
CVPR
#8

CVPR
#8

CVPR 2024 Submission #8. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Two-Person Interaction Augmentation with Skeleton Priors

Anonymous CVPR submission

Paper ID 8

Abstract

Close and continuous interaction with rich contacts is001
a crucial aspect of human activities (e.g. hugging, danc-002
ing) and of interest in many domains like activity recog-003
nition, motion prediction, character animation, etc. How-004
ever, acquiring such skeletal motion is challenging. While005
direct motion capture is expensive and slow, motion edit-006
ing/generation is also non-trivial, as complex contact pat-007
terns with topological and geometric constraints have to008
be retained. To this end, we propose a new deep learn-009
ing method for two-body skeletal interaction motion aug-010
mentation, which can generate variations of contact-rich011
interactions with varying body sizes and proportions while012
retaining the key geometric/topological relations between013
two bodies. Our system can learn effectively from a rel-014
atively small amount of data and generalize to drasti-015
cally different skeleton sizes. Through exhaustive evalua-016
tion and comparison, we show it can generate high-quality017
motions, has strong generalizability and outperforms tra-018
ditional optimization-based methods and alternative deep019
learning solutions.020

1. Introduction021

Skeletal motion is a crucial data modality in many appli-022
cations, such as human activity recognition, motion analy-023
sis, security and computer graphics [8, 29, 42, 50, 51, 53].024
However, capturing high-quality skeletal motions often re-025
quires expensive hardware, professional actors, costly post-026
processing and laborious trial-and-error processes [34]. Af-027
fordable devices such as RGB-D cameras can reduce the028
cost but usually provide data with jittering and tracking er-029
rors [38]. As a result, the majority of available skeletal data030
is based on single-person [31] or multiple people with short,031
simple and almost-no-contact interactions [38]. Datasets032
with close and continuous interactions [12] are rare, limit-033
ing the research of motion generation [54], prediction [12],034
classification [42] within such motions.035

One way to tackle the challenge is to carefully capture036
the motion of actors and retarget it onto different skele-037

tons [13]. With a single skeleton, the problem can be for- 038
mulated as optimizations with respect to keeping key ge- 039
ometric and dynamic constraints [3, 43]. However, this 040
process quickly becomes intractable with the increase of 041
constraints such as foot contact and hand-environment con- 042
tact, let alone retargeting two people with close and contin- 043
uous interactions like wrestling and dancing, where inter- 044
character geometric/topological constraints need to be re- 045
tained [14, 30]. Consequently, multiple runs of complex 046
optimization with careful hand-tuning of objective function 047
weights are needed [15, 16] for a single motion, which is 048
prohibitively slow and therefore can only be used to gener- 049
ate small amounts of data. 050

Meanwhile, data-driven approaches for single body re- 051
targeting [4], despite being successful, cannot be directly 052
extended to two-character interaction. Methodologically, 053
these methods do not model inter-character geometric con- 054
straints, which is key to the semantics of interactions [16]. 055
From the data point of view, these approaches, especially 056
those using deep learning [2, 48], require a large amount 057
of data, which is largely absent for two-character interac- 058
tion. Existing two-character interaction datasets are for ac- 059
tion recognition [7, 37] and low-quality, or only consist of 060
a small amount of data with limited variations in body sizes 061
[12], hardly covering the distribution of possible body vari- 062
ations. Considering the high cost of obtaining interaction 063
data, a method that can learn effectively from limited data 064
and generate interactions with diversified body variations is 065
highly desirable. 066

We propose a novel lightweight framework for two- 067
character skeletal interaction augmentation, easing the need 068
to capture a large amount of data. Our key insight is the 069
joint relations evolving in time (e.g. relative positions, ve- 070
locities, etc.) can fully describe an interaction, e.g. hugging 071
always involves wrapping one’s arms around the other’s 072
body. These relations change when the body size changes, 073
but the distribution of them should stay similar in the sense 074
that one’s arms should still wrap around the other, such 075
that the hand-to-body distance is always smaller than e.g. 076
the foot-to-body distance. Meanwhile, this distribution 077
should be very different from other types of interactions 078
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e.g. wrestling. Therefore, to generate motions from differ-079
ent skeleton sizes, the key is being able to predict the joint080
relation distributions based on a given skeleton.081

To this end, we propose a conditional motion generation082
approach, where the generated motions are conditioned on083
the joint relation distribution which is further conditioned084
on a skeleton prior, allowing a skeleton change to propagate085
through the joint relation distribution and finally influence086
the final motion. We start by modeling the joint probabil-087
ity of two-body motions and proposing a novel factoriza-088
tion to decompose it into three distributions. The three dis-089
tributions are realized as neural networks, which together090
form an end-to-end model that conditions two-body mo-091
tions on one person’s body size. Further, to address the data092
scarcity challenge, we capture new two-body data and em-093
ploy an existing optimization-based method for initial data094
augmentation. After training our model on the data, it can095
be employed for further motion data augmentation for many096
downstream tasks.097

We evaluate our method in multiple tasks. Since there098
is no similar method for baselines, we compare our method099
with adapted baselines and optimization-based approaches,100
demonstrating that our method is accurate in generating de-101
sired motions, can generate diversified interactions while102
respecting interaction constraints, is much faster for in-103
ference and generalizes to large skeletal changes than104
optimization-based methods. In addition, our model ben-105
efits downstream tasks including motion prediction and ac-106
tivity recognition. Formally, our contributions include:107

1. A new factorization of two-character interactions that al-108
lows for effective modelling of interaction features.109

2. a new deep learning method for interaction retarget-110
ing/generation to the best of our knowledge, which111
learns and generalizes effectively from a small number112
of training samples.113

3. A new dataset augmented from single interaction exam-114
ples, containing interactions with different body sizes115
and proportions.116

2. Related Work117

2.1. Deep Learning for Skeletal Motion118

Neural networks have been successful in modeling skele-119
tal motions. Convolutional neural networks can learn la-120
tent representations for denoising and synthesis [18]. Re-121
current neural networks improve the robustness and enable122
long horizon synthesis [5, 52]. Graph neural networks cap-123
ture the joint relations [27]. Generative flows combine124
the style and content in the latent space [57]. Transform-125
ers co-embed human motion and body parameters into a la-126
tent representation [35]. Diffusion models provide a larger127
capacity and are less prone to mode collapse in genera-128
tion [47, 64]. But all the above research is on a single129

body. While there is some research in modeling human- 130
environment interactions [20, 61], two-body interactions are 131
more complex. Very recent research shows successful syn- 132
thesis of two interacting characters, but their focus is either 133
on single character control [24, 41], or fix one while gener- 134
ating the other [10, 28]. None of them models interactions, 135
especially under varying body sizes and proportions. To our 136
best knowledge, there is no deep-learning method for com- 137
plex two-character interactions. 138

2.2. Motion Retargeting 139

Motion retargeting adapts a character’s motion to another 140
of a different size while maintaining the motion seman- 141
tics. Early research employs space-time optimization based 142
on contact [9], purposefully-designed inverse kinematics 143
solver for different morphologies [13], data-driven recon- 144
struction of poses based on end-effectors [4, 40], or phys- 145
ical filters [43] and physical-based solvers [3] considering 146
dynamics constraints. Recently, deep learning has achieved 147
great success, e.g. recurrent neural networks with contact 148
modeling [49], skeleton-aware operators without explicitly 149
pairing the source and target motions [2], and variational 150
autoencoders for motion features preservation during retar- 151
geting [48]. Beyond skeletal motions, the skeleton struc- 152
ture is also effective in video based retargeting [60]. Fast 153
deep learning methods are pursued for real-time robotic 154
control [63]. Unlike previous research, we propose a novel 155
deep learning architecture for motion retargeting/generation 156
of two-character interactions, which are intrinsically more 157
complex than single-character retargeting. 158

2.3. Interaction 159

Interaction retargeting involving more than one person is 160
more challenging than single-body retargeting, due to their 161
complex motion constraints [22] such as topological con- 162
straints [14], but these constraints involve heavy manual de- 163
signs. As a more general solution, InteractionMesh [16] 164
uses dense mesh structures to represent the spatial re- 165
lations between two characters and minimizes the mesh 166
change during retargeting [17] and synthesis of character- 167
environment interactions [15]. As it may result in unnatural 168
movements when the skeleton is significantly different from 169
the original one, a prioritization strategy on local relations 170
is proposed [32]. Nevertheless, optimisation-based meth- 171
ods require careful design of constraints, and incur large 172
run-time costs. 173

Recently, there is a surge of deep learning methods on in- 174
teractions, including human-object interaction [21, 36, 58], 175
motion generation as reaction [6], from texts [44] and by 176
reinforcement learning [65]. Interaction has also been in- 177
vestigated in motion forecasting [33, 46, 59]. Among these 178
papers, the closest work is interaction motion generation but 179
existing work either cannot deal with skeletons of different 180
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sizes or does not focus on continuous and close interactions.181
To our best knowledge, there is no deep learning method for182
interaction modeling as proposed in this research.183

Another key bottleneck of two-character interaction re-184
targeting/generation is the lack of data. Existing datasets185
focus on action recognition [7, 37, 62] with simple inter-186
actions. While some datasets with complex interactions187
are available [39], they include limited variations of body188
sizes/proportions and have a limited amount of data. In this189
research, we present a new dataset and a method that learns190
efficiently from small amounts of data.191

3. Methodology192

We denote a motion with T frames as q = {q0, . . . , qT }T ∈193
RT×N×3 where qt is the tth frame, and each frame qt =194
{pt0, . . . , ptN} consists of N joints and pj is the jth joint po-195
sition. An interaction motion of two characters A and B196
is represented by {qA, qB}. For a specific interaction, dif-197
ferent body sizes and proportions should not change the se-198
mantics, e.g. one character always having its arms around199
the other in hugging. These invariant semantics are often200
captured by topological/geometric features [14]. Therefore,201
a skeletal change in B should cause changes in both qA202
and qB to retain the semantics. We represent a B skeleton203
by its bone length vector Bs ∈ Rn where n is the num-204
ber of bones. The aim is to model the joint probability205
p(Bs, qA, qB). We propose a simple yet effective model,206
shown in Fig. 1.207

3.1. A New Factorization of Interaction Motions208

Directly learning p(Bs, qA, qB) would need large amounts209
of data containing different interactions with varying both210
lengths. Therefore, we first make it learnable on limited211
data by introducing a new factorization. First, we represent212
skeletons with different bone lengths as heterogeneously213
scaled versions of a template skeleton with a bone length214
scale vector B̂ = {1, ..., 1} ∈ Rn, i.e. we treat the bone215
lengths of the template skeleton as scale 1. We abuse the216
notation and denote a skeleton variation by Bs, indicating217
how each bone is scaled with respect to B̂.218

Next, we represent motion data as deviations from some219
template motion {q̂A, q̂B} with the template skeleton B̂.220
A skeleton variation Bs corresponds to a distribution of221
motions {q′A, q′B}, where not only the B motion deviates222
from q̂B , the A motion also deviates from q̂A accordingly223
to maintain the interaction. So we can split data into tem-224
plate motions and others {qA, qB} = {q̂A, q′A}

⋃
{q̂B , q′B},225

so that p(Bs, qA, qB) = p(q′A, q
′
B , Bs, q̂A, q̂B). Given226

{q̂A, q̂B}, p(q′A, q
′
B , Bs, q̂A, q̂B) is an easier distribution to227

learn than the original p(Bs, qA, qB), as {q̂A, q̂B} serves228
as an anchor motion with an anchor skeleton, so that all229
other motion variations can be described by offsets from the230

template motion, restricting p(q′A, q
′
B , Bs, q̂A, q̂B) to only 231

model the distribution of offsets from {q̂A, q̂B}. 232
There are many ways to factorize p(q′A, q

′
B , Bs, q̂A, q̂B) 233

theoretically. Our new factorization follows: 234

p(q′A, q
′
B , Bs, q̂A, q̂B) 235

(i) = p(q′A|q′B , Bs, q̂A, q̂B)p(q
′
B , Bs, q̂A, q̂B) 236

(ii) = p(q′A|q′B , q̂A)p(q′B |Bs, q̂B)p(Bs, q̂A, q̂B) 237

(iii) = p(q′A|q′B , q̂A)p(q′B |Bs, q̂B)p(Bs) (1) 238

where (i) gives the conditional probability of 239
p(q′A|q′B , Bs, q̂A, q̂B), and its prior p(q′B , Bs, q̂A, q̂B). 240
Further, p(q′B , Bs, q̂A, q̂B) can be factorized into 241
p(q′B |Bs, q̂B)p(Bs, q̂A, q̂B) in (ii), assuming q′B does 242
not depend on q̂A. Given the template motion {q̂A, q̂B} 243
and a changed skeleton Bs, {Bs, q̂A, q̂B} ∼ p(Bs, q̂A, q̂B), 244
we can sample a new q′B ∼ p(q′B |Bs, q̂B) that satisfies 245
the desired skeleton change, then further sample a new 246
q′A ∼ p(q′A|q′B , q̂A) that maintains the interaction with q′B . 247
Further, (iii) is obtained when {q̂A, q̂B} is given. 248

The three distributions in Eq. (1) have explicit mean- 249
ings. p(Bs) is the skeleton prior which captures skeletal 250
variations that are likely to be observed; p(q′B |Bs, q̂B) is for 251
motion retargeting, i.e. modeling the distribution of pos- 252
sible B motions w.r.t. q̂B , given a skeletal variation Bs; 253
p(q′A|q′B , q̂A) is for motion adaptation, i.e. modeling the 254
possible A motions w.r.t. q̂A, given a specific B motion q′B . 255
Among many possible ways of factorization, our particular 256
choice in Eq. (1) conforms to a plausible workflow where 257
user input can be injected at multiple stages. The input can 258
be a skeletal change Bs to p(q′B |Bs, q̂B), or a keyframed 259
new motion q′B to p(q′A|q′B , q̂A). Alternatively, the Bs can 260
be drawn from p(Bs) for unlimited motion generation. 261

To keep our model small, inspired by the recent research 262
in human motions [25, 26], we learn a generative model by 263
assuming p(Bs), p(q′B |Bs, q̂B) and p(q′A|q′B , q̂A) to have 264
well-behaved latent distribution, e.g. Gaussian, shown in 265
Fig. 1 Compared with other alternative networks such as 266
flows and Transformers, our model is especially suitable 267
since our data is limited. We introduce the general archi- 268
tecture and refer the readers to the supplementary material 269
(SM) for details. 270

3.2. Network Architecture 271

In Fig. 1, MLP1 and MLP2 are a five-layer (16-32-64-128- 272
256) fully-connected (FC) network, and a five-layer (256- 273
128-64-32-dim(Bs)) FC network, respectively. As Bs is a 274
simple n-dimensional vector with fixed structural informa- 275
tion, i.e. each dimension representing the scale of a bone, 276
simple MLPs work well in projecting Bs into a latent space 277
where it conforms to a Normal distribution. 278

Next, we choose two types of networks as key compo- 279
nents of our model to learn motion dynamics and interac- 280
tions. First, spatio-temporal Graph Convolution Networks 281
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Figure 1. Overview of our model. The key components include Spatial-temporal Graph Convolution Networks (ST-GCN), Multi-layer
perceptrons (MLP) and G-GRU networks. Details are in the supplementary material (SM).

(ST-GCN) extract features by conducting spatial and tem-282
poral convolution on graph data and have been proven effec-283
tive in analyzing human motions [8, 51]. We use ST-GCNs284
as encoders to extract reliable features. The other network285
is a Recurrent Neural Network named Graph Gated Recur-286
rent Unit or G-GRU [25]. G-GRU models time-series data287
by Gated Recurrent Unit on graph structures and have the288
ability to stably unroll into the future on predicting human289
motions [25]. We use it as decoders in our model. This290
choice is again for reducing the required amount of data for291
training, which would be much larger if other networks, e.g.292
ST-GCNs are used as decoders based on our experiments.293

Instead of directly learning the distribution of q′B , learn-294
ing the distribution of the differences △qB = q′B − q̂B is295
easier [45, 52]: p(q′B |Bs, q̂B) = p(△qB |Bs), which is eas-296
ier as it becomes learning the distribution of offsets from297
the template motion q̂B and a skeleton variation Bs. We en-298
code △qB into a latent space then decode it back to the data299
space by:300

z = FC(Concat(ST-GCN1(△qB , Bs), q̂
0
B , q̂

T
B)))301

△q′B = G-GRU1(z, q̂0B , q̂
T
B , Bs))302

subject. to z ∼ N (0, I) (2)303

where in both the encoding and decoding processes, we also304
incorporate the first and last frame of the template motion305
q̂0B , q̂

T
B because they help stabilize the dynamics based on306

our results. After decoding, we add the predicted △q′B back307
to the template motion to get the new motion q′B = qB +308
△q′B .309

Next, given a motion q′B , character A needs to adjust310
its motions to keep the interaction, leading to a distribution311
of possible q′A. Similarly, we focus on learning △qA =312
q′A − q̂A by an autoencoder:313

Figure 2. The architecture of ST-GCN1 and G-GRU1. More de-
tails are in the supplementary material.

Figure 3. The architecture of ST-GCN2, ST-GCN3 and G-GRU2.
More details are in the supplementary material.

z = FC(Concat(ST-GCN2(△qA), q̂
0
A, q̂

T
A,ST-GCN3(q′B)) 314

△q′A = G-GRU2(z, q̂0A, q̂
T
A)) subject to z ∼ N (0, I)

(3)
315

where after decoding we compute the new motion q′A = 316
q̂A +△q′A. 317

We give more detailed architectures of ST-GCN1 and 318
G-GRU1 in Figure 2, and the detailed architectures of ST- 319
GCN2, ST-GCN3 and G-GRU2 in Figure 3. 320

3.3. Loss functions 321

Training our model involves three loss terms for the three 322
autoencoders: 323

L = LBS
+ LBM

+ LAM
. (4) 324
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Minimizing LBS
learns MLP1 and MLP2 to learn the dis-325

tribution of possible skeleon variations Bs:326

LBS
=

1

M

∑
||B′

s −Bs||22 +DKL[z||N (0, I)], (5)327

where z is the output of MLP1, B′
s is the output of MLP2,328

Bs is the ground-truth skeleton variation and DKL is the329
KL-divergence.330

Next, LBM
is for training ST-GCN1 and G-GRU1:331

LBM
=

1

M

∑
{ω1||q̃′B − q′B ||1 + ω2|| ˙̃q′B − q̇′B ||1332

+ ω3BL(q̃′B , q
′
B)}+ ω4DKL[z||N (0, I)], (6)333

where z is the latent variable, ω4 = 1 − ω1 − ω2 − ω3, M334
is the total number of motions. q̃′B and q′B are the predicted335
and the ground-truth B motion. ω1 = 0.75, ω2 = 0.1 and336
ω3 = 0.05. || · ||1 is the l1 norm and p(z|c) ∼ N (0, I).337
BL(q̃′B , q

′
B) is the bone-length loss between q̃′B and q′B :338

BL(q̃, q) =
∑
t

||bone len(q̃t)− bone len(qt)||22, (7)339

where bone len computes the bone lengths of frame t of340
q̃ and q. Note we minimize the difference between the341
ground-truth and prediction on the zero-order and first-342
order derivative in Eq. 6.343

Summarily for LAM
:344

LAM
=

1

M

∑
[ω1||q̃′A − q′A||1 + ω2|| ˙̃q′A − q̇′A||1345

+ ω3BL(q̃′A, q
′
A)] + ω4DKL[z||N (0, I)], (8)346

where z is the latent variable. ω4 = 1 − ω1 − ω2 − ω3, M347
is the total number of motions. q̃′A and q′A are the predicted348
and the ground-truth B motion. ω4 = 1 − ω1 − ω2 − ω3,349
and ω1 = 0.75, ω2 = 0.1 and ω3 = 0.05. BL(q̃′A, q

′
A) is350

the same bone length loss as in Eq. 7.351

4. A New Interaction Dataset352

To our best knowledge, there are few public datasets fo-353
cusing on close and continuous interactions except [12].354
To construct our dataset, we first obtain base motions and355
augment them. The base motion details are shown in356
the SM. We obtain “Judo”. From CMU [1], we choose357
“Face-to-back”, “Turn-around” and “Hold-body”. From358
ExPI [12], we choose “Around-the-back”, “Back-flip”,359
“Big-ben”, “Noser” and “Chandelle”. These interactions360
are sufficiently complex to fully evaluate the robustness and361
generalizability of our model. They show the need for au-362
tomated motion retargeting/generation as it requires hiring363
professional actors. Also, these motions contain rich and364
sustained contacts and close and continuous interactions,365
where single-body motion retargeting methods can easily366
lead to breach of contact and severe body penetrations.367

After obtaining the base motions, a number of variations 368
of each motion are collected to form a dataset. Our method 369
is independent of how the variations are obtained. One 370
may consider motion capture with actors of different body 371
sizes, or manual keyframing with different characters. We 372
employ a semi-automated approach. We manually change 373
the skeleton to generate variations, after which we adapt 374
an iterative and interactive optimization approach called In- 375
teractionMesh [16] to generate new motions based on the 376
changed skeletons. This allows us to precisely control the 377
bone sizes for rigorous and consistent evaluation. 378

For each base motion, we vary the bones by scales within 379
[0.75, 1.25] with a 0.05 spacing, where the original skele- 380
ton is used as the scale-1 template skeleton. This spans the 381
+-25% range of the original skeleton, covering most of the 382
population. The process is semi-automatic, involving the 383
use of an optimisation engine to carefully retarget an in- 384
teraction to different body sizes, with manual adjustment 385
of constraint weights and inspection of results. Synthesiz- 386
ing a few seconds of interaction generally requires around 387
2 minutes of computation. This is done multiple times for 388
one variation of a base motion, due to the need for manual 389
weighting tuning. 390

5. Experiments 391

5.1. Tasks, Metrics and Generalization Settings 392

Tasks. Since our model can generate motions with or with- 393
out user input to specify a skeleton variation, we test differ- 394
ent model variants for motion augmentation. Specifically, 395
we evaluate our model on motion augmentation via retar- 396
geting and generation. If Bs is given, we refer to the task 397
as retargeting where we only use G-GRU1 and G-GRU2 398
for inference; if Bs is not given, we use the full model 399
(MLP2+G-GRU1+G-GRU2) and refer to it as generation. 400

Metrics. We employ four metrics for evaluation: joint 401
position reconstruction error (Er), bone-length error (Eb), 402
Fréchet Inception Distance (FID), and joint-pair distance er- 403
ror (JPD). Er, Eb and JPD are based on l2 distance. FID 404
is used to compare the distributional difference between the 405
generated motions and the data. JPD measures the key joint- 406
pair distance error. The key joint pairs are the body parts in 407
continuous contact. It is to investigate the key spatial re- 408
lations between joint pairs in different motions (Judo: A’s 409
right hand to B’s spine; Face-to-back: A’s left hand to B’s 410
right hand; Turn-around: A’s left hand to B’s right hand; 411
Hold-Body: A’s right hand to B’s spine; Around-the-back: 412
A’s left hand to B’s right hand; Back-flip: A’s left hand to 413
B’s right hand; Big-ben: A’s right hand to B’s right hip; 414
Noser: A’s right hand to B’s right hip; Chandelle: A’s right 415
hand to B’s right hip). All results reported are per joint re- 416
sults averaged over A and B. 417

Generalization Settings. Our dataset has two different 418
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Base Motion M1 M2 M3 M4 M5 M6 M7 M8 M9 Total
Original frames 91 536 561 488 294 248 238 518 345 3,319

Augmented motion 160 119 119 119 90 90 90 90 90 967
Augmented frames 14,560 63,784 66,759 58,072 26,460 22,320 21,420 46,620 31,050 351,045

Table 1. M1: Judo, M2 Face-to-back, M3 Turn-around, M4: Hold-body, M5 Around-the-back, M6 Back-flip, M7 Big-ben, M8 Noser, M9
Chandelle. More details are in the SM.

skeletal topologies shown in the SM. Therefore, we divide419
them into two datasets: D1 (M1-4) and D2 (M5-M9) and420
conduct experiments on them separately. We employ four421
different settings to evaluate our model: random, cross-422
scale, cross-interaction and cross-scale-interaction:423

1. Random means a random split on the data for training424
and testing where we keep 20% data for testing.425

2. Cross-scale means we train on moderate bone scales but426
predict on larger skeleton variations. Our training data427
is within the scale [0.95, 1.05] and our testing data is428
both much smaller [0.75, 0.85] and larger [1.15, 1.25].429
Note the testing varies up to +/- 25% of the bone lengths430
covering a wide range of bodies.431

3. Cross-interaction is splitting the data by interaction432
types, e.g. training on Judo and tested dancing. When433
we choose one or several interactions for testing, the434
other interactions are used for training the model.435
Specifically, in D1, we split the data into two sets: M1-436
M2 and M3-M4; in D2, we split them into two sets: M5-437
M7 and M8-M9. In both, when one group is used for438
training, the other is used for testing.439

4. Cross-scale-interaction is both cross-scale and cross-440
interaction, which is the hardest setting. This means that441
the scale [0.95, 1.05] of some interactions are used for442
training, and the scale [0.75, 0.85] and [1.15, 1.25] in443
the other interactions are for testing. For instance, in D1,444
when the scale [0.95, 1.05] of M1-M2 is used for train-445
ing, the scale [0.75, 0.85] and [1.15, 1.25] in M3-M4 are446
for testing.447

5.2. Evaluation448

5.2.1 Retargeting and Generation449

We present the main results here and refer the readers to the450
SM for more results and details.451

We first show quantitative evaluation in Tab. 2. Across452
the two tasks, generation is harder than retargeting, as the453
bone scales are not given in generation. Naturally, the bone454
length error Eb is almost always slightly worse than Retar-455
geting and so is JPD. But even the worst case is 330% in Eb456
and 206.89% worse in JPD which suggests the model gen-457
eralizability on unseen scales and interactions in general is458
strong. We show visual results in Fig. 4 and the video. To-459
gether with the scaled skeleton, the poses are automatically460
adapted on both characters to keep the geometric relations461

Er Eb JPD FID Eb JPD

M1

Random 1.069 0.171 3.008 2.934 0.18 3.421
Cross-scale 2.017 0.304 4.248 3.973 0.354 4.304

Cross-interaction 2.843 0.476 4.443 4.071 0.492 4.903
Cross-scale-interaction 3.021 0.679 4.754 4.369 0.753 5.067

M2

Random 0.067 0.004 0.104 1.719 0.005 0.101
Cross-scale 0.344 0.018 0.241 2.364 0.023 0.645

Cross-interaction 0.671 0.087 0.625 3.077 0.097 1.004
Cross-scale-interaction 1.051 0.131 0.845 3.256 0.143 1.317

M3

Random 1.076 0.02 2.274 5.573 0.03 2.134
Cross-scale 1.563 0.066 2.948 6.556 0.094 2.872

Cross-interaction 1.644 0.089 3.147 6.712 0.127 3.095
Cross-scale-interaction 1.928 0.13 3.493 6.863 0.153 3.317

M4

Random 0.191 0.017 0.264 1.579 0.03 0.297
Cross-scale 0.471 0.079 0.418 2.148 0.087 1.071

Cross-interaction 0.617 0.104 0.589 2.648 0.111 1.347
Cross-scale-interaction 0.897 0.112 0.624 3.094 0.129 1.915

M5

Random 1.975 0.003 0.398 0.69 0.01 0.604
Cross-scale 2.674 0.016 0.837 1.283 0.031 1.157

Cross-interaction 3.067 0.034 1.672 1.431 0.05 1.894
Cross-scale-interaction 3.864 0.067 2.268 1.897 0.094 3.068

M6

Random 1.878 0.008 0.448 0.688 0.013 0.624
Cross-scale 3.615 0.022 0.997 1.22 0.028 1.273

Cross-interaction 4.013 0.031 1.923 1.523 0.039 2.024
Cross-scale-interaction 4.876 0.076 2.641 1.667 0.083 3.264

M7

Random 2.746 0.006 0.495 0.645 0.015 0.702
Cross-scale 5.204 0.017 1.163 1.153 0.03 2.14

Cross-interaction 5.648 0.029 2.32 1.492 0.042 2.32
Cross-scale-interaction 5.757 0.066 2.759 1.475 0.069 3.762

M8

Random 2.272 0.006 0.402 0.676 0.012 0.634
Cross-scale 3.124 0.021 0.964 1.349 0.038 1.374

Cross-interaction 3.389 0.04 1.534 1.671 0.057 1.862
Cross-scale-interaction 3.971 0.103 2.341 2.965 0.103 2.675

M9

Random 2.234 0.005 0.403 0.634 0.009 0.561
Cross-scale 2.935 0.01 0.934 1.412 0.043 1.259

Cross-interaction 3.256 0.023 1.674 1.842 0.051 1.903
Cross-scale-interaction 3.623 0.064 2.842 2.854 0.114 2.971

Table 2. Retargeting (left) and Generation (right). Here is the
result of D1 (M1-4) and D2 (M5-9).

of the interaction. 462

In terms of generation settings, the overall difficulty 463
should be Cross-scale-interaction > Cross-interaction > 464
Cross-scale > Random, as more and more information is 465
included in the training data from Cross-scale-interaction to 466
Random. The metrics in Tab. 2 are consistent with this ex- 467
pectation. Cross-scale-interaction is the most challenging 468
task which is testing the model on both unseen bone sizes 469
and interactions simultaneously. Its metrics are worse than 470
the other three in general as expected. Despite the worse 471
results, the visual results of cross-scale-interaction are of 472
good quality. We show one example (with the worst met- 473
rics) in Fig. 5 in comparison with ground-truth. 474
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Figure 4. In the original Judo motion (top), the red character is
augmented for a bigger body (middle) and a smaller body (bot-
tom), while retaining the key features of the interaction semantics.
The black boxes in column a highlight how the “Judo holding” se-
mantics, i.e., the red character holding the blue one, are adapted.
The black boxes in column b show a similar example.

Figure 5. Comparison between ground-truth (top) and cross-scale-
interaction (bottom). The skeleton of the red character is changed.
Both of them are Back-flip on scale 0.85.

5.2.2 Extrapolating to Large Unseen Scales475

We predict larger scales. The scales are beyond our dataset476
(including the testing data). We show one example of Turn-477
around on 0.65 and 1.3 in the SM , which shows that our478
model can extrapolate to larger skeletal variations when479
trained only using data on scales [0.95, 1.05]. More exam-480
ples can be found in the video. Although larger scale vari-481
ations e.g. 0.5 and 1.5 might lead to unnatural motions, the482
SM already demonstrate the generalizability of our model.483

Hold-Body Judo
Our method [35] [11] Our method [35] [11]

FID 0.412 2.257 40.351 0.267 1.998 28.459
Eb 0.002 0.541 0.389 0.118 0.334 0.311

JPD 0.168 1.463 4.903 3.401 4.532 5.648

Table 3. Results at Scale 1.25, averaged over 10 randomly gener-
ated motions.

Figure 6. Scale 1.25 comparisoin. Left: ground-truth, mid: ours,
right: [35]. [35] generates unnatural poses and break contact (en-
larged parts). Zoom-in for better visualization.

5.3. Comparison 484

To our best knowledge, it is new for deep learning to be 485
employed for interaction augmentation with varying body 486
sizes. So there is no similar research. Therefore, we 487
adapt two single-body methods ([11, 35]) which provide 488
conditioned generation and are the only methods we know 489
that could potentially be adapted for handling varying bone 490
lengths, i.e. we train the model by labelling different scales 491
as different conditions and train the model on scale [0.75, 492
1.25]. More specifically, both models require action type 493
(i.e. a class label) as input, so we label data at different 494
scales as different classes. Note [35] and [11] cannot gen- 495
erate motions for unseen action types, which means they 496
cannot predict on unseen scales like our method. 497

We show the metrics in Tab. 3. After trying our best 498
to train [11], it still generates jittering motions. It can pre- 499
serve the bone-length better than [35] but its FID and JPD 500
are much worse. [35] generate better results but it is still 501
much worse than our method. We show one example of 502
Hold-Body in Fig. 6 in comparison with [35]. Overall, 503
single-body methods even when adapted cannot easily gen- 504
erate interactions. 505

We also compare with InteractionMesh [16]. Since our 506
ground-truth is from InteractionMesh, comparisons on the 507
aforementioned evaluation metrics would be meaningless. 508
Instead, we compare the speed and motion quality on un- 509
seen extreme scales. The inference time of our model is 510
0.323 seconds, while InteractionMesh needs ∼120 seconds 511
on average per optimization, plus the time needed for man- 512
ual tuning of the weighting. Admittedly, our model needs 513
overheads for training. However, once trained, it is very fast 514
and can be used for interactive applications. Further, Inter- 515
actionMesh needs to do optimization for every given Bs, 516
while our model is trained once then does inference for any 517
Bs. Last but not least, InteractionMesh sometimes fails to 518
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Predict(sec) 0.2 0.4 0.6 0.8 1.0

M5 JME 0.234/0.449 0.427/0.771 0.593/1.073 0.722/1.365 0.848/1.594
AME 0.417/0.605 0.750/1.100 1.036/1.499 1.250 /1.877 1.474/2.176

M6 JME 0.520/0.552 0.848/0.874 1.098/1.187 1.485/1.533 1.670/1.799
AME 0.671/0.682 1.170/1.168 1.530/1.579 1.958/1.968 2.253/2.326

M7 JME 0.538/0.565 0.971/0.959 1.298/1.302 1.720/1.708 1.926/1.848
AME 0.708/0.727 1.334/1.367 1.809/1.823 2.319/2.290 2.608/2.573

M8 JME 0.507/0.562 0.927/0.985 1.137/1.284 1.648/1.692 1.886/2.013
AME 0.673/0.695 1.315/1.330 1.796/1.830 1.908/1.968 2.353/2.483

M9 JME 0.505/0.590 0.834/0.920 1.263/1.312 1.567/1.725 1.904/2.201
AME 0.721/0.723 1.469/1.634 1.848/1.923 2.031/2.224 2.415/2.657

M5 JME 0.278/0.507 0.444/0.767 0.652/1.122 0.763/1.299 0.867/1.641
AME 0.467/0.668 0.748/1.094 1.085/1.603 1.345 /1.894 1.551/2.230

M6 JME 0.538/0.548 0.856/0.880 1.096/1.180 1.488/1.586 1.622/1.793
AME 0.683/0.690 1.194/1.196 1.528/1.566 1.960/1.973 2.256/2.335

M7 JME 0.584/0.579 1.023/1.049 1.322/1.315 1.645/1.648 1.937/1.940
AME 0.723/0.746 1.466/1.489 1.896/1.900 2.391/2.379 2.608/2.612

M8 JME 0.597/0.605 1.036/1.068 1.204/1.315 1.701/1.767 1.892/2.148
AME 0.710/0.748 1.348/1.347 1.808/1.810 2.064/2.101 2.332/2.425

M9 JME 0.524/0.528 0.862/0.892 1.378/1.392 1.674/1.702 1.923/2.046
AME 0.718/0.713 1.486/1.497 1.867/1.901 2.067/2.209 2.523/2.672

Table 4. Motion prediction of [12] (top) and [56] (bottom) in JME
(joint mean error) and AME (aligned mean error) from D2 (M5-9).
In each test, xx/xx is with/without data augmentation.

converge due to its optimization set up, resulting in either519
numerical explosion or very unnatural motions (see video).520
This requires careful manual tuning. Comparatively, our521
model does not need manual intervention.522

5.4. Downstream Tasks523

Motion augmentation can benefit various downstream tasks.524
Here we show two downstream tasks: motion prediction525
and activity recognition. In motion prediction we train two526
models [56] and [12] on the ExPI dataset [12] with/without527
our data augmentation, following their settings. The testing528
protocols and evaluation metrics follow [12]. The results529
are shown in Tab. 4, where 90 of 100 metrics are improved530
by our augmentation, with a maximum 47.88% improve-531
ment on JME (M5-AB-0.2sec) and a maximum 47.74% im-532
provement on AME (M5-AB-0.6sec).533

In activity recognition, we train three latest activ-534
ity classifiers HD-GCN [23], STGAT [19] and TCA-535
GCN [55] on ExPI with/without data augmentation, follow-536
ing two data splits: 80/10/10 and 50/20/30 split on train-537
ing/validation/testing data. The results are shown in Tab.538
5. The data augmentation improves the accuracy across all539
models and all split settings. As the training data is reduced540
from 80% to 50%, the results with data augmentation have541
a small deterioration (less than 1.49%). Without data aug-542
mentation, it quickly drops by as much as 3.42%.543

We further show the quality of the augmented motions544
via a trained classifier. If a trained classifier can correctly545
recognize the generated motions, then it suggests the gen-546
erated features have similar features to the original data.547
We train the aforementioned classifiers on the original ExPI548
data and use the generated motions as testing data. Tab.549
6 shows the action recognition result. Our method outper-550
forms the other two methods in all three action recognition551

Settings/Classifiers HD-GCN [23] STGAT [19] TCA-GCN [55]
80/10/10 94.80/94.36 94.27/94.10 94.68/94.62
50/20/30 93.92/92.65 93.66/92.40 93.27/91.38

Table 5. Activity recognition accuracy on 3 different classifiers
from ExPI [12]. In each test, xx/xx is with/without data augmen-
tation.

Methods/Classifiers HD-GCN [23] STGAT [19] TCA-GCN [55]
ACTOR[35] 97.68 98.03 97.22

Action2motion[11] 97.43 96.90 96.45
Our method 98.64 98.53 97.93

Table 6. Activity recognition accuracy on 3 different methods
from D2 (M5-9). Training on the ground-truth and testing on gen-
erated 200 motions.

classifiers, which shows that our generated data has more 552
similar features to the ground-truth. Given close interaction 553
data is new [12] and its limited variety and amounts, our 554
method provide an efficient way of augmenting such data 555
for activity recognition. 556

5.5. Alternative Architectures 557

Our model combines existing network components in a 558
novel way for interaction augmentation, so a natural ques- 559
tion is if there are other better alternative architectures. We 560
test several alternative network architectures inspired by ex- 561
isting research. The selection criteria is they need to be data 562
efficient for learning, so we exclude some data-demanding 563
architectures such as Transformers or Diffusion models. 564
The details and results are shown in the SM, but overall our 565
model outperforms the alternative architectures. 566

6. Conclusion, Limitations & Discussion 567

To our best knowledge, our research is the very first deep 568
learning model for interaction augmentation. It has high ac- 569
curacy in generating desired skeletal changes, great flexibil- 570
ity in generating diversified motions, strong generalizability 571
to unseen and large skeletal scales, and benefits to multiple 572
downstream tasks. One limitation is that we need some data 573
samples to start and require the same skeletal topology to do 574
cross-motion motion augmentation. However, considering 575
the difficulties of interaction motion capture, our method 576
provides a new and fast way of iteratively augmenting a sin- 577
gle captured motion then learning to generate infinite num- 578
ber of variations. Next, although we use InteractionMesh 579
to generate training data, our method can easily incorporate 580
other data sources such as captured motions from different 581
subjects as well as manually created motions by animators. 582
Given the small number of motions needed by our method, 583
this is still a fast pipeline to acquire a large number of inter- 584
actions with varying body sizes. 585
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