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Abstract

Spatio-Temporal Point Processes (STPPs) have recently become increasingly inter-
esting for learning dynamic graph data since many scientific fields, ranging from
mathematics, biology, social sciences, and physics to computer science, are natu-
rally related and dynamic. While training Recurrent Neural Networks and solving
PDEs for representing temporal data is expensive, TPPs were a good alternative.
The drawback is that constructing an appropriate TPP for modeling temporal data
requires the assumption of a particular temporal behavior of the data. To overcome
this problem, Neural TPPs have been developed that enable learning of the parame-
ters of the TPP. However, the research is relatively young for modeling dynamic
graphs, and only a few TPPs have been proposed to handle edge-dynamic graphs.
To allow for learning on a fully dynamic graph, we propose the first Marked Neural
Spatio-Temporal Point Process (MNSTPP) that leverages a Dynamic Graph Neural
Network to learn Spatio-TPPs to model and predict any event in a graph stream.
In addition, our model can be updated efficiently by considering single events for
local retraining.

1 Introduction

Graph Neural Networks (GNNs) have become baseline models for learning on structured data in
the past years. Many models have been developed for static graph data that can use structural
information in the learning process of various problems [15]. However, many applications produce
more complex data and problems, necessitating the incorporation of temporal information, which
static graphs cannot capture [19]. Therefore, learning on dynamic graphs has been growing for
several years. Models have been proposed that can handle node attribute changes [13], additions of
nodes or edges (growing graphs) [16, 17], or edge-structure dynamics and node attribute changes
[18]. More examples are provided in [9, 15]. This, however, demonstrates that most models are
specialized for processing certain dynamic graphs.

Approaches to modeling dynamics in graphs can be divided into three main categories: The usage
of Recurrent Neural Networks (RNNs), Partial Differential Equations (PDEs), or Temporal Point
Processes (TPPs). However, the drawback of RNNs is that explicit temporal information is neglected,
and only the sequence of changes in the graph is represented. Furthermore, solving PDEs is costly
and non-trivial, making TPPs more appropriate for representing graph stream data. However, they
have the disadvantage of making assumptions about the temporal patterns that are not necessarily
met. Therefore, Neural TPPs have been proposed [4, 10], which can efficiently learn the temporal
evolution of complex processes without requiring prior knowledge. Though only a few models for
graphs have been developed exploiting them, they are also limited to certain graph types.

In this work in progress, we present the first Marked Neural Spatio-Temporal Point Process (MNSTPP)
utilizing a Dynamic GNN to learn on graph streams with arbitrary structural and attribute dynamics.

∗All contributions are listed in detail in the appendix App. A.4.
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The approach is based on the model DyREP [17], which applies a Neural TPP on edge-growing graphs.
We extend the Neural TPPs of DyREP to Marked Neural Spatio-Temporal Point Processes, which
support processing any structural changes in graphs. The representation of continuous node and
edge attributes in the form of a marked TPP with real-valued marks is innovative compared to the
usage of non-marked TPPs or categorical marks as carried out in most of the literature so far [2, 20]
and [6, 10], or marks only for non-graph data [3, 7, 8, 21]. By creating the Neural TPPs based on a
Dynamic GNN, we can predict all kinds of structural events, event times, and attribute changes over
time. Furthermore, the model is updateable for every new event by local retraining, which enables a
fast and efficient update and training of the model.

2 Preliminaries

We first introduce preliminary ideas that constitute essential modules in the model. Graph Streams.
A graph stream G = (G0 := (V0, E0, α0, β0),O) is a dynamic graph in continuous-time represen-
tation. Given by a static start graph G0 = (V0, E0, α0, β0) with nodes V0, edges E0 and attribute
mappings α0 : V0 → A, β0 : E0 → B with arbitrary attribute sets A,B, and events ok,t ∈ O of the
following form:

Table 1: Events in a continuous-time representation of a graph.

Event Type Addition Deletion Attribute Change
Node Event o0,t := (v, αv

t , t)add o1,t := (v, αv
t , t)del o4,t := (v, αv

t , t)atr
Edge Event o2,t := (e, βe

t , t)add o3,t := (e, βe
t , t)del o5,t := (e, βe

t , t)atr

Here, v ∈ V≤t :=
⋃

t̂ : t̂≤t Vt̂ are nodes and e ∈ E≤t :=
⋃

t̂ : t̂≤t Et̂ edges appearing in G up to
timestamp t. Further, T ⊆ R≥0 is a set of timestamps and we assume here that only one event occurs
at each timestamp.

Activities of Nodes and Edges. Dealing with structure dynamics, we use a so-called activity
function to capture which nodes/edges exist at any given time. To learn the graph’s deletion behavior,
the activity of deleted nodes/edges is 0, and for the addition behavior, we use 1. Formally, let ot(x)
be an event at time t that affects the item x ∈ Vt ∪ Et, and ξ : (V ∪ E)× T → {0, 1} be the activity
function defined as

ξxt =


1, if ot(x) ∈ {o0, o2, o4, o5} ∧ x ∈ Vt ∪ Et addition and attribute change events
0, if ot(x) ∈ {o1, o3} ∧ x ∈ Vt ∪ Et deletion events (inactivity)
0, if x /∈ Vt ∪ Et.

(1)

The proposed model uses the activity values to determine realistic observations, e.g., just existing
nodes can be deleted.

Attribute Embedding. The attribute embedding is determined by a Recurrent Neural Network
(RNN) encoding the dynamic behavior of the node/edge attribute considering the historical attribute
information in the embedding vector ut̄(γ

x
t ) and the current attribute vector γxt given by a prepro-

cessing module, as, e.g., a CNN for images, text2vec for text [12] etc. Then, the update scheme of an
attribute γxt of item x at timestamp t ∈ T with learnable parameters w0 and w1 is given by

ux
t = w0 · (ux

t̄ , γ
x
t )

⊤
+w1. (2)

Marked Temporal Point Processes. Given an event stream, it is non-trivial to tell when a new
observation will occur and what it may look like. Given that the observation is dependent on the
historical point patterns, the underlying process can be modeled by a (Marked) Temporal Point
Process (TPP) [11].

Definition 2.1 (Marked Temporal Point Process) Let H = {(ti,mi)}ni=0 be a sequence of n > 0
observations mi ∈ Rd at timestamps ti, and Ht = {(ti,mi) | ti < t, (ti,mi) ∈ H} entail the
history of events before timestamp t. Then, the conditional intensity function

λ(t,m | Ht) = lim
∆t↓0,∆m↓0

P (ti ∈ [t, t+∆t],mi ∈ B(m,∆m) | Ht)

|B(m,∆m)|∆t
(3)
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characterizes the MTPP completely [3], where B(m,∆m) ⊂ Rd is an open ball with center m and
radius ∆m for continuous events and B(m,∆m) = m for discrete events. The function is required
to be non-negative.

Remark 2.2 (Spatio-Temporal Point Process) If the observations m determine a location, the
Spatio-Temporal Point Process describes the evolution of data in space and time [5].

Neural Temporal Point Processes. The intensity functions of the different TPPs have to be chosen
carefully based on assumptions about the appearance of temporal patterns in the data. Since these
assumptions are not necessarily met in real-world data, partially and fully trainable Neural TPPs [8]
have been proposed [4, 10] to learn the more complex temporal pattern in the data. In the proposed
work, we utilize a partially trainable Neural TPP, so the definition of the fully-trainable Neural TPP
is skipped here but can be found in [8].

Definition 2.3 (Neural Temporal Point Process) Partially trainable Neural TPPs [8] replace
intensity functions by Deep Neural Networks (DNNs) to encode the temporal information given by the
event history Hti . Then, the resulting feature vector hti is forwarded to a selected temporal decay
function ϕ which together determine the intensity

λ(ti,mi | Hti) = ϕ(∆ti,∆mi | hti) = ϕ(∆ti,∆mi | DNN(Hti)). (4)
Here, ∆ti = ti − t̄i and ∆mi = ∥mi − m̄i∥ are the deviations of the timestamps and marks from
the events at ti and the last event before it.

Attention. The idea of a Graph Attention Neural Network (GAT) is to incorporate scaling factors
for neighboring nodes in the neighborhood aggregation process in GNNs. In this work, we leverage
the attention mechanism from the model GATv2 [1] for the neighborhood propagation to scale the
neighboring nodes z ∈ N (x) of nodes or edges x at time t with

q
{x,z}
t = softmax(w⊤

0 LeakyReLU(W1 · [ht
x∥ht

z])), (5)

where ht
x are the hidden representations of the items. For the self-propagation, we utilize the

mechanism as temporal attention for one item x as pxt = softmax(w⊤
0 LeakyReLU(W1 · [ht

x∥ht̄
x])).

3 Model

The proposed model first utilizes a Dynamic GNN for incorporating historical local and attribute
information of nodes and edges to obtain expressive embeddings. Afterward, Neural Temporal Point
Processes determine the distribution of the different structural and attribute events over time, relying
on the node and edge embeddings. The training method and possible predictions are explained in
appendix App. A.3.

3.1 Dynamic Graph Neural Network

The hidden representations of nodes and edges are calculated similarly to a GAT [1] with additional
consideration of the embedding evolution in the self-propagation module, the attribute embedding
(cf. Eq. (2)) and the temporal delay of events on the node/edge in the exogenous drive.

Node Embedding. To incorporate the entire information given at a node, the embedding update
for a node includes the self-propagation, neighborhood propagation, exogenous drive, and attribute
embedding modules. The self-propagation comprises the evolution of the node embedding Zv

t
for a node v at time t̄ over time weighted with temporal attention as described in (5). In the
local embedding propagation scheme, the hidden representations and attribute embeddings of the
neighboring nodes N (v) = {w | {v, w} ∈ E} are linearly combined scaled by the attention factors
of (5) by hloc(v, t) =

∑
w∈N (v) q

{v,w}
t · Zw

t . The exogenous drive includes the time difference
between the timestamps of the current event and the one beforehand affecting a node at time t and t̄,
respectively. The last component includes the attribute embedding of the node as defined in (2).
Summarized, the modules result in the node embedding determined by

Zv(t) = σ

M1hloc(v, t)︸ ︷︷ ︸
loc. embd. prop.

+M2Z
v
t̄ · pvt︸ ︷︷ ︸

self-prop.

+m3 · (t− t̄)︸ ︷︷ ︸
exogenous drive

+M4 · u(v, t))︸ ︷︷ ︸
attribute prop.

 .
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The edge embedding is obtained analogously. The only substantial difference is the choice of the local
embedding propagation scheme. You can find more information on that and the initial embeddings of
both in the appendix App. A.1.

3.2 Neural Temporal Point Processes

The temporal evolution of the events is captured with the aid of different TPPs, dependent on the
event type. For structural changes in the graph, we introduce spatio-temporal intensity functions
following the approach of a partially trainable Neural TPP as described in (4) using the node and
edge embeddings introduced earlier in Sec. 3.1. Considering real-valued attribute changes, we utilize
Marked TPPs from (3) and the attribute embeddings from (2).

Structural Changes. Spatio-Temporal Point Processes describe events’ distribution, including
a spatial component over time. Space is determined as a node or an edge in the graph sequence.
The TPP is then defined via the spatio-temporal intensity function λk(t, x | ht) = ϕk(gk(t, x,ht)),
which consists of concatenating a selected temporal function ϕk and a learnable scoring function
gk based on the Dynamic GNN. As temporal activation function, the non-negative decay function
ϕk(x) = ψklog(1 + exp(x/ψk)) with timescale parameter ψk > 0 is used, similar to the choice in
[17]. The scoring function gk is designed to suit different cases according to the event type k and
realizes the Dynamic GNN for valid conditions based on the activity function of (1).

For example, the intensity of a node addition at time t is 0 if the node already exists, i.e., ξvt = 1.
Otherwise, the event is scored by forwarding the current node embedding Zv

t through a linear layer
gt0(v) = W⊤

0 Zv
t .

The intensities for node deletion and edge addition/deletion are formalized analogously and can be
found in the appendix App. A.2.

Attribute Changes. Attributes can only change if and only if the item x whose attributes are in
consideration exists, i.e., ξxt = 1. If this is the case, a Marked Neural TPP is necessary whose scoring
function considers the embedding changes in Zx

t in addition to the change of the attribute embedding
ux
t to capture the temporal and the structural information between t̄ and t at item x. For the node

attribute change event, e.g., the score is given by

gt4(v) = W⊤
4

(
uv
t

uv
t̄

)
+ W̄⊤

4

(
Zv

t
Zv

t̄

)
.

The edge attribute change is formalized analogous and can be found in the appendix App. A.2.

4 Conclusion and Future Work

The proposed model enables learning on graph streams, including arbitrary types of dynamics. The
utilized Dynamic GNN processes the historical structural and temporal information and provides
hidden representations of the nodes and edges. The subsequent different TPPs model the temporal
behavior of the graph stream based on the hidden graph representation, and new occurring events can
be efficiently integrated into the model.

However, our model is a work in progress and thus provides opportunities for further development.
The model’s reliability, explainability, and generalization are briefly discussed in the following.

Reliability. The proposed work still needs to be evaluated. Hence, extensive experiments must be
conducted to prove the applicability and reliability of the model.

Explainability. GNNs are called explainable if the model explains the predicted result or reasoning
that can be inferred based on the model architecture. In the future, the goal is to make our model
more explainable to simplify the application of the model for real-world problems.

Definite Deletions vs. Inactivity. Furthermore, the activity function from Section 2 will be extended
to consider definite deletions, activities, and inactivities of nodes/edges. Thereby, nodes and edges
lose the possibility to occur again in the graph.

More complex graph types. The structural graph properties of the dynamic graphs in this paper are
yet elementary, so the MNSTPP can be extended to more complex dynamical graph structures in the
future, considering, e.g., the graph types described in [14].
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A Appendix

A.1 Edge Embedding

Edge Embedding. The edge embedding is obtained analogously. The only substantial difference is the
choice of the local embedding propagation scheme, which includes the embeddings of the incident nodes, their
attributes, and the embedding of the edge attribute, namely

hloc(u, v, t) =

[
Zu

t̄ Zv
t̄

u(u, t) u(v, t)

] [
put̄
pvt̄

]
Zu

t q
u
t +Zv

t q
v
t︸ ︷︷ ︸

incident nodes cum.

.

As a result we get the node embedding with

Zu,v(t) = σ

M7hloc(u, v, t)︸ ︷︷ ︸
loc. embd. prop.

+M8Z
u,v
t̄ · p{u,v}t︸ ︷︷ ︸

self-prop.

+m9 · (t− t̄)︸ ︷︷ ︸
exogenous drive

+M10 · u({u, v}, t))︸ ︷︷ ︸
attribute prop.

 .

Initial Embedding. In case that the activity function of a node or edge x is undefined up to a timestamp t,
the initial embedding only includes the attribute propagation and the local embedding propagation at time t. If a
node has been added without neighbors, the local embedding propagation is empty and so the initial embedding
only consists of the attribute propagation.

A.2 Remaining Intensity Functions

In Sec. 3.2, we introduced the intensity functions used to encode the different TPPs used in the model. Next to
the node addition and the node attribute changes, further intensities are defined as follows:

• Node Deletion: The deletion of a node is defined analogously to the addition just that it is important
to switch the cases, i.e., a node can just be deleted at timestamp t if and only if it existed before at
timestamp t̄. In this case the event is scored by gt1(v) = W⊤

1 Zv
t . Otherwise, the intensity is 0.

• Edge Addition: Analogously to the nodes additions, an edge e can only be added when it did not
exist the timestamp before and, additionally, both nodes u, v ∈ e exist. This time we score concerning
both nodes and edges, gt2(u, v) = W⊤

2 (Zu
t ,Z

v
t ,Z

e
t )

⊤. Otherwise, the intensity is 0.

• Edge Deletion: A deletion of an edge e = {u, v} can only happen when the edge existed at time t̄, or
at least one of the incident nodes has been deleted. Thus, when the edge does not exist at time t̄, it
cannot be deleted, i.e., λe

3 (t) = 1 ⇐⇒ ξ
(u,v)
t = 1 ∧ (ξut = 0 ∨ ξvt = 0). The impossible case is an

intensity of 0. Otherwise, the scoring is gt3(e) = W⊤
3 (Zu

t ,Z
v
t ,Z

e
t )

⊤.

• Edge Attribute Change: Here, the edge and the incident nodes must exist at time t̄. Therefore, the
scoring function considers a score for the occurrence of an event between the incident nodes and the
edge attribute change analogously to the node attribute change, namely

gt5(e) = W⊤
5

Zu
t

Zv
t

Ze
t

+ W̄⊤
5

(
ue

t

ue
t̄

)
+ ¯̄W

⊤
5

(
Ze

t

Ze
t̄

)
.

A.3 Training and Prediction

Depending on the application and the specific data set, there are different suitable learning techniques, and only
the necessary intensity functions have to be included in the learning. Due to the sparse representation of the
graph as a stream, the training and the update procedures are reasonably efficient.

Training. The training is performed similarly to the procedure described in [17]. Here, we have to extend the
loss function to include the processing of continuous marks in the intensities. The learning is then conducted by
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minimizing the negative log-likelihood

L := −
∑
o∈O

log (Λ(o)) +

T∫
0

(Θ1(τ) + Θ2(τ)) dτ

︸ ︷︷ ︸
survival probability

,

where Λ(o) =

{
λx
k(t), if o is discrete event,

λx
k(m, t), if o is continuous event

and Θ1(τ) =
∑
ō∈Ō

3∑
k=0

λx
k(τ) intensities of discrete events

and Θ2(τ) =
∑
ō∈Ō

∫
Rd

λx
k(m, τ) intensities of continuous events

It represents the total probability for an event type and the attribute value the events come with. Here, Ō(t)
denotes a finite set of sampled events that did not happen until time t. For batch-wise training, the observation
set O only includes the batch events.

Model Update. The model can be updated at an event by applying the mini-batch stochastic gradient
descent on the negative log-likelihood, only considering the event and the affected neighboring nodes
or edges. This local retraining approach minimizes the update effort as only a small subset of the
parameters from the intensity functions have to be processed.

Prediction. For predicting a structural change at an item x in the event stream, the conditional
density function

fxk (t) = λxk(t) · exp

(∫
[t̄,t]

λxk(τ)dτ

)
(6)

considering an appropriate intensity function λk provides the occurrence probability of an event of
type k in the time interval [t̄, t]. While using active or inactive nodes or edges does not cause any
problems, adding new nodes that never existed in the graph event history Eq. (6) seems inappropriate,
which we want to investigate further. To predict the time txk when an event of type k occurs, the
event prediction function fxk (t) is integrated over the future by

∫
[t̄,∞]

t · fxk (t). Predicting an attribute
change of an item x by interpreting marks analogous to time, we use the conditional density

a⋆
x =

∫
Rd

a · λxk(a, t) · exp

(∫
[ā,a]

λxk(α, t)dα

)
da.
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