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ABSTRACT

A key application of computational imaging is to determine the hidden information
from a set of observed but sparse measurements. To fully characterize the uncer-
tainty naturally induced by the sparse measurements, a robust inverse solver that
is able to estimate the complete posterior of the unrecoverable targets is therefore
important, with a potential to probabilistically interpret the observational data for
decision making. In this work, we propose a deep variational framework that
leverages a deep generative model to learn an approximate posterior distribution
for quantifying image reconstruction uncertainty without training data. This is
achieved by parameterizing the target posterior using a flow-based model and
minimizing their KL divergence. To perform accurate uncertainty estimation, we
propose a robust flow-based model where the stability is enhanced by adding
bi-directional regularization and the expressivity is improved by using gradient
boosting. We also found that the statistics of latent distribution are conservatively
propagated to the posterior distribution through an invertible transformation and
therefore introduce a space-filling design to achieve significant variance reduction
on both latent prior space and target posterior space. We demonstrate our method
on several benchmark tasks and two real-world applications (fastMRI and black
hole image reconstruction) and show that it achieves a reliable and high-quality
image reconstruction with robust uncertainty estimation.

1 INTRODUCTION

In computer vision and image processing, computational image reconstruction is a typical inverse
problem where the goal is to learn and recover a hidden image x from directly measured data y
via a forward operator F. Such mapping y = F(x), referred to as the forward process is often
well-established. Unfortunately, the inverse process x = F ~1(y), proceeds in the opposite direction,
which is a nontrivial task since it is often ill-posed. A regularized optimization is formulated to
recover the hidden image x*: x* = arg min, {£(y, F(x)) + A w(x)}, where L is a loss function to
measure the difference between the measurement data and the forward prediction, w is a regularization
function and A is a regularization weight. The regularization function, including ¢;-norm and total
variation, are often used to constrain the image to a unique inverse solution in under-sampled imaging
systems (Bouman & Sauer, 1993 Strong & Chan, [2003)).

Recent trends have focused on using deep learning for computational image reconstruction, which
does not rely on an explicit forward model or iterative updates but performs learned inversion from
representative large datasets (Zhu et al., 2018}; Belthangady & Royer, [2019; Tonolini et al., [2020;
Wang et al. 2020), with applications in medical science, biology, astronomy and more. However,
most of these existing studies in regularized optimization (Natterer & Wiibbeling, 2001} |Park et al.,
2003) and feed-forward deep learning approaches (Ulyanov et al., 2018; [Belthangady & Royer,
2019; Wang et al,2020) mainly focus on pursuing a unique inverse solution by recovering a single
point estimate. This leads to a significant limitation when working with underdetermined systems
where it is conceivable that multiple inverse image solutions would be equally consistent with the
measured data (Barbano et al., 2020} |[Sun & Bouman| |[2020). Practically, in many cases, only partial
and limited measurements are available which naturally leads to a reconstruction uncertainty. Thus,
a reconstruction using a point estimate without uncertainty quantification would potentially mislead
the decision making process (Beliy et al.|[2019;|Zhang et al.,|2019} [Zhou et al.|[2020). Therefore, the
ability to characterize and quantify reconstruction uncertainty is of paramount relevance. In principle,
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Bayesian methods are an attractive route to address the inverse problems with uncertainty estimation.
However, in practice, exact Bayesian treatment of complex problems is usually intractable. The
common limitation is to resort to inference and sampling, typically by MCMC, which are often
prohibitively expensive for imaging problems due to the curse of dimensionality.

For nonlinear, non-convex image reconstruction problems, a deeper architecture with enough ex-
pressivity may be required to approximate the complex posterior distribution. However, increasing
model depth will result in overfitting, as well as making sampling and computing inefficient. The
essential assumption of invertibility is also potentially violated along with instability issues caused
by the aggregation of numerical errors. The imprecision and variation in flow-based models induce
additional uncertainties. Moreover, the variation in posterior distribution caused by latent space
sampling is also non-negligible for the evaluation of the total reconstruction uncertainty. These
challenges make accurate uncertainty estimation to be a nontrivial task.

In this work, we achieve a reliable image reconstruction with an accurate estimation of data uncer-
tainty resulting from measurement noise and sparsity. A suitable flow-based variational approach is
proposed to approximate the posterior distribution of a target image without any training data. In
this work, we propose a novel uncertainty-aware method that leverages a deep variational approach
with robust generative flows and variance-reduced sampling to perform accurate characterization
and quantification of reconstruction uncertainty, caused by sparse and noisy measurements. Our
method minimizes the model uncertainties by building a robust flow-based model where the stability
is enhanced by adding a bi-directional regularization and the flexibility is improved by leveraging
gradient boosting. We observed that the statistics of latent distribution are conservatively propagated
to the posterior through a deterministic invertible transformation, and therefore replace simple ran-
dom sampling by using a generalized Latin Hypercube Sampling, which shows significant variance
reduction on posterior approximation. We demonstrate our method on FastMRI reconstruction
and interferometric imaging (EHT black hole) problems and show that it achieves a reliable and
high-quality reconstruction with accurate uncertainty evaluation.

2 RELATED WORKS

Bayesian deep learning. Deep learning for solving inverse problems requires uncertainty estimation
to be reliable in real settings. Bayesian deep learning (Kendall & Gall, 2017; |Khan et al.| 2018}
Wilson & Izmailovl, [2020), specifically Bayesian neural networks (Hernandez-Lobato & Adams)
20155 |Gal) can achieve this goal while offering a computationally tractable way for recovering
reconstruction uncertainty. However, exact inference in the BNN framework is not a trivial task, so
several variational approximation approaches are proposed to deal with the scalability challenges.
Monte Carlo dropout (Gal & Ghahramanil 2016) can be seen as a promising alternative approach that
is easy to implement and evaluate. Deep ensemble (Lakshminarayanan et al.,[2017)) methods proposed
by combining multiple deep models from different initialization have outperformed BNN. Recent
methods on deterministic uncertainty quantification (Van Amersfoort et al., |2020; |van Amersfoort;
et al.}2021) use a single forward pass but scales well to large datasets. Although these approaches
show impressive performance, they rely on supervised learning with paired input-output datasets and
only characterize the uncertainty conditioned on a training set.

Variational approaches. Variational methods offer a more efficient alternative approximating true
but intractable posterior distribution by an optimally selected tractable distribution family (Blei
et al.,[2017)). However, the restriction to limited distribution families fails if the true posterior is too
complex. Recent advances in conditional generative models, such as conditional GANs (cGANs)
(Wang et al., 2018)), overcome this restriction in principle, but have limitations in satisfactory diversity
in practice. Another commonly adopted option is conditional VAEs (cVAEs) (Sohn et al., [2015]),
which outperform cGANs in some cases, but in fact, the direct application of both conditional
generative models in computational imaging is challenging because a large number of data is typically
required (Tonolini et al. 2020). This introduces additional difficulties if our observations and
measurements are sparse, and expensive to collect.

Deep flow-based models. Many very recent efforts have been made on solving inverse problems
via deep generative models (Asim et al.| 2020; Whang et al.,[2021b} Bora et al.,[2017; Whang et al.,
2021a; Daras et al., 2021 |Sun & Bouman, 2020; |Kothari et al.,[2021)). The flow-based model is a
potential alternative via learning of a nonlinear transformation between the true posterior distribution
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and a simple prior distribution (Rezende & Mohamed, 2015} Dinh et al.||2016; Kingma & Dhariwal,
2018 |Grathwohl et al.} 2018} [Wu et al.,|2020; [Nielsen et al., 2020). These flow-based models possess
critical properties: (a) the neural architecture is invertible, (b) the forward and inverse mapping
is efficiently computable and (c) the Jacobian is tractable, which allows explicit computation of
posterior probabilities. Fully invertible neural networks (INNs) are a natural choice to satisfy these
properties and can be built using coupling layers, as introduced in the ReaINVP (Dinh et al., 2016)
which is simple and efficient to compute. Although in principle, RealNVP layers are theoretically
invertible, the actual computational of their inverse is not stable and sometimes even non-invertible
due to aggravating numerical errors (Behrmann et al.| 2021). Many efforts have been spent to improve
the stability, invertibility, flexibility and expressivity of the flow-based models (Kong & Chaudhuri,
2020; Nielsen et al., [2020; Wu et al.| 2020), which inspired us to extend for the task of computing
posterior in real-world imaging reconstruction problems.

Recently, Asim et al. (Asim et al.||2020) focused on producing a point estimate motivated by the MAP
formulation and Wang et al. (Whang et al.,|2021b)) aims at studying the full distributional recovery
via variational inference. A follow-up study from Whang et al.|(2021a) is to study image inverse
problems with a normalizing flow prior, which is achieved by proposing a formulation that views the
solution as the maximum a posteriori estimate of the image conditioned on the measurements. Our
work is motivated by these recent advances but focuses on how to assess the image reconstruction
(data) uncertainty with an explicitly known forward model with very sparse observations.

3 BACKGROUND

Normalizing flows. Generative models, such as GANs and VAEs, are intractable for explicitly
learning the probability density function which plays a fundamental role in uncertainty estimation.
Flow-based generative models overcome this difficulty with the help of normalizing flows (NFs),
which describe the transformation from a latent density zo ~ 7y(2o) to a target density 7(x), where
X = zg ~ 7x(zx) through a sequence of invertible mappings 75, : R? — R% k = 1,..., K.
By using the change of variables rule 7(x) = m4(z) = mp—1(zx—1) |det (0T " /0zk—1)|, where
the target density 7 (zx ) obtained by successively transforming a random variable z, through a
chain of K transformations zyx = Tx o --- o T1(zo) is log7(x) = log 7k (z2x) = logmo(zo) —
Zle log |det (0T /0zy—1)| where each transformation 7; must be sufficiently expressive while
being theoretically invertible and efficient to compute the Jacobian determinant. Affine coupling
functions (Dinh et al.,[2016; |Kingma & Dhariwal, 2018) are often used because they are simple and
efficient to compute. However, these benefits come at the cost of expressivity and flexibility; many
flows must be stacked to learn a complex representation.

Density estimation. Assuming that samples {wz}f\il drawn from a probability density p(x) are
available, our goal is to learn a flow-based model 7,(x) parameterized by the vector ¢ through a
transformation x = 7 (z) of a latent density 7o(z) with T = Tk o --- o Ty as a K -step flow. This is
achieved by minimizing the KL-divergence Dx;. = KL(p(x) || 74(x)) , which is equivalent to MLE.

Variational inference. The goal is to approximate the posterior distribution p through a variational
distribution 7 encoded by a flow-based model 74(x), which is tractable to compute and draw
samples. This is achieved by minimizing the KL-divergence Dx;, = KL(7x || p), which is equivalent
to maximizing an evidence lower bound Vg (x) = E, . wry (z0) [— 10g p(X, 2Kk ) + log 7k (2 |X)].

Evaluation metrics for deep generative models. Designing indicative evaluation metrics for
generative models and samples remains a challenge. A commonly used metric for measuring the
similarity between real and generated images has been the Fréchet Inception Distance (FID) score
(Heusel et al., 2017)) but it fails to separate two critical aspects of the quality of generative models:
fidelity that refers to the degree to which the generated samples resemble the real ones, and diversity,
which measures whether the generated samples cover the full variability of the real samples. Sajjadi
et al. (Sajjadi et al2018) proposed the two-value metrics (precision and recall) to capture the two
characteristics separately. Recently, Naecem ez al. (Naeem et al.,2020) introduce two reliable metrics
(density and coverage) to evaluate the quality of the generated posterior samples and measure the
difference between them and ground truth. density improves upon the precision metric by dealing
with the overestimation issue and coverage instead of recall metric is to better measure the diversity
by building the nearest neighbour manifolds around the true samples.
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4 METHODOLOGY

4.1 DEEP VARIATIONAL FRAMEWORK

Our goal is to build a deep variational framework to accurately estimate the data uncertainty quantified
by an approximation of the posterior distribution. The regularized optimization for solving inverse
problems can be written in terms of data fidelity (data fitting loss) and regularity:

x* = argmin {Lp(y, F(x)) + \w(x)} = argmin || y — F(x) ||2 +Aw(x) (1

Assuming the forward operator F is known and the measurement noise statistics are given, we can
reformulate the inverse problem in a probabilistic way. In Bayesian perspective, the regularized
inverse problem in Eq.[I]can be solved by Bayesian inference but aims to maximize the posterior
distribution by searching a point estimator x*:

x* = argmaxlog p(x|y) = arg max log p(y|x) + log p(x) 2)

where the prior distribution p(x) (e.g., image prior (Ulyanov et al.,|2018) in reconstruction problems)
defines a similar regularization term and data likelihood p(y|x) corresponds to the data fidelity in
Eq.[l] If we parameterize the target x using a generative model x = T4(z),z ~ N(0, I) with
model parameter ¢, an approximate posterior distribution 74+ (x) is obtained by minimizing the
KL-divergence between the generative distribution and the target posterior distribution

o* = arg;nin KL(7(x) || p(x|y)) = arg;nin Exnry(x) [~ log p(y|x) —log p(x) +log 74 (x)] (3)

Unfortunately, the probability density (likelihood) 74(x) cannot be exactly evaluated by most of
existing generative models, such as GANs or VAEs. Flow-based models offer a promising approach
to compute the likelihood exactly via the change of variable theorem with invertible architectures.
Therefore, we can reformulate the equation in terms of a flow-based model as

¢ = arg;ninEzwz) [—1og p(y|Tg(z)) — log p(Te(z)) + log 7(z) — log | det V, Ty (2)|] (4)

Replacing data likelihood and prior terms by using data fidelity loss and regularization function in
Eq.[I} we can define a new optimization problem where it can be approximated by a Monte Carlo
method in practice:

P = arg;ninEzNW(z) [Lo(y, F(Te(2)) + Aw(Ty(z)) + log m(z) — log | det V, T (z)|]

M

= arg;ninz {LD(y,}"(%(zj))) + Mw(Ty(z;)) — log | det VZT¢,(zj)|

&)

where 7(z) is a constant and log ‘ det V,T4(z;)| is an entropy that is critical to encourage sample
diversity and exploration to avoid generative models from collapsing to a deterministic solution.

Noted that the flow-based model is very critical and sensitive to uncertainty estimation and quan-
tification within this variational framework. To perform accurate data uncertainty estimation, the
uncertainty associated with the flow-based model must be minimized. To this end, we develop a
Robust Generative Flow (RGF) model with enhanced stability, expressivity, and flexibility, while
conserving efficient inference and sampling without increasing architecture depth.

4.2 ROBUST GENERATIVE FLOWS (RGF)
4.2.1 STABILITY OF INVERTIBLE ARCHITECTURES

The proposed variational framework relies on the essential assumption of the theoretical invertibility
in flow-based models. However, this assumption is challenged by recent studies (Behrmann et al.|
2019; 2021} [Kobyzev et al.| [2020) with findings that the commonly used invertible architectures
T4, such as additive and affine coupling blocks, suffer from exploding inverses and thus prone to
becoming numerically non-invertible (Hoffman et al.| |2019), which will violate the assumption
underlying their main advantages, including efficient sampling and exact likelihood estimation.
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Metrics RNVP NSF RGF RGFL
Precision 0.951 0.988  0.992 0.996
Recall 0.996 0.994  0.997 0.997
Density 0.823 0.962  0.987 0.989
Coverage 0.909 0.926  0.950 0.961
Metrics RNVP NSF RGF RGFL
Precision 0.988 0993  0.994 0.997
Recall 0.997 0.998  0.998 0.999
Density 0.889 0.948  0.989 1.001
Coverage 0.912 0.951 0.946 0.964
Metrics RNVP NSF RGF RGFL
Precision 0.969 0.987  0.993 0.994
Recall 0.994 0996  0.996 0.996
Density 0.829 0942  0.987 1.003
Coverage 0.877 0.934  0.940 0.965

Figure 1: Sampling of 2D densities using variational inference with

function. . .
energy function Table 1: Evaluation metrics.

Typically, the coupling blocks show an exploding inverse effect because the singular values of the
forward mapping tend to zero as depth increases. The numerical errors introduced in both forward
and inverse mapping will aggravate the imprecision and instability which renders the architecture
non-invertible and results in uncontrollable model uncertainties that are intractable to characterize.

The stability of invertible neural network (INN) architectures can be analyzed by the property of
bi-Lipschitz continuity if there exists a constant L := Lip(7") and a constant L* := Lip(7 ~!) such
that for all 21, 29; y1, 72 € R?

17 (21) = T(x2)ll < Lllar — @2, T (ya) = T @)l < L7[ly1 — well. (©)

Penalty terms on the Jacobian can be used to enforce INN stability locally. If 7 is Lipschitz
continuous and differentiable, we have Lip(7") = supycpa ||J7(x)||2. Instead of estimating Lip(7")
using random samples, we use finite differences (FD) to approximate Lip(7") as

Lip(7) = sup ||J7(x)||]2 & sup sup 1H'T(x) —T(x+ev): @)
x€ER4 x€RY ||v||2=1 €
where € > ( is a step size in FD. This penalty term (as a regularizer) can be added to the loss function
on both directions 7 and 7 ! such that we have a stable forward and inverse mapping (see more
details and code implementation in Appendix 2.1.). This bi-directional FD regularization can remedy
the non-invertible failures in many coupling blocks including spline function.

4.2.2 ENHANCED EXPRESSIVITY AND FLEXIBILITY

Recent trends in NFs have focused on creating deeper, more complex transformations to increase the
flexibility of the learned distribution. However, a deeper structure of flows often renders instability
and uncertainty caused by aggregation of the numerical errors. Also, with greater model complexity
comes a greater risk of overfitting while slowing down training, sampling, and inference (Giaquinto|
& Banerjee, [2020). To address these issues, we propose to use a gradient boosting approach for
increasing the expressiveness of the neural spline flow (NSF) model (Durkan et all,2019). Our new
model is built by iteratively adding new NF components with gradient boosting, where each new NF
component is fit to the residual of the previously trained components. A weight is then learned via
stochastic gradient descent for each component, which results in a mixture model structure, whose
flexibility increases as more components are added.

Gradient boosting flow model. A gradient boosting flow model is constructed by successively
adding new components, where each new component tg? is a K-step normalizing flow that matches

the functional gradient of the loss function from the (¢ — 1) previously trained flow components
ﬁ(c_l). Typically, the gradient boost flow model is constructed by a convex combination of fixed
and new flow components:

T (2 ]%) = (1= )T (2 | %) + Bty (2| ) ®)

where x are the observed data, z are the latent variables and j.. is the weight to the new component
where 3, € [0, 1] to sure the mixture model in Eq. [18]is a valid probability distribution.
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To pursue a variational posterior that closely matches the true posterior, as shown in Eq. [I4] which
corresponds to the reverse KL-divergence KL(74(x) || p(x]y)). Thus, we seek to minimize the
variational bound:

Vi(x) = Eo [log T (21 | %) = log p(y | x,2ic)]. ©)

Boosting components updating. Given the objective function in Eq.[20] we proceed with deriving
updates for new boosting components. First, at the current stage c, we let 7}(:71) to be fixed, and the
target is learning the component tf,? and the weight S, based on functional gradient descent (FGD)

(Mason et al., |1999). We take the gradient of objective in Eq. with respect to ’TI((C) at 8. — 0:

p(y | X,ZK)
VTI((C)V¢>(X)|&H0 = —log m (10)
K

Since Tl(ffl) (z | x) are the fixed components, then minimizing the loss V,(x) can be achieved by

selecting a new component t(fg) that has the maximum inner product with the negative of the gradient

(Mason et al.,[1999). As a result, we can choose a tg? (z | x) based on:

(c)
tr€Tk ti(z|x) Tr (z | %)

Y

where z$, denotes a sample transformed by component ¢’s flow (see more details in Appendix 2.2).

Components weights updating. Once the tg? (zx | x) is estimated, the gradient boost flow model

needs to determine the corresponding 8. € [0,1]. However, jointly optimizing both t(z? and the
weights [3. is a challenging optimization problem, we thus consider a two-step optimization strategy
which means that we first train t(l? until convergence and then optimize the corresponding weight 3,
by using the objective in Eq.[23] Similarly, the weights on each component can be updated by using
the gradient of the loss Vy(x) with respect to 5., as shown in Algorithm 1.

M®—2<E S @x)] - E %”WWD (42
i=1

9B +9) () T (a]x;)

where £V (z | x;) is defined as € (z | x;) = log T (2 | x) — log p(y | X, zx).
Be Be K

Algorithm 1 Updating component weights 5. by SGD

: Requirement and initialization: predefined C, step size ), tolerance €. Set s = 0, Bgo) =1/C

. While |8 — B8*7Y| < edo

: Generate samples zi,?;l) ~ TV (z | x;) and zg?z ~ (2 | 2) fori =1,...,n

: Estimate gradients using MC method Vg Vy (x) = 1/n ", [ éifl)(zgg?i | xi) — @(3?1)(4?;1) \ xz)]
: Update weights 35 = B ™" — AV, and clip weights 8% to [0, 1]

s=s5+1
: return B

4.3  VARIANCE-REDUCED LATENT SAMPLING

Rather than using simple random sampling (SRS) with a larger variance, Latin Hypercube Sampling
(LHS) is an ideal candidate with variance reduction, which is generalized in terms of a spectrum
of stratified sampling, referred to as partially stratified sampling (PSS), which shows to reduce
variance associated with variable interaction but LHS reduces variance associated with additive
(main) effects. A hybrid combination of LHS and PSS, named Latinized partially stratified sampling
(LPSS) proposed by |Shields & Zhang| (2016) can reduce variance associated with variable interaction
and additive effects simultaneously. However, classical LHS used in LPSS suffers from a lack of
exploratory capability due to its random pair scheme. To better explore all possible inverse solutions,
we propose to leverage a maximin criteria - maximizes the minimum distance between all pairs of
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points, X,, = arg maxmin {d(x;,Xy) : ¢ # k=1,..., M} where d(x,x’) = ,]y:l(xi —x})? is

the Euclidean distance. Instead of random pair, these criteria will greatly improve the space-filling
properties of LPSS, specifically in high-dimensional space. Note that, unlike quasi-Monte Carlo
(QMC) methods (Caflisch et al., |1998)), e.g., Sobol sequence shown in Fig. |§| as well, which are
limited in high dimensional problem (Kucherenko et al.,2015)), but LPSS (not a QMC) works well
with space-filling property and variance reduction in high dimensions.

fi(z0)

@ @ @ SRS Sobol LHs Lpss
x =z = fxofx-10--0 fi(20) 7 v .
Gaussian samples Change of Posterior.samples 5 o . .
B variable [N c
theo I o

Invertible
B architecture SRS
Latent density p(z) Target density p(x) = =
2o ~ po(20) _ zk ~ px(zx =) Sampling method for latent random variable

10 samples

’,"
25 samples
.

Figure 2: (Left) Illustration of mechanism for normalizing flows. The prior Gaussian samples drawn from the
latent distribution are transformed to the posterior samples that match the target density by using a sequence of
invertible mappings. (Right) Illustration of prior samples using four sampling algorithms for latent variables.

Algorithm 2] shows the workflow of our proposed variational framework with robust generative flows
and variance-reduced latent sampling given a single measurement data.

Algorithm 2 Variational robust generative flows with latent sampling

1: Requirements: RGF model 74 parameterized by ¢, number of GB component C, FD regularization
coefficient A\, forward operator F, measurement data y, training batch size b., evaluation batch size e,

: Draw random samples from the latent space z; ~ p(z) using LPSS, where the sample size is b, X i

: Generate image samples by x; = Tg(z;) where 7 (z;) is defined by initial gradient boosting (GB) mixture
model in Eq. [T8]with bi-directional FD regularized loss in Eq.[7}

: Predict the measurement y by evaluating the forward operator y; = F(x;) = F(T(2;))

: Evaluate the total loss L defined in Eq.[5]by a summation of the data fidelity, prior and entropy loss.

: Update new gradient boosting components based on Eq. 23| with a two-stage optimization strategy

: Update boosting component weights according to Eq.[12]| with stochastic gradient descent in Algorithm 1.

: After training is done, generate posterior samples, and estimate the statistical quantities.

w N

[c BN e NV I

4.4 RGF REPRESENTATIONAL CAPABILITY

Next, we demonstrate that our proposed RGF can improve the representational capability of deter-
ministic NFs at a given network size. Here we use images to define complicated two-dimensional
distributions as the target distributions to be sampled. This benchmark inspired by [Wu et al.| (2020)
aims at generating high-quality images from the exact density to compare the performance of different
generative models with four blocks (more details in Appendix). Fig[T]shows the sampling of DNA,
Fox and NeurIPS logo cases with different methods. As expected, ReaNVP (Dinh et al.,|2016) has
limitations in representational capability, which results in a blurred image without detailed structures.
NSF (Durkan et al.l 2019) outperforms RNVP with a better structure on 2D images, but still fails to
resolve details, specifically in the Fox and NeurIPS logo cases, at the selected neural architecture.
Note that all the flow-based models tend to have a better representational capability as the depth
increases but we fix their depth in four blocks to perform a fair comparison.

Our proposed RGF (with SRS) achieves high-quality approximation through a combination of gradient
boosting and stable regularization with a shallow architecture. Although the samples in RGF are
close to the ground truth, their performance can be further improved by using LPSS. Although visual
differences may be slight between RGF and RGFL, we differ them with a quantitative comparison
using evaluation metrics (see Table [T). RGFL shows superior performance on both fidelity and
diversity aspects of the generated images. In other words, the RGF model boosted by LPSS achieves
not only a more accurate approximation to the true samples, but also better captures the uncertainty
(variation) in real samples. Both advantages are useful to quantify the reconstruction uncertainty.
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5 EXPERIMENTS

Tasks and datasets. We evaluate our method on two image reconstruction tasks: (1) compressed
sensing MRI, from fastMRI dataset (Zbontar et al., |2018) with images of size 320 x 320; and (2)
Interferometric imaging, using blackhole images from the Event Horizon Telescope (EHT) (Akiyama
et al., 2019bjc), with images of size 160 x 160. For both cases, we only use one data, which contains
one specific measurement and the corresponding ground truth. The original images are resized to
128 x 128 for fastMRI and 32 x 32 for blackhole case.

Implementation. We use 6 flow steps and 4 residual blocks for each step so that we have a total of
24 transformations in our RGF model. The whole model is trained on a single V100 GPU by using
20000 epochs with a batch size of 32 and an initial learning rate of 1E-4 in Adam.

Evaluation metrics. After training, 1000 samples drawn from the learned posterior distribution are
used to evaluate the mean, standard deviation and absolute error, which represents the bias between
the mean image and ground truth. To evaluate the performance of the generative model, we provide a
quantitative evaluation of the sample fidelity using precision and density, and the sample diversity
using recall and coverage.

Baselines. We compare our proposed methods with a couple of methods including: (1) condi-
tional variational autoencoder (cVAE) (Sohn et al., [2015)), which is typically used as a baseline
method; (2) Deep Probabilistic Imaging (DPI), proposed by (Sun & Bouman, 2020), mainly
uses RealNVP model for image Reconstruction; (3) GlowIP, which is to use invertible genera-
tive models for inverse problems and image reconstruction (Asim et al.| 2020); (4) NSF, which
is neural spline flows (Durkan et al., 2019) used in our deep variational framework. RGFL is
our proposed method which uses robust generative flows (RGF) with Latinized partially strati-
fied sampling (LPSS). Although some recent methods (Wang et al.l[2020; |Whang et al., 2021b;a),
look very promising, we can not compare them if there are no available open-source codes.

Ground truth Speedup 4X Speedup 6X Speedup 8X

Ground truth Speedup 4X Speedup 6X Speedup 8X

RGFL4X _ RGFL6X .  RGFL8X RNVP4X  RGFL4X  RGFL6X _ RGFL8X

Std. Dev. Mean

Abs. Error

Figure 3: FastMRI reconstruction of brain case (left) and knee case (right) at three different acceleration speedup
factors: 4X, 6X and 8X (each shown in a column). Row 1 shows the ground truth and sampling masks for each
case. Row 2-4 shows the mean, standard deviation, absolution of error for the estimated posterior samples.

Table 2: FastMRI brain case results Table 3: FastMRI knee case results
Metrics Brain case with 4 X speedup Metrics Knee case with 4 X speedup
cVAE DPI NSF GrowIP RGFL cVAE DPI NSF GrowIP RGFL
Std. Dev. | 8.87E-5 1.21E-5 8.82E-6 6.90E-6 9.73E-7 Std. Dev. | 7.98E-6 5.94E-6 4.33E-6 3.84E-6 1.24E-6
Abs. Error | 8.72E-5 3.31E-5 6.91E-6 1.83E-6 1.78E-6  Abs. Error | 7.99E-6 4.83E-6 2.55E-6 9.36E-7 7.03E-7
Brain case with 6 X speedup Knee case with 6 X speedup
cVAE DPI NSF GrowIP RGFL cVAE DPI NSF GrowIP RGFL
Std. Dev. | 1.02E-4 1.97E-5 1.02E-5 7.33E-6 2.35E-6 Std. Dev. | 9.53E-6 9.33E-6 6.48E-6 4.71E-6 2.05E-6
Abs. Error | 1.39E-4 5.70E-5 8.04E-6 6.99E-6 4.58E-6  Abs. Error | 1.02E-5 6.02E-6 4.87E-6 1.96E-6 9.11E-7
Brain case with 8 X speedup Knee case with 8 X speedup
cVAE DPI NSF GrowIP RGFL cVAE DPI NSF GrowlIP RGFL
Std. Dev. | 2.58E-4 3.83E-5 2.27E-5 9.14E-6 4.10E-6 Std. Dev. | 3.61E-5 1.60E-5 9.96E-6 5.18E-6 3.71E-6
Abs. Error | 4.65E-4 8.81E-5 1.33E-5 8.04E-6 7.12E-6  Abs. Error | 3.45E-5 7.94E-6 6.07E-6 2.06E-6 1.15E-6
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5.1 FASTMRI CASE STUDY

Partial and under-sampled noisy measurements in MRI will lead to reconstruction uncertainty. We
show that our RGFL method can be successfully applied to quantify the reconstruction variation
and bias on two cases (brain and knee) with acceleration factors 4x, 6x and 8x. Fig. [3|shows the
reconstruction results with pixel-wise statistics of the estimated posterior distribution. For both cases
with a speedup 4 x factor, our RGFL shows a more accurate mean estimate with a smaller absolute
error than the DPI baseline with larger architecture. Our advantage in terms of standard deviation is
more significant due to higher model robustness and variance reduction. Although the pixel-wise
variance of the reconstruction tends to be larger as the speedup factor increases (more details in
Appendix), our method provides a more reliable image reconstruction compared with other baselines.

We further use the mean of the standard deviation and the absolute error to quantitatively compare
the pixel-wise statistics (see Table [2]and [3). Our method outperforms the other baselines in terms of
accuracy (bias) and variation of the reconstruction. Specifically, our estimation achieves significant
variance reduction with 1-2 orders of magnitude. Regrading the sample fidelity and diversity metrics,
our method also shows competitive performance in most cases.

5.2 INTERFEROMETRIC IMAGING CASE STUDY

Our approach can be also applied to study radio interferometric astronomical imaging which was
used to take the first black hole images. Sparse spatial frequency measurements are used to recover
the underlying astronomical image (see Fig. {). Relatively large telescope-based gain and phase error
in the measurement noise lead to a non-convex image reconstruction problem where a challenge is the
potential for multi-modal posterior distribution — different solutions fit the same measurement data
visually and reasonably well. In this case, a synthetic black hole is used to illustrate our capability on
reconstructed uncertainty estimation and multiple modes detection (Sun & Bouman) 2020).

Std Std/Mean

£l

Figure 4: (Left) Measured frequency samples for EHT observing the M87* (Akiyama et al.,[2019bic) and target

synthetic black hole image; (Right) t-SNE result of posterior samples and statistics of the posterior samples on
each model (Sun & Boumanl 2020).

Fig. [4{shows multiple samples drawn from  Table 4: Statistical comparison of the estimated posteriors
the learned generative model. Note that two  on the black hole image reconstruction (mode 1)

different modes of reconstruction are cap-

tured by our RGFL model. t-SNE plots  Metrics Reconstructed black hole images (mode 1)
present a clear clustering of samples into “VAE DPI NSE_ GrowlP  RGFL
two modes. Mode 1 fits the target image Std.Dev.|  123E3  6.09E-4 543E4 2.17E-4  1.20E-4
better than mode 2 which exhibits roughly Abs. Error |, 9.76E-4  3.85E-4  2.65E-4  1.06E-4  1.08E-4
180-degree rotations. We perform statistical

analysis for each mode to quantify the mean and standard deviation of the multi-modal posterior.
Note that the uncertainty characterized by standard deviation shows a similar shape to the mean
estimator. Mode 1, which is close to the correct solution, results in a smaller bias estimator than
mode 2 (see Table ). In this case, the space-filling sampling would be more important to capture the
multi-modal posterior distribution. This can also be observed by the recall and coverage metrics in
Table[d Our method outperforms the other baselines with more accurate and reliable results.
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6 CONCLUSION

We propose an uncertainty-aware framework that leverages a deep variational approach with robust
generative flows and variance-reduced sampling to perform an accurate estimation of image recon-
struction uncertainty. The results on multiple benchmarks and real-world tasks demonstrate our
advantages in uncertainty estimation. Although the current RGFL methods show superior perfor-
mance on these imaging reconstruction tasks, the total computational cost will be a major concern if
we plan to scale to complex high-resolution images, e.g., 3D biomedical images.
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A VARIATIONAL FRAMEWORK

We provide an additional derivation with more details about the variational approach in Section 3.

The target reconstructed image x is parametrized by a generative flow-based model x = T4(z),z ~
N (0, I') with model parameter ¢. The true image posterior distribution can be derived according to
the Bayes’ rule:

p(xly) = m < ply[x)p(x) (13)

Our goal is to pursue an approximate posterior distribution 74~ (x) which is achieved by minimizing
the KL-divergence between the parametrized flow-based distribution 74 (x) and the target posterior
distribution p(x|y)

¢ = arg min KL (74 (x) || p(x]y))

= arg;nin / Te (x)[log ¢ (x) — log p(x|y)]dx

(14)

= arg min / Te (x)[log 7¢ (x) — log p(y|x) — log p(x)]dx
¢

= arg;nin Eynry(x) [ log p(y[x) — log p(x) + log 74 (x)].

Note that this loss function can be viewed as an expectation over the maximum a posterior loss
x* = arg max{log p(x|y)} = arg max { log p(y|x) + log p(x) }. (15)

with an additional term log 74 (x). Minimizing the negative entropy term, Hg = Ey .+, (x)[log 7¢ ()]
is useful to enhance the reconstructed image distribution and avoid the generative flow-based model
from collapsing to a point solution.

B ROBUST GENERATIVE FLOWS

B.1 STABILIZE THE INVERTIBLE NEURAL ARCHITECTURE

We propose to add the bi-directional FD regularization to stabilize the invertible architecture. Let’s
use £ and wj, denote the loss and regularization term respectively. The training is to minimize

¢* = argmin{L + \pwp } (16)
@

where )\ is the regularization coefficient. Larger coefficients yield more stable models with smaller
condition numbers but a too large coefficient will harm the performance (Behrmann et al.,2021)). Here
we use A\p=1e-4 for all experiments. For the bi-directional FD regularizer, we generate samples u ~
N(0,7) and use € = 0.1 as the step size to avoid numerical errors. The core python implementation
is shown in Fig.[5

Computational cost In principle, bi-directional FD regularization is expensive. This is because the
gradient computation consists of three passes: a forward pass, a backward pass, and an inverse pass.
For the forward pass, the regularizer adds overhead to the computations since it needs the previous
computations for noise x + cu. For the inverse pass, we also pass two variables y = F(x) and
¥ = F(x) + eu through its computations, including a forward pass to re-compute activations of the
inverse mapping, an inverse pass to compute the reconstruction, and the backward pass through the
inverse and forward. In practice, however, the cost can be significantly reduced by using regularization
only once per every 7' iterations of training, and we also found 7' = 10 works similarly to 7" = 1 in
terms of their stabilizing effect.

B.2 GRADIENT BOOSTING FLOW MODEL

B.2.1 GRADIENT BOOSTING

Gradient boosting (Friedman et al.,[2000; [Friedman} 2001) aims at minimizing a loss F'(7") where T
is a function representing the current model. Assume an additive perturbation around 7 to 7 + &t,
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for _, (img, label) in enumerate(train_loader):
# fd_coeff = le-4, fd_inv_coeff = le-4
model.train()
projection.train()
img, label = img.to(use_device), label.to(use_device)
z, objective = run_flow(img)
zs = z.view(z.size(0), -1)[:, :args.zs_dim]
logits = projection(zs)
classification_loss = F.cross_entropy(logits, label)
loss += classification_loss

B oo ello__o_

# For forward finite-differences regularization

B oo iello_oo_

if (fd_coeff > 0) and (global_iteration 7 args.regularize_every == 0):

d = torch.randn(img.shape, device=img.device)
d = (d.view(d.shape[0], -1) / torch.norm(d.view(d.shape[0], -1),
<« dim=0)) .view(d.shape) # normalize to unit wector
epsilon = 0.1
z_noise, _ = run_flow(img + epsilon * d)
J_forward_penalty = fd_coeff * torch.norm(z - z_noise)**2 / epsilon
loss += J_forward_penalty
else:
J_forward_penalty = 0.0

B o o e e

# For inverse fintte-differences regularization

# o e e

if (fd_inv_coeff > 0) and (global_iteration % args.regularize_every == 0):

d_inv = torch.randn(z.shape, device=z.device)

d_inv = (d_inv.view(d_inv.shape[0], -1) /

<« torch.norm(d_inv.view(d_inv.shape[0], -1), dim=0)).view(d_inv.shape)
epsilon = 0.1

z_noise_inv = z + epsilon * d_inv

x_inv_noise = model.module.sample(z_noise_inv, no_grad=True)
x_inv_noise.requires_grad = True

J_inverse_penalty = fd_inv_coeff * torch.norm(img - x_inv_noise)**2 /

— epsilon

loss += J_inverse_penalty

Figure 5: Python implementation of bi-directional FD regularizer

where ¢ is a function representing a new component, a Taylor expansion can be written as € — 0:
F(T +et) = F(T) +&(t, VF(T)) + o(e?) (17)

which reveals that the functional gradient VF'(T) is the direction that reduces the loss at the current
solution. Therefore, the goal of gradient boosting is to choose the best function ¢ in a class of functions
T (e.g., gradient boosting tree models) so that the loss F'(7") at the current model is minimized, which
corresponds to solving a linear program where V F'(7") defines the weights for every function in 7.

B.2.2 VARIATIONAL INFERENCE WITH GRADIENT BOOSTING

Gradient boosting is good at approximating posterior with generative flow-based models. A gradient
boosting flow model is constructed by successively adding new components, where each new
component t%) is a K-step normalizing flow which matches the functional gradient of the loss
function from the (¢ — 1) previously trained flow components 7;(6_1).

Typically, the gradient boost flow model is constructed by a convex combination of fixed and new
flow components:

Tz | %) = (1= B)TE (2| %) + Bt (2| x) (18)

where x are the observed data, z are the latent variables and j.. is the weight to the new component
where 3, € [0, 1] to sure the mixture model in Eq. [18]is a valid probability distribution.
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The benefits of gradient boost flow model over a standard mixture model with a fixed number of
components is that the additional components can be sequentially added to the model with optimal
weights 3. ( 8. degrade to zero for non-informative components).

Our variational framework in Section [A] shows that our target is to approximate the posterior by
minimizing the KL-divergence:
Vo (%) = Er,x[—log p(y | x) —log p(x) + log 74 (x)]. (19)

If the prior log p(x) is noninformative, Eq. [19| can be rewritten with defined gradient boost flow
model
Vo(x) = Epo log T (2 | %) —logp(y | x, 2. (20)

In our formulation of gradient boost flow model, we consider C' components where C' is infinite and
leave C fixed by a predefined number.

B.2.3 BOOSTING COMPONENTS UPDATING

Given the objective function in Eq. @], we proceed with deriving updates for new boosting components.

First, at the current stage c, we let TK ) to be fixed, and the target is learning the component t( °)
and the weight 3. based on functional gradient descent (FGD) (Mason et al., [1999). We take the

gradient of objective in Eq. with respect to 7}(;) at B, — 0O:

p(y | %, 2x)
\Y% (C)qu = — log — . (21)
Tx |,@ —0 7—[({0 1) (Z | X)

Since ’T(c 2 (z | x) are the fixed components, then minimizing the loss V,(x) can be achieved by
selecting a new component t(lz) that has the maximum inner product with the negative of the gradient
(Mason et al.,|1999). As a result, we can choose a t(c) (z | x) based on:

t(c)(z | x) = argmaxz tk(z|x;), —=V7rV(x:))

tr€Tx ;-7
. (22)
= arg min E [V7V(x;)]
tk€TK iZthK(lei)
E b d () oo . X
g-[22|can be rearranged to show that new component ¢’ minimizes:
(c)
t(l?(z |x)=argmin E |- —( %25 ) (23)
(c—1)
ti €Tk tx(z]x) T )29 | x)

where z%, denotes a sample transformed by component c’s flow. Note that during a forward pass
the model gradient boost flow model encodes data to produce zy. To sample from the posterior

zig ~ T, I({C), however, we transform zy based on zx by applying a chain of K transformations

zrg =T, }(g o..0 7'1(j )(zo), where j ~ Categorical(3) randomly choose a component, which is
similar to sampling from a mixture model. In other words, we compute a fast stochastic approximation

of the likelihood TI((C) and inference and sampling are as fast as the non-boosted setting.

B.2.4 TWO-STEP OPTIMIZATION STRATEGY

Optimizing Eq. for mixture model T]((C) is a nontrivial task. However, gradient boosting provides a
feasible solution to simplify the optimization problem. During training, the first component is derived
using a traditional objective function where no boosting is applied. In other words, no boosting during

the first stage is equivalent to setting 7'(0)( ) to uniform on the domain of x. At stages ¢ > 1, 7'(( 2

consists of a convex combination of the (¢ — 1) K step flow models from the previous stages and

then we train a new component tg?. Jointly optimizing both t(g) and the weights (. is a challenging

optimization problem, we thus consider a two-step optimization strategy, which means that we first

train tg?

Eq.

until convergence and then optimize the corresponding weight 8. by using the objective in
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B.2.5 COMPONENTS WEIGHTS UPDATING

Once the t%) (zx | x) is estimated, the gradient boost flow model needs to determine the corresponding
Be € [0,1]. Similarly, the weights on each component can be updated by using the gradient of the

loss Vy,(x) with respect to 3. Let’s first rewrite TI((C) (zk | x) as the convex combination:

T (zr | %) = (1= BT V(zw | %) + Bt (2 | x)

(24)
_56( (2 | x) — T,@C*”(ZK|X))+T<C Y(zg | x).

By defining (51(,?) (zx | x) = t(Ig)(zK | x;) — 7'(C 1)(ZK | x;), the objective function V,;(x) can be
written as a function of 3.:

n

Vs(x) = ch 89 (2 | xi) + TV (2 | x0), = log ply | %4, 7))

+ 20005 e ) 4 T e ) o (B0 (o [ 36) + T [ )

(25)
Taking the gradient of Eq.[25| with respect to . yields the component weight updates:
Vg (x - o o
] I | N
¢ o\t (elxo) TV (alx)
Where§ Y (z | x;) is defined as
- Py | X, 2k)
¢V (2] %) & —log 2=
T (e %)
(c=1)
Ti V(2] x) on
(y | X, ZK)
o (=BT a0 + 507V )
p(y | x,2x)

The above Eq.[27]can be solved by using stochastic gradient descent (SGD). s in Eq.[27]is the iteration
step. The SGD algorithm for updating weights . is illustrated by Algorithm 3.

Algorithm 3 Updating component weights (. by stochastic gradient descent

: Requirement and initialization: predefined C, step size A, tolerance €. Set s = 0, 5§0) =1/C
: While |8 — "™V < e do

. Generate samples ZSK 'T(c 1)(z | x;) and z(c> ~ t<c) (z | z;) fori =1,.

: Estimate gradients using MC method Vg, Vy(x) = 1/nd> 7 | [{;;C_l)( © | Xz) §[(3i_1)(z§?;1) | Xz):|
: Update weights 3% = B ™" — AV, and clip weights 3% to [0, 1]

ts=s+1
: return A%

N AW =

B.2.6 COMPUTATIONAL COST

Gradient boosting flow model compliments existing flow-based models, improving performance at the
cost of additional training cycles, rather than more complex transformations. The additional training
cost is caused by updating the new flow components and the corresponding component weights via
stochastic gradient descent. However, sampling and inference are not slowed with gradient boosting,
as each component is independent and operates in parallel.
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C VARIANCE-REDUCED SAMPLING

In this section, we will provide more details including definition and derivation, for the variance-
reduced sampling methods discussed in the main context and offer a comprehensive comparison of
their advantages and limitations.

C.1 STRATIFIED SAMPLING

Stratified sampling (SS) divides the sample space S into a collection of M disjoint strata 2, k =
1,..., M with Uﬁilﬂk = Sand Q, N2, = J,p # ¢. Samples drawn from a specific stratum k,
xr = {Z1k, ..., TNk |, are generated by randomly sampling the vector components based on

zip = DxUp), i=1,..,.N (28)

where NN is the total number of samples, U;, are iid uniformly distributed samples on [¢},, €% ] with
¢4 = Dx,(¢}) and €% = Dy, (¢%) and ¢!}, and ¢}, are the lower and upper bounds of the ith vector
component of stratum €2, respectively. In many cases, the strata are defined by the bounds [{f > Zl k-

C.2 VARIANCE REDUCTION IN SRS, SS AND LHS

For simple random sampling (SRS) (or conventional Monte Carlo sampling), the variance of the
statistical estimator T is given Var(Tg) = o2/N where 02> = Var(g) where ¢ is an arbitrary
function, e.g., expectation operator. SS has been proven to unconditionally reduce the variance
of statistical estimator (7's) when compared to SRS so that the variance reduction depends on the
difference between the strata means p; and the overall mean 7 (McKay et al., 2000):

M

1
Var(Ts) = Var(Tr) — > okl —7)° (29)
k=1

when the strata are sampled proportionately such that the number of samples on stratum k, ng = pgn.
LHS reduces variance by negative covariance such that the variance of a LHS estimator 77, is

1_ 5 D (i =) (g —7) (30)
1) =

-1
Var(T1,) = Var(Tr) + n

n nN(n

where 7 is the mean value, y; is the mean of LHS cell i, and R is the n™¥ (n — 1) pairs (1, p1;) of
cells having no cell coordinates in common. Note that, the variance of LHS is reduced only when
the second term is negative. |Stein| (1987)) and McKay et al.|(2000) have shown that the variance is
always reduced with creating negative covariance. LHS, discussed in Section 3.2, reduces variance
by effectively filtering the main effects (additive effects, e.g., x+y) of the transformation but has
limitations on variational interactions (e.g., Xy) (Steinl [1987; McKay et al.| 2000).

C.3 PARTIALLY STRATIFIED SAMPLING

SS and LHS can be seen as two extremes on a spectrum of possible stratification methods (Shields
& Zhang| 2016). In true SS, the stratification occurs on all dimensions simultaneously while LHS
divides each dimension individually. Partially stratified sampling (PSS) stands for the broader class
of all possible stratification between these extremes where stratification occurs on low-dimensional
subspaces of the /N-dimensional sample space. To this end, true SS and LHS can be viewed as
special cases of PSS such that stratification occurs on N-dimensional and one dimensional spaces
respectively.

Let ®;,7 =1,..., N denote N, disjoint N;-dimensional orthogonal subspaces of the /N-dimensional
sample space S(N; < N, Vi) such that UkN;@i = Sand ®,N O, = J,p # ¢. PSS divides each
subspace ©; into a collection of M; disjoint subsets €2,k = 1, ..., M;. Lower N;-dimensional
random samples X;;; = {Zik1, ..., Tk, } are drawn within each stratum €25, of subspace ®; based
on the SS method. Following this procedure, the full N-dimensional samples x are assembled by
randomly grouping the lower-dimensional samples generated in each subspace. Using this way, a
low-dimensional sample x;;, is randomly chosen from each subspace ®; and these terms are grouped
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to create a sample. Figure [f] (left) shows how to generate four samples from a 4D sample space using
PSS 2x2. First, we draw stratified samples within the 2D subspaces and then randomly pair the 2D
samples to assemble 4D samples. Shields and Zhang (Shields & Zhang], 2016) derived the variance
of a statistical estimator using PSS, which is given by

Ng Ns
1 15 1 1\«
Var(Tp) = ﬁVar(TR) Nl E (ni —7)% + (nN“ - ng]\[) E pi+
=1 =1

R~ (€28
nfs—1 1 I «— «—
(n—1)N-—1 DD ity n2N. T 2N, DD mk
R i=1 j=1,j#i

where R is the space of n™s (n — 1)+ cell pairs with cell mean values (u;, y1;). Using > p1; = n'Ver,
Eq.equation [3T]can be rewritten to

Var(Tp) = Var(Tg) + n-l 1_ N ZZ(M = 7)1y —7) (32)
s R

n nNs(n

Note that Eq.equation [32]follows the similar form as Eq.equation[30]when N, = N, each stratified
subspace corresponds to a component of x resulting in a LHS. PSS has the effect of filtering out
additive combinations of non-additive functions, which is important to further reduce variance on

variable interactions (Shields & Zhang| [2016).
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Figure 6: (Left) Four samples drawn from a four dimensional space using PSS 2x2 stratum (Shields & Zhang|
2016). (Right) Five dimensional space using LPSS 2x1x2 stratum with 16 samples and 36 samples.

C.4 LATINIZED STRATIFIED SAMPLING

To simultaneously reduce variance associated with the main effects and interaction effects, Latinized
stratified sampling (LSS) is proposed by a combination of true SS and a LHS on a given V;-
dimensional subspace. The LSS typically consists of the following steps:

* Generate an LHS from the subspace without grouping the individual variables
* Stratify the domain as desired ensuring that the stratification is consistent with an LHS design

* Randomly select a point z; from each component of the LHS without replacement such that the
sample x = {1, ..., 2y } lies within the stratum.

* For each stratum, repeat the above steps to generate all the samples.

Note that LSS is equivalent to an Orthogonal array-based LHS (Tang], [1993; [Owenl [1992) when the
strata all have equal dimensions. But LSS can be applied to subspaces of different dimensions in a
simple and efficient way. The benefits of LSS are to filter main effects and variable interactions but
the effect will be diminished in high dimension.
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C.5 LATINIZED PARTIALLY STRATIFIED SAMPLING

All the challenges discussed above can be mitigated by the use of LSS in combination with PSS,
named by Latinized partially stratified sampling (LPSS), which first defines a PSS and then samples
from the lower-dimensional subspace according to the LSS method. To this end, one can achieve to
reduce the variance associated with both main effects and variable interactions simultaneously and is
also able to scale to high dimensions. Figure[6{right) shows an example about 5D sampling space
using LPSS 2x1x2 stratum with 16 and 36 samples. In our experiments, we typically divide the entire
high dimensional space into 2 or 4 subspaces. For example, a 1000-dimensional problem will be
divided by 500 2D or 250 4D cases. The advantages and disadvantage of these sampling methods are
compared, as shown in Table E}

Table 5: Comparison of advantages and disadvantages of sampling methods

Method  Advantages Disadvantages
SRS Easy to generate samples No variance reduction (VR)
SS VR on variable interactions Scale poorly to high dimension
LHS VR on main effects'and . No VR on variable interactions
scale well to high dimension
PSS Improved VR on variable interaction Limited VR on main effects and pairing penalty
LSS VR on both main effects and variable interaction  Limited VR in high dimension
Large VR on both main effects
LPSS and variable interactions, no pairing penalty and ~ Optimal pairing may not be straightforward

performs well in high dimension

C.6 ABLATION STUDY: THE EFFECT OF DIFFERENT SAMPLING ON VARIANCE AND BIAS

We show the effect of random sampling on variance reduction and bias estimation. Our task here is to
map the latent Gaussian distribution z ~ N (0, 1) to the target Lognormal distribution x ~ LN (3, 1)
given a fixed flow-based model but with different sampling strategies: SRS, LHS and LPSS. The task
is also tested on various dimensions ranging from 1 to 1000. The estimated bias is defined by

€ = |Elz] = fi], & = [E[x] = fia (33)

The SRS yields a significantly higher bias than the LHS and LPSS (Fig. [7(a-b))). Although increasing
samples may mitigate the effect, the bias in high dimensions is still clear to see. We check whether
the statistical proprieties in latent space would be preserved and propagated to the target space (¢,
is correlated to ex or not). As shown in Fig. [7|(d-e), the bias in the target space displays a similar
trend as the latent space. In other words, sampling in latent space will have a direct impact on the
bias estimation of the target space. Unfortunately, commonly used SRS may result in an imprecise
estimation.

In this case, we fixed the normalizing flow model (NSF layers) and only change the sampling
methods imposed on latent probability density. We substitute the simple affine transformation used in
RealNVP (Dinh et al., 2016) by the rational-quadratic (RQ) spline (Durkan et al., 2019) implemented
inhttps://github.com/bayesiains/nflows. The width, height, and slope of the RQ
transformation are given by fully connected ReLLU networks. We use 3 blocks with three hidden
layers of dimension 64. An NSF block consists of two subsequent NSF layers with intermediate swap
layers. The batch size is 256 for both 1E3 and 1E4 samples. Training was done by 2000 epochs with
a learning rate | = 0.001. Once the model is learned, we run 20 Monte Carlo trials to measure the
statistical moments for bias and variance estimators.

We denote

0, = Var(E[z]), ox = Var(E[x)] 34)
to measure the variance for the latent and target distributions using 20 repeat MC trials. Note that
LPSS shows significant advantages in variance reduction, with three orders of magnitude smaller
than the SRS. An increasing number of samples offers a slight improvement for SRS but is still much
higher than the variance-reduced LPSS. A clear correlated trend between latent and target space
further demonstrates the similar claim as the bias estimation - sampling in latent space will dominate
the statistical estimation of the target distribution.
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Figure 7: Variance and bias performance of different sampling algorithms on latent Gaussian distribution (left
two) and target Lognormal distribution (right two). Bias estimation is shown on (a) Gaussian with 1E3 samples,
(b) Gaussian with 1E4 samples, (c) Lognormal with 1E3 samples, and (d) Lognormal with 1E4 samples. Variance
is shown on (a) Gaussian and (f) Lognormal distribution.

D ADDITIONAL EXPERIMENTS - DENOISING AND INPAINTING

To show the applicability of our method, we additionally provide experimental results about denoising
and inpainting, which are also typical tasks in inverse problems. CelebA dataset is used here and we
run the experiments on 64 x 64px color images with the pixel values scaled between [0, 1].

D.1 DENOISING

The denoising problem can be formulated by
y=Azx+w, A=1I, w~N(,0cl,) (35)

where w is additive Gaussian noise with a noise level o = 0.2, and n = 64 x 64 x 3 = 12288 in this
case. We select several samples of CelebA in distribution test set images to visualize the denoising
results in Fig. [§]

Truth

RGFL

Figure 8: Image denoising - visual comparisons under the ground truth, noisy images, and denoising images
with our method at noise level o = 0.2 on CelebA in-distribution test set images.

D.2 INPAINTING

The inpainting problem can be defined as a masked image of the form
y=Moa (36)
where M is a masking matrix with binary entries and x € R" is an n-pixel image. Similarly, we

present the samples of CelebA in distribution test set images on image inpainting, as shown in Fig. [9]
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Mask Truth

RGFL

Figure 9: Image inpainting results on a sample of the CelebA test set. The first row is the ground truth, the
second row is the masked images and the third row is our inpainting results.

E ADDITIONAL EXPERIMENTAL RESULTS AND DETAILS

All experiments were run using PyTorch 1.2 and on NVIDIA RTX6000 GPU. Optimization uses
Adam (Kingma & Bal [2015) with default 3; and 32 values.

E.1 2D IMAGE STUDY CASE

We all use 4 blocks for ReaNVP, NSF and RGF flow models. All involved transformation use
three hidden layers of dimension 64. We used 20 knots for both NSF layers and RGF model in the
RQ-spline transformation. All training was done by 2000 epochs with batch size 256 and learning
rate 0.001. After the training, 10000 random samples drawn from the latent density are used to
calculate the evaluation metrics (precision, recall, density and coverage). We repeat the sampling by
20 different times and show the average score in Table 1 (main context).

E.2 COMPRESSED SENSING MRI APPLICATION
E.2.1 PROBLEM DESCRIPTION

MRI experiment is a typical compressed sensing task where under-sampled measurements result in
image reconstruction uncertainty. As one of the classical inverse problems, compressed sensing MRI
is often modeled as a forward model

y=F(x)+e 37

where the measurements y are the under-sampled «-space spatial frequency components of the image
x with additive Gaussian noise ¢ with a standard deviation of 0.04% the zero-frequency amplitude.
Our method is tested at three different acceleration speed-up factors: 4x, 6x, and 8. That means
1/4,1/6 and 1/8 of all k-space components are observed. The forward operator F' often corresponds
to the discrete Fourier transform (DFT). In this case, reconstructing x from y is an inverse fast Fourier
transform (FFT), and that approach is typically used in many compressed sensing MRI reconstruction
problems.

E.2.2 DATASET

We use the deidentified imaging dataset which is provided by NYU Langone comprises raw k-space
data in several sub-dataset groups. We download the dataset from https://fastmri.med.nyu,
edu/l

Knee MRI: Data from more than 1,500 fully sampled knee MRIs obtained on 3 and 1.5 Tesla
magnets and DICOM images from 10,000 clinical knee MRIs also obtained at 3 or 1.5 Tesla. The
raw dataset includes coronal proton density-weighted images with and without fat suppression. The
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DICOM dataset contains coronal proton density-weighted with and without fat suppression, axial
proton density-weighted with fat suppression, sagittal proton density, and sagittal T2-weighted with
fat suppression. We select one scanning sample from the knee single-coil validation dataset as the
ground truth.

Brain MRI: Data from 6,970 fully sampled brain MRIs obtained on 3 and 1.5 Tesla magnets. The
raw dataset includes axial T1 weighted, T2 weighted, and FLAIR images. Some of the T1 weighted
acquisitions included admissions of contrast agents. For the brain case, we choose one specific
sample from the brain multi-coil validation dataset.

E.2.3 EXPERIMENTAL DETAILS

In this case, we use 4 blocks for RealNVP, NSF and RGF models. For affine coupling layers, we
use three hidden layers and the scale-shift function of each layer is modeled as a U-Net syle fully
connected networks that are composed of dense layers including the Leaky ReLU activation and the
batch normalization with skip connections. For the NSF and RGF model, we use three hidden layers
for width/height/slope with dimension 128 in their transformers. We use a small batch size 32 and
train the model by 2000 epochs. The Adam learning rate is le-5 with a gradient clip coefficient le-3.
We also use an additive MRI measurement noise with c=5e-7 in both cases to stabilize the training.

E.2.4 ABLATION STUDY

To analyze the effect of different components on the final improvement, we provide an ablation study
over the bi-directional regularization, gradient boosting, and latent sampling strategy on the brain
MRI experiments with three acceleration rates. As shown in Table|/} BD-R means the bi-directional
regularization, GB represents the gradient boosting and LPSS is the latent sampling strategy. In
terms of the absolute error quantity, GB plays a more important role, and combining GB and BD-R
shows a pretty close performance to the best performance (our RGFL). On the other side, LPSS is
more powerful than GB and BD-R on variance reduction improvement, which is consistent with our
expectation and the results displayed by the toy example in Section 3.6.

Table 6: An ablation study to study the effect of bi-direction regularization, gradient boosting and latent sampling
strategy on brain MRI study.

Brain with 4X Brain with 6x Brain with 8x
Abs. Error  Std. Dev.  Abs. Error  Std. Dev.  Abs. Error  Std. Dev.
BD-R only 6.56E-06 8.30E-06 7.67E-06  9.28E-06 1.15E-05 1.97E-05
GB only 3.42E-06 491E-06 5.03E-06 6.84E-06 8.48E-06 8.10E-06
LPSS only 6.18E-06 1.05E-06  7.20E-06  3.11E-06 9.69E-06 5.26E-06
BD-R & GB 2.03E-06 3.82E-06 4.91E-06 5.79E-06 7.94E-06 6.93E-06

BD-R, GB & LPSS (RGFL) 1.78E-06 9.73E-07 4.58E-06 2.35E-06 7.12E-06 4.10E-06

E.3 INTERFEROMETIC IMAGING APPLICATION
E.3.1 PROBLEM DESCRIPTION

In interferometric imaging, radio telescopes are linked to receive sparse spatial frequency measure-
ments of an astronomical target (Thompson et al.,2017). The Fourier measurements are then used
to recover the underlying astronomical image. Due to sparse and noisy measurements, multiple
image modes can fit the same observed data well. The Event Horizon Telescope (EHT) applied this
technique to capture the first black hole picture, by linking telescopes across the globe (Akiyama
et al., [2019bjcidzeif; [2021).

The Fourier measurement is obtained by correlating the data from a pair of telescopes and the
measurement equation is given by:

Mg, = 9agh exp[—i(d — G5)]FapX + naps (38)
where a and b index the telescopes, F) ;bx extracts the Fourier component from image x corresponding

to the baseline between telescope a and b at time ¢ which represents time. Typically, the measurement
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noise consists of three sources: (1) Gaussian thermal noise n/, , ~ N(0, 1/37,]), (2) time-dependent
phase error ¢!, and ¢}, and (3) time-dependent gain error g, and g;.

If the gain errors and the phase errors are large, the measurements can be combined into robust

data products that are invariant to telescope-based errors, named closure phase, C? }Ztc and closure

amp.,t,

amplitude, C, "'

ML ML

CPhot = Z(MEy, MY MY ) = fPhol(x),  oopel = et ol
( a,br *¥b,cr c,a) by ( )’ a,b,c,d |M1§,c‘ |Mlid‘

amp.,t
a,b,c a fa,b,c,d (X) (39)
The above nonlinear closure quantities can be used to constrain the non-convex image reconstruction
problem, which is given by

Lly, () = D IMELE = [ )P ok e+ D Nog Myl —log o™ P /02 ca
a,b,c a,b,c,d
(40)
where 0,1, and 0, ¢, are the standard deviations of the corresponding closure term computed
based on each telescope’s system equivalent flux density. Note that Eq. 40|only approximates the
true data log-likelihood. In this case, we demonstrate our method on non-convex reconstruction with
closure quantities using real datasets from https://github.com/achael/eht-imagingl

E.3.2 DATASET

The black hole case is one of the important radio interferometric astronomical imaging problems.
Typically, radio telescopes are linked to obtaining sparse spatial frequency measurements of an astro-
nomical target. Then the Fourier measurements are employed to recover the underlying astronomical
image. The Event Horizon Telescope (EHT) applied this technique to capture the first picture of a
black hole, by linking telescopes across the globe. More background and technical details can be
found via (Event Horizon Telescope Collaboration et al., 2019, |Akiyama et al.| [2019a; |Gammie et al.}
2019; | Akiyama et al., [2019eff).

E.3.3 EXPERIMENTAL DETAILS

In this case, we blurred the original data to a lower resolution by 32x32. The field of view of the
image in micro-arcsecond is set to 160. The fwhm of the image prior in micro-arcsecond is set to 50.
As similar as the FastMRI case, we use 4 blocks for all flow-based models. For affine coupling layers,
we use three hidden layers and the scale-shift function of each layer is modeled as a U-Net syle fully
connected networks that are composed of dense layers including the Leaky ReLLU activation and the
batch normalization with skip connections. For the NSF and RGF model, we use three hidden layers
for width/height/slope with dimension 128 in their transformers. We use a smaller batch size of 16
and train the model by 10000 epochs. The Adam learning rate is 1e-4 with a gradient clip coefficient
of le-3. Once the learned model is done, we generate 1024 random samples from the latent density
and estimate the mean and variance. These samples are also used to analyze the different modes and
t-SNE visualization.

E.3.4 ABLATION STUDY

We provide an ablation study for the blackhole image case to analyze the effect of bi-directional
regularization, gradient boosting, and latent sampling strategy on our RGFL performance. We found
a similar trend that means GB shows a bigger impact on the absolute error metric, and combining GB
and BD-R shows a pretty close performance to the best performance (RGFL). However, compared
with BG and BD-R, LPSS has a more sensitive impact on variance reduction.

F DISCUSSION OF COMPUTATIONAL COST

The major limitation of this work is the training cost which mainly includes three parts, bi-directional
FD regularization, gradient boosting, and latent space sampling. The gradient boosting scheme is the
most expensive one since it needs additional training cycles for updating the new flow components
and the optimal weights. However, introducing gradient boosting does not affect the prediction and
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Table 7: An ablation study to study the effect of bi-direction regularization, gradient boosting, and latent
sampling strategy on blackhole image study.

blackhole images

Abs. Error  Std. Dev.

BD-R only 2.50E-04  5.12E-04
GB only 1.28E-04  3.22E-04
LPSS only 2.59E-04 1.35E-04
BD-R & GB 1.17E-04  2.64E-04

BD-R,GB & LPSS (RGFL) 1.08E-04  1.20E-04

sampling efficiency. The bi-directional FD regularization is imposed on both forward mapping and
backward mapping, so it has an impact on training and prediction but it is not significant as the
gradient boosting. Latent space sampling with LPSS is the minor one in terms of total computational
cost although it is slower than simple random sampling.

Our future work will mainly address these computational concerns to improve the scalability on
large-scale problems such that the proposed methods will make a bigger impact and scope to solving
inverse problems, not only limited by underdetermined imaging systems but also more general image
reconstruction tasks in machine learning and computer vision community.

G ADDITIONAL EXPERIMENTAL RESULTS

G.1 FASTMRI SAMPLES

We provide additional generated samples from the learned model. Figure[I0]- Figure [[3]show the
additional 40 samples for the brain case with speedup 4x, 6x, 8x and 10x. The knee cases are shown
in Figure[T4]- Figure [I7]for speedup 4x, 6x, 8x and 10x respectively.

Figure 10: Brain with speedup 4x: additional 40 generated samples from the learned model.

G.2 BLACK HOLE SAMPLES

For the black hole case study, we also offer more generated samples, as shown{I8|and it is noted that
the two modes are clear to be observed from these samples as we discussed in the main context.
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Figure 11: Brain with speedup 6x: additional 40 generated samples from the learned model.

Figure 12: Brain with speedup 8x: additional 40 generated samples from the learned model.

Figure 13: Brain with speedup 10x: additional 40 generated samples from the learned model.
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Figure 14: Knee with speedup 4x: additional 40 generated samples from the learned model.

Figure 15: Knee with speedup 6x: additional 40 generated samples from the learned model.

Figure 16: Knee with speedup 8x: additional 40 generated samples from the learned model.
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Figure 17: Knee with speedup 10x: additional 40 generated samples from the learned model.

Figure 18: Black hole: additional 40 generated samples from the learned model.Note that two different modes
are clear to see in more samples.
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