(
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)
, (78)

∥F∥F ≤ δ
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√
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(
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)
, (79)

with probability at least 1− exp(−111c2 log(M)).

Proof. From Lemma B.3, we have∥∥∥∥∥
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1

N
B̂T

(
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) (

X⊙ Ω̄k

)
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)−1
∥∥∥∥∥
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N̂2
k (1− δ)2

. (80)

Then we consider to bound Fk first, by Lemma B.7 we have

∥Fk∥22 ≤

∥∥∥∥∥
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2
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for δ = C c3/2
√

log(M)√
mink N̂k

with probability at least 1 − exp(−111c2 log(M)). Then we consider to

bound F, and we have

∥F∥2F =
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≤
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∥∥∥∥∥
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with probability at least 1− exp(−111c2 log(M)). The last equation comes from Lemma B.7.

Lemma B.9. Given Gk defined by
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and G defined in Corollary B.6. Define δ = C c3/2
√

log(M)√
mink N̂k

, we have

∥Gk∥2 ≤ δ
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σ2 , (89)

∥G∥F ≤
√
K

δ

(1− δ)
σ2 , (90)

with probability at least 1− exp(−110c2 log(M)).

Proof. We can rewrite Gk by

Gk =

(
1

N
B̂T

(
Ω̄T

k ⊙XT
) (

X⊙ Ω̄k

)
B̂

)−1
1

N

M∑
i=1

Ni∑
j=1

ωi,j;kzkB̂
Txi,j , (91)

=

(
1

N
B̂T

(
Ω̄T

k ⊙XT
) (

X⊙ Ω̄k

)
B̂

)−1
1

N

N∑
ωi,j;k=1

zkB̂
Txi,j , (92)

=

(
1

N
B̂T

(
Ω̄T

k ⊙XT
) (

X⊙ Ω̄k

)
B̂

)−1
1

N

(
B̂T X̂T

k Ẑk
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where X̂k ∈ RN̂k×d with rows the concatenation of xi,j that ωi,j;k = 1. Here we define N̂k =∑M
i=1

∑Ni

j=1 1ωi,j;k=1. Then directly use Lemma A.7 of Tziotis et al. (2022), and define δ =
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√
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, we have ∥∥∥∥ 1
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with probability at least 1− exp(−113c2 log(M)). Then consider Gk, we have
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Then consider G, we have

∥G∥2F =
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σ4 . (97)

Lemma B.10. Define δ = C c3/2
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, we have
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with probability at least 1− exp(−105(d+ c))− exp(−105c2 log(M)) for some constant C1.
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Then we would like to consider the
(
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k

)
first. From Lemma B.5, we have
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with probability at least 1− exp(−110c2 log(M)), and δ = C c3/2
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Then we consider to bound θk, and we have
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with probability at least 1− exp(−110c2 log(M)).
Then we consider to bound
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where rows of X̂k ∈ RN̂k×d and Ẑk ∈ RN̂k are xi,j and zk subject to ωi,j;k = 1. Then let
Sd−1,Sc−1 denote the unit spheres in d and c dimensions, and Nd,Nk denote the 1

4 -nets of cardinality
9d and 9k, respectively. Then by Equation 4.13 of Vershynin (2018), we have∥∥∥∥∥ 1
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= 2 max
p∈Nd,y∈Nk

K∑
k=1

N̂k∑
i,j

(zk
N

⟨xi,j ,p⟩⟨θk,y⟩
)
. (119)

Notice that for any fixed p,y, the random variables zk
N ⟨xi,j ,p⟩⟨θk,y⟩ are i.i.d. zero-mean sub-

exponentials with the norm at most C1 σ2∥θk∥
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which holds with probability at least 1− exp(−105c2 log(M)). Then use the Bernstein’s inequality
we have
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Setting

s = C2
σ2

√
d+ c

(√
c+ δ

1−δdist
(
B̂, B̂∗

)
+ δ

1−δσ
2
)

√
N

, (122)

we have
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for C2 large enough. Taking the union bound over all points p,y on the Nd,Nk, we have
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Removing the conditional on E , we have
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where
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with probability at least 1− exp(−100(d+ c))− exp(−105c2 log(M)).
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where rows of X̂k ∈ RN̂k×d are xi,j subject to ωi,j;k = 1. Then we would like to define the event
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happens with the probability at least 1− exp(−105(d+ c))− exp(−105c2 log(M)) by Lemma B.10.
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Let Sd−1,Sc−1 denote the unit spheres in d and c dimensions and Nd,Nk the 1
4 -nets of cardinality

9d and 9k, respectively. By Equation 4.13 in Vershynin (2018), we have∥∥∥∥∥
K∑

k=1

qkθ
T
k

∥∥∥∥∥
2

≤ 2

N
max

p∈Nd,y∈Nk

pT

 K∑
k=1

N̂k∑
i,j

⟨xi,j ,gk⟩xi,jθ
T
k −

K∑
k=1

gkθ
T
k

y , (134)
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Then for any p,y, the inner products ⟨xi,j ,gk⟩, ⟨p,xi,j⟩ are sub-gaussians with norm at most
C1 ∥gi∥2 and C2 ∥p∥2 = C2, respectively for some constants C1, C2. Then under the condition that E
holds we have 1
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(136)

The same thing can be observed for ⟨p,gk⟩⟨θk,y⟩. Besides, we can observe that

E [⟨xi,j ,gk⟩⟨p,xi,j⟩⟨θk,y⟩ − ⟨p,gk⟩⟨θk,y⟩] = 0 . (137)

Then we are dealing with N zero-mean, sub-exponential random variables. Using Bernstein’s
inequality we have
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Setting s =

√
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N
, for constant C5 that satisfy C5 ≤ N

d+c , and taking union bound over all p,y,
we have
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Then by removing the conditional on E , we have∥∥∥∥∥
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with probability at least 1− exp(−100(d+ c))− exp(−105c2 log(M)).

B.3 MAIN RESULTS

Theorem B.12. Under Assumption 1- 4, when we have N ≥ K2

d+c , and mink N̂k ≥
C c3(1+σ2)4 log(M)
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}
for some constant C, we have
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with the probability at least 1 − exp(−90(d + c)) − exp(−90c2 log(M)). Here N̂k =∑M
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Proof. From the optimization steps we have

Bt+1 = B̂t −
K∑

k=1

η

N

((
Ω̄T

k ⊙XT
) (

X⊙ Ω̄k

)
B̂tθt

k −
(
Ω̄T

k ⊙XT
)
(Y ⊙Ωk)

)
(θt

k)
T , (142)
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Multiplying both sides by (B̂∗
⊥)

T , we have
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= (B̂∗
⊥)

T B̂t

(
Ic −

η

N

K∑
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Because we have B̂t+1 = Bt+1
(
Rt+1

)−1
, multiplying both sides by

(
Rt+1

)−1
we have
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Then we can define
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Then the inequality become
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For the following parts of the proof, we consider the following events hold
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(156)
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which hold with probability at least 1− exp(−90(d+ c))− exp(−90c2 log(M)) for some constants
C1, C2 by Lemma B.8, B.9, B.10, B.11. Then we consider to bound A1, A2, A3, respectively. Then
we consider to bound A1 first, and we have
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Then when η is small enough, it’s simple to promise that Ic − η
N

∑K
k=1 θkθ

T
k is positive definite.

Define diagonal matrix W ∈ RK×K , and Wk,k = N̂k
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Then under condition E1, E2, E3, E4, we have∥∥∥∥∥Ic − η
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≤ 1− ηK

(
mink N̂k

N

)
σ̄2
min,∗σ

2
min

(
(B̂∗)T B̂t

)
+ 2η

(
maxk N̂k

N

)(
δ
√
K

1− δ
σ̄2
max,∗ +

δKσ2

1− δ
σ̄max,∗

)

+ η

(
maxk N̂k

N

)
δ2

(1− δ)2
(
2σ̄2

max,∗ + 2Kσ4
)
, (172)
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where E0 = 1− dist2
(
B̂0, B̂∗

)
≤ σ2
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(
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)
. The Equation (173) holds when N̂k is large
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Then consider A1, we will have
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The consider A2, because
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Similarly, for A3, we have
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Combining Equation (151), (177), (179), and (181), and choose C = max{C1, C2, C1C2 + C2}, we
have
dist

(
B̂t+1, B̂∗

)
≤ dist

(
B̂t, B̂∗

)
(
1− ηK

((
mink N̂k

N

)2

− 1

4

(
maxk N̂k

N

)2)
σ̄2
min,∗E0 + ηC

√
d+ c√
N

(√
c+

1√
10

)2
)∥∥(Rt+1)−1

∥∥
2

+ ηC
√
d+ c√
N

(
σ2 + 1

)(
2
√
c+

1

5

)∥∥(Rt+1)−1
∥∥
2
. (182)

Then the remaining thing is to bound (Rt+1)−1. Firstly we define
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By Weyl’s inequality, we have
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Then we consider to bound R1, R2, and R3, respectively. Consider R1 first, and we have
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Under the condition E4, we have
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The remaining thing is to bound 2η
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(θ∗

k)
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, (201)

T2 =
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N
tr

[
K∑

k=1

N̂k

(
B̂tθt

k − B̂∗θ∗
k

)
(Ft

k)
TppT (B̂t)T

]
, (202)

T3 =
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N
tr

[
K∑

k=1

N̂k

(
B̂tθt

k − B̂∗θ∗
k

)
(Gt

k)
TppT (B̂t)T
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. (203)

Consider T1 first, we have

T1 =
2η

N
tr

[
K∑

k=1

N̂k

(
B̂t(B̂t)T B̂∗θ∗

k + B̂tFt
k + B̂tGt

k − B̂∗θ∗
k
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(θ∗
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T (B̂∗)T B̂tppT (B̂t)T
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(204)

=
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, (205)

= 2ηtr
[
(B̂t)T B̂t

(
(Ft)T + (Gt)T
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, (206)

≤ 2η
maxk Nk

N

(∥∥Ft
∥∥
F
+
∥∥Gt

∥∥
F

)
∥Θ∗∥2 . (207)
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Because E2 holds, we have

T1 ≤ 2η
maxk Nk

N
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δ
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√
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δ
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Then consider T2, we have
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N
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=
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Finally, consider T3, we have
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Combining Equation (210), (216), and (222), we have
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Then consider R2, because condition E3 holds, we have

R2 =
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N
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Then consider R3, when condition E3, E4, E5, and E6 hold, we have
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The last equation holds when N satisfy N ≥ K2

d+c . Then combine Equation (192), (198), (227),
and (230), because N ≥ (

√
c+ 1)(σ2 + 1) holds, we have
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Combining Equation (182) and (232), we have
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When maxk N̂k
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we will have
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Then we have
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Remark B.13. From Theorem B.12, we see that HCFL+’s convergence is strongly influenced
by maxk N̂k and mink N̂k. In other words, HCFL+ converges faster as mink N̂k

maxk N̂k
increases. This

suggests that HCFL+ performs better when the number of samples is evenly distributed among all
K underlying clusters.
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C RELATED WORKS

Federated Learning. As the de-facto algorithm in FL, FedAvg employs local SGD (McMahan
et al., 2016; Lin et al., 2020) to reduce communication costs and protect client privacy. However,
distribution shifts among clients pose a significant challenge in FL and hinder the performance of
FL algorithms (Li et al., 2018; Wang et al., 2020; Karimireddy et al., 2020; Jiang & Lin, 2023; Guo
et al., 2021). Traditional FL methods primarily aim to improve the convergence speed of global
models and incorporate bias reduction techniques (Tang et al., 2022; Guo et al., 2023a; Li et al.,
2021; 2018). At the same time, some studies investigate feature distribution shifts using domain
generalization techniques (Peng et al., 2019; Wang et al., 2022a; Shen et al., 2021; Sun et al., 2022;
Gan et al., 2021). However, single-model approaches are inadequate for handling heterogeneous
data distributions, especially when dealing with concept shifts (Ke et al., 2022; Guo et al., 2023b;
Jothimurugesan et al., 2023). To tackle these challenges, clustered FL algorithms are introduced
to enhance FL algorithm performance.

Clustered FL with fixed cluster numbers. Clustered FL groups clients based on their local data
distribution, tackling the distribution shift problem. Most methods employ hard clustering with a fixed
number of clusters, grouping clients by various similarity metrics, such as local loss values (Ghosh
et al., 2020), local model parameter differences (Long et al., 2023), communication time/local
calculation time (Wang et al., 2022b), and fuzzy c-Means (Stallmann & Wilbik, 2022). However,
hard clustering may not capture complex relationships between local distributions adequately, and
soft clustering paradigms have been proposed to address this issue. For instance, FedEM (Marfoq
et al., 2021) employs Expectation-Maximization techniques to maximize likelihood functions. FedG-
MMcitepwu2023personalized suggests using joint distributions instead of conditional distributions.
FedRC(Guo et al., 2023b) introduces Robust Clustering, assigning clients with concept shifts to
different clusters to enhance model generalization. FedSoft (Ruan & Joe-Wong, 2022) calculates
weights based on the distances between clients’ local model parameters and cluster model param-
eters, with smaller distances indicating larger weights for that cluster. In this paper, we propose a
generalized formulation for clustered FL that encompasses the current methods and improves them
by addressing issues related to intra-client inconsistency and efficiency.

Clustered FL with adaptive clustering numbers. Another line of research focuses on automat-
ically determining the number of clusters. Current methods utilize hierarchical clustering, which
measures client dissimilarity using model parameters or local gradient distances. Most current meth-
ods modify cluster numbers by splitting them when client distances within clusters are large (Sattler
et al., 2020b;a; Zhao et al., 2020; Briggs et al., 2020; Duan et al., 2021a;b). Recently, StoCFL (Zeng
et al., 2023) suggests initially setting cluster numbers equal to the client count and merging clusters
with small distances. In addition to model parameter distances, some papers employ alternative
distance metrics for improved performance. For instance, Yan et al. (2023) employ principal
eigenvectors of model parameters. Vahidian et al. (2023) use truncated singular value decomposition
(SVD) to obtain a reduced set of principal vectors for distance measurement. Meanwhile, Wei &
Huang (2023) focus on the distance of normalized local features. FEDCOLLAB (Bao et al., 2023)
focuses on cross-silo scenarios with a limited number of clients and quantifies client similarity by
training client discriminators. However, the need for discriminators between every pair of clients
in FEDCOLLAB makes it challenging to expand to cross-device scenarios with numerous clients.
In this paper, we concentrate on cross-device settings, introducing a holistic adaptive clustering
framework enabling cluster splitting and merging. We also present enhanced weight updating for
soft clustering and finer distance metrics for various clustering principles.

D ALGORITHMS

Details of the HCFL+. In Algorithm 2, we present a concise summary of the comprehensive
algorithm that integrates all the enhanced components of HCFL+, as introduced in Section 4.
Specifically, during each communication round, the algorithm performs the following steps: (1)
Randomly selects a subset of clients. (2) Calculates prototypes using Equations (241) and (242). (3)
Performs local updates using Algorithm 3. (4) The server aggregates local updates, updates cluster
model parameters, and computes client distance metrics using Equation (11) for each cluster k. (5)
Identifies kmax as the cluster with the highest average distance. (6) Checks if the maximum distance
within kmax significantly exceeds the average distance in this cluster. (7) If the following condition
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is met, splits the clusters using Algorithm 4.

max(Dt
kmax

)−mean(Dt
kmax

) ≥ ρ . (238)

(8) Mark and remove the empty clusters no clients will assign large clustering weights to using
Algorithm 5.

Intuitions on the distance metrics design. From the objective function (Eq. (2)), we should
assign higher clustering weights ωi,j;k to clusters with greater Lk(xi,j , yi,j ,ϕ,θk) to maximize the
objective function. Because the ultimate goals of the clustering algorithms are solving the objective
functions, we analyse the Lk(xi,j , yi,j ,ϕ,θk) to check the key factors influencing the value of
Lk(xi,j , yi,j ,ϕ,θk), and the relationships between these factors and the clustering principles.
We use the following algorithms as examples. For FedEM (Marfoq et al., 2021) and IFCA (Ghosh
et al., 2020), Lk(x, y,ϕ,θk) = Pϕ,θk

(y|x); For FedRC (Guo et al., 2023b), Lk(x, y,ϕ,θk) =
Pϕ,θk

(x,y)

Pϕ,θk
(x)Pϕ,θk

(y) . Defining z = g(x;ϕ) as the local features extracted by ϕ, assuming a x → z → y

Probabilistic Graphical Model (with x and y being independent given z), we obtain:

Lk(x, y,ϕ,θk) =

{
P(y|x;ϕ,θk) =

P(y|z;θk)P(z|x;ϕ)
P(z|x,y;ϕ)

(FedEM, IFCA)

P(x,y;ϕ,θk)
P(y;ϕ,θk)P(x;ϕ,θk)

= P(y|z;θk)P(z|x;ϕ)
P(y;ϕ,θk)P(z|x,y;ϕ)

(FedRC)

}
=
L̃k(z, y;θk)P(z|x;ϕ)
P(z|x, y;ϕ) .

Then we aim to give the following explanations of the three terms P(z|x;ϕ), P(z|x;ϕ), and
L̃k(z, y;θk), which align with the terms considered in Sec 4.4.
• P(z|x;ϕ) for feature and label shifts. Feature shifts introduce significant distances in x.

Additionally, x with different y values generally exhibit substantial distances in the feature space.
Without this, classifiers cannot distinguish samples with different labels. Hence, we employ
P(z|x;ϕ) to assess both feature and label shifts.

• P(z|x, y;ϕ) for concept shifts. Concept shifts signify alerted x− y correlations. Hence, samples
with concept shifts but have the same y should exhibit a significant difference in P(z|x, y;ϕ).

• L̃k(z, y;θk) for the quality of clustering. The L̃k(z, y;θk) is defined using features z = g(x;ϕ)
instead of data x in Lk(x, y,ϕ,θk). This term evaluates if features z can be correctly assigned to
clusters given the current Θ; otherwise, the objectives in (2) cannot be achieved.

Finally, we propose the following distance metric:

Dk
i,j=

 max {dc, dlf}EDi

[
L̃k(z, y;θk)

]
EDj

[
L̃k(z, y;θk)

]
, ASCP

dcEDi

[
L̃k(z, y;θk)

]
EDj

[
L̃k(z, y;θk)

]
, CSCP

(239)

where dist is the cos-similarity in this paper, dc=maxy
{

dist
(
EDi [P(z|x, y;ϕ)] ,EDj [P(z|x, y;ϕ)]

)}
,

and dlf = dist
(
EDi

[P(z|x;ϕ)] ,EDj
[P(z|x;ϕ)]

)
. The distances above become large only when

the following conditions occur together: (1) Large values of dc indicate concept shifts between
clients i and j; (2) Large dlf indicate significant feature and label distribution differences. (2) Large

values of EDi

[
L̃k(z, y;θk)

]
EDj

[
L̃k(z, y;θk)

]
indicate incorrect clustering weights with high

confidence.

Approximation of the distance metrics in practice. When calculating the distance metrics
(Equation (11)) in practice, to avoid training extra generative networks and transmitting more
data between servers and clients, we substitute ω̃i;k for L̃k(z, y;θk) since ω̃i;k is positively cor-
related with L̃k(z, y;θk) (Marfoq et al., 2021; Guo et al., 2023b). Additionally, we approximate
EDi

[P(z|x, y;ϕ)] and EDi
[P(z|x, y;ϕ)] using feature prototypes. The prototypes are defined by

the following equation:

d̃c = Dist(Pc,i,Pc,j) , d̃lf = Dist(Plf,i,Plf,j) , (240)

where

Pc,i ∈ Rd×C = [
1

Ni,1

Ni∑
j=1

1yi,j=1g(xi,j ,ϕ), · · · ,
1

Ni,C

Ni∑
j=1

1yi,j=Cg(xi,j ,ϕ)] , (241)

Plf,i ∈ Rd =
1

Ni

Ni∑
j=1

g(xi,j ,ϕ) , (242)

Ni,c =
∑Ni

j=1 1yi,j=c, g(xi,j ,ϕ) is the function parameterized by ϕ, Dist is a function to measure
the distance between prototypes, which we use the cosine similarity as an example in this paper.
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Algorithm 2 Algorithm Framework of HCFL+

Require: Local datasets D1, . . . , DN , number of local iterations T , number of communication rounds T ,
number of clients chosen in each round S, initial number of clusters K0, number of classes C, and
hyper-parameter ρ.

Ensure: Trained global feature extractor ϕT , final number of clusters KT , and cluster-specific predictors
ΘT = [θT

1 , · · · ,θT
KT ].

1: Initialize ϕ0,Θ0 = [θ0
1 , · · · ,θ0

K0 ].
2: for t = 0, . . . , T − 1 do
3: Choose a subset of clients St, where |St| = S.
4: for chosen client i ∈ St do
5: Calculate client prototypes Pt

i by Equation (241)- (242).
6: F t+1

i , ω̃t+1
i;k ,ϕT

i ,θT
k,i ← Local updates by Algorithm 3.

7: Send Pt
i , F t+1

i , and ω̃t+1
i;k ,ϕT

i ,θT
k,i, ∀k ≤ Kt to the server.

8: F latest
i ← F t+1

i .
9: ϕt+1 = 1∑

i∈St

∑
i∈St Niϕ

T
i .

10: θt+1
k = 1∑

i∈St

∑
i∈St Niθ

T
k,i, ∀k ≤ Kt.

11: F t+1
g ← [F t+1

g,1 , · · · ,F t+1
g,Kt ], where F t+1

g,k ← [
∑

i F
latest
i,k,1 , · · · ,

∑
i F

latest
i,k,C ].

12: Initialize Ctk = ∅, ∀k ≤ Kt.
13: for all client i do
14: ci ← argmaxk ω̃i;k.
15: Ctci ← C

t
ci ∪ i.

16: Rt ← ∅.
17: for k ≤ Kt do
18: if Ctk is empty then
19: Rt ←Rt ∪ k.
20: Get the cluster-specific distance matrix Dk ∈ R|S̃t

k|×|S̃t
k|, ∀k ≤ Kt by Equation (11).

21: kmin ← argmaxk max(Dt
k).

22: if max(Dt
kmin

)−mean(Dt
kmin

) ≥ ρ then
23: Split Ctkmin

into two clusters Ctkmin,1 and Ctkmin,2.
24: θt+1

kmin
= 1∑

i∈Ct
kmin,1

∑
i∈Ct

kmin,1
Niθ

T
kmin,i.

25: Add new cluster and update Fg by server side of Algorithm 4.
26: Kt+1 ← Kt + 1.
27: else
28: Kt+1 ← Kt.
29: for cluster kr ∈ Rt do
30: Remove cluster kr and update Fg by server side of Algorithm 5.
31: Kt+1 ← Kt+1 − 1.
32: Send ϕt+1, Θt+1 = [θt+1

1 , · · · ,θt+1
Kt+1 ], and information about add/remove cluster to clients.

Algorithm 3 Local Updates of HCFL+

Require: Number of local iterations T , current number of clusters Kt, number of classes C, local dataset Di,
global feature extractor ϕt, cluster-specific predictors Θt = [θt

1, · · · ,θt
Kt ].

Ensure: Trained feature extractor ϕT
i , predictors ΘT

i = [θT
i,1, · · · ,θT

i,Kt ], Ω̃t+1
i = [ω̃i;k, · · · , ω̃i;Kt ], and

F t+1
i = [F t+1

i,1 , · · · ,F t+1
i,Kt ], where F t+1

i,k = [F t+1
i,k,1, · · · ,F

t+1
i,k,C ].

1: Update γt+1
i,j;k, γ̃

t+1
i,j;k, ω

t+1
i,j;k, ω̃

t+1
i;k by Equations (4)-(5), ∀j ≤ Ni, k ≤ Kt. ▷ Tier 2

2: for τ = 1, . . . , T do ▷ Tier 1
3: Update θτ

k,i by Equation (6), ∀k ≤ Kt.
4: Update ϕτ

i by Equation (7).
5: F t+1

i,k,c ←
∑Ni

j=1 1yi,j=cγ
t+1
i,j;k.
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Algorithm 4 Cluster Adding of HCFL+

Require: kmin, set of clients Ctkmin,2, the corresponding θT
kmin,i for each client i ∈ Ctkmin,2, and Fg .

Ensure: New F t+1
g , and predictor of the new cluster θt+1

Kt+1
.

1: Server Side:
2: θt+1

Kt+1
= 1∑

i∈Ct
kmin,2

∑
i∈Ct

kmin,2
Niθ

T
kmin,i.

3: Add Fg,Kt+1 ← Fg,kmin to F t+1
g .

4: Add F latest
i,Kt+1 ← F

latest
i,kmin

to F latest
i , ∀i.

5: Client Side:
6: ωi,j;Kt+1 ← ωi,j;kmin/2, ∀j ≤ Ni.
7: ωi,j;kmin ← ωi,j;kmin/2, ∀j ≤ Ni.
8: ω̃i;Kt+1 ← ω̃i;kmin/2.
9: ω̃i;kmin ← ω̃i;kmin/2.

Algorithm 5 Cluster Removing of HCFL+

Require: The cluster needs to be removed kr , and F t+1
g .

1: Server Side:
2: Remove F t+1

g,kr
from F t+1

g .
3: Remove F latest

i,kr
from F latest

i , ∀i.
4: Client Side:
5: ωi,j;k ←

ωi,j;k∑
n̸=kr

ωi,j;n
, ∀j ≤ Ni, k ̸= kr .

6: ω̃i;k ←
ωi;k∑

n ̸=kr
ωi;n

, ∀k ̸= kr .
7: Remove γi,j;kr , γ̃i,j;kr , ωi,j;kr , ω̃i,j;kr , ∀j ≤ Ni.
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E EXPERIMENT RESULTS

E.1 DATASETS AND MODELS

Diverse distribution shifts scenarios. Similar to previous work (Guo et al., 2023b), the diverse
distribution shift scenario construct clients with three types of distribution shifts with each other:
• Label Distribution Shifts: We use the idea introduced Yoshida et al. (2019); Hsu et al. (2019);

Reddi et al. (2021), where we leverage the Latent Dirichlet Allocation (LDA) with α = 1.0. We
split datasets to 100 clients by default.

• Feature Distribution Shifts: We utilize the idea of constructing CIFAR10-C, CIFAR100-C,
and ImageNet-C (Hendrycks & Dietterich, 2019). In detail, we apply random augmentations to
client samples, selecting from 20 types, including ’Original’, ’Gaussian Noise’, ’Shot Noise’,
’Impulse Noise’, ’Defocus Blur’, ’Glass Blur’, ’Motion Blur’, ’Zoom Blur’, ’Snow’, ’Frost’, ’Fog’,
’Brightness’, ’Contrast’, ’Elastic’, ’Pixelate’, ’JPEG’, ’Speckle Noise’, ’Gaussian Blur’, ’Spatter’,
and ’Saturate’. Augmentation types remain consistent within each client.

• Concept Shifts: For label y ≤ Cβ , it becomes y, (1 + y)%Cβ , and (2 + y)%Cβ across concepts,
where Cβ = ⌊C ∗ β⌋, and C is the number of classes.

Noisy label scenarios. We follow the methodology of previous works (Fang & Ye, 2022; Ke et al.,
2022) to construct noisy label scenarios. Our approach involves two types of noisy labels: symmetric
flip and pair flip. Symmetric flip entails randomly flipping the original class label to any wrong class
label with equal probability. Pair flip involves flipping the original class label only to a very similar
wrong category. We use the parameter χ to control the noisy rate, where χ = 0.1 indicates that 10%
of the data have wrong labels.

E.2 BASELINES AND HYPER-PARAMETER SETTINGS

Detailed implementations and hyper-parameter settings for all the algorithms Unless special
mentioned, we split each dataset to 100 clients with 3 concepts. The learning rates are chosen in
{0.03, 0.06, 1.0}, and we report the best results for each algorithm. We run the algorithms for 200
communication rounds and set the number of local epochs to 1.

Detailed implementations and hyper-parameter settings of baseline algorithms. The details of
the settings and hyper-parameters we used for the baseline methods a summarized below. We exclude
the algorithms that do not require additional hyper-parameters here.
• CFL (Sattler et al., 2020b). We use the public code provided by (Marfoq et al., 2021) for the CFL

algorithm. The hyper-parameters tol1 and tol2 are tuned, and we report how the hyper-parameters
affect the results of the algorithm in Table 1.

• ICFL (Yan et al., 2023). Follow the same setting as the original paper, we set the hyper-parameter
α ∗ (0) to {0.85, 0.98}, and ϵ1 = 4.0.

• stoCFL (Zeng et al., 2023). We choose τ = {0, 0.05, 0.1, 0.15} to control the trade-off between
personalization and generalization as suggested by the original paper. In addition, we choose
λ = 0.5, which always achieve the best performance as reported in the original paper.

• HCFL+ (FedRC) (Guo et al., 2023b). We set µ̃ = 0.4, and choose ρ = {0.05, 0.1, 0.3}. The
distance between clients are calculated by Equation (??).

• HCFL+ (FedEM) (Marfoq et al., 2021). We set µ̃ = 0.4, and choose ρ = {0.05, 0.1, 0.3}. The
distance between clients are calculated by Equation (11).

• HCFL+ (FeSEM) (Long et al., 2023). We choose ρ = {0.05, 0.1, 0.3}. Follow the original
paper, we use hard clustering paradigms that does not require the hyper-parameter µ̃. The model
splitting process is the same as Sattler et al. (2020b) that designed for hard clustering paradigms.
The distance between clients are calculated by Equation (11).

E.3 ADDITIONAL EXPERIMENT RESULTS

Results on noisy data scenarios In Table 3, we show the performance of clustered FL emthods on
noisy data scenarios. Results show that HCFL+ consistently outperform other methods by a large
margin.

Additional results on diverse distribution shift scenarios. In Table 4, we show the performance
of algorithms with β = 0.4. Results show HCFL+ always achieve the best test accuracy, and achieve
a good local-global balance.
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Table 3: Performance of algorithms on noisy data scenarios. We evaluated the performance of algorithms
using the CIFAR10 dataset split into 100 clients. For each algorithm, we report the best test accuracy for all 200
communication rounds.

Algorithm CIFAR10 (MobileNetV2)

Pairflip, χ = 0.1 Pairflip,χ = 0.2 Symflip, χ = 0.2 Symflip, χ = 0.4

FedAvg 54.75 ±1.45 52.35 ±1.65 52.60 ±0.50 41.80 ±0.50
FeSEM 32.60 ±1.30 35.25 ±2.95 32.40 ±2.80 29.70 ±0.01
IFCA 24.95 ±7.05 20.55 ±4.65 30.35 ±2.05 36.05 ±4.45

FedEM 64.40 ±1.10 57.55 ±2.95 53.00 ±1.90 43.10 ±0.20
FedRC 67.90 ±1.00 59.95 ±1.05 55.25 ±2.05 42.00 ±0.40

HCFL+ 66.70 ±0.40 62.70 ±0.30 59.95 ±1.15 47.20 ±0.20

Table 4: Performance of the adaptive clustering methods. We evaluated algorithm performance on CIFAR10
and CIFAR100 datasets, employing 100 clients. For each algorithm, we present the highest validation and test
accuracies across 200 communication rounds, and the final number of clusters during training denoted as KT .
All experiments utilized MobileNet-V2 (Sandler et al., 2018).

Algorithm CIFAR10, β = 0.4 CIFAR100, β = 0.4

Val Test KT Val Test KT

FedAvg 48.16 ±1.64 49.93 ±0.80 3.0 22.77 ±0.01 24.62 ±0.55 3.0
FeSEM 46.08 ±4.54 35.99 ±4.59 3.0 23.56 ±1.52 22.31 ±1.08 3.0
IFCA 36.15 ±3.45 24.79 ±1.18 3.0 27.72 ±0.82 21.37 ±1.33 3.0
FedEM 60.26 ±1.10 54.44 ±0.04 3.0 25.80 ±0.20 22.88 ±0.19 3.0
FedRC 57.99 ±0.29 56.75 ±0.38 3.0 30.94 ±0.88 31.63 ±0.20 3.0

CFL
tol1 = 0.4, tol2 = 1.6 61.86 ±5.29 51.15 ±0.82 6.0 34.11 ±6.35 21.04 ±2.21 5.0
tol1 = 0.4, tol2 = 0.8 60.42 ±0.31 41.59 ±2.14 8.0 36.23 ±3.58 16.03 ±2.69 6.0
tol1 = 0.2, tol2 = 0.8 49.14 ±6.11 49.88 ±4.21 3.0 34.20 ±7.13 26.42 ±0.73 2.5

ICFL
α∗(0) = 0.85 77.73 ±0.47 52.03 ±0.10 100.0 49.71 ±0.55 28.55 ±0.03 100.0
α∗(0) = 0.98 63.69 ±3.58 54.02 ±1.11 81.5 45.72 ±1.10 28.45 ±0.82 70.0

StoCFL
τ = 0.00 48.55 ±0.95 51.25 ±1.16 1.5 24.50 ±0.03 25.70 ±1.51 1.0
τ = 0.05 57.84 ±2.26 50.42 ±0.97 20.5 26.24 ±1.46 26.60 ±1.17 4.0
τ = 0.10 72.91 ±2.25 47.84 ±2.60 59.0 67.67 ±1.68 9.89 ±0.45 86.0
τ = 0.15 77.19 ±2.31 41.49 ±0.97 92.0 70.13 ±0.27 7.77 ±0.23 94.0

HCFL+ (FeSEM)
ρ = 0.1 85.30 ±1.05 45.20 ±0.28 47.0 58.61 ±4.14 18.29 ±2.38 35.5
ρ = 0.3 80.34 ±1.33 48.25 ±2.72 20.5 44.65 ±0.35 21.73 ±1.27 12.0

HCFL+ (FedEM)
ρ = 0.05 80.31 ±1.60 53.62 ±4.36 18.5 62.19 ±1.54 21.15 ±0.88 44.5
ρ = 0.1 82.89 ±0.92 56.27 ±1.08 26.5 59.08 ±0.06 21.29 ±0.87 31.5
ρ = 0.3 80.72 ±1.90 55.77 ±1.93 10.0 49.84 ±6.85 28.62 ±0.78 11.0

HCFL+ (FedRC)
ρ = 0.05 68.48 ±0.25 66.77 ±0.28 9.5 38.75 ±0.98 30.45 ±0.07 10.0
ρ = 0.1 68.56 ±3.56 65.75 ±5.40 6.0 40.30 ±1.19 30.23 ±0.85 11.0
ρ = 0.3 70.86 ±0.31 70.13 ±0.42 5.5 39.62 ±0.34 32.22 ±0.20 5.0
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Table 5: Ablation studies on techniques in Sec 4.2. We evaluated algorithm performance on CIFAR10 and
CIFAR100 datasets, showcasing the top Validation and Test accuracies for each. We kept ρ = 0.3 consistent
across all algorithms and varied µ̃ to adjust the penalty term’s strength in the objective function. The best results
in each block are highlighted.

Algorithm CIFAR10, β = 0.2 CIFAR10, β = 0.4 CIFAR100, β = 0.2 CIFAR100, β = 0.4

Val Test Val Test Val Test Val Test

HCFL+ (FedEM)
µ̃ = 0.0 83.67 ±0.72 62.43 ±0.71 80.72 ±1.90 55.77 ±1.93 50.72 ±2.97 32.13 ±0.18 49.84 ±6.85 28.62 ±0.78
µ̃ = 0.1 81.60 ±0.59 60.48 ±0.50 80.36 ±2.40 55.10 ±1.75 48.78 ±0.62 30.50 ±0.33 48.56 ±1.10 25.80 ±1.17
µ̃ = 0.4 79.52 ±0.11 53.33 ±2.97 76.50 ±0.34 49.97 ±2.26 44.85 ±0.48 28.39 ±0.12 41.52 ±0.08 22.83 ±0.42

HCFL+ (FedRC)
µ̃ = 0.0 70.82 ±0.25 69.15 ±0.35 69.95 ±1.99 67.09 ±1.01 39.55 ±1.29 35.49 ±0.16 38.77 ±1.20 31.87 ±1.13
µ̃ = 0.1 69.91 ±0.16 68.77 ±1.56 69.53 ±0.21 68.54 ±1.08 39.38 ±0.40 35.95 ±0.59 39.77 ±2.33 31.52 ±0.45
µ̃ = 0.4 69.33 ±0.24 69.67 ±1.27 70.86 ±0.31 70.13 ±0.42 39.97 ±0.21 36.50 ±0.28 39.62 ±0.34 32.22 ±0.20

Table 6: Ablation studies on techniques in Sec 4.3. We evaluated algorithm performance on CIFAR10 and
CIFAR100 datasets, displaying their highest Validation and Test accuracies. We kept ρ consistent at 0.3 for all
algorithms. "w/ SCWU" denotes the use of soft clustering weight updating mechanisms designed in Section 4.3.

Algorithm CIFAR10, β = 0.2 CIFAR10, β = 0.4 CIFAR100, β = 0.2 CIFAR100, β = 0.4

Val Test Val Test Val Test Val Test

HCFL+ (FedEM)
w/ SCWU 83.67 ±0.72 62.43 ±0.71 80.72 ±1.90 55.77 ±1.93 50.72 ±2.97 32.13 ±0.18 49.84 ±6.85 28.62 ±0.78
w/o SCWU 82.11 ±2.39 63.84 ±0.19 80.08 ±0.99 58.83 ±2.12 49.77 ±1.93 32.90 ±1.11 47.91 ±2.67 27.40 ±1.17

HCFL+ (FedRC)
w/ SCWU 69.33 ±0.24 69.67 ±1.27 70.86 ±0.31 70.13 ±0.42 39.97 ±0.21 36.50 ±0.28 39.62 ±0.34 32.22 ±0.20
w/o SCWU 69.88 ±0.30 68.83 ±0.71 70.77 ±0.47 68.87 ±0.23 40.96 ±1.24 35.72 ±1.01 39.18 ±0.13 32.08 ±0.78

Table 7: Performance of algorithms with Resnet18. We evaluated algorithm performance on CIFAR10 datasets
with β = 0.2, displaying their highest Validation and Test accuracies. All algorithms utilize ResNet18 and run
for 200 communication rounds.

Algorithm Val Test

CFL
tol1 = 0.4, tol2 = 0.6 63.07 ±7.42 53.65 ±2.33
tol1 = 0.4, tol2 = 0.8 61.14 ±1.87 54.87 ±1.32

ICFL
α∗(0) = 0.85 80.46 ±0.99 45.28 ±6.56
α∗(0) = 0.98 82.34 ±0.28 44.08 ±0.40

StoCFL
τ = 0.1 57.41 ±6.69 48.95 ±1.95
τ = 0.15 66.54 ±1.05 47.77 ±0.14

HCFL+ (FeSEM)
ρ = 0.05 86.90 ±0.20 50.34 ±5.99
ρ = 0.1 85.55 ±0.24 49.38 ±6.15

HCFL+ (FedEM)
ρ = 0.05 83.88 ±0.25 58.92 ±1.11
ρ = 0.1 83.83 ±0.01 60.27 ±3.11

HCFL+ (FedRC)
ρ = 0.05 67.72 ±1.30 64.13 ±0.37
ρ = 0.1 67.51 ±0.24 63.15 ±0.78
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