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Abstract— High-frequency oscillations (HFOs) in 

intracranial EEG (iEEG) recordings are crucial for localizing 

the seizure onset zone (SOZ) in patients with focal refractory 

epilepsy. While HFOs are essential for clinical assessment, high-

frequency artifacts may pass conventional HFO detectors, 

resulting in false-positive events that contaminate the HFO pool. 

The main goal of this study is to automatically detect and 

eliminate those false positive events in the pool of initially 

detected candidate HFOs. We analyzed one hour of iEEG data 

from fifteen patients with focal epilepsy using an attention-

based cascaded residual dictionary learning framework, 

coupled with a random forest classifier. This data-driven 

method employed sparse robust representation using the Huber 

loss to eliminate artifacts and noises with non-neural origins that 

mimicked HFOs by evaluating the quality of event 

representation using a dictionary learned from real HFOs. 

Compared with visual assessments by three human experts, the 

proposed method achieved a 92.14% classification accuracy in 

distinguishing real HFOs from pseudo-HFOs. Additionally, in 

noisy iEEG data, our method improved HFO-based SOZ 

localization by 20% (p=6e-5), while in clean iEEG data, the 

improvement was 4% (p=3.3e-3). The learned dictionary 

successfully captured the morphology of raw HFOs in shallow 

layers, while it captured ripple and fast ripple components in 

deeper layers without human supervision. Our work shows that 

the proposed algorithm effectively detects pseudo-HFOs and 

improves the clinical value of HFOs in SOZ localization. 

Keywords— Artifact Rejection, Cascaded Dictionary 

Learning, Drug-resistant Epilepsy, intracranial EEG, Focal 

Epilepsy HFO, Neurobiomarkers. 

I. INTRODUCTION 

Epilepsy is a medical condition characterized by the 
recurrence of unprovoked seizures due to abnormal electrical 
activity in the brain [1]. In cases where epilepsy is resistant to 
medication, iEEG-guided surgery is a technique employed to 
achieve seizure freedom [2]. The success of this procedure 

heavily depends on the accurate localization of epileptogenic 
brain tissue [3, 4]. Physicians typically rely on clinical 
judgment based on multiple seizures recorded in the epilepsy 
monitoring unit (EMU) to identify the seizure onset zone 
(SOZ). However, this method has several drawbacks, 
including the need for prolonged monitoring to capture 
enough clinical seizures, which makes the process resource-
intensive, costly, and prone to human error. These limitations 
have led to the investigation of new prognostic biomarkers, 
such as high-frequency oscillation (HFO) [5, 6]. HFOs are 
transient oscillatory activities within the 80-600 Hz frequency 
range, typically lasting less than 100 ms [7]. Studies have 
shown that HFO rates are higher within the SOZ [8, 9], and 
resecting regions with high HFO rates can improve surgical 
outcomes [10, 11]. However, translating the use of HFOs into 
clinical practice is challenging due to several reasons. High-
frequency artifacts due to the ringing effect introduced by 
filtering process can resemble HFOs [12, 13].  

Additional challenges include physiological HFOs in 
healthy human brains [14, 15], sharp spike leakage into the 
HFO band [12], and HFO fluctuation over time [16]. While 
pseudo-HFOs can often be distinguished from real HFOs by 
their morphology, this process requires considerable time, 
labor, and expertise from clinicians [17]. Although numerous 
HFO detectors are available in the iEEG field [5, 18-20], they 
follow the same principle of identifying oscillations that stand 
out from the background and might capture pseudo-HFOs as 
real ones, making the interpretation of HFOs challenging.  

We propose a data-driven pipeline that uses residual-based 
dictionary learning and a random forest (RF) classifier to 
distinguish real HFOs from pseudo-HFOs. By learning local 
waveforms from real HFOs, our method improves the 
delineation of HFO candidates to the SOZ and reduces false 
positives caused by artifacts. 

This study was supported by the National Institutes of Health's BRAIN 
Initiative under award number UH3NS117944 and grant R01NS112497 
from the National Institute of Neurological Disorders and Stroke. B.F.B. was 
supported by the Sundt fellowship of the Mayo Clinic Neurosurgery Dept. 



II. MATERIALS & METHODS 

A. Dataset  

 The iEEG recordings were obtained from 15 patients with 
drug-resistant focal epilepsy from the University of Minnesota 
Medical Center (MN, USA). A brief 30-minute interictal 
noisy iEEG segment and a 30-minute-long noise-free iEEG 
segment are visually identified and extracted from the first day 
of the prolonged monitoring. All recordings were obtained at 
a sampling frequency of 2 kHz. The entire HFO analysis 
pipeline was blinded to the relevant clinical data such as SOZ, 
surgical procedure, and outcome of the surgery. Furthermore, 
the iEEG data of the entire cohort of subjects went through the 
same offline analysis without any preprocessing or channel 
selection. The research protocol was approved by the 
institutional review board at the Mayo Clinic and the 
University of Minnesota. Epileptologists reviewed the iEEG 
recordings in each subject and provided the required 

annotations, including the SOZ channels. Further details 
regarding the data used in this study can be found in Table 1. 

B. Algorithm Overview  

This work introduces a cascaded residual-based dictionary 
learning framework, where dictionaries are learned from HFO 
events. Using these learned dictionaries and a robust 
regression representation, we effectively distinguished 
between true HFOs and high-frequency artifacts that resemble 
HFOs after filtering in the 80-600 Hz band. Fig. 1 illustrates 
the two-step process: first, a dual-band amplitude threshold 
detector identifies candidate HFOs from the raw iEEG 
recording. Then, these candidates are classified as real and 
pseudo-HFOs by the RF classification framework using 
features extracted from the waveform patterns present in 
HFOs. The automatic classification pipeline utilizes features 
that capture how well the system can represent true HFOs and 
how poorly it represents pseudo-HFOs. This is achieved using 
a learning technique based on attention-based cascaded 

TABLE I.  PATIENT DEMOGRAPHICS 

Subject Implanted Electrodes Contacts Treatment SOZ Engel Class Outcome 

P1 3 depths (LAH, RA, RAH) and 1 strip (LAS) 28 Right anterior temporal lobectomy RAH1-2 II. A at 5 years 

P2 
6 depths (LA, LAH, LPH. RA, RAH, RPH) 

and 1 strip (LftAT) 
52 Left anterior temporal lobectomy LA1-2 I. B at 9 years 

P3 
6 depths (LA, LAH, LPH. RA, RAH, RPH) 

and 1 strip (LftPF) 
56 No resection or other surgical therapy. LA1-3, LAH1-2, LPH1-3 N. A 

P4 
6×8 grid, 6 strips (SupF, MidF, InfF, Par, 

AST, PST) 
72 Right anterior temporal lobectomy AST1, 4, PST1, 4 I.A. at 2 years. 

P5 8×8 grid, 1 strip (MedF) 68 Right superior temporal gyrus resection. 
G1-4, 9-12, 17-18, 25-26, 

33-34, 41-42 
I.C., at 6 years. 

P6 
13 strips (LAT, LMT, LPT, LOF, LAP, LPP, 

RAT, RMT, RPT, ROF, RAP, RPP, L/RIH) 
56 Right anterior temporal lobectomy 

LAT1-4, LMT1-4, RPT1-

4, RMT1 
I.A. at 1 year. 

P7 
7 depths (RFP, RMF, RAC, ROF, RAH, RPH, 

RPT) 
60 Right anterior temporal lobectomy 

RAH1-2, RPH1-2, RPT1-

2 
II.A. at 4 years. 

P8 
8 depths (RAH, RH, RPH, ROF, RI, RAC, 

LAH, LPH) 
108 Right anterior temporal lobectomy RAH1-5, RPH1-4, RH1-5 II.A. at 1 year. 

P9 
8 depths (LA, LAH, LPH, LOF, LAC, LPC, 

ASP, LC) 
90 Left amygdalohippocampal laser thermablation LAH1-4, LPH1-4 I.A., at 5 months. 

P10 
4 strips (LAT, LMT, LPT, LFPT), 10 depths 

(LAMG, LAH, LPH, RAMG, RAH, RPH, 

LOF, LDLPFC, ROF, RDLPFC) 

128 RNS, with bilateral amygdalohippocampal DEs 
LAMG1-3, LAH1-3, 

LPH1-5 
I.A. at 5 months 

P11 
10 depths (RAH, RPH, ROI, RAC, RAS, 

LAH, LPH, LOF, LAC, LAS) 
144 Right anterior temporal lobectomy RAH1-4, RPH1-4 II.A. at 1 month. 

P12 
10 depths (RA, RAH, RPH, RF, RAC, RPC, 

RAL, RSL, RIL, RPL) 
108 Right amygdalohippocampal laser thermablation 

RAH1-4, RPH1-4, RIL6-

8, 
I.D. at 5 months. 

P13 
9 depths (LMA, LMP, LMM, LFA, LFP, LSM 

LSL) 
68 

RNS, with bilateral temporal depth electrodes, in 

hippocampi 

LMA, LMP, LMM, LML, 

LSM, LSL 
II.A. at 14 months. 

P14 
4x6 grid, 4 strips (RMM, RMS, LCSM, 

LCSL), and 6 depths (RMFA, RMFB, RMFC, 

LMFA, LMFB, LMFC) 

86 
RNS at sites of ICEEG recoding contacts RMM 2-4 

and RMS 2-4. 

G13, 16, 19-22, RMM2-4, 

RMS 2-4 
IV.A. at 17 months. 

P15 
15 depths (RA, RAH, RPH, ROF, RAC, 

RAMC, RI, LA, LAH, LPH, LOF, LAC, 

LAMC, LI, RPL) 

128 
RNS with bilateral temporal depth electrodes, in 

hippocampi 

LAH1-4, LPH1-4, RAH1-

4, RPH1-4 
III.A. at 2 months. 

Abbreviation: LA/LAMG: Left Amygdala, LAH: Left anterior hippocampus, LPH: Left posterior hippocampus, RH: right mid hippocampus, RA/RAMG: Right Amygdala, RAH: Right anterior hippocampus, 
RPH: Right posterior hippocampus, SupF: Superior frontal, MidF: Middle frontal, InfF: Inferior Frontal, Par: Parietal, AST: Anterior subtemporal, PST: Posterior subtemporal, MedF: medial frontal gyrus, 
LAT: Left anterior temporal, LMT: Left middle temporal, LPT: Left posterior temporal, LOF: Left orbital frontal, LAP: Left anterior parietal, LPP: Left posterior parietal, RAT: Right anterior temporal, 
RMT: Right middle temporal, RPT: Right posterior temporal, ROF: Right orbital frontal, RAP: Right anterior parietal, RPP: Right posterior parietal, L/RIH: Left and Right interhemispheric strip (double 
sided), RFP: right middle frontal gyrus, RMF: right middle frontal gyrus, RAC: Right anterior cingulate, RI: Right Insula, LAC: Left anterior cingulate, LPC: Left posterior cingulate, ASP: Left anterior-
superior precuneus, b Left anterior cuneus, LFPT: Left temporal neocortex, L/RDLPFC: Left/Right  cingulate, ROI: right orbital frontal, RAS: right anterior subfrontal, LAS: Left anterior subfrontal, RF: 
Right superior frontal gyrus, RPC: Right posterior cingulate, RAL: Right anterior lesion, RSL: Right superior lesion, RIL: Right inferior lesion, RPL: Right posterior lesion, LMA: Left motor anterior, LMP: 
Left motor posterior, LMM: Left motor medial, LML: Left motor lateral, LFA: Left frontal anterior, LFM: Left frontal middle, LFP: Left frontal posterior, LSM: Left sensory medial, LSL: Left sensory 
lateral, RAMC: Right ant. to mid. cingulate, LAMC: Left ant. to mid. cingulate, RMM: Right medial motor, RMS: Right medial sensory, LCSM: Left cortical strip medial, LCSL: Left cortical strip lateral, 

RMFA/B/C: Right malformation, RNS: Responsive neural stimulation 



dictionary learning. Finally, the spatial distribution of the 
classified HFOs is compared with the clinically defined SOZ 
to evaluate the improvement in SOZ delineation with and 
without pseudo-HFO removal in both noisy and clear iEEG 
data. 

C. Amplitude Threshold Detection   

A previously published detector was utilized to generate 
an initial pool of candidate HFO events [13]. This detector is 
a dual-band amplitude threshold detector that identifies events 
in the ripple (R) and fast ripple (FR) bands separately and 
merges them if they occur close together (within 30 
milliseconds). Each candidate event includes a window of 
data (128 milliseconds before and after the peak high-
frequency component) to capture the surrounding activity. 
This window corresponds to 512 data points at the sampling 
rate of 2 kHz. The detector ensures a minimum number of 6 
threshold crossings in either positive or negative cycle to 
increase the confidence in the event as a real HFO. 

D. HFO and pseudo-HFO Annotation  

To train the classifier, a subset of the detected events 

needed to be labeled as real or pseudo-HFOs. Three experts 

independently annotated up to 400 events per subject, aiming 

for a balanced label of real and pseudo-HFOs (if sufficient 

real and pseudo-HFOs were detected). A custom graphical 

user interface (GUI) facilitated the annotation process by 

visualizing relevant information, including the multi-channel 

iEEG data surrounding the events, the time-frequency map, 

and the spatio-temporal distribution of the detected events. 

This comprehensive view of the data helped the annotators 

make informed decisions and minimize labeling errors. 

Finally, using majority voting, the labeled dataset is created 

to train the classifier. 

E. Attention-based Dictionary Learning  

Fig. 2 illustrates the overall diagram of the proposed 

dictionary learning framework. This method addresses the 

challenge of capturing the diverse characteristics of HFOs 

due to their varying spectral levels. The annotated HFO 

(distinct from the real HFOs used for cross-validation), 

denoted as ��������	 (
: total number of events) are initially 

processed through a shallow layer (Layer I), where they are 

buffered into overlapping 64 ms segments, resulting in ��������	� (
�: total number of buffered events). The k-SVD 

dictionary learning algorithm [21] is then applied to �� , 

capturing the most important patterns within these segments 

and forming the dictionary 
�. The k-SVD algorithm seeks 

to solve the following optimization problem: 
� , � � �����
��,� ��� � 
� . ��	          � � 1, . . ,4 (1) 

where 
�  is the dictionary at layer � , and �  represents the 

coefficients of representation. 

Due to the energy difference and the 1/" characteristic of 

 

Fig. 1. Schematic of the proposed method. The processing pipeline begins with applying an amplitude threshold detector to the raw iEEG data, creating 

an initial pool of events. Three experts annotate a portion of this pool to develop the dictionary and RF model. The model is then applied to the entire initial 

pool using leave-one-subject-out cross-validation to eliminate pseudo-HFOs from the initial pool. Finally, the spatial distribution of remaining HFOs is 

compared with the clinically defined SOZ. 

Fig. 2. Diagram of dictionary learning and robust representation 

strategy. The dictionary is learned on annotated real-HFOs, using 

distinct and non-overlapping events with those used for cross-validation. 

The first layer's input consists of annotated HFOs, while deeper layers 

learn atoms from the residuals of the previous layer using attention-

based dictionary learning. The representation of all events is computed 

using an adaptive sparse local representation with OMP/Huber 

regression applied on a moving window over a buffered event.  



iEEG, and to effectively capture higher frequency 

components, particularly oscillatory transients above 80 Hz, 

we introduced an attention-based residual cascaded 

framework. Here, the initial reconstruction of the events ��������	 using the first dictionary 
� is subtracted from the 

original events, resulting in a residual signal �#$%������	: #$%� �  �� � #$&� (2) 

where �#$&������	 is the reconstructed event using 
�. This 

residual signal is then fed into the next layer (Layer II). The 

same process, including buffering #$%�  to ��	��	��	� (
	 : 

total number of buffered events passed HFO criteria) and k-

SVD dictionary learning is applied. However, at this stage, to 

focus on transient oscillatory HFO components, an additional 

step called HFO attention is applied between buffering and 

dictionary learning. In this scheme, an envelope-based HFO-

component detector is applied to the �	  samples. Only 

segments that pass the HFO attention criteria—specifically, 

those that stand out from the background and surpass the 

detector's threshold at least six times—are used for dictionary 

learning. Consequently, in deeper layers (Layer > 1), we 

exclusively learn higher frequency oscillatory components. 

The dictionary 
	 is then learned, and using 
	, we represent 

all #$%�  events. Following the same procedure, the 

represented �#$&	�����	  is subtracted from #$%� , yielding �#$%	�����	  as the input to the subsequent layer. This 

process of buffering, HFO attention, and k-SVD dictionary 

learning is iteratively applied, resulting in the learning of 

subsequent dictionary layers. Similarly, in these deep layers, 

HFO attention is utilized to discard segments without 

oscillatory high-frequency components distinguishable from 

background activity. Overall, we trained dictionaries 

consisting of 96, 64, 48, and 32 atoms and included a 

normalized DC component into each layer of the dictionary 

to account for local DC levels of waveforms. The first two 

layers contained local atoms with 128 sample sizes, while the 

last two layers had 64 sample sizes. (�
��'(��	�, �
	�)���	�, �
*�+'�)+, and �
+�**�)+).  

F. Representation of Events Using Local Dictionaries  

The learned dictionary was employed in each layer to 

represent all initially detected events via adaptive sparse local 

representation (ASLR) algorithm [22]. To achieve this, 

buffered segments are first represented using a sparse 

combination of the learned dictionary. Thus, the objective of 

this step is to represent all buffered segments ��  using 
�  at 

each layer. We merged dictionary layer-3 and 4 into one level 

to leverage the redundancy in learned FR band atoms. 

Therefore, the representation process involved 3 stages in a 

cascaded fashion. Using these dictionaries, we compared 

different approaches to represent the local waveforms using 

these dictionaries. One common method is the Orthogonal 

Matching Pursuit (OMP) [23]. The OMP representation of a 

segment ��  using the dictionary 
�  is formulated as: �,-. � �����
� ��� � 
� . ��	 %/01$&2 23 ‖�‖5 6 7  (3) 

where �  represents the sparse coefficients, and 7  is the 

sparsity level. Alternatively, we can use a robust 

representation method that employs the Huber loss function 

for optimization. The Huber loss function is a smooth 8� loss 

making the error term less sensitive to outliers compared to 

OMP. The robust representation using Huber loss regression 

is formulated as: 

�9:;<= �  >12 ��� � 
� . ��		,                    |�| 6 A
2AB�� � 
� . �B � A,               |�| C A (4) 

where A is the threshold parameter at which the loss function 

transitions from a quadratic to a linear regime. 

 Robust representation minimizes the influence of outliers 

(sharp artifacts), ensuring an accurate representation of real 

HFOs (Fig. 3, top panel). In contrast, delta-shaped artifacts in 

pseudo-HFOs are not mitigated, leading to inefficient 

representation of pseudo-HFOs (Fig. 3 bottom panel). Using 

the initial buffered data, the representation in each stage acts 

like a moving window across the entire buffered data (Fig. 4). 

This process can be mathematically expressed as: 

DE��
�EFG ��� � 
� . �EHG�		G ∗ AE2 � 7J� . K�GL
JM�  (5) 

Here, 7J� represents the time index of the 12ℎ segment in 

layer �, and K� represents the corresponding dictionary atom. 

This work introduces a robust regression attention-based 
cascaded residual 

G. Feature Extraction  

Real-HFO events have been shown to exhibit structured 

patterns [13]. Since these local dictionaries were learned from 

these real-HFOs, they are likely to be more effective at 

capturing the characteristics of these events compared to 

pseudo-HFOs. Therefore, the quality of representation can be 

used to distinguish between real and pseudo-HFOs. The 

following features are extracted to quantify the quality of 

representation: 

Global Approximation Error: This metric assesses the 

overall representation quality of an event in each layer �. It is 

defined as: 

 

Fig. 3. Robust vs. OMP Representation. It compares the robust 

representation using the Huber loss function and OMP representation. In 

the top panel, a raw HFO is represented using both OMP and robust 

representations, with comparable results due to the oscillatory nature of 

HFO components. In the bottom panel, depicting a sharp delta-shaped 

artifact, the OMP representation begins to reconstruct the delta activity. 

In contrast, the robust representation identifies the delta-shaped activity 

as an outlier, leaving it untouched. 



O� � �#$%��	‖#$%� P #$&�‖	 , � � 1,2,3. (6) 

Variability Factor: This feature determines how smoothly 

the waveform is represented in each layer. It is calculated as: 

R� � E��S E#$%�G � ��
 E#$%�GG%2KE#$%�G , � � 0, 1,2 (7) 

where #$%5 is equal ��. 

Maximum Coefficient of Representation: After the 
representation of all segments, we calculate the coefficient 

matrix U� for the reconstruction phase at layer �. The 
maximum coefficient within this matrix indicates the degree 

of similarity  
between the event at each layer and the learned dictionary: UV� � ��SE�U��G , � � 1,2. (8) 

Maximum Improvement in Approximation Error: To 

investigate the impact of increasing the sparsity level or the 

number of atoms used to represent each segment, we 

computed the local approximation error matrix for varying 

sparsity levels. Additionally, we analyzed the degree of 

improvement in the quality of representation obtained by 

increasing the number of atoms employed for the 

representation. Therefore, the maximum improvement in 

approximation error achievable by increasing the sparsity 

level is defined as 
V� , � � 1,2. 

Maximum Eigen Value: The distortion of power line or 

harmonic interference in iEEG recordings might create 

artificial oscillations that mimic HFOs. To address these 

pseudo-HFOs, we introduced a feature based on the 

repetition of specific atoms in the coefficient matrix. By 

examining the maximum eigenvalue of this matrix, we can 

effectively identify and exclude anomalous repetitive non-

neural patterns: �R7� � ��S E$��E�U��W � �U��GG. (9) 

 

Overall central error: The overall representation of an 

event can be calculated by summing up the representation in 

each layer � . Therefore, we expect to observe a full 

representation in the case of real-HFO and overall error 

reaching the amplifier background noise. Whereas, in the 

case of pseudo-HFO, we expect to have a higher 

approximation around the center of events where high-

frequency components exist:  

U� � X#$%EY	Z�),  Y	[�)G* X	 (10) 

In addition to these features, the range of each event was 

included to the extracted features for generalizability: �
� � maxE��G � min E��G (11) 

The AUC and ROC values of extracted features using 

OMP, and robust representation are summarized in Fig. S1. 

Fig. 5 provides comprehensive examples of HFOs and 

 

Fig. 4. Adaptive sparse local representation. The top panel illustrates 

the hierarchical representation of the raw HFO, along with the 

corresponding residuals at each layer. The bottom panel shows local 

waveforms (in color) and the corresponding reconstructed waveforms 

(in black) for buffered segments across layers. Additionally, the 

coefficient matrix is displayed, with the x-axis representing time 

segments and the y-axis indicating the dictionary atoms used, along with 

their associated coefficients. 

 

 

Fig. 5. Real vs. pseudo-HFOs. This figure presents three examples of HFOs and pseudo-HFOs. (a) Shows one HFO and pseudo-HFO example to visualize 

the coefficient matrix at layer 1, quantifying the importance of the first eigenvalue of the coefficient matrix in identifying pseudo-HFOs with repetitive 

patterns. Marked by blue arrows, artifacts with repetitive patterns exhibit high eigenvalues due to the presence of atoms repeating during the representation 

phase, which is not observed in real HFOs. (b) Displays an example of HFO and pseudo-HFO with sharp delta-shaped activity. While HFOs are accurately 

represented, the delta-shaped component of pseudo-HFOs remains untouched due to the absence of dictionary atoms to represent such waveforms, resulting 

in a high v-factor in the second and third layers of representation. (c) Demonstrates another example of HFO and pseudo-HFO, where the approximation error 

for HFOs in all layers is low. In contrast, pseudo-HFOs with corrupted channels or thick background activity exhibit high global approximation errors during 

the representation process across different layers. 



pseudo-HFOs to illustrate their characteristics. In Fig. 5a, an 

instance of an HFO and a pseudo-HFO contaminated by line 

noise is depicted, showing a repetition of a few atoms 

compared with real-HFOs in the coefficient matrix. Fig. 5b 

visualizes the concept of a high V-factor associated with 

artifacts exhibiting delta-shaped activities, while Fig. 5c 

demonstrates pseudo-HFOs characterized by random 

fluctuations or corrupted channels.  

H. Classification of events to real and pseudo-HFOs  

We used an RF model and performed leave-one-subject-
out cross-validation (LOSO-CV) to ensure the generalizability 
of the proposed method across different subjects. To validate 
the effectiveness of the proposed method, we conducted 
following comparisons: We compared the classification 
performance with an analytical Gabor dictionary with global 
representation. This demonstrates the effectiveness of using a 
local dictionary instead of a global dictionary. Moreover, we 
included a local analytical dictionary based on the discrete 
cosine transform (DCT) to compare the efficacy of the learned 
dictionary and whether this data-driven, cascaded dictionary 
learning approach outperforms a pre-defined codebook. We 
also compared OMP and Huber regression for the 
representation phase. This comparison emphasizes the 
importance of robust representation using Huber regression, 
which minimizes the influence of outliers present in pseudo-
HFOs and leads to improved classification accuracy. 

III. RESULTS 

A. Learned Atoms  

In Fig. 6, an example set of learned dictionaries is 
presented using the proposed method. As shown, the shallow 
layers capture lower frequencies, with the first layer focusing 
on frequencies below 80 Hz, i.e., the morphology of events. 

The second layer captures frequencies within the 80-250 Hz 
range, corresponding to the R band. The third and fourth 
layers extend into the FR band, capturing frequencies beyond 
250 Hz. Remarkably, despite the absence of human 
intervention, three distinct and well-defined patterns emerged 
across the layers of the dictionary. These patterns closely align 
with the conventional definitions of R and FR bands, 
demonstrating a clear energy distinction between these 
frequencies which creates different clusters or groups of atoms 
in low, R, and FR bands.  

B. Classification Results for Annotated HFOs and Pseudo-

HFOs 

After learning the dictionary, all annotated events went 
through a representation process. The sparsity level used for 
representation in each layer is explained in Fig. S2. The 
relevant features were extracted, and all initially detected 
events were classified as real and pseudo HFOs. The 
classification performance using LOSO-CV is summarized in 
Fig. 7. These results were compared with the RF-OMP 
method [13], which utilizes a global overcomplete predefined 
dictionary, achieving an accuracy of 90.79%. Additionally, a 
local overcomplete learned dictionary based on proposed 
dictionary learning and ASLR sparse coding was employed. 
For the OMP-based ASLR representation, the accuracy was 
91.17%, and for the robust Huber-based regression 
representation, it increased to 92.14%. We used a pre-defined 
windowed DCT dictionary with the same frequency range for 
each layer as learned in dictionary learning framework. This 
approach resulted in an accuracy of 88.43%, highlighting the 
effectiveness of data-driven and dictionary learning 
approaches in distinguishing between real and pseudo-HFOs. 
The comparison underscores the superiority of using a local 
dictionary over a global one. The local dictionary could better 
capture the local characteristics and variations of real-HFOs, 
leading to higher accuracy in distinguishing between real and 

 

Fig. 6. Example of Learned Dictionaries. The top panel visualizes the learned dictionary within each layer. Shallow layers learn atoms with frequencies 

below 80 Hz, while deeper layers begin to learn HFO components in the ripple band (layer 2) and fast ripple band (layers 3 and 4). The bottom panel visualizes 

the frequency of these learned atoms, which aligns with the conventional definition of R and FR components. 



pseudo-HFOs. Additional analysis on the precision, recall, 
and accuracy of different methods across each subject is 
provided in Fig. S3. 

C. Delineation to Clinically Defined SOZ  

To evaluate this pseudo-HFO elimination method in a real-
world scenario, we applied the entire framework, including 
initial detection and pseudo-HFO elimination, to raw iEEG 
data. The analysis utilized 30 minutes of noisy and 30 minutes 
of clean data selected through visual observation of the raw 
iEEG by electroencephalographers. We then assessed the 
spatial distribution of HFO subcategories, i.e., Rs and FRs 
(Fig. 8 right panel). The cosine distance similarity between the 
spatial distributions of the R and FR groups in the clean and 
noisy data was calculated as d=cosθ in which θ is the angle 
between the spatial distribution of R/FR rate for noisy and 
clean data. Initially, using conventional amplitude threshold 
detector, a significant misalignment between the distributions 
of detected Rs and FRs was observed due to the presence of 
artifacts (R: 0.93 FR: 0.87). However, after applying the 

denoising method, the spatial alignment of R and FR groups 
between noisy and clean data improved significantly, 
achieving higher similarity (R: 0.95, FR: 0.98). This 
improvement indicates that ripples are less susceptible to 
artifact corruption. Moreover, the distribution of FRs is more 
stable post-denoising (0.98 across noisy and clean segments 
after denoising). 

In terms of clinically defined SOZ, we assessed the 
accuracy of SOZ localization based on the spatial distribution 
of HFOs. We calculated the ratio of HFOs (and their 
subgroups) within SOZ channels before and after pseudo-
HFO elimination (refer to Fig. 8 left panel). The agreement 
bubble plot, displaying all HFOs before and after the 
denoising method, shows that in clean data, all data points, 
regardless of their overall rate, align along the diagonal of the 
agreement plot. This indicates minimal improvement in SOZ 
localization after applying the denoising method, as the 
segment was already clean without much spurious events 
(initial: 65% vs. denoised: 69%, p=3.3e-3). In noisy data, all 
subject data points are clustered in the upper left diagonal part 
of the agreement plot. This implies a consistent improvement 
in SOZ localization for all subjects after denoising (initial: 
42%, denoised: 62, p=6e-5). The initial vs. denoised box plot 
for Rs and FRs shows that Rs are less affected by artifacts. 
However, there was a notable improvement in SOZ 
localization for FRs in both clean and noisy data (clean data: 
75% to 84%, p=9.8e-3; noisy data: 48% to 73%, p=3.9e-3). 
This highlights the effectiveness of the denoising or pseudo-
HFO elimination in enhancing SOZ localization, particularly 
in artifact-laden recordings. 

IV. SUMMARY & DISCUSSION  

This work presents an HFO detection framework using an 
attention-based cascaded residual dictionary learning 
approach, which does not require artifact-free data. This 

 

Fig. 7. Comparison of real and pseudo-HFO (pHFO) classification 

methods: the sparse representation with a global predefined codebook 

(RF-OMP [13]) achieved an accuracy of 90.79%. In comparison, the 

proposed dictionary learning method with OMP representation and 

robust representation achieved accuracies of 91.17% (RF ASLR DL) 

and 92.14% (RF ASLR Robust DL), respectively. When the learned 

dictionary was replaced with predefined DCT components, the 

accuracy was 88.43% (RF ASLR DCT) for annotated events. 

 

Fig. 8. Correlation of HFO analysis and clinical data. The top left panel displays the agreement plot before (x-axis) and after (y-axis) pseudo-HFO 

elimination in clean data. Similarly, the bottom left figure visualizes this comparison for noisy segments. The boxplot of HFO SOZ accuracy for HFO and 

their subcategories (R and FR) is shown before and after pseudo-HFO elimination in both clean and noisy data (ns. indicates p>0.05). The right panel 

illustrates the cosine similarity between HFO subgroups in clean and noisy data before and after pseudo-HFO elimination across all subjects. While the 

similarity was low before pseudo-HFO elimination, after pseudo-HFO elimination, we observed similar R and FR distributions in noisy and clean data. 

 



approach enhances resource efficiency, reduces healthcare 
costs, and shortens the time needed for SOZ identification, 
improving the precision of epilepsy care. This two-stage 
framework addresses the challenge of pseudo-HFOs in iEEG 
data, which can hinder accurate SOZ localization using HFO. 
The core of this method lies in the learned dictionaries: the first 
layer of the dictionary captures the morphology of HFOs, 
while subsequent layers identify HFO components through 
attention-based residual learning. Our data-driven method 
outperforms pre-defined analytical dictionaries. The robust 
regression used in our method is superior to the traditional 
OMP method because it is less biased towards outliers, such as 
delta-shaped artifacts.  

Results demonstrate that the quality of representation can be 
a distinctive feature between real and those pseudo-ones with 
non-neural origin. This indicates that HFOs possess an inherent 
structure validated by the learned dictionaries. Additionally, 
the evaluation of HFO distribution in prolonged EMU has 
gained significant interest [16]. Our study highlights the crucial 
role of data quality in this analysis. We observed that including 
segments with artifacts can skew HFO analysis. This 
emphasizes the importance of eliminating pseudo-HFOs, 
particularly in noisy data, before interpreting the spatial 
distribution of HFOs. Therefore, future studies exploring HFO 
fluctuations within prolonged data should carefully consider 
the quality of the iEEG data to ensure an accurate interpretation 
of the results. Moreover, we showed FRs are more susceptible 
to corruption by high-frequency artifacts. In noisy data, the 
delineation of FRs to SOZ is lower than Rs but improved 
dramatically after pseudo-HFO elimination. additionally, 
further research is needed to evaluate the ability of a learned 
dictionary to capture variability within subjects and identify 
potential groups of atoms more specific to the SOZ. 

The proposed framework involves multiple stages, which 
increase its computational complexity (Table S1). To enhance 
its clinical utility, future research could explore the use of a 
convolutional process or shift-invariant type of representation 
to speed up the algorithm. 

 Finally, while the proposed method demonstrates flexibility 
in identifying pseudo-HFOs from the pool of candidates, this 
study is based on a relatively small dataset of 15 patients. 
Further validation on larger and more diverse datasets is 
necessary to establish the robustness and generalizability of the 
method. 
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