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ABSTRACT

Real-world machine learning applications often involve data from multiple modal-
ities that must be integrated effectively to make robust predictions. However, in
many practical settings, not all modalities are available for every sample, and
acquiring additional modalities can be costly. This raises the question: which
samples should be prioritized for additional modality acquisition when resources
are limited? While prior work has explored individual-level acquisition strategies
and training-time active learning paradigms, test-time and cohort-based acquisition
remain underexplored. We introduce Cohort-based Active Modality Acquisition
(CAMA), a novel test-time setting to formalize the challenge of selecting which
samples should receive an additional modality. We derive acquisition strategies
that leverage a combination of generative imputation and discriminative modeling
to estimate the expected benefit of acquiring a missing modality based on common
evaluation metrics. We also introduce upper-bound heuristics that provide perfor-
mance ceilings to benchmark acquisition strategies. Experiments on multimodal
datasets with up to 15 modalities demonstrate that our proposed imputation-based
strategies can more effectively guide the acquisition of an additional modality for
selected samples compared with methods relying solely on pre-acquisition infor-
mation, entropy-based guidance, or random selection. We showcase the real-world
relevance and scalability of our method by demonstrating its ability to effectively
guide the costly acquisition of proteomics data for disease prediction in a large
prospective cohort, the UK Biobank (UKBB). Our work provides an effective
approach for optimizing modality acquisition at the cohort level, enabling more
effective use of resources in constrained settings.1

1 INTRODUCTION

Consider a clinical healthcare setting where all patients in a cohort undergo a standard, inexpensive
set of initial examinations, such as basic blood tests and anamnesis. However, a more advanced,
expensive, or invasive procedure, like genomic sequencing or specialized imaging, could offer crucial
diagnostic or prognostic information for a subset of these patients (Huang et al., 2021). Given a limited
budget or capacity for the more advanced procedure, the central question becomes: which patients
should receive this additional resource to maximize the overall diagnostic yield or improve treatment
outcomes across the entire cohort? For healthcare, budgets are often resource-specific rather than
flexible. For example, a hospital may have a fixed capacity for one MRI scanner, or a cohort may have
a specific grant for one modality. The critical decision is prioritizing access to that single resource
across the cohort, and not necessarily dynamically acquiring for different modalities per patient.
Consider a healthcare system that can afford 1,000 expensive tests for a 100,000-person cohort. The
goal is to improve health outcomes across the whole population, and this typically happens through
resource allocation: who receives preventive interventions, who gets enrolled in clinical trials, who is
flagged for closer monitoring. These decisions depend on accurate risk stratification. A global ranking
of all 100,000 individuals by predicted risk (measured, for example, by Area Under the Receiver
Operating Characteristic (AUROC)) becomes the tool through which such allocation decisions are
made. The question is: which 1,000 patients should we test so that our final ranking of all 100,000
is as accurate as possible? Balancing potential gains from data modalities against the costs and
complexities of acquisition is not unique to healthcare. In remote sensing, for instance, decisions
must be made regarding which geographical areas warrant costly high-resolution satellite imagery

1Code will be published on GitHub.
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Figure 1: Motivational example for CAMA determining the added value of obtaining the magnetic
resonance image (MRI) modality. (A) A heterogeneous cohort for which each sample has P distinct
modalities. (B) Instead of using the initial subset logit scores savail

i , a generative model fimp imputes
the target missing modality for every patient in the cohort. This yields imputed, augmented-modality
logit scores {simp

i,k }Kk=1 that approximate the logits as if that modality were available. These scores

approximate sacquired
i , i.e., the counterfactual with only the imputed modality added. (C) An acquisition

function (AF) utilizes these scores to rank samples by acquisition priority. The graph demonstrates
how the global performance metric improves from the initial baseline towards the performance of
a model with access to post-acquisition data, as an increasing fraction of the cohort receives the
additional modality. This acquisition process is guided by the proposed strategies operating under the
acquisition budget constraint β.

to supplement widely available, lower-resolution data, aiming to optimize regional environmental
monitoring under budget constraints. Likewise, in industrial quality assurance, manufacturers could
decide which components from a production batch should undergo detailed, time-consuming testing
in addition to rapid, standard visual inspections to effectively identify defects at a batch level. The
topic of efficient data acquisition has led to several established paradigms in machine learning, such
as Active Learning (AL) (Holzmüller et al., 2023), Active Feature Acquisition (AFA) (Shim et al.,
2018), Active Modality Acquisition (AMA) (Kossen et al., 2023), and multimodal learning with
missing data (Wu et al., 2024). However, previous research predominantly centers on optimizing
acquisition for individual samples and often does not directly address test-time budget constraints
for an entire cohort. Consequently, the strategic, test-time acquisition of an additional modality
from a cohort perspective remains a significant, largely unaddressed gap. This setting involves
deciding, for a given batch of new samples where different subsets of modalities are available, which
specific samples should receive an additional, costly modality to best achieve a global objective, e.g.,
maximizing overall predictive performance or diagnostic accuracy for the cohort, subject to budget
constraints. We hypothesize that imputation-based acquisition functions (AFs) can effectively guide
resource allocation under cohort-level constraints. The main contributions of this work are as follows:

• The CAMA setting We introduce and formalize CAMA, a previously unexplored setting
that addresses the challenge of prioritizing which samples within a test-time cohort should
undergo additional modality acquisition based on an available subset of modalities.

• Development of AFs for CAMA We propose a theoretical framework, derived from
established evaluation metrics, e.g., AUROC and Area Under the Precision-Recall Curve
(AUPRC), that provides a foundation for developing AFs within the CAMA setting.

• Architectures for CAMA We develop novel architectures for approaching CAMA, includ-
ing a) derivations of AFs by combining generative and discriminative deep learning and b)
the definition of corresponding upper bounds to serve as performance benchmarks.

• Comprehensive evaluation We present a comprehensive empirical evaluation of our pro-
posed methods across several multimodal datasets, which vary in their number of modalities
and application domains, with up to 100,000 samples and 15 modalities. This includes an
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analysis of key assumptions, upper bounds and oracle strategies, performance challenges,
and robustness.

2 RELATED WORK

In the following, we contextualize our work on CAMA by reviewing the key concepts and contribu-
tions from several relevant research domains summarized briefly in Table 1.

Table 1: Comparison of active data acquisition paradigms. Our proposed CAMA setting is unique in
its focus on cohort-level, test-time modality acquisition.

Paradigm Acquisition Decision Level Time Primary Objective

AL Labels Individual Training Maximize model performance
AFA Features Individual Test Optimize sample-level prediction
AMA Modalities Individual Test Optimize sample-level prediction

CAMA (Ours) Modalities Cohort Test Maximize global cohort metric

Active Learning (AL) AL seeks to enhance model training by selecting unlabeled data points for
annotation by an oracle (Settles, 2012; Ren et al., 2022; Li et al., 2025). Our methodology draws
significantly from AL principles, particularly in the development of an AF to guide the selection
process. Consequently, established AL strategies and concepts, such as those rooted in measuring
uncertainty (Settles, 2012; Han & Kang, 2021; Hoarau et al., 2025; Raj & Bach, 2022; Ma et al.,
2019) or using generative models (Tran et al., 2019; Zhu & Bento, 2017; Zhang et al., 2024; Ma et al.,
2019; Peis et al., 2022), are central to our work. Existing work on multimodal acquisition (Rudovic
et al., 2019; Das et al., 2022), batch-level selection (Ash et al., 2020; Kirsch et al., 2019; Holzmüller
et al., 2023), and balanced AL (Aggarwal et al., 2020; Shen et al., 2023; Zhang et al., 2023; Hoarau
et al., 2025) is especially relevant. Our approach, however, diverges from the conventional goals of
directly optimizing model training or seeking labels for specific data points: We aim to identify those
samples for which the acquisition of an additional data modality would be most beneficial.

Active Feature Acquisition (AFA) AFA builds upon AL by focusing on selecting the most
informative individual features for a given sample, often considering their acquisition costs (Rahbar
et al., 2025). Similar to AL approaches, methods for AFA encompass a diverse range of techniques,
including strategies based on measuring uncertainty (Hoarau et al., 2025; Astorga et al., 2024),
the use of generative models (Li & Oliva, 2021; 2024; Gong et al., 2019; Zannone et al., 2019),
and Reinforcement Learning (RL) (Valancius et al., 2024; Janisch et al., 2020; Kleist et al., 2025;
Shim et al., 2018; Baja et al., 2025). Other common methodologies involve batch-level perspectives
(Asgaonkar et al., 2024), leveraging information bottlenecks (Norcliffe et al., 2025), or employing the
Kullback-Leibler Divergence (KL-Divergence) (Natarajan et al., 2018). Some AFA techniques rely
on gradient calculations (Ghosh & Lan, 2023), while distinct approaches are formulated as individual,
sequential recommender systems (Freyberg et al., 2024; Vivar et al., 2020). At an application level,
even Large Language Models (LLMs), such as Med-PaLM 2 (Singhal et al., 2025), could be employed
for AFA, although such deployments remain unexplored in this context. While our setting shares
the core idea of AFA, it differs significantly: We are not concerned with the selection of individual
features, but rather with identifying which entire data modalities to acquire. Furthermore, this
decision-making process is applied at the cohort level, rather than optimizing for individual samples.

Active Modality Acquisition (AMA) AMA can be conceptualized as an extension of AFA,
distinguished by its focus on selecting entire data modalities rather than individual features or
labels. Prominent related research includes approaches employing RL for multimodal data (Kossen
et al., 2023; Jain et al., 2025; Li & Oliva, 2025) and methods utilizing submodular optimization in
conjunction with Shapley values (Shapley, 1953; He et al., 2024). The approach by Kossen et al.
(2023) differs from ours through its reliance on RL, whereas He et al. (2024) primarily investigate how
modalities affect optimal learning performance. Further studies have explored the use of Gaussian
mixtures within Bayesian optimal experimental design to enhance data acquisition efficiency for
model training (Long, 2022). This objective differs from ours, as our focus is not on improving the
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model training process itself, but rather on optimizing performance for a downstream task at test time.
The relative sparsity of existing work for AMA underscores the significance of the research gap that
our proposed setting, i.e., CAMA aims to address.

Multimodal Learning with Missing Data Modalities Research in multimodal learning with
missing data modalities offers techniques for robustly handling incomplete datasets. These methods
are broadly classified into strategy design aspects, i.e., architecture-focused designs and model
combinations, and data processing aspects, i.e., representation learning and modality imputation
(Wu et al., 2024). Acknowledging the utility of these approaches, our work emphasizes imputation-
based strategies, and thus this paragraph highlights those methods. Imputation of missing features
is commonly performed using Auto Encoders (AEs) (Hinton & Zemel, 1993), Variational Auto
Encoders (VAEs) (Kingma & Welling, 2014), Generative Adversarial Networks (GANs) (Goodfellow
et al., 2014), or Denoising Diffusion Probabilistic Models (DDPMs) (Ho et al., 2020; Rombach
et al., 2022). These methods naturally extend to multiple modalities, for example, with VAE-based
(Wesego & Rooshenas, 2024; Sutter et al., 2021; Lewis et al., 2021) and DDPM-based (Wang
et al., 2023) approaches. Notably, the latter, i.e., IMDer (Wang et al., 2023), a multimodal deep
learning architecture that imputes missing values with DDPMs in latent spaces, is adapted in our
work (Section 5). However, this research area focuses on handling absent modalities rather than
deciding which ones to acquire.

3 PROBLEM FORMULATION

Let D = {(xi, yi)}Ni=1 be a dataset of N samples. For each sample i, the full feature set xi is
composed of P distinct data modalities, xi = {x(1)

i , . . . ,x
(P )
i }, and yi ∈ {0, 1} is the corresponding

binary label. In practice, only a subset of these modalities may be available. We denote the set of
indices of available modalities for sample i as Pavail

i ⊆ {1, . . . , P}. Our goal is to decide for which
samples to acquire costly missing data to maximize a cohort-level performance metric. This decision
is guided by predictive scores (logits), and we consider three key predictive scores for each sample i:

• savail
i : The available score, computed using the subset of data modalities that are already

observed for the sample.

• sacquired
i : The acquired score, computed using the sample’s available modalities plus the

newly acquired modality.

• {simp
i,k }Kk=1: A set of K imputed scores that estimate the unknown sacquired

i using only the
available data modalities.

For instance, given the example from Figure 1, in a simple clinical setting with a cheap, universally
available base modality, e.g., cardiac biomarkers such as troponin or B-type natriuretic peptide (BNP),
and an expensive additional modality, e.g., cardiac MRI, savail

i would be the score from the blood
tests alone, while sacquired

i would be the score using both tests and MRI. To compute these scores, we
assume a single model f parameterized by θ that can process any subset of modalities. The available
and acquired scores are thus:

savail
i = f(xavail

i ,θ) (1)

sacquired
i = f(xacquired

i ,θ) (2)

where xavail
i and xacquired

i represent the feature sets for the available and acquired modalities, respec-
tively. To estimate the acquired score without costly acquisition, we use a generative imputation
model fimp. This model generates a set of K plausible embeddings that enable the classifier fC
to predict the scores {simp

i,k }Kk=1. These imputation-based scores form the basis of our acquisition
functions.

The goal of the optimization is to select a subset of samples S from the cohort of N total samples for
which an additional modality should be acquired. This subset S ⊆ {1, . . . , N} has a predetermined
size |S| = β, where β is the acquisition budget, i.e., the number of samples for which additional
modalities will be acquired. The final score si(S) used for the evaluation of a sample i is then
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determined by the selection:

si(S) =

{
sacquired
i if i ∈ S

savail
i if i /∈ S

. (3)

The optimization problem is to find the set S∗ that maximizes the chosen performance metric:

S∗ = argmax
S⊆{1,...,N}:|S|=β

Metric(y, s(S)) (4)

where y = {yi}Ni=1 is the vector of true labels, and s(S) = {si(S)}Ni=1 is the vector of resulting
scores for all samples in the cohort. Consequently, the task is to identify an optimal, constrained
subset for which to acquire additional modalities, while maximizing a performance metric across the
entire cohort.

4 ACQUISITION FUNCTION STRATEGIES

Directly solving the cohort-level optimization problem to identify the optimal sample set S∗ is
computationally intractable due to its combinatorial nature. Therefore, we employ several heuristic
acquisition functions (AFs) that approximate the optimal selection by ranking samples for modality
acquisition. These strategies, detailed further in Section C, are derived from standard discriminative
metrics (Section C.1) and can be categorized as follows (Table 2):

• Oracle Strategies: As upper-bound benchmarks, they assume perfect knowledge of out-
comes and true labels to greedily select samples yielding the largest immediate gain in the
target metric.

• Upper-Bound Heuristic Strategies: These heuristics assume knowledge of scores under
modality completion but are label-agnostic, relying on metrics like the true uncertainty
reduction, rank change, or KL-Divergence.

• Imputation-Based Strategies: Grounded in counterfactual reasoning, these strategies use a
generative model to predict how a sample’s score might change if a missing modality were
acquired.

• Baseline Information Strategies: These strategies make decisions using only information
from the initially available modalities, i.e., without any imputation and pre-acquisition, such
as its predicted uncertainty or probability.

• Random Strategy: This serves as a fundamental baseline by selecting samples randomly,
without regard to any model scores.

Table 2: Summary of AF Strategies.

Category Strategies Input Variables Ranking Criteria

Oracle AUROC, AUPRC True labels & ac-
quired scores

Greedy selection for maximum
gain.

Upper-Bound KL-Divergence,
Rank, Uncertainty

True acquired
scores

True change in prediction, cohort
rank, or uncertainty.

Imputation-Based KL-Divergence,
Rank, Uncertainty
& Probability

Imputed acquired
scores

Expected change in prediction,
rank, or uncertainty.

Baselines Uncertainty, Proba-
bility

Pre-acquisition
scores

Uncertainty or probability using
the available modality.

Random Random None Random selection.

Intuitively, these acquisition functions approximate the expected information gain (EIG) from ac-
quiring an additional modality. In our setting, EIG quantifies the expected improvement in a chosen

5
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Figure 2: End-to-end architectures to determine the scores for different AFs in our proposed CAMA
setting. (A) Vanilla late fusion (LF) architecture of a model f that can handle missing data modalities
by masking. The model creates scores savail

i given the available modalities. (B) Architecture for
training (left) and inference (right) with a late fusion (LF) model f and a generative model fimp to
create scores simp

i for the imputation-based AFs.

performance metric given the additional information that would become available through a new
modality.

For evaluation, we introduce a metric that describes the cumulative performance of an AF, normalized
by the total possible gain achievable by transitioning all samples to post-acquisition performance (see
Figure 1 C, for an illustrative curve). Let MAF(b) denote the performance curve of an AF strategy
for a primary metric M as a function of the budget fraction b of the acquisition budget β, Mpre the
performance of the pre-acquisition baseline, and Mpost the performance of the post-acquisition model.
The normalized area of gain for an acquisition function AF, which measures the portion of achievable
performance gain captured across different budgets, is defined as the area under the performance gain
curve, normalized by the maximum possible gain (Equation (5)). Intuitively, a value of 0 indicates
no improvement over the pre-acquisition baseline across budgets. A value of 1 indicates matching
the post-acquisition performance on average across budgets. Values greater than 1 occur when the
cohort’s performance at intermediate budgets temporarily exceeds the post-acquisition cohort as
detailed later and shown in Figure 3.

GM
full(AF) =

∫ 1

0
(MAF(b)−Mpre) db

Mpost −Mpre
(5)

5 EVALUATION

To evaluate these strategies in practice, we require architectures that produce the necessary scores.
The oracle, upper-bound, baseline, and random AFs can be evaluated using a vanilla discriminative
late fusion (LF) model (Figure 2 A), as they operate on true labels yi and true scores sacquired

i and
savail
i (Section 3). In contrast, our proposed imputation-based AFs are grounded in counterfactual

reasoning: They require the model to predict how its output would change if a missing modality were
present. This necessitates a more sophisticated architecture that combines the discriminative classifier
with a generative component capable of imputing the missing modality (Figure 2 B).

Model Architecture First, we implement a multimodal architecture consisting of modality-specific
encoders f (m)

E : X (m) → Rd and a fusion classifier fC (Figure 2 A). The encoders map raw inputs for
a sample i and modality m to latent embeddings z(m)

i = f
(m)
E (x

(m)
i ), e.g., with a Vision Transformer

(ViT) (Dosovitskiy et al., 2021) for images and BERT (Devlin et al., 2019) for text. The discriminative
classifier fC aggregates these embeddings to produce logits savail

i depending on the availability of
the raw inputs, i.e., with a Transformer encoder (Vaswani et al., 2017). Second, for our generative
AFs, we incorporate generative modules additionally to the discriminative late fusion (Figure 2
B) (Wang et al., 2023). The generative modules fimp are parameterized as Diffusion Transformers
(DiTs) (Peebles & Xie, 2023) or Beta-Conditional-VAEs (BC-VAEs) (Higgins et al., 2017) trading off

6
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Figure 3: (a) AUROC curves for several AFs on the MOSEI dataset (Zadeh et al., 2018) at an
acquisition budget of 25% of the dataset size. (b) Acquisition performance of the best-performing AF
from (a), visualizing the gain achieved during the progressive acquisition of modalities as the cohort
transitions from pre-acquisition scores towards post-acquisition. Notably, the oracle AF can exceed
the post-acquisition cohort’s AUROC at certain fractions of acquired modalities before subsequently
declining towards it again.

performance vs. efficiency. The generative modules fimp are trained to approximate the conditional
distribution pθ(z

(k)|{z(m)}m∈Pavail
i

) for each target modality k. The generative loss for sample i is:

LGi
=

∑
k∈Pavail

i

Lgen

(
z
(k)
i ; {z(m)

i }m∈Pavail
i

)
(6)

where Lgen is a variational bound on the negative conditional log-likelihood: for DDPMs, this
corresponds to the denoising objective (Ho et al., 2020); for BC-VAEs, this is the negative conditional
evidence lower bound (ELBO) (Higgins et al., 2017). For the discriminative task, the loss for sample
i is defined as binary cross entropy loss with the label y and the predicted probability p:

LCEi = − [yi log(pi) + (1− yi) log(1− pi)] . (7)

The final loss function for the whole architecture is defined as the combination of both loss terms:

L = λ1LCE + λ2LG (8)

with loss weightings λ for which we find λ1 = λ2 = 1 is important for downstream performance.
During inference, the classifier fC also uses samples of p(z(k)|{z(m)}m∈Pavail

i
) for missing modalities

to create the scores simp
i needed for our generative AFs (Figure 2 B, right). During training, samples

from p(z(k)|{z(m)}m∈Pavail
i

) are not passed to fC , even when modalities are missing (Figure 2 B,

left). Instead, the discriminative components (f (m)
E and fC) are trained only on available modalities

via attention masks. This means that the generative and discriminative parts are trained jointly, but the
generative outputs do not directly influence the classifier during training beyond the shared encoders
being updated by the classification loss. For model training, we use the ScheduleFree optimizer
(Defazio et al., 2024) with hyperparameters determined through sweeps. We find the following
architectural decisions essential, which are ablated in Table 7: (a) applying Layer Normalization
(Ba et al., 2016) at the end of each modality’s encoder to stabilize the DDPMs operating between
latent spaces, (b) calibrating the model with label smoothing (Szegedy et al., 2016) to produce less
overconfident and better-calibrated probability distributions, (c) decoupling the generative modules
from the classifier during training and (d) class balancing the training dataset as detailed in the next
paragraph. Regarding missing modalities, we do not pre-train on all available data modalities, in
contrast to Wang et al. (2023). We use a predefined, seed-dependent missing-modality mask to
control data modality leakage during training unlike batch-dependent masks, which eventually reveal
all modalities for every sample across numerous epochs. Further details in Section D.

Datasets We evaluate the setting of CAMA on four real-world multimodal datasets: UKBB (Sudlow
et al., 2015), MIMIC Symile (Saporta et al., 2024), MIMIC HAIM (Soenksen et al., 2022a;b), and

7
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Table 3: Acquisition performance on Symile, with Gfull shown for AUROC/AUPRC as an example
for the class with the best and worst performance and the mean value of all ten classes. Strategies are
grouped by category. Best strategy among proposed ones and baselines in bold for each column.

Acquisitions by AUROC, Gfull ↑ ± SEM Acquisitions by AUPRC, Gfull ↑ ± SEM

Strategy Cardiomegaly Pneumothorax Mean Lung Lesion Pneumothorax Mean

Upper Bounds (for reference)
Oracle 2.787 ± 0.139 9.461 ± 1.049 4.580 2.520 ± 0.250 10.623 ± 0.708 4.231
True KL-Div. 0.885 ± 0.011 0.910 ± 0.054 0.883 0.828 ± 0.073 0.827 ± 0.043 0.871
True Rank 0.878 ± 0.019 0.605 ± 0.053 0.811 0.676 ± 0.088 0.483 ± 0.075 0.776
True Uncert. 0.524 ± 0.025 −0.136 ± 0.065 0.481 0.181 ± 0.067 0.293 ± 0.052 0.450

Imputation-based (proposed)
KL-Divergence 0.747 ± 0.039 0.773 ± 0.134 0.833 0.896 ± 0.146 0.581 ± 0.084 0.777
Probability 0.350 ± 0.053 0.898 ± 0.061 0.426 0.320 ± 0.104 0.965 ± 0.027 0.449
Rank 0.378 ± 0.016 0.115 ± 0.082 0.378 0.564 ± 0.086 0.396 ± 0.054 0.407
Uncertainty 0.450 ± 0.041 0.055 ± 0.060 0.440 0.130 ± 0.053 0.513 ± 0.066 0.444

Baselines (no imputation)
Uncertainty 0.480 ± 0.013 0.536 ± 0.040 0.480 0.215 ± 0.033 0.811 ± 0.041 0.443
Probability 0.431 ± 0.015 0.536 ± 0.040 0.458 0.756 ± 0.136 0.811 ± 0.041 0.550
Random 0.385 ± 0.015 0.327 ± 0.061 0.376 0.503 ± 0.103 0.527 ± 0.053 0.388

MOSEI (Zadeh et al., 2018), which cover diverse domains such as healthcare and emotion recognition.
For the publicly available datasets, missing modalities are synthetically created, whereas for UKBB
they are an inherent characteristic. We design the datasets for binary classification, resulting in ten
binary targets for the MIMIC datasets and one binary target for MOSEI and UKBB. While MOSEI is
already class-balanced (Zadeh et al., 2018), HAIM and Symile exhibit significant class imbalance
(Soenksen et al., 2022a; Zadeh et al., 2018). To address this, we employ random oversampling
during training, which we find essential for the effective operation of AFs (Table 7). Importantly,
during testing we retain the original imbalanced distributions, and no class-balancing steps are
applied to UKBB. We highlight UKBB as the most challenging dataset to demonstrate that CAMA
scales to a broad multimodal range and large-scale cohorts with approximately 100,000 samples and
15 modalities. In this setting, we focus on acquiring the exceptionally costly proteomics data for
predicting the onset of systemic lupus erythematosus (SLE), which has been shown to benefit from
proteomics combined with other clinical data (Yang et al., 2025). Additional details are provided in
Section E.

Model and AF Evaluation For datasets with at least three modalities, we apply five-fold cross-
validation. Due to initially noisy results for MIMIC HAIM, we increase the number of folds to
ten. For each sample in the test set, the initial score savail

i is established by randomly assigning a
subset of available modalities Pavail

i . This procedure is repeated over several runs for robustness.
In each run, every sample is stochastically assigned a new subset Pavail

i . Performance metrics are
averaged across these independent runs to ensure our evaluation is robust to any single random
assignment of patient data. Acquisition is simulated by incrementally increasing the budget β. We
focus on tasks where the post-acquisition model demonstrates a performance improvement over the
pre-acquisition baseline. For certain prediction tasks, a simpler pre-acquisition model can outperform
a more complex post-acquisition one, potentially due to the introduction of noisy or conflicting
signals. In such cases, the final post-acquisition performance falls below the pre-acquisition baseline,
resulting in a negative normalized area of gain, indicating that acquisition was detrimental. To ensure
a meaningful evaluation, we exclude any tasks exhibiting this negative gain from the analysis at the
split level. For each budget, the top-ranked samples in S are considered acquired, and their logits
are updated from savail

i to sacquired
i . Final reported results are aggregated across all cross-validation

splits, combinations of missing and available modalities, and random runs to ensure robustness of the
evaluation.

6 RESULTS

Our empirical evaluation confirms the effectiveness of CAMA. We benchmark our imputation-
based strategies against oracles, upper-bound heuristics, and baselines across multiple datasets. Full
results are aggregated in Tables 3 to 5 by averaging over permutations of missing input modali-
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Table 4: Acquisition performance on UKBB,
showing Gfull for AUROC/AUPRC. Strategies
are grouped by category. Best strategy among
proposed ones and baselines in bold.

AUROC AUPRC

Strategy Gfull ± SEM ↑ Gfull ± SEM ↑

Upper Bounds (for reference)
Oracle 1.141 ± 0.051 1.721 ± 0.315
True KL-Div. 0.978 ± 0.007 0.986 ± 0.005
True Rank 0.887 ± 0.022 0.466 ± 0.110
True Uncert. 0.436 ± 0.088 0.507 ± 0.074

Imputation-based (proposed)
KL-Divergence 0.641 ± 0.029 0.658 ± 0.045
Probability 0.535 ± 0.026 0.713 ± 0.029
Rank 0.437 ± 0.028 0.340 ± 0.114
Uncertainty 0.373 ± 0.053 0.332 ± 0.058

Baselines (no imputation)
Uncertainty 0.365 ± 0.042 0.556 ± 0.073
Probability 0.365 ± 0.042 0.556 ± 0.073
Random 0.528 ± 0.018 0.485 ± 0.052

Table 5: Acquisition performance on MOSEI,
showing Gfull for AUROC/AUPRC. Strategies
are grouped by category. Best strategy among
proposed ones and baselines in bold.

AUROC AUPRC

Strategy Gfull ± SEM ↑ Gfull ± SEM ↑

Upper Bounds (for reference)
Oracle 1.478 ± 0.091 1.666 ± 0.161
True KL-Div. 0.882 ± 0.006 0.838 ± 0.006
True Rank 0.849 ± 0.008 0.806 ± 0.010
True Uncert. 0.663 ± 0.006 0.708 ± 0.005

Imputation-based (proposed)
KL-Divergence 0.855 ± 0.034 0.889 ± 0.052
Probability 0.707 ± 0.037 0.846 ± 0.070
Rank 0.432 ± 0.014 0.457 ± 0.019
Uncertainty 0.630 ± 0.015 0.706 ± 0.037

Baselines (no imputation)
Uncertainty 0.525 ± 0.005 0.540 ± 0.006
Probability 0.433 ± 0.007 0.543 ± 0.009
Random 0.490 ± 0.004 0.525 ± 0.003

Table 6: Efficiency analysis for different architectures.

Architecture Train (sec) ↓ Validation (sec) ↓ Parameters (M) ↓
Late fusion 0.02 0.015 86.5
Late fusion w/ DDPMs 0.17 0.16 125
Late fusion w/ BC-VAEs 0.08 0.08 313

ties and multiple random instantiations for each missingness configuration. As expected, oracle
strategies serve as an upper bound and consistently achieve the highest performance. Surprisingly,
oracle gains can exceed the value of one, as a strategic mix of pre-acquisition and post-acquisition
samples can outperform a purely post-acquisition cohort. To benchmark the acquisition logic it-
self, we use label-agnostic upper-bound heuristics that access acquired scores sacquired

i . Among
these, strategies based on KL-Divergence and rank change perform well, indicating that prioritiz-
ing large predictive shifts or cohort reordering is an effective heuristic in this setting. Our main
approach for handling the CAMA setting comprises imputation-based strategies that leverage a
generative model fimp to predict counterfactual outcomes. The imputation-based KL-Divergence
strategy consistently and significantly outperforms all other non-oracle methods. This AF effectively
identifies samples predicted to have the largest shift in their class probability distribution (Figure 3).

Table 7: Cross-validated ablation of the proposed
model adjustments on the Symile dataset, exem-
plary for the mean across all endpoints with the
expected KL-Divergence and acquisitions by AU-
ROC.

Ablation Gfull ↑
KL-Divergence (w.r.t. Table 3) 0.833
w/o Layer Norm 0.772
w/o label smoothing 0.746
w/o decoupled data flow 0.599
w/o balanced train set 0.568

In contrast, imputation-based strategies relying
on rank change, final uncertainty, or final prob-
ability are considerably weaker, suggesting that
quantifying the change in prediction is more ef-
fective than estimating the final state. While our
primary results with respect to imputation-based
AFs use DDPMs, a BC-VAE variant offers sig-
nificantly faster inference for a minor trade-off
in performance (Table 6 and section F). The rel-
ative performance ranking of these strategies
is largely consistent across all datasets, includ-
ing the large-scale UKBB cohort with approxi-
mately 100,000 samples and 15 modalities. This
confirms the robustness and scalability of our
framework in a challenging setting. In summary,
our results affirm the superiority of the imputation-based KL-Divergence strategy, which achieved
substantial and reliable gains over all baselines and heuristic methods. Additional results in Sections G
to I.
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7 DISCUSSION

We introduce CAMA to address the challenge of strategic data acquisition under budget constraints.
Our experiments consistently demonstrate that imputation-based AFs provide a robust and effective
solution. In the following, we discuss the key implications. The ability of oracles to yield gains
exceeding that of a model using post-acquisition data for all samples (Figure 3 (b)), suggests that
an underlying predictive model can achieve better global performance with a strategic curation of
samples, rather than applying all modalities across the cohort. This likely occurs because additional
modalities may introduce variance, redundancy, or conflicting information that imperfect models
cannot optimally reconcile. The oracles circumvent this by selecting only additional modalities
beneficial to the global metric. To our surprise, the imputation-based KL-Divergence AF can
slightly outperform the corresponding upper-bound heuristic (Table 5). Conversely, the substantial
performance gap between the rank-change heuristic and its imputation-based counterpart suggests
that global, rank-based metrics may be particularly vulnerable to imputation noise. While the
KL-Divergence AF demonstrated strong performance, not all imputation-based AFs consistently
outperformed simpler strategies across all datasets or endpoints (Sections H and I). This indicates that
optimal CAMA AFs can be context-dependent and that effectiveness hinges on how imputations are
leveraged rather than on imputation quality alone. Regarding the impact of imputation quality, it is
important to note that we impute latent embeddings optimized for the discriminative task rather than
raw data. Consequently, standard generative metrics (like Fréchet inception distance (FID)) are not
applicable for comparing imputation quality across different generative models since every generative
model influences the encoders latent spaces indirectly. While we observe that utilizing stronger
generative models, e.g., DDPMs, results in higher acquisition performance compared to weaker
models, e.g., VAEs, our findings indicate that the generative imputation quality is not the only factor.
As detailed in Table 7, the coherence of the overall architecture design, i.e., ensuring the classifier
is robust to the distribution of imputed latents, is equally critical for effective acquisition. We show
CAMAs robustness to imputation errors since fimp models a distribution of plausible outcomes rather
than aiming for a single reconstruction. By averaging the expected impact across this distribution, the
acquisition decision becomes less sensitive to uncertainty. Additionally, the primary KL-Divergence
AF is resilient to noise, as it prioritizes samples expected to cause a large predictive shift, effectively
ignoring minor imputation errors. Taken together, CAMA is not only practical for constrained
settings, but also reveals insights into post-acquisition behavior. The successful KL-Divergence
strategy and the surprising oracle performance underscore that the value of an additional modality
is not absolute but highly contextual. The most effective AFs are not those that simply predict an
outcome, but estimate the magnitude of the predictive shift.

8 CONCLUSION AND FUTURE WORK

We introduce CAMA, a novel setting addressing the real-world challenge of optimizing global
discriminative performance through strategic test-time acquisition of an additional modality under
resource constraints. Our evaluation across multiple multimodal datasets shows that imputation-based
AFs can effectively guide resource allocation under cohort-level constraints. The generally consistent
relative ordering of AFs across diverse datasets and the low variance in overall results lend confidence
to the robustness of our core findings. In settings such as healthcare, strategic allocation of costly or
invasive diagnostic procedures is essential, and our approach offers a promising direction for these
applications. Future work includes extending CAMA to multi-class problems or regression tasks,
exploring additional imputation techniques, directly optimizing cohort-level metrics, and dynamically
selecting which modality to acquire instead of pre-selecting one.
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Jannik Kossen, Cătălina Cangea, Eszter Vértes, Andrew Jaegle, Viorica Patraucean, Ira Ktena,
Nenad Tomasev, and Danielle Belgrave. Active Acquisition for Multimodal Temporal Data: A
Challenging Decision-Making Task. Transactions on Machine Learning Research, 2023.

Sarah Lewis, Tatiana Matejovicova, Yingzhen Li, Angus Lamb, Yordan Zaykov, Miltiadis Allamanis,
and Cheng Zhang. Accurate Imputation and Efficient Data Acquisition with Transformer-based
VAEs. In Advances in Neural Information Processing Systems 35: Annual Conference on Neural
Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, 2021.

Dongyuan Li, Zhen Wang, Yankai Chen, Renhe Jiang, Weiping Ding, and Manabu Okumura. A
Survey on Deep Active Learning: Recent Advances and New Frontiers. IEEE Trans. Neural
Networks Learn. Syst., 36(4):5879–5899, 2025. doi: 10.1109/TNNLS.2024.3396463.

Yang Li and Junier Oliva. Active Feature Acquisition with Generative Surrogate Models. In Marina
Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine
Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine
Learning Research, pp. 6450–6459. PMLR, 2021.

Yang Li and Junier Oliva. Distribution Guided Active Feature Acquisition, October 2024.
arXiv:2410.03915 [cs].

Yang Li and Junier Oliva. Towards Cost Sensitive Decision Making. In Yingzhen Li, Stephan Mandt,
Shipra Agrawal, and Mohammad Emtiyaz Khan (eds.), International Conference on Artificial
Intelligence and Statistics, AISTATS 2025, Mai Khao, Thailand, 3-5 May 2025, volume 258 of
Proceedings of Machine Learning Research, pp. 3601–3609. PMLR, 2025.

Quan Long. Multimodal information gain in Bayesian design of experiments. Comput. Stat., 37(2):
865–885, 2022. doi: 10.1007/S00180-021-01145-9.

Chao Ma, Sebastian Tschiatschek, Konstantina Palla, José Miguel Hernández-Lobato, Sebastian
Nowozin, and Cheng Zhang. EDDI: Efficient Dynamic Discovery of High-Value Information
with Partial VAE. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the
36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach,
California, USA, volume 97 of Proceedings of Machine Learning Research, pp. 4234–4243. PMLR,
2019.

Sriraam Natarajan, Srijita Das, Nandini Ramanan, Gautam Kunapuli, and Predrag Radivojac. On
Whom Should I Perform this Lab Test Next? An Active Feature Elicitation Approach. In Proceed-
ings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, pp. 3498–3505,
Stockholm, Sweden, July 2018. International Joint Conferences on Artificial Intelligence Organi-
zation. ISBN 978-0-9992411-2-7. doi: 10.24963/ijcai.2018/486.

Alexander Luke Ian Norcliffe, Changhee Lee, Fergus Imrie, Mihaela van der Schaar, and Pietro Lio.
Information Bottleneck for Active Feature Acquisition, 2025.

William Peebles and Saining Xie. Scalable Diffusion Models with Transformers. In IEEE/CVF
International Conference on Computer Vision, ICCV 2023, Paris, France, October 1-6, 2023, pp.
4172–4182. IEEE, 2023.

Ignacio Peis, Chao Ma, and José Miguel Hernández-Lobato. Missing Data Imputation and Acquisition
with Deep Hierarchical Models and Hamiltonian Monte Carlo. In Sanmi Koyejo, S. Mohamed,
A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information
Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022,
NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022, 2022.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Arman Rahbar, Linus Aronsson, and Morteza Haghir Chehreghani. A Survey on Active Feature
Acquisition Strategies, February 2025. arXiv:2502.11067 [cs].

Anant Raj and Francis R. Bach. Convergence of Uncertainty Sampling for Active Learning. In
Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato
(eds.), International Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore,
Maryland, USA, volume 162 of Proceedings of Machine Learning Research, pp. 18310–18331.
PMLR, 2022.

Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Brij B. Gupta, Xiaojiang
Chen, and Xin Wang. A Survey of Deep Active Learning. ACM Computing Surveys, 54(9):1–40,
December 2022. ISSN 0360-0300, 1557-7341. doi: 10.1145/3472291.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
Resolution Image Synthesis with Latent Diffusion Models. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp.
10674–10685. IEEE, 2022. doi: 10.1109/CVPR52688.2022.01042.

Ognjen Rudovic, Meiru Zhang, Björn W. Schuller, and Rosalind W. Picard. Multi-modal Active
Learning From Human Data: A Deep Reinforcement Learning Approach. In Wen Gao, Helen
Mei-Ling Meng, Matthew Turk, Susan R. Fussell, Björn W. Schuller, Yale Song, and Kai Yu (eds.),
International Conference on Multimodal Interaction, ICMI 2019, Suzhou, China, October 14-18,
2019, pp. 6–15. ACM, 2019. doi: 10.1145/3340555.3353742.

Adriel Saporta, Aahlad Puli, Mark Goldstein, and Rajesh Ranganath. Contrasting with Symile:
Simple Model-Agnostic Representation Learning for Unlimited Modalities. In Advances in Neural
Information Processing Systems, 2024.

Burr Settles. Active Learning. Synthesis Lectures on Artificial Intelligence and Machine Learning.
Springer International Publishing, Cham, 2012. ISBN 978-3-031-00432-2 978-3-031-01560-1.
doi: 10.1007/978-3-031-01560-1.

L. S. Shapley. A Value for n-Person Games. In Harold William Kuhn and Albert William Tucker (eds.),
Contributions to the Theory of Games (AM-28), Volume II, pp. 307–318. Princeton University
Press, December 1953. ISBN 978-1-4008-8197-0. doi: 10.1515/9781400881970-018.

Meng Shen, Yizheng Huang, Jianxiong Yin, Heqing Zou, Deepu Rajan, and Simon See. Towards Bal-
anced Active Learning for Multimodal Classification. In Proceedings of the 31st ACM International
Conference on Multimedia, pp. 3434–3445, October 2023. doi: 10.1145/3581783.3612463.

Hajin Shim, Sung Ju Hwang, and Eunho Yang. Joint Active Feature Acquisition and Classification
with Variable-Size Set Encoding. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31.
Curran Associates, Inc., 2018.

Karan Singhal, Tao Tu, Juraj Gottweis, Rory Sayres, Ellery Wulczyn, Mohamed Amin, Le Hou, Kevin
Clark, Stephen R. Pfohl, Heather Cole-Lewis, Darlene Neal, Qazi Mamunur Rashid, Mike Schaek-
ermann, Amy Wang, Dev Dash, Jonathan H. Chen, Nigam H. Shah, Sami Lachgar, Philip Andrew
Mansfield, Sushant Prakash, Bradley Green, Ewa Dominowska, Blaise Agüera Y Arcas, Nenad
Tomašev, Yun Liu, Renee Wong, Christopher Semturs, S. Sara Mahdavi, Joelle K. Barral, Dale R.
Webster, Greg S. Corrado, Yossi Matias, Shekoofeh Azizi, Alan Karthikesalingam, and Vivek
Natarajan. Toward expert-level medical question answering with large language models. Nature
Medicine, January 2025. ISSN 1078-8956, 1546-170X. doi: 10.1038/s41591-024-03423-7.

Luis R. Soenksen, Yu Ma, Cynthia Zeng, Leonard Boussioux, Kimberly Villalobos Carballo,
Liangyuan Na, Holly M. Wiberg, Michael L. Li, Ignacio Fuentes, and Dimitris Bertsimas. In-
tegrated multimodal artificial intelligence framework for healthcare applications. npj Digital
Medicine, 5(1):149, September 2022a. ISSN 2398-6352. doi: 10.1038/s41746-022-00689-4.

Luis R Soenksen, Yu Ma, Cynthia Zeng, Leonard David Jean Boussioux, Kimberly Villalobos Car-
ballo, Liangyuan Na, Holly Wiberg, Michael Li, Ignacio Fuentes, and Dimitris Bertsimas. Code
for generating the HAIM multimodal dataset of MIMIC-IV clinical data and x-rays, 2022b.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Cathie Sudlow, John Gallacher, Naomi Allen, Valerie Beral, Paul Burton, John Danesh, Paul Downey,
Paul Elliott, Jane Green, Martin Landray, Bette Liu, Paul Matthews, Giok Ong, Jill Pell, Alan
Silman, Alan Young, Tim Sprosen, Tim Peakman, and Rory Collins. UK Biobank: An Open
Access Resource for Identifying the Causes of a Wide Range of Complex Diseases of Middle and
Old Age. PLOS Medicine, 12(3):e1001779, March 2015. ISSN 1549-1676. doi: 10.1371/journal.
pmed.1001779.

Thomas M. Sutter, Imant Daunhawer, and Julia E. Vogt. Generalized Multimodal ELBO. In 9th
International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May
3-7, 2021. OpenReview.net, 2021.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking
the Inception Architecture for Computer Vision. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2016.

Toan Tran, Thanh-Toan Do, Ian Reid, and Gustavo Carneiro. Bayesian Generative Active Deep
Learning. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pp. 6295–6304. PMLR, June 2019.

Michael Valancius, Max Lennon, and Junier Oliva. Acquisition Conditioned Oracle for Nongreedy
Active Feature Acquisition. In Forty-first International Conference on Machine Learning, ICML
2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is All you Need. In Isabelle Guyon, Ulrike von Luxburg,
Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (eds.),
Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008, 2017.

Gerome Vivar, Kamilia Mullakaeva, Andreas Zwergal, Nassir Navab, and Seyed-Ahmad Ahmadi.
Peri-Diagnostic Decision Support Through Cost-Efficient Feature Acquisition at Test-Time. In
Anne L. Martel, Purang Abolmaesumi, Danail Stoyanov, Diana Mateus, Maria A. Zuluaga, S. Kevin
Zhou, Daniel Racoceanu, and Leo Joskowicz (eds.), Medical Image Computing and Computer As-
sisted Intervention - MICCAI 2020, volume 12262, pp. 572–581. Springer International Publishing,
Cham, 2020. ISBN 978-3-030-59712-2 978-3-030-59713-9. doi: 10.1007/978-3-030-59713-9_55.
Series Title: Lecture Notes in Computer Science.

Yuanzhi Wang, Yong Li, and Zhen Cui. Incomplete Multimodality-Diffused Emotion Recognition.
In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine
(eds.), Advances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023.

Daniel Wesego and Pedram Rooshenas. Score-Based Multimodal Autoencoder. Transactions on
Machine Learning Research, 2024. ISSN 2835-8856.

Renjie Wu, Hu Wang, Hsiang-Ting Chen, and Gustavo Carneiro. Deep Multimodal Learning with
Missing Modality: A Survey, October 2024. arXiv:2409.07825 [cs].

Sisi Yang, Yuanyuan Zhang, Ziliang Ye, Yanjun Zhang, Xiaoqin Gan, Yu Huang, Hao Xiang, Yiting
Wu, Yiwei Zhang, and Xianhui Qin. Plasma proteomics for risk prediction and identification of
novel drug targets in systemic lupus erythematosus. Rheumatology, 64(6):4032–4040, June 2025.
ISSN 1462-0324, 1462-0332. doi: 10.1093/rheumatology/keaf055.

Amir Zadeh, Paul Pu Liang, Soujanya Poria, E. Cambria, and Louis-Philippe Morency. Multimodal
Language Analysis in the Wild: CMU-MOSEI Dataset and Interpretable Dynamic Fusion Graph.
In Annual Meeting of the Association for Computational Linguistics, 2018.

Sara Zannone, Jose Miguel Hernandez Lobato, Cheng Zhang, and Konstantina Palla. ODIN: Optimal
Discovery of High-value INformation Using Model-based Deep Reinforcement Learning. In
Real-world Sequential Decision Making Workshop, ICML, June 2019.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Jifan Zhang, Shuai Shao, Saurabh Verma, and Robert D. Nowak. Algorithm Selection for Deep
Active Learning with Imbalanced Datasets. In Alice Oh, Tristan Naumann, Amir Globerson, Kate
Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in Neural Information Processing
Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023,
New Orleans, LA, USA, December 10 - 16, 2023, 2023.

Xulu Zhang, Wengyu Zhang, Xiaoyong Wei, Jinlin Wu, Zhaoxiang Zhang, Zhen Lei, and Qing Li.
Generative active learning for image synthesis personalization. In ACM Multimedia 2024, 2024.

Jia-Jie Zhu and José Bento. Generative Adversarial Active Learning, November 2017.
arXiv:1702.07956 [cs].

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A BROADER IMPACT AND ETHICS

The CAMA setting introduced in this paper offers potential for positive broader impacts, primarily by
enabling more efficient use of resources in multimodal machine learning. In resource-constrained
fields like healthcare, this could facilitate access to more robust and comprehensive model perfor-
mance by strategically guiding the acquisition of costly or limited additional data modalities. This
could translate to improved diagnostic accuracy where such data is critical but not uniformly available
for all samples in a cohort. However, the deployment of CAMA, particularly its core function of
ranking and prioritizing samples for modality acquisition, necessitates careful ethical consideration.
This raises concerns about equity and fairness, especially if the downstream application impacts
critical decisions. A significant risk is the potential to introduce biases, including racial, socioeco-
nomic, or other demographic biases. Therefore, the development and application of CAMA must be
approached with a strong commitment to ethical principles.

B REPRODUCIBILITY

To ensure the reproducibility of our results, we provide the following details:

Code The complete source code used for all experiments will be made publicly available on GitHub
upon publication. The repository will include scripts for model training and evaluation.

Hyperparameters All hyperparameters, including learning rates, batch sizes, and model-specific
parameters, are explicitly listed in Section D. Additionally, we provide the complete sweep configura-
tions used for hyperparameter tuning to allow for full replication of our optimization process.

Datasets Three of the four datasets used in our evaluation are publicly available. For more details
see Section 5 and Section E.

Implementation Details We provide a full section in Section D and a dedicated paragraph in
Section 5 describing implementation details that we found to be crucial.

C DETAILS ABOUT ACQUISITION FUNCTION STRATEGIES

C.1 AUROC AND AUPRC

To derive the proposed acquisition strategies, we briefly explain the metrics used in the following
paragraphs.

AUROC The Area Under the Receiver Operating Characteristic (AUROC) measures the model’s
ability to discriminate between positive and negative classes and is defined as

AUROC(y, s) =
1

N+N−

∑
i:yi=1

∑
j:yj=0

(
I(si > sj) +

1

2
I(si = sj)

)
(9)

where N+ = |{i | yi = 1}| and N− = |{j | yj = 0}|.

AUPRC The Area Under the Precision-Recall Curve (AUPRC) summarizes the trade-off between
precision (Pt) and recall (Rt) across different decision thresholds t and is defined as

AUPRC(y,p) =
N ′∑
k=1

(Rk −Rk−1)Pk (10)

where points (Rk, Pk) are ordered by threshold from the PR curve, N ′ is the number of unique
thresholds, and p = σ(s).

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

C.2 ORACLE ACQUISITION STRATEGIES: EXACT GAIN CALCULATION

Oracle acquisition strategies serve as theoretical upper limits for the performance of greedy acquisition
approaches. They operate under the ideal assumption that the true labels yi and the outcome scores
sacquired
i are known for all samples i ∈ {1, . . . , N}. While not implementable in practice, these oracle

strategies provide benchmarks by selecting samples based on their exact marginal contribution to the
global evaluation metric. The general principle is to iteratively select β samples. At each step, among
the samples for which the additional modality has not yet been acquired, the oracle picks the one that
provides the largest true immediate gain to the chosen global metric.

AUROC Oracle The AUROC oracle strategy aims to maximize the cohort’s AUROC by identifying,
at each step, the sample i that yields the largest immediate increase in this metric if its additional
modality were acquired (changing its score from savail

i to sacquired
i ), i.e., a greedy selection. This

prospective increase is quantified by the marginal gain gAUROC
i . The components of this gain,

gAUROC
i (yi = 1) (for positive samples) and gAUROC

i (yi = 0) (for negative samples), reflect the net
change in favorable pairwise score comparisons relative to samples of the other class. Recall the
definition of AUROC from Equation (9):

AUROC(y, s) =
1

N+N−

∑
i:yi=1

∑
j:yj=0

(
I(si > sj) +

1

2
I(si = sj)

)
.

The total marginal gain for sample i, representing the exact change in the cohort’s AUROC value, is
then, by considering positive and negative samples and neglecting the normalization factor:

gAUROC
i (yi = 1) =

∑
j:yj=0

(
I(sacquired

i > savail
j )− I(savail

i > savail
j )

+
1

2

[
I(sacquired

i = savail
j )− I(savail

i = savail
j )

]) (11)

gAUROC
i (yi = 0) =

∑
j:yj=1

(
I(savail

j > sacquired
i )− I(savail

j > savail
i )

+
1

2

[
I(savail

j = sacquired
i )− I(savail

j = savail
i )

]) (12)

gAUROC
i =

1

N+N−

(
gAUROC
i (yi = 1) · I(yi = 1) + gAUROC

i (yi = 0) · I(yi = 0)
)

(13)

AUPRC Oracle The AUPRC oracle strategy seeks to maximize the cohort’s AUPRC. It operates
by identifying, at each step, the sample i which, if its additional modality were acquired (changing
its score from savail

i to sacquired
i ), would yield the largest immediate increase in the global AUPRC

value, i.e., a greedy selection. This marginal gain, gAUPRC
i , represents the exact change in the cohort’s

AUPRC. To calculate the marginal gain for a sample i, we compute the change in the cohort’s AUPRC.
Let scurrent be the vector of scores for the whole cohort. We define a new vector, supdated, which is
identical to scurrent except that for sample i, the score is changed from savail

i to sacquired
i . The marginal

gain is then:

gAUPRC
i = AUPRC(y,pupdated)− AUPRC(y,pcurrent) (14)

where pcurrent = σ(scurrent) and pupdated = σ(supdated).
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C.3 UPPER-BOUND HEURISTIC STRATEGIES

The preceding oracle strategies make the assumption of perfect foresight into both the true labels yi
and the exact outcome scores sacquired

i . We now introduce a distinct class of upper-bound heuristic
strategies. These strategies still presume access to the true future scores sacquired

i for any sample i if its
additional modality were acquired. However, the following upper-bound heuristics are label-agnostic,
i.e., the true label yi of a candidate sample is not used when determining its priority for acquisition.
Consequently, the selection principle for these strategies must rely on how the known change from
an initial score savail

i to the future score sacquired
i is expected to influence the global evaluation metric,

without direct reference to the sample’s ground-truth label.

Maximum True Uncertainty Reduction The uncertainty reduction strategy prioritizes acquiring
the additional modality for samples where doing so is expected to yield the largest decrease in
predictive uncertainty. For each sample i, uncertainty is quantified using the binary entropy H(pi) of
its predicted probability pi for the positive class, defined as:

H(pi) = −pi log2 pi − (1− pi) log2(1− pi), (15)

The acquisition strategy operates with knowledge of the initial probability pavail
i = σ(savail

i ) derived
from the available modalities, and crucially, the true future probability pacquired

i = σ(sacquired
i ) that

would be obtained if the additional modality were acquired (where sacquired
i is the oracle score). The

acquisition score gUR
i for sample i is then the exact reduction in entropy:

gUR
i = H(pavail

i )−H(pacquired
i ). (16)

Samples with higher gUR
i values, indicating a greater expected reduction in uncertainty, are prioritized

for modality acquisition.

Maximum True Rank Change This rank change strategy prioritizes samples whose relative
standing within the cohort, based on predicted probability of belonging to the positive class, would
change most significantly if the additional modality were acquired. For each sample i, we consider
its rank R(pi) when all N samples in the cohort are ordered by their respective probabilities pi. The
acquisition score gRC

i for sample i is defined as the absolute magnitude of this change in rank:

gRC
i = |R(pacquired

i )−R(pavail
i )|. (17)

Samples exhibiting a higher gRC
i are prioritized for modality acquisition, since they are expected to

cause the largest shift in the sample’s rank-ordered position relative to its peers.

KL-Divergence The KL-Divergence acquisition strategy aims to identify samples for which acquir-
ing the additional modality would lead to the largest change in the predicted probability distribution.
Specifically, it quantifies the divergence from the predicted probability distribution based on the true
future score, P acquired

i ∼ Bernoulli(pacquired
i ), back to the initial distribution based on baseline data,

P avail
i ∼ Bernoulli(pavail

i ). This is measured by the KL-Divergence DKL(P
avail
i ∥P acquired

i ) and can be
defined as follows for an acquisition function:

gKLD
i = DKL

(
P avail
i

∥∥∥P acquired
i

)
(18)

= pavail
i log2

pavail
i

pacquired
i

+ (1− pavail
i ) log2

1− pavail
i

1− pacquired
i

(19)

Samples with a higher gKLD
i are prioritized, as this indicates a greater discrepancy between the

prediction based on available data and the prediction that would be made with the additional modality.
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C.4 BASELINE INFORMATION STRATEGIES

Shifting from approaches that leverage oracle knowledge of future scores (sacquired
i ), the present section

details methods serving as practical, label-agnostic baselines. They make acquisition decisions based
exclusively on information derived from the initially available modality (savail

i ). A random acquisition
strategy serves as a fundamental baseline.

Maximum Baseline Uncertainty The Maximum Baseline Uncertainty strategy is a baseline that
prioritizes samples for which the prediction based on the initially available modality is most uncertain.
The acquisition score for sample i is directly the binary entropy H(pavail

i ), as defined in Equation (15):

gUU
i = H(pavail

i ). (20)

Samples with a higher gUU
i , i.e., pavail

i closer to 0.5, since the entropy H(pavail
i ) is symmetric around

pavail
i = 0.5, are selected first.

Maximum Baseline Probability This approach prioritizes acquiring the additional modality for
samples that the baseline model already predicts as belonging to the positive class with high con-
fidence. The acquisition score gUP

i for sample i is simply its initial probability pavail
i based on the

available modality:

gUP
i = pavail

i , (21)

Samples with a higher gUP
i are prioritized for acquisition.

C.5 IMPUTATION-BASED STRATEGIES

Having explored strategies that assume perfect knowledge of the true labels yi and/or future scores
sacquired
i , and simpler baselines relying only on current information savail

i , we now introduce methods
aiming to bridge the gap by offering a practical and label-agnostic pathway to modality acquisition.
They operate by utilizing an imputation model, fimp, to generate a set of K plausible future scores,
denoted {simp

i,k }Kk=1, conditioned on the initially available data savail
i . The core principle of these

strategies is to then derive acquisition scores from statistics of this imputed score distribution, with
the goal of emulating the decision-making process, but without requiring true future knowledge at
test time.

Maximum Expected Probability The Maximum Expected Probability strategy prioritizes samples
which have the highest average probability of belonging to the positive class after modality acquisition.
It relies on the set of K imputed future probabilities {pimp

i,k }Kk=1, where each pimp
i,k = σ(simp

i,k ) is derived

from an imputed future score simp
i,k . The acquisition score geP

i for sample i is the mean of these imputed
probabilities:

geP
i =

1

K

K∑
k=1

pimp
i,k . (22)

Samples with a higher geP
i are selected, representing instances where the imputation model, on

average, predicts a high likelihood of being positive if the additional modality were acquired.

Maximum Expected Uncertainty Reduction The Maximum Expected Uncertainty Reduction
strategy aims to select samples for which the acquisition of the additional modality is anticipated to
yield the largest average decrease in predictive uncertainty (Equation (15)). This strategy considers
the initial entropy H(pavail

i ), and the distribution of entropies {H(pimp
i,k )}Kk=1. The acquisition score

geUR
i is the difference between the initial entropy and the mean of the imputed future entropies:
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geUR
i = H(pavail

i )− 1

K

K∑
k=1

H(pimp
i,k ). (23)

Samples with higher geUR
i are prioritized, indicating a greater expected clarification of the prediction

upon acquiring the new modality.

Expected Rank Change The Maximum Expected Rank Change strategy prioritizes samples for
which the acquisition of the additional modality is anticipated to cause the largest change in their rank,
relative to the initial ranking based on pavail

i . It aims to mirror the "Maximum True Rank Change"
strategy by using imputed future probabilities. Let R(pavail

i ) denote the rank of sample i when all
N samples in the cohort are ordered by their initial probabilities pavail

j (for j = 1, . . . , N ). For each
of the K imputed future probabilities pimp

i,k for sample i, let R(pimp
i,k ) denote the rank of sample i if

its probability were pimp
i,k while all other samples j ̸= i retain their initial probabilities pavail

j . The
acquisition score geRC

i is then the mean of the absolute differences between these imputed future
ranks and the initial rank:

geRC
i =

1

K

K∑
k=1

|R(pimp
i,k )−R(pavail

i )|. (24)

Samples with a higher geRC
i are selected, as they are expected to experience the largest shift in their

rank-ordered position relative to other samples in the cohort upon modality acquisition.

Expected KL-Divergence The Expected KL-Divergence strategy selects samples where the initial
probability distribution is expected to diverge most significantly from the future probability distribu-
tions derived from the K imputed scores. The acquisition score geKLD

i is the average KL-Divergence
DKL(P

avail
i ∥P (imp,k)

i ) over the K imputations:

geKLD
i =

1

K

K∑
k=1

DKL

(
P avail
i

∥∥∥P (imp,k)
i

)
. (25)

A higher geKLD
i indicates that, on average, the imputed future predictions substantially differ from the

initial baseline prediction, suggesting a significant informational update from acquiring the additional
modality.

D HYPERPARAMETERS, MODEL DETAILS AND COMPUTE ENVIRONMENT

We employ domain-specific encoders to process the respective modalities: for language inputs, we use
a pre-trained BERT model (Devlin et al., 2019), for vision, a Vision Transformer (ViT) (Dosovitskiy
et al., 2021). Other data types, e.g., temporal sequences, tabular data, or pre-extracted embeddings, are
handled by Transformer encoders (Vaswani et al., 2017). We use well-established hyperparameters
from the literature for the modality-specific encoders and only optimize the remaining parameters.
Notably, our experiments compared three approaches for normalizing the encoder output: No
Normalization, Batch Normalization, and Layer Normalization. We found Layer Normalization to be
particularly advantageous, as it both stabilized training convergence and significantly enhanced the
performance of the DDPMs. We also evaluated the impact of using only the CLS token representation
from the encoder versus leveraging the full output sequence. This comparison revealed no substantial
effect on performance, suggesting the sufficiency of the CLS token representation for our task. Layers
in the network are initialized using He initialization (He et al., 2015) if they were not pre-initialized
by the specific encoder architecture. We find this particularly important for stabilizing the DDPMs
during the early epochs of end-to-end model training.

We perform hyperparameter sweeps for the remaining parts of the designed model in the following
ranges:
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Figure 4: The latent DDPM with its (de)noising functions. Coloring represents less noise in the latent
space, starting with pure noise in Xi,T = X1,T with T steps. The DDPM is conditioned with two
non-missing latent spaces, each from one remaining modality respectively.

• Transformer Head
- Embedding dimension: [32, 64, 128, 256, 512, 1024]

- Feed-Forward network: [128, 256, 512, 1024, 2048]

- Dropout: [0, 0.1, 0.2]

- Number of heads: [4, 8, 16]

- Number of layers: [2, 4, 6, 8]

• DDPMs
- Embedding dimension: analogous to Transformer head
- Hidden dimension: [32, 64, 128, 256, 512, 1024]

- Dropout: [0, 0.1, 0.2]

- Number of heads: [4, 8, 16]

- Number of layers: [2, 4, 6, 8]

- Number of steps: [10, 25, 50, 100, 250, 500]

• ScheduleFree Optimizer
- Learning rate: [1e-1, 1e-2, 1e-3, 3e-4, 1e-4, 1e-5]

- Warmup steps: [0, 100, 200]

- Weight decay: [0, 0.01, 0.001]

The models are trained with early stopping but without any maximum number of epochs. For the
imputation-based acquisition functions, 100 DDPM samples are used during inference of the model.

Our experiments are conducted on a High-Performance Cluster (HPC) with the following environ-
ment:

1. 21 Dell PowerEdge R7525 compute nodes, each with:
• 64 AMD Epyc cores (Rome)
• 512GB RAM
• 1 NVIDIA A100 40G GPU

2. 2 Dell PowerEdge XE8545 compute nodes, each with:
• 128 AMD Epyc cores (Milan)
• 512GB RAM
• 4 NVIDIA A100 40G GPUs (NVLink-connected)

E DATASET DETAILS

We evaluate CAMA on four diverse, real-world multimodal datasets, spanning domains from health-
care to emotion recognition.
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MIMIC Symile This clinical dataset is derived from the MIMIC database and is designed for
predicting the diagnosis of ten classes (Fracture, Enlarged Cardiomediastinum, Consolidation, Atelec-
tasis, Edema, Cardiomegaly, Lung Lesion, Lung Opacity, Pneumonia, Pneumothorax). It contains
10,345 samples from patients in intensive care units. For our experiments, we utilize three distinct
modalities: laboratory values, chest X-ray images, and electrocardiograms (ECGs).

MIMIC HAIM This healthcare benchmark also focuses on the diagnostic prediction of ten classes
(Fracture, Enlarged Cardiomediastinum, Consolidation, Atelectasis, Edema, Cardiomegaly, Lung
Lesion, Lung Opacity, Pneumonia, Pneumothorax). The bimodal dataset consists of 45,050 samples.
The two modalities used in our study are laboratory values and chest X-ray images.

CMU-MOSEI This large-scale benchmark targets multimodal sentiment analysis and emotion
recognition with seven classes covering different emotions. It contains 22,856 video samples of
speakers expressing opinions. The dataset comprises three modalities: vision, acoustics, and language.
Notably, unlike the other datasets, we utilize the pre-computed embeddings provided by the authors
rather than the raw data.

UK Biobank (UKBB) The UK Biobank is a large-scale, prospective biomedical database from
half a million UK participants. In our experiments, the costly modality targeted for acquisition
is proteomics, which is available for only a fraction of the full cohort. We constructed a subset
of 100,000 samples in which approximately half include proteomics data, accurately simulating
a resource-constrained acquisition scenario. The 15 modalities utilized include electronic health
records (EHRs), NMR metabolomics, proteomics, physical activity measurements, diet and alcohol
consumption questionnaires, baseline characteristics, smoking status, physiological measurements,
anthropometry, hand grip strength, cognitive function tests, ECGs, polygenic risk scores (PRS), and
arterial stiffness measurements.
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F RESULTS FOR SYMILE WITH BC-VAES

Table 8: Acquisition performance on Symile (AUROC) with Beta-Conditional Variational Auto
Encoders. Strategies are grouped by category. Best strategy among proposed ones and baselines in
bold for each column.

Strategy Fracture Enl. Card. Consolidation Atelectasis Edema Mean

Upper Bounds (for reference)
Oracle 2.807 ± 0.326 4.224 ± 0.501 2.716 ± 0.147 5.901 ± 0.861 2.096 ± 0.078 4.423
True KL-Div. 1.009 ± 0.115 0.752 ± 0.095 0.855 ± 0.020 0.689 ± 0.092 0.900 ± 0.007 0.800
True Rank 0.714 ± 0.094 0.728 ± 0.070 0.853 ± 0.017 0.777 ± 0.104 0.890 ± 0.007 0.719
True Uncert. 0.939 ± 0.088 0.735 ± 0.113 0.571 ± 0.024 0.106 ± 0.079 0.719 ± 0.009 0.555

Imputation-based (proposed)
KL-Div. 0.834 ± 0.060 0.420 ± 0.109 0.684 ± 0.017 0.527 ± 0.077 0.744 ± 0.013 0.584
Prob. 0.643 ± 0.073 0.559 ± 0.037 0.489 ± 0.022 −0.304 ± 0.170 0.603 ± 0.009 0.395
Rank 0.252 ± 0.109 0.281 ± 0.063 0.526 ± 0.019 0.327 ± 0.087 0.444 ± 0.009 0.366
Uncert. 0.911 ± 0.073 0.557 ± 0.042 0.593 ± 0.023 0.162 ± 0.075 0.637 ± 0.012 0.519

Baselines (no imputation)
Uncert. 0.862 ± 0.092 0.397 ± 0.052 0.510 ± 0.017 0.423 ± 0.046 0.592 ± 0.008 0.477
Prob. 0.127 ± 0.066 0.508 ± 0.026 0.526 ± 0.016 0.054 ± 0.133 0.462 ± 0.006 0.388
Random 0.429 ± 0.085 0.290 ± 0.060 0.497 ± 0.019 0.102 ± 0.097 0.480 ± 0.006 0.350

Strategy Cardiomegaly Lung Lesion Lung Opacity Pneumonia Pneumothorax Mean

Upper Bounds (for reference)
Oracle 2.715 ± 0.124 4.677 ± 0.799 6.125 ± 0.911 4.317 ± 0.181 8.654 ± 0.796 4.423
True KL-Div. 0.871 ± 0.011 0.701 ± 0.189 0.582 ± 0.146 0.892 ± 0.014 0.745 ± 0.096 0.800
True Rank 0.843 ± 0.015 0.457 ± 0.225 0.501 ± 0.140 0.825 ± 0.022 0.603 ± 0.102 0.719
True Uncert. 0.701 ± 0.016 0.626 ± 0.130 0.147 ± 0.057 0.664 ± 0.023 0.343 ± 0.036 0.555

Imputation-based (proposed)
KL-Div. 0.718 ± 0.019 0.456 ± 0.097 0.324 ± 0.232 0.757 ± 0.025 0.380 ± 0.129 0.584
Prob. 0.553 ± 0.014 0.710 ± 0.213 0.023 ± 0.076 0.096 ± 0.030 0.580 ± 0.052 0.395
Rank 0.416 ± 0.020 0.357 ± 0.309 0.311 ± 0.087 0.493 ± 0.019 0.251 ± 0.065 0.366
Uncert. 0.629 ± 0.018 0.596 ± 0.131 0.095 ± 0.161 0.567 ± 0.019 0.448 ± 0.041 0.519

Baselines (no imputation)
Uncert. 0.531 ± 0.015 0.534 ± 0.087 −0.022 ± 0.318 0.441 ± 0.017 0.500 ± 0.023 0.477
Prob. 0.424 ± 0.013 0.468 ± 0.137 0.291 ± 0.066 0.518 ± 0.028 0.499 ± 0.023 0.388
Random 0.418 ± 0.014 0.441 ± 0.220 0.152 ± 0.115 0.399 ± 0.018 0.291 ± 0.087 0.350
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Table 9: Acquisition performance on Symile (AUPRC) with Beta-Conditional Variational Auto
Encoders. Strategies are grouped by category. Best strategy among proposed ones and baselines in
bold for each column.

Strategy Fracture Enl. Card. Consolidation Atelectasis Edema Mean

Upper Bounds (for reference)
Oracle 1.785 ± 0.110 3.468 ± 0.317 2.780 ± 0.146 2.632 ± 0.146 2.460 ± 0.099 4.116
True KL-Div. 0.798 ± 0.050 0.700 ± 0.101 0.828 ± 0.020 0.686 ± 0.026 0.888 ± 0.007 0.766
True Rank 0.736 ± 0.061 0.625 ± 0.096 0.822 ± 0.022 0.733 ± 0.046 0.843 ± 0.009 0.689
True Uncert. 0.778 ± 0.050 0.623 ± 0.044 0.606 ± 0.034 0.206 ± 0.033 0.731 ± 0.011 0.513

Imputation-based (proposed)
KL-Div. 0.725 ± 0.062 0.574 ± 0.095 0.636 ± 0.023 0.599 ± 0.034 0.733 ± 0.013 0.624
Prob. 0.642 ± 0.033 0.610 ± 0.037 0.539 ± 0.039 0.072 ± 0.059 0.696 ± 0.009 0.433
Rank 0.355 ± 0.050 0.334 ± 0.101 0.409 ± 0.029 0.405 ± 0.032 0.427 ± 0.010 0.409
Uncert. 0.757 ± 0.056 0.584 ± 0.048 0.592 ± 0.032 0.228 ± 0.030 0.637 ± 0.013 0.480

Baselines (no imputation)
Uncert. 0.713 ± 0.054 0.239 ± 0.127 0.429 ± 0.024 0.335 ± 0.022 0.579 ± 0.008 0.438
Prob. 0.265 ± 0.039 0.594 ± 0.023 0.567 ± 0.025 0.405 ± 0.035 0.565 ± 0.009 0.523
Random 0.455 ± 0.056 0.248 ± 0.076 0.444 ± 0.027 0.336 ± 0.044 0.485 ± 0.010 0.380

Strategy Cardiomegaly Lung Lesion Lung Opacity Pneumonia Pneumothorax Mean

Upper Bounds (for reference)
Oracle 2.902 ± 0.184 2.559 ± 0.272 3.156 ± 0.152 5.255 ± 0.253 14.162 ± 1.561 4.116
True KL-Div. 0.871 ± 0.014 0.488 ± 0.088 0.700 ± 0.026 0.879 ± 0.021 0.818 ± 0.044 0.766
True Rank 0.828 ± 0.022 0.533 ± 0.068 0.667 ± 0.036 0.824 ± 0.028 0.278 ± 0.139 0.689
True Uncert. 0.745 ± 0.016 0.183 ± 0.045 0.151 ± 0.032 0.525 ± 0.023 0.579 ± 0.076 0.513

Imputation-based (proposed)
KL-Div. 0.749 ± 0.023 0.390 ± 0.117 0.584 ± 0.023 0.736 ± 0.021 0.514 ± 0.099 0.624
Prob. 0.609 ± 0.016 0.221 ± 0.103 0.013 ± 0.048 0.064 ± 0.037 0.868 ± 0.034 0.433
Rank 0.472 ± 0.015 0.495 ± 0.095 0.336 ± 0.030 0.412 ± 0.026 0.448 ± 0.085 0.409
Uncert. 0.663 ± 0.019 −0.030 ± 0.109 0.202 ± 0.029 0.454 ± 0.021 0.719 ± 0.105 0.480

Baselines (no imputation)
Uncert. 0.534 ± 0.019 0.021 ± 0.127 0.301 ± 0.025 0.357 ± 0.018 0.871 ± 0.076 0.438
Prob. 0.478 ± 0.016 0.549 ± 0.063 0.407 ± 0.037 0.531 ± 0.022 0.871 ± 0.076 0.523
Random 0.465 ± 0.020 0.320 ± 0.099 0.202 ± 0.030 0.364 ± 0.023 0.483 ± 0.075 0.380
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G DETAILED RESULTS FOR MOSEI

Table 10: Acquisition performance on MOSEI (Image imputed by Text), showing Gfull for AU-
ROC/AUPRC. Strategies are grouped by category. Best strategy among proposed ones and baselines
in bold.

AUROC AUPRC

Strategy Gfull ± SEM ↑ Gfull ± SEM ↑

Upper Bounds (for reference)
Oracle 0.995 ± 0.006 0.995 ± 0.012
True KL-Div. 0.777 ± 0.005 0.790 ± 0.015
True Rank 0.763 ± 0.012 0.781 ± 0.014
True Uncert. 0.599 ± 0.015 0.673 ± 0.019

Imputation-based (proposed)
KL-Div 0.551 ± 0.012 0.590 ± 0.009
Probability 0.473 ± 0.010 0.598 ± 0.006
Rank 0.524 ± 0.012 0.560 ± 0.012
Uncertainty 0.500 ± 0.021 0.567 ± 0.009

Baselines (no imputation)
Uncertainty 0.507 ± 0.015 0.565 ± 0.018
Probability 0.451 ± 0.013 0.578 ± 0.009
Random 0.521 ± 0.006 0.575 ± 0.008

Table 11: Acquisition performance on MOSEI (Image imputed by Audio), showing Gfull for AU-
ROC/AUPRC. Strategies are grouped by category. Best strategy among proposed ones and baselines
in bold.

AUROC AUPRC

Strategy Gfull ± SEM ↑ Gfull ± SEM ↑

Upper Bounds (for reference)
Oracle 1.052 ± 0.007 1.011 ± 0.010
True KL-Div. 0.785 ± 0.009 0.803 ± 0.005
True Rank 0.783 ± 0.010 0.802 ± 0.012
True Uncert. 0.672 ± 0.007 0.742 ± 0.006

Imputation-based (proposed)
KL-Div 0.566 ± 0.011 0.601 ± 0.009
Probability 0.547 ± 0.002 0.629 ± 0.004
Rank 0.576 ± 0.013 0.614 ± 0.007
Uncertainty 0.545 ± 0.009 0.586 ± 0.007

Baselines (no imputation)
Uncertainty 0.545 ± 0.009 0.601 ± 0.014
Probability 0.526 ± 0.014 0.616 ± 0.008
Random 0.553 ± 0.008 0.603 ± 0.005
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Table 12: Acquisition performance on MOSEI (Image imputed by Text and Audio), showing Gfull
for AUROC/AUPRC. Strategies are grouped by category. Best strategy among proposed ones and
baselines in bold.

AUROC AUPRC

Strategy Gfull ± SEM ↑ Gfull ± SEM ↑

Upper Bounds (for reference)
Oracle 1.321 ± 0.009 1.315 ± 0.012
True KL-Div. 0.979 ± 0.006 0.862 ± 0.006
True Rank 0.960 ± 0.005 0.811 ± 0.006
True Uncert. 0.716 ± 0.004 0.750 ± 0.004

Imputation-based (proposed)
KL-Div 0.603 ± 0.007 0.627 ± 0.009
Probability 0.513 ± 0.002 0.610 ± 0.003
Rank 0.463 ± 0.005 0.491 ± 0.005
Uncertainty 0.499 ± 0.004 0.452 ± 0.004

Baselines (no imputation)
Uncertainty 0.513 ± 0.004 0.480 ± 0.005
Probability 0.534 ± 0.008 0.676 ± 0.007
Random 0.489 ± 0.002 0.527 ± 0.002

Table 13: Acquisition performance on MOSEI (Text imputed by Image), showing Gfull for AU-
ROC/AUPRC. Strategies are grouped by category. Best strategy among proposed ones and baselines
in bold.

AUROC AUPRC

Strategy Gfull ± SEM ↑ Gfull ± SEM ↑

Upper Bounds (for reference)
Oracle 1.613 ± 0.269 1.493 ± 0.166
True KL-Div. 0.845 ± 0.018 0.843 ± 0.010
True Rank 0.772 ± 0.024 0.784 ± 0.025
True Uncert. 0.633 ± 0.060 0.697 ± 0.030

Imputation-based (proposed)
KL-Div 0.900 ± 0.023 0.896 ± 0.022
Probability 0.806 ± 0.022 0.861 ± 0.023
Rank 0.309 ± 0.089 0.420 ± 0.065
Uncertainty 0.651 ± 0.049 0.747 ± 0.030

Baselines (no imputation)
Uncertainty 0.466 ± 0.045 0.537 ± 0.014
Probability 0.418 ± 0.055 0.532 ± 0.045
Random 0.417 ± 0.061 0.489 ± 0.051

Table 14: Acquisition performance on MOSEI (Text imputed by Audio), showing Gfull for AU-
ROC/AUPRC. Strategies are grouped by category. Best strategy among proposed ones and baselines
in bold.

AUROC AUPRC

Strategy Gfull ± SEM ↑ Gfull ± SEM ↑

Upper Bounds (for reference)
Oracle 8.867 ± 1.712 16.066 ± 2.592
True KL-Div. 0.645 ± 0.051 0.387 ± 0.136
True Rank 0.494 ± 0.147 0.015 ± 0.262
True Uncert. 0.913 ± 0.121 0.893 ± 0.141

Imputation-based (proposed)
KL-Div 2.962 ± 0.925 4.582 ± 1.938
Probability 3.157 ± 1.229 6.861 ± 1.806
Rank −0.413 ± 0.421 −1.134 ± 0.463
Uncertainty 1.592 ± 0.350 3.844 ± 0.806

Baselines (no imputation)
Uncertainty 0.591 ± 0.147 0.473 ± 0.204
Probability 0.662 ± 0.071 0.971 ± 0.014
Random 0.316 ± 0.059 0.376 ± 0.086
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Table 15: Acquisition performance on MOSEI (Text imputed by Image and Audio), showing Gfull
for AUROC/AUPRC. Strategies are grouped by category. Best strategy among proposed ones and
baselines in bold.

AUROC AUPRC

Strategy Gfull ± SEM ↑ Gfull ± SEM ↑

Upper Bounds (for reference)
Oracle 1.207 ± 0.012 1.280 ± 0.013
True KL-Div. 0.851 ± 0.002 0.842 ± 0.004
True Rank 0.836 ± 0.004 0.840 ± 0.005
True Uncert. 0.649 ± 0.009 0.691 ± 0.009

Imputation-based (proposed)
KL-Div 0.892 ± 0.002 0.894 ± 0.004
Probability 0.665 ± 0.004 0.727 ± 0.003
Rank 0.489 ± 0.003 0.520 ± 0.003
Uncertainty 0.662 ± 0.008 0.720 ± 0.007

Baselines (no imputation)
Uncertainty 0.538 ± 0.009 0.567 ± 0.009
Probability 0.379 ± 0.003 0.462 ± 0.004
Random 0.512 ± 0.002 0.531 ± 0.003

Table 16: Acquisition performance on MOSEI (Audio imputed by Image), showing Gfull for AU-
ROC/AUPRC. Strategies are grouped by category. Best strategy among proposed ones and baselines
in bold.

AUROC AUPRC

Strategy Gfull ± SEM ↑ Gfull ± SEM ↑

Upper Bounds (for reference)
Oracle 1.238 ± 0.124 1.207 ± 0.093
True KL-Div. 0.826 ± 0.014 0.821 ± 0.019
True Rank 0.752 ± 0.030 0.780 ± 0.025
True Uncert. 0.544 ± 0.034 0.627 ± 0.023

Imputation-based (proposed)
KL-Div 0.800 ± 0.012 0.803 ± 0.017
Probability 0.684 ± 0.020 0.737 ± 0.024
Rank 0.326 ± 0.072 0.445 ± 0.052
Uncertainty 0.552 ± 0.035 0.625 ± 0.023

Baselines (no imputation)
Uncertainty 0.436 ± 0.043 0.502 ± 0.016
Probability 0.374 ± 0.034 0.510 ± 0.034
Random 0.397 ± 0.052 0.478 ± 0.039

Table 17: Acquisition performance on MOSEI (Audio imputed by Text), showing Gfull for AU-
ROC/AUPRC. Strategies are grouped by category. Best strategy among proposed ones and baselines
in bold.

AUROC AUPRC

Strategy Gfull ± SEM ↑ Gfull ± SEM ↑

Upper Bounds (for reference)
Oracle 4.955 ± 0.417 6.275 ± 0.948
True KL-Div. 0.815 ± 0.043 0.817 ± 0.057
True Rank 0.563 ± 0.073 0.645 ± 0.098
True Uncert. 0.520 ± 0.026 0.604 ± 0.059

Imputation-based (proposed)
KL-Div 2.305 ± 0.360 2.335 ± 0.499
Probability 2.306 ± 0.259 2.571 ± 0.483
Rank −0.210 ± 0.123 −0.093 ± 0.135
Uncertainty 1.154 ± 0.141 1.626 ± 0.303

Baselines (no imputation)
Uncertainty 0.519 ± 0.023 0.604 ± 0.044
Probability 0.416 ± 0.007 0.511 ± 0.018
Random 0.326 ± 0.024 0.439 ± 0.023
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Table 18: Acquisition performance on MOSEI (Audio imputed by Image and Text), showing Gfull
for AUROC/AUPRC. Strategies are grouped by category. Best strategy among proposed ones and
baselines in bold.

AUROC AUPRC

Strategy Gfull ± SEM ↑ Gfull ± SEM ↑

Upper Bounds (for reference)
Oracle 1.215 ± 0.010 1.275 ± 0.011
True KL-Div. 0.865 ± 0.002 0.850 ± 0.004
True Rank 0.833 ± 0.004 0.837 ± 0.005
True Uncert. 0.645 ± 0.007 0.693 ± 0.006

Imputation-based (proposed)
KL-Div 0.857 ± 0.002 0.846 ± 0.004
Probability 0.667 ± 0.003 0.725 ± 0.003
Rank 0.459 ± 0.004 0.489 ± 0.004
Uncertainty 0.646 ± 0.007 0.694 ± 0.007

Baselines (no imputation)
Uncertainty 0.536 ± 0.008 0.566 ± 0.008
Probability 0.368 ± 0.005 0.462 ± 0.005
Random 0.503 ± 0.003 0.530 ± 0.003
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H DETAILED RESULTS FOR MIMIC SYMILE

Table 19: Acquisition performance on MIMIC Symile for AUROC, showing Gfull. Strategies are
grouped by category. Best strategy among proposed and baseline methods in bold for each column.

Strategy Fracture Enl. Card. Consolidation Atelectasis Edema Mean

Upper Bounds (for reference)
Oracle 2.876 ± 0.368 3.722 ± 0.370 2.856 ± 0.147 4.862 ± 0.356 2.793 ± 0.324 4.580
True KL-Div. 1.029 ± 0.165 1.019 ± 0.051 0.885 ± 0.025 0.841 ± 0.045 0.920 ± 0.011 0.883
True Rank 0.963 ± 0.153 0.924 ± 0.058 0.946 ± 0.025 0.802 ± 0.068 0.887 ± 0.022 0.811
True Uncert. 0.915 ± 0.138 0.763 ± 0.052 0.749 ± 0.031 0.152 ± 0.052 0.648 ± 0.012 0.481

Imputation-based (proposed)
KL-Div 0.838 ± 0.164 0.882 ± 0.064 0.706 ± 0.021 0.779 ± 0.114 0.893 ± 0.080 0.833
Probability 0.861 ± 0.118 0.638 ± 0.046 0.610 ± 0.021 0.099 ± 0.107 0.514 ± 0.099 0.426
Rank 0.123 ± 0.155 0.331 ± 0.043 0.434 ± 0.026 0.371 ± 0.083 0.352 ± 0.030 0.378
Uncertainty 0.851 ± 0.138 0.686 ± 0.051 0.701 ± 0.029 0.188 ± 0.094 0.588 ± 0.018 0.440

Baselines (no imputation)
Uncertainty 0.616 ± 0.100 0.482 ± 0.033 0.543 ± 0.024 0.380 ± 0.031 0.539 ± 0.010 0.480
Probability 0.153 ± 0.086 0.519 ± 0.035 0.464 ± 0.020 0.446 ± 0.068 0.421 ± 0.010 0.458
Random 0.241 ± 0.121 0.399 ± 0.044 0.479 ± 0.020 0.250 ± 0.080 0.425 ± 0.017 0.376

Strategy Cardiomegaly Lung Lesion Lung Opacity Pneumonia Pneumothorax Mean

Upper Bounds (for reference)
Oracle 2.787 ± 0.139 4.974 ± 0.581 6.657 ± 0.649 4.817 ± 0.430 9.461 ± 1.049 4.580
True KL-Div. 0.885 ± 0.011 0.753 ± 0.179 0.750 ± 0.087 0.837 ± 0.043 0.910 ± 0.054 0.883
True Rank 0.878 ± 0.019 0.411 ± 0.216 0.793 ± 0.056 0.902 ± 0.029 0.605 ± 0.053 0.811
True Uncert. 0.524 ± 0.025 0.251 ± 0.177 0.212 ± 0.054 0.728 ± 0.023 −0.136 ± 0.065 0.481

Imputation-based (proposed)
KL-Div 0.747 ± 0.039 1.266 ± 0.258 0.683 ± 0.106 0.761 ± 0.060 0.773 ± 0.134 0.833
Probability 0.350 ± 0.053 0.190 ± 0.223 −0.075 ± 0.077 0.172 ± 0.142 0.898 ± 0.061 0.426
Rank 0.378 ± 0.016 0.607 ± 0.150 0.635 ± 0.080 0.437 ± 0.054 0.115 ± 0.082 0.378
Uncertainty 0.450 ± 0.041 0.022 ± 0.173 0.199 ± 0.057 0.658 ± 0.045 0.055 ± 0.060 0.440

Baselines (no imputation)
Uncertainty 0.480 ± 0.013 0.201 ± 0.179 0.406 ± 0.041 0.615 ± 0.019 0.536 ± 0.040 0.480
Probability 0.431 ± 0.015 0.778 ± 0.212 0.417 ± 0.065 0.416 ± 0.055 0.536 ± 0.040 0.458
Random 0.385 ± 0.015 0.365 ± 0.225 0.381 ± 0.057 0.505 ± 0.038 0.327 ± 0.061 0.376
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Table 20: Acquisition performance on MIMIC Symile for AUPRC, showing Gfull. Strategies are
grouped by category. Best strategy among proposed and baseline methods in bold for each column.

Strategy Fracture Enl. Card. Consolidation Atelectasis Edema Mean

Upper Bounds (for reference)
Oracle 2.579 ± 0.343 2.964 ± 0.201 4.784 ± 1.130 3.093 ± 0.201 3.015 ± 0.141 4.231
True KL-Div. 0.883 ± 0.094 0.970 ± 0.038 0.933 ± 0.057 0.781 ± 0.038 0.939 ± 0.013 0.871
True Rank 0.659 ± 0.176 0.858 ± 0.033 0.903 ± 0.090 0.720 ± 0.064 0.897 ± 0.022 0.776
True Uncert. 0.604 ± 0.073 0.812 ± 0.044 0.709 ± 0.036 0.050 ± 0.039 0.645 ± 0.015 0.450

Imputation-based (proposed)
KL-Div 0.770 ± 0.210 0.899 ± 0.044 0.895 ± 0.159 0.684 ± 0.063 0.832 ± 0.039 0.777
Probability 0.631 ± 0.073 0.673 ± 0.036 0.503 ± 0.106 0.028 ± 0.069 0.624 ± 0.049 0.449
Rank 0.461 ± 0.188 0.388 ± 0.034 0.421 ± 0.064 0.318 ± 0.053 0.351 ± 0.022 0.407
Uncertainty 0.663 ± 0.108 0.744 ± 0.046 0.611 ± 0.073 0.118 ± 0.034 0.569 ± 0.017 0.444

Baselines (no imputation)
Uncertainty 0.428 ± 0.155 0.524 ± 0.031 0.509 ± 0.036 0.246 ± 0.018 0.519 ± 0.011 0.443
Probability 0.242 ± 0.068 0.523 ± 0.026 0.546 ± 0.030 0.512 ± 0.064 0.533 ± 0.013 0.550
Random 0.149 ± 0.103 0.423 ± 0.032 0.429 ± 0.097 0.222 ± 0.094 0.448 ± 0.012 0.388

Strategy Cardiomegaly Lung Lesion Lung Opacity Pneumonia Pneumothorax Mean

Upper Bounds (for reference)
Oracle 2.746 ± 0.110 2.520 ± 0.250 4.092 ± 0.259 5.895 ± 0.406 10.623 ± 0.708 4.231
True KL-Div. 0.853 ± 0.010 0.828 ± 0.073 0.792 ± 0.037 0.906 ± 0.032 0.827 ± 0.043 0.871
True Rank 0.882 ± 0.018 0.676 ± 0.088 0.771 ± 0.045 0.911 ± 0.030 0.483 ± 0.075 0.776
True Uncert. 0.473 ± 0.029 0.181 ± 0.067 0.140 ± 0.029 0.595 ± 0.024 0.293 ± 0.052 0.450

Imputation-based (proposed)
KL-Div 0.729 ± 0.034 0.896 ± 0.146 0.722 ± 0.043 0.763 ± 0.059 0.581 ± 0.084 0.777
Probability 0.366 ± 0.047 0.320 ± 0.104 0.041 ± 0.065 0.339 ± 0.079 0.965 ± 0.027 0.449
Rank 0.384 ± 0.014 0.564 ± 0.086 0.402 ± 0.050 0.389 ± 0.034 0.396 ± 0.054 0.407
Uncertainty 0.424 ± 0.038 0.130 ± 0.053 0.149 ± 0.034 0.519 ± 0.033 0.513 ± 0.066 0.444

Baselines (no imputation)
Uncertainty 0.434 ± 0.018 0.215 ± 0.033 0.260 ± 0.023 0.482 ± 0.019 0.811 ± 0.041 0.443
Probability 0.479 ± 0.017 0.756 ± 0.136 0.555 ± 0.037 0.541 ± 0.029 0.811 ± 0.041 0.550
Random 0.386 ± 0.013 0.503 ± 0.103 0.354 ± 0.053 0.435 ± 0.033 0.527 ± 0.053 0.388
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Table 21: Acquisition performance on MIMIC Symile for AUROC (Image imputed by Lab), showing
Gfull. Strategies are grouped by category. Best strategy among proposed and baseline methods in
bold for each column.

Strategy Fracture Enl. Card. Consolidation Atelectasis Edema Mean

Upper Bounds (for reference)
Oracle 4.144 ± 2.172 2.120 ± 0.465 2.803 ± 0.306 2.381 ± 0.215 1.684 ± 0.070 4.104
True KL-Div. 0.728 ± 0.137 0.816 ± 0.011 0.611 ± 0.084 0.837 ± 0.028 0.813 ± 0.009 0.825
True Rank 1.062 ± 0.643 0.614 ± 0.111 0.591 ± 0.157 0.816 ± 0.065 0.765 ± 0.024 0.707
True Uncert. 0.686 ± 0.374 0.606 ± 0.068 0.637 ± 0.140 0.496 ± 0.148 0.619 ± 0.024 0.601

Imputation-based (proposed)
KL-Div −1.410 ± 0.037 0.477 ± 0.108 0.282 ± 0.146 0.626 ± 0.137 0.503 ± 0.022 0.247
Probability 0.231 ± 0.288 0.498 ± 0.036 0.514 ± 0.060 0.503 ± 0.056 0.454 ± 0.020 0.379
Rank −0.725 ± 0.858 0.190 ± 0.201 0.520 ± 0.018 0.403 ± 0.085 0.527 ± 0.032 0.225
Uncertainty 0.168 ± 0.317 0.400 ± 0.025 0.620 ± 0.179 0.422 ± 0.130 0.493 ± 0.019 0.448

Baselines (no imputation)
Uncertainty 0.129 ± 0.339 0.332 ± 0.069 0.423 ± 0.201 0.456 ± 0.106 0.503 ± 0.020 0.433
Probability 0.129 ± 0.339 0.515 ± 0.057 0.530 ± 0.049 0.601 ± 0.101 0.477 ± 0.018 0.444
Random −0.509 ± 0.041 0.356 ± 0.070 0.503 ± 0.163 0.609 ± 0.091 0.492 ± 0.023 0.307

Strategy Cardiomegaly Lung Lesion Lung Opacity Pneumonia Pneumothorax Mean

Upper Bounds (for reference)
Oracle 1.793 ± 0.077 5.417 ± 4.001 7.073 ± 2.202 4.743 ± 1.268 8.881 ± 1.894 4.104
True KL-Div. 0.822 ± 0.010 1.543 ± 0.689 0.663 ± 0.095 0.884 ± 0.063 0.530 ± 0.109 0.825
True Rank 0.663 ± 0.042 1.291 ± 0.557 0.530 ± 0.154 0.705 ± 0.170 0.035 ± 0.068 0.707
True Uncert. 0.272 ± 0.091 1.128 ± 0.870 0.622 ± 0.187 0.687 ± 0.038 0.254 ± 0.213 0.601

Imputation-based (proposed)
KL-Div 0.492 ± 0.030 0.847 ± 0.033 0.459 ± 0.146 0.481 ± 0.158 −0.285 ± 0.221 0.247
Probability 0.301 ± 0.081 0.418 ± 0.193 0.034 ± 0.303 0.372 ± 0.256 0.461 ± 0.128 0.379
Rank 0.434 ± 0.045 −0.219 ± 0.837 0.956 ± 0.383 0.363 ± 0.080 −0.201 ± 0.261 0.225
Uncertainty 0.395 ± 0.020 0.574 ± 0.327 0.400 ± 0.126 0.395 ± 0.040 0.608 ± 0.201 0.448

Baselines (no imputation)
Uncertainty 0.433 ± 0.015 0.490 ± 0.096 0.558 ± 0.358 0.424 ± 0.053 0.587 ± 0.180 0.433
Probability 0.419 ± 0.065 0.505 ± 0.108 0.263 ± 0.254 0.417 ± 0.228 0.587 ± 0.180 0.444
Random 0.420 ± 0.063 0.384 ± 0.068 0.200 ± 0.455 0.444 ± 0.085 0.169 ± 0.359 0.307
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Table 22: Acquisition performance on MIMIC Symile for AUPRC (Image imputed by Lab), showing
Gfull. Strategies are grouped by category. Best strategy among proposed and baseline methods in
bold for each column.

Strategy Fracture Enl. Card. Consolidation Atelectasis Edema Mean

Upper Bounds (for reference)
Oracle 3.844 ± 2.595 1.792 ± 0.288 2.826 ± 0.677 1.930 ± 0.221 1.778 ± 0.101 4.862
True KL-Div. 0.869 ± 0.023 0.827 ± 0.021 0.620 ± 0.156 0.812 ± 0.024 0.775 ± 0.013 0.770
True Rank 1.398 ± 0.874 0.566 ± 0.140 0.492 ± 0.345 0.827 ± 0.034 0.759 ± 0.024 0.575
True Uncert. 0.712 ± 0.210 0.650 ± 0.111 0.655 ± 0.118 0.538 ± 0.165 0.579 ± 0.041 0.498

Imputation-based (proposed)
KL-Div −1.450 ± 1.121 0.464 ± 0.132 0.149 ± 0.370 0.652 ± 0.149 0.610 ± 0.010 0.131
Probability 0.210 ± 0.451 0.575 ± 0.018 0.735 ± 0.084 0.591 ± 0.035 0.598 ± 0.016 0.568
Rank −0.777 ± 1.263 0.261 ± 0.185 0.548 ± 0.051 0.438 ± 0.134 0.480 ± 0.042 0.290
Uncertainty 0.157 ± 0.477 0.456 ± 0.075 0.516 ± 0.245 0.477 ± 0.170 0.358 ± 0.021 0.441

Baselines (no imputation)
Uncertainty 0.132 ± 0.484 0.369 ± 0.094 0.199 ± 0.387 0.466 ± 0.152 0.368 ± 0.022 0.401
Probability 0.132 ± 0.484 0.592 ± 0.029 0.754 ± 0.084 0.632 ± 0.071 0.612 ± 0.012 0.621
Random −0.110 ± 0.296 0.408 ± 0.060 0.420 ± 0.208 0.599 ± 0.156 0.489 ± 0.037 0.440

Strategy Cardiomegaly Lung Lesion Lung Opacity Pneumonia Pneumothorax Mean

Upper Bounds (for reference)
Oracle 1.749 ± 0.092 2.456 ± 1.140 7.505 ± 3.891 4.470 ± 1.249 20.270 ± 6.707 4.862
True KL-Div. 0.774 ± 0.017 1.035 ± 0.214 0.413 ± 0.176 0.793 ± 0.046 0.781 ± 0.044 0.770
True Rank 0.667 ± 0.037 0.888 ± 0.274 0.326 ± 0.248 0.669 ± 0.058 −0.837 ± 0.865 0.575
True Uncert. 0.269 ± 0.134 0.598 ± 0.430 0.291 ± 0.099 0.562 ± 0.027 0.129 ± 0.407 0.498

Imputation-based (proposed)
KL-Div 0.507 ± 0.059 0.742 ± 0.101 0.382 ± 0.251 0.639 ± 0.066 −1.388 ± 1.198 0.131
Probability 0.327 ± 0.126 0.398 ± 0.274 0.407 ± 0.140 0.659 ± 0.129 1.176 ± 0.314 0.568
Rank 0.390 ± 0.068 0.069 ± 0.552 1.071 ± 0.611 0.469 ± 0.059 −0.047 ± 0.555 0.290
Uncertainty 0.321 ± 0.042 0.317 ± 0.186 0.176 ± 0.196 0.242 ± 0.030 1.390 ± 0.419 0.441

Baselines (no imputation)
Uncertainty 0.343 ± 0.033 0.372 ± 0.120 0.142 ± 0.320 0.265 ± 0.044 1.352 ± 0.410 0.401
Probability 0.452 ± 0.103 0.528 ± 0.184 0.497 ± 0.287 0.664 ± 0.107 1.352 ± 0.410 0.621
Random 0.369 ± 0.101 0.478 ± 0.117 0.810 ± 0.961 0.449 ± 0.051 0.484 ± 0.166 0.440
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Table 23: Acquisition performance on MIMIC Symile for AUROC (Image imputed by ECG), showing
Gfull. Strategies are grouped by category. Best strategy among proposed and baseline methods in
bold for each column.

Strategy Fracture Enl. Card. Consolidation Atelectasis Edema Mean

Upper Bounds (for reference)
Oracle 4.028 ± 2.600 1.959 ± 0.358 1.960 ± 0.164 3.526 ± 0.947 1.639 ± 0.050 3.892
True KL-Div. 0.963 ± 0.224 0.852 ± 0.051 0.725 ± 0.030 0.614 ± 0.152 0.777 ± 0.003 0.874
True Rank 0.192 ± 0.075 0.559 ± 0.101 0.753 ± 0.013 −0.784 ± 1.091 0.719 ± 0.043 0.327
True Uncert. 0.934 ± 0.189 0.700 ± 0.131 0.717 ± 0.039 −0.853 ± 0.584 0.658 ± 0.050 0.024

Imputation-based (proposed)
KL-Div 0.425 ± 0.323 0.561 ± 0.079 0.769 ± 0.096 −0.353 ± 0.827 0.621 ± 0.030 0.669
Probability 0.650 ± 0.024 0.538 ± 0.107 0.709 ± 0.095 0.162 ± 0.130 0.591 ± 0.024 0.443
Rank 0.411 ± 0.193 0.337 ± 0.122 0.538 ± 0.050 −0.165 ± 0.412 0.445 ± 0.038 0.380
Uncertainty 0.750 ± 0.011 0.527 ± 0.112 0.720 ± 0.083 0.466 ± 0.229 0.431 ± 0.026 0.167

Baselines (no imputation)
Uncertainty −0.962 ± 1.403 0.380 ± 0.050 0.567 ± 0.064 0.591 ± 0.180 0.427 ± 0.022 −0.055
Probability 0.133 ± 0.291 0.442 ± 0.050 0.500 ± 0.028 −0.684 ± 0.967 0.427 ± 0.022 0.650
Random −0.803 ± 0.529 0.482 ± 0.038 0.647 ± 0.019 0.227 ± 0.307 0.513 ± 0.018 0.263

Strategy Cardiomegaly Lung Lesion Lung Opacity Pneumonia Pneumothorax Mean

Upper Bounds (for reference)
Oracle 2.263 ± 0.151 9.495 ± 7.441 4.112 ± 0.961 2.196 ± 0.132 7.745 ± 2.386 3.892
True KL-Div. 0.777 ± 0.016 1.758 ± 1.206 0.881 ± 0.085 0.725 ± 0.019 0.664 ± 0.088 0.874
True Rank 0.560 ± 0.050 −0.731 ± 0.850 0.808 ± 0.103 0.777 ± 0.022 0.416 ± 0.209 0.327
True Uncert. 0.741 ± 0.021 −3.450 ± 3.932 −0.150 ± 0.160 0.727 ± 0.010 0.213 ± 0.412 0.024

Imputation-based (proposed)
KL-Div 0.271 ± 0.065 2.123 ± 1.791 0.776 ± 0.125 0.571 ± 0.018 0.924 ± 0.134 0.669
Probability 0.374 ± 0.034 −0.235 ± 0.921 0.122 ± 0.178 0.568 ± 0.030 0.952 ± 0.095 0.443
Rank 0.201 ± 0.072 0.764 ± 0.047 0.272 ± 0.153 0.639 ± 0.029 0.363 ± 0.307 0.380
Uncertainty 0.382 ± 0.028 −2.196 ± 2.882 0.086 ± 0.165 0.630 ± 0.021 −0.129 ± 0.190 0.167

Baselines (no imputation)
Uncertainty 0.307 ± 0.038 −3.361 ± 3.790 0.231 ± 0.070 0.649 ± 0.017 0.625 ± 0.086 −0.055
Probability 0.336 ± 0.018 3.511 ± 2.928 0.632 ± 0.027 0.575 ± 0.048 0.625 ± 0.086 0.650
Random 0.222 ± 0.044 0.102 ± 0.610 0.485 ± 0.131 0.515 ± 0.036 0.240 ± 0.153 0.263
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Table 24: Acquisition performance on MIMIC Symile for AUPRC (Image imputed by ECG), showing
Gfull. Strategies are grouped by category. Best strategy among proposed and baseline methods in
bold for each column.

Strategy Fracture Enl. Card. Consolidation Atelectasis Edema Mean

Upper Bounds (for reference)
Oracle 6.343 ± 5.165 1.593 ± 0.113 1.950 ± 0.162 2.785 ± 0.530 1.832 ± 0.041 4.085
True KL-Div. 1.358 ± 0.553 0.818 ± 0.060 0.776 ± 0.039 0.526 ± 0.206 0.855 ± 0.004 0.814
True Rank −0.157 ± 0.576 0.643 ± 0.064 0.808 ± 0.008 −0.477 ± 0.824 0.741 ± 0.031 0.420
True Uncert. 1.331 ± 0.520 0.699 ± 0.124 0.790 ± 0.026 −0.640 ± 0.325 0.745 ± 0.040 0.489

Imputation-based (proposed)
KL-Div −0.784 ± 1.571 0.613 ± 0.082 0.870 ± 0.127 −0.203 ± 0.570 0.737 ± 0.035 0.434
Probability 0.498 ± 0.210 0.552 ± 0.123 0.868 ± 0.103 0.136 ± 0.118 0.722 ± 0.027 0.590
Rank 0.116 ± 0.576 0.468 ± 0.033 0.652 ± 0.045 −0.068 ± 0.285 0.524 ± 0.027 0.419
Uncertainty 0.642 ± 0.147 0.553 ± 0.129 0.874 ± 0.099 0.297 ± 0.183 0.553 ± 0.015 0.462

Baselines (no imputation)
Uncertainty −4.523 ± 5.002 0.451 ± 0.068 0.668 ± 0.070 0.360 ± 0.105 0.534 ± 0.013 −0.049
Probability −0.190 ± 0.747 0.496 ± 0.049 0.578 ± 0.027 −0.626 ± 0.854 0.534 ± 0.013 0.382
Random −3.009 ± 2.890 0.530 ± 0.060 0.715 ± 0.037 −0.038 ± 0.461 0.591 ± 0.012 0.098

Strategy Cardiomegaly Lung Lesion Lung Opacity Pneumonia Pneumothorax Mean

Upper Bounds (for reference)
Oracle 2.458 ± 0.268 2.158 ± 0.482 2.735 ± 0.464 3.162 ± 0.383 15.830 ± 5.601 4.085
True KL-Div. 0.827 ± 0.009 0.679 ± 0.250 0.711 ± 0.063 0.727 ± 0.026 0.861 ± 0.024 0.814
True Rank 0.555 ± 0.041 −0.005 ± 0.389 0.715 ± 0.109 0.809 ± 0.034 0.573 ± 0.150 0.420
True Uncert. 0.803 ± 0.012 0.184 ± 0.270 −0.069 ± 0.111 0.723 ± 0.046 0.326 ± 0.207 0.489

Imputation-based (proposed)
KL-Div 0.288 ± 0.055 0.468 ± 0.419 0.466 ± 0.061 0.595 ± 0.049 1.285 ± 0.172 0.434
Probability 0.471 ± 0.038 0.519 ± 0.046 0.173 ± 0.148 0.712 ± 0.048 1.249 ± 0.094 0.590
Rank 0.234 ± 0.057 0.554 ± 0.118 0.214 ± 0.099 0.688 ± 0.053 0.810 ± 0.388 0.419
Uncertainty 0.477 ± 0.035 0.224 ± 0.340 0.181 ± 0.070 0.625 ± 0.030 0.192 ± 0.082 0.462

Baselines (no imputation)
Uncertainty 0.304 ± 0.125 0.033 ± 0.364 0.225 ± 0.012 0.659 ± 0.046 0.801 ± 0.041 −0.049
Probability 0.427 ± 0.037 0.704 ± 0.458 0.524 ± 0.057 0.574 ± 0.072 0.801 ± 0.041 0.382
Random 0.227 ± 0.042 0.518 ± 0.037 0.362 ± 0.020 0.505 ± 0.048 0.584 ± 0.155 0.098
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Table 25: Acquisition performance on MIMIC Symile for AUROC (Image imputed by Lab and
ECG), showing Gfull. Strategies are grouped by category. Best strategy among proposed and baseline
methods in bold for each column.

Strategy Fracture Enl. Card. Consolidation Atelectasis Edema Mean

Upper Bounds (for reference)
Oracle 2.679 ± 0.496 3.081 ± 0.257 2.539 ± 0.150 5.098 ± 0.624 2.119 ± 0.086 3.911
True KL-Div. 1.006 ± 0.111 1.105 ± 0.082 0.880 ± 0.033 0.703 ± 0.095 1.017 ± 0.023 0.922
True Rank 0.760 ± 0.142 1.076 ± 0.073 0.993 ± 0.052 0.930 ± 0.136 1.036 ± 0.023 0.884
True Uncert. 0.975 ± 0.140 0.877 ± 0.083 0.886 ± 0.065 0.300 ± 0.043 0.634 ± 0.018 0.494

Imputation-based (proposed)
KL-Div 0.770 ± 0.122 0.736 ± 0.077 0.711 ± 0.031 0.049 ± 0.191 0.535 ± 0.015 0.512
Probability 0.883 ± 0.111 0.563 ± 0.062 0.620 ± 0.034 0.706 ± 0.096 0.593 ± 0.010 0.628
Rank 0.594 ± 0.082 0.335 ± 0.079 0.423 ± 0.070 0.130 ± 0.226 0.466 ± 0.012 0.392
Uncertainty 0.785 ± 0.085 0.535 ± 0.064 0.728 ± 0.050 0.545 ± 0.088 0.556 ± 0.015 0.505

Baselines (no imputation)
Uncertainty 0.514 ± 0.151 0.495 ± 0.038 0.529 ± 0.045 0.466 ± 0.056 0.545 ± 0.014 0.474
Probability 0.265 ± 0.046 0.463 ± 0.035 0.461 ± 0.037 0.268 ± 0.136 0.401 ± 0.009 0.421
Random 0.005 ± 0.204 0.386 ± 0.047 0.467 ± 0.031 0.373 ± 0.145 0.472 ± 0.014 0.425

Strategy Cardiomegaly Lung Lesion Lung Opacity Pneumonia Pneumothorax Mean

Upper Bounds (for reference)
Oracle 2.552 ± 0.116 3.249 ± 0.605 4.964 ± 0.431 3.736 ± 0.369 9.096 ± 1.223 3.911
True KL-Div. 0.910 ± 0.030 0.517 ± 0.243 0.811 ± 0.052 0.967 ± 0.061 1.298 ± 0.121 0.922
True Rank 1.047 ± 0.032 0.545 ± 0.093 0.839 ± 0.055 1.010 ± 0.056 0.607 ± 0.109 0.884
True Uncert. 0.514 ± 0.027 0.200 ± 0.151 0.293 ± 0.058 0.729 ± 0.044 −0.468 ± 0.155 0.494

Imputation-based (proposed)
KL-Div 0.374 ± 0.016 0.403 ± 0.210 0.457 ± 0.079 0.518 ± 0.036 0.565 ± 0.103 0.512
Probability 0.453 ± 0.016 0.680 ± 0.352 0.391 ± 0.064 0.443 ± 0.042 0.950 ± 0.096 0.628
Rank 0.408 ± 0.017 0.581 ± 0.211 0.493 ± 0.063 0.487 ± 0.054 −0.000 ± 0.092 0.392
Uncertainty 0.476 ± 0.011 0.289 ± 0.162 0.366 ± 0.052 0.599 ± 0.031 0.171 ± 0.078 0.505

Baselines (no imputation)
Uncertainty 0.457 ± 0.013 0.241 ± 0.261 0.381 ± 0.040 0.588 ± 0.023 0.520 ± 0.055 0.474
Probability 0.437 ± 0.011 0.448 ± 0.230 0.496 ± 0.057 0.449 ± 0.027 0.519 ± 0.055 0.421
Random 0.418 ± 0.015 0.739 ± 0.256 0.530 ± 0.100 0.493 ± 0.051 0.362 ± 0.101 0.425
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Table 26: Acquisition performance on MIMIC Symile for AUPRC (Image imputed by Lab and
ECG), showing Gfull. Strategies are grouped by category. Best strategy among proposed and baseline
methods in bold for each column.

Strategy Fracture Enl. Card. Consolidation Atelectasis Edema Mean

Upper Bounds (for reference)
Oracle 3.244 ± 0.899 2.660 ± 0.365 3.290 ± 0.320 3.756 ± 0.538 2.484 ± 0.159 4.063
True KL-Div. 1.111 ± 0.223 0.983 ± 1.014 0.998 ± 0.079 0.674 ± 0.088 1.014 ± 0.034 0.939
True Rank 0.503 ± 0.538 0.727 ± 0.084 1.063 ± 0.108 0.762 ± 0.088 1.014 ± 0.036 0.822
True Uncert. 0.826 ± 0.166 0.950 ± 0.103 0.923 ± 0.060 0.143 ± 0.041 0.636 ± 0.029 0.493

Imputation-based (proposed)
KL-Div 1.238 ± 0.634 0.636 ± 0.075 0.754 ± 0.075 0.330 ± 0.146 0.467 ± 0.020 0.585
Probability 0.821 ± 0.184 0.581 ± 0.048 0.714 ± 0.055 0.478 ± 0.083 0.648 ± 0.012 0.610
Rank 1.133 ± 0.543 0.375 ± 0.081 0.582 ± 0.103 0.139 ± 0.174 0.469 ± 0.018 0.491
Uncertainty 1.018 ± 0.316 0.516 ± 0.058 0.783 ± 0.081 0.285 ± 0.039 0.505 ± 0.015 0.500

Baselines (no imputation)
Uncertainty 0.843 ± 0.289 0.410 ± 0.050 0.562 ± 0.061 0.275 ± 0.038 0.521 ± 0.019 0.467
Probability 0.196 ± 0.143 0.567 ± 0.044 0.520 ± 0.042 0.442 ± 0.111 0.572 ± 0.014 0.515
Random −0.073 ± 0.199 0.397 ± 0.084 0.556 ± 0.053 0.411 ± 0.100 0.470 ± 0.013 0.406

Strategy Cardiomegaly Lung Lesion Lung Opacity Pneumonia Pneumothorax Mean

Upper Bounds (for reference)
Oracle 2.494 ± 0.181 2.376 ± 0.472 4.061 ± 0.416 4.964 ± 0.520 11.303 ± 0.974 4.063
True KL-Div. 0.823 ± 0.022 0.809 ± 0.139 0.873 ± 0.081 1.002 ± 0.049 1.105 ± 0.058 0.939
True Rank 1.012 ± 0.039 0.573 ± 0.099 0.952 ± 0.093 1.027 ± 0.058 0.591 ± 0.077 0.822
True Uncert. 0.394 ± 0.037 0.201 ± 0.029 0.184 ± 0.050 0.624 ± 0.044 0.054 ± 0.058 0.493

Imputation-based (proposed)
KL-Div 0.346 ± 0.023 0.560 ± 0.075 0.524 ± 0.074 0.441 ± 0.037 0.551 ± 0.075 0.585
Probability 0.448 ± 0.029 0.569 ± 0.185 0.404 ± 0.073 0.481 ± 0.039 0.959 ± 0.048 0.610
Rank 0.390 ± 0.023 0.523 ± 0.091 0.359 ± 0.088 0.449 ± 0.034 0.492 ± 0.045 0.491
Uncertainty 0.346 ± 0.019 0.323 ± 0.061 0.279 ± 0.041 0.466 ± 0.034 0.475 ± 0.062 0.500

Baselines (no imputation)
Uncertainty 0.334 ± 0.018 0.257 ± 0.049 0.262 ± 0.035 0.491 ± 0.029 0.715 ± 0.033 0.467
Probability 0.555 ± 0.015 0.448 ± 0.096 0.607 ± 0.062 0.528 ± 0.032 0.715 ± 0.033 0.515
Random 0.415 ± 0.015 0.575 ± 0.228 0.368 ± 0.069 0.432 ± 0.057 0.510 ± 0.090 0.406
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Table 27: Acquisition performance on MIMIC Symile for AUROC (Lab imputed by Image), showing
Gfull. Strategies are grouped by category. Best strategy among proposed and baseline methods in
bold for each column.

Strategy Fracture Enl. Card. Consolidation Atelectasis Edema Mean

Upper Bounds (for reference)
Oracle 2.404 ± 0.448 5.403 ± 1.547 2.446 ± 0.350 4.261 4.715 ± 0.988 6.306
True KL-Div. 0.901 ± 0.104 0.727 ± 0.113 0.874 ± 0.045 0.807 0.670 ± 0.093 0.634
True Rank 0.490 ± 0.208 0.872 ± 0.019 0.873 ± 0.081 1.691 0.627 ± 0.148 0.604
True Uncert. −0.204 ± 0.122 0.690 ± 0.193 0.319 ± 0.084 −0.511 0.507 ± 0.100 0.154

Imputation-based (proposed)
KL-Div 0.443 ± 0.028 0.503 ± 0.316 0.523 ± 0.078 0.383 0.193 ± 0.090 0.684
Probability 0.087 ± 0.217 0.428 ± 0.155 0.574 ± 0.117 0.221 0.457 ± 0.056 0.380
Rank 0.848 ± 0.131 −0.103 ± 0.100 0.309 ± 0.073 −0.390 0.463 ± 0.125 −0.139
Uncertainty 0.074 ± 0.187 0.593 ± 0.168 0.415 ± 0.107 0.278 0.624 ± 0.029 0.311

Baselines (no imputation)
Uncertainty 0.515 ± 0.062 0.781 ± 0.101 0.394 ± 0.106 0.310 0.636 ± 0.041 0.487
Probability 0.105 ± 0.251 0.444 ± 0.144 0.567 ± 0.112 0.267 0.449 ± 0.055 0.390
Random 0.366 ± 0.519 0.662 ± 0.085 0.504 ± 0.111 0.087 0.229 ± 0.142 0.419

Strategy Cardiomegaly Lung Lesion Lung Opacity Pneumonia Pneumothorax Mean

Upper Bounds (for reference)
Oracle 11.461 9.175 ± 4.619 10.440 ± 4.341 4.058 ± 0.233 8.693 ± 2.295 6.306
True KL-Div. 0.359 0.043 ± 1.152 0.608 ± 0.141 0.793 ± 0.054 0.561 ± 0.157 0.634
True Rank 0.396 0.640 ± 1.426 −0.637 ± 0.091 0.797 ± 0.031 0.296 ± 0.208 0.604
True Uncert. 0.507 1.296 ± 0.137 −1.510 ± 0.311 0.320 ± 0.119 0.128 ± 0.257 0.154

Imputation-based (proposed)
KL-Div 0.477 3.593 ± 0.801 0.055 ± 1.005 0.630 ± 0.024 0.037 ± 0.291 0.684
Probability 0.551 2.347 ± 0.438 −2.017 ± 0.592 0.581 ± 0.030 0.575 ± 0.116 0.380
Rank −0.413 −1.673 ± 4.164 −0.741 ± 0.142 0.398 ± 0.150 −0.084 ± 0.300 −0.139
Uncertainty 0.646 0.200 ± 0.174 −0.684 ± 0.697 0.401 ± 0.073 0.566 ± 0.142 0.311

Baselines (no imputation)
Uncertainty 0.277 0.172 ± 0.139 0.706 ± 0.448 0.501 ± 0.107 0.575 ± 0.126 0.487
Probability 0.471 1.854 ± 1.407 −1.445 ± 0.962 0.615 ± 0.016 0.575 ± 0.126 0.390
Random −0.872 2.030 ± 1.179 0.329 ± 0.460 0.490 ± 0.124 0.365 ± 0.137 0.419
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Table 28: Acquisition performance on MIMIC Symile for AUPRC (Lab imputed by Image), showing
Gfull. Strategies are grouped by category. Best strategy among proposed and baseline methods in
bold for each column.

Strategy Fracture Enl. Card. Consolidation Atelectasis Edema Mean

Upper Bounds (for reference)
Oracle 2.142 ± 0.360 3.772 ± 0.624 4.042 ± 1.747 – 5.560 ± 1.093 4.751
True KL-Div. 0.916 ± 0.056 0.648 ± 0.079 0.997 ± 0.160 – 0.568 ± 0.132 0.699
True Rank 0.400 ± 0.206 0.686 ± 0.095 1.106 ± 0.342 – 0.603 ± 0.139 0.590
True Uncert. −1.106 ± 0.446 0.506 ± 0.100 0.258 ± 0.136 – 0.477 ± 0.270 0.153

Imputation-based (proposed)
KL-Div 0.499 ± 0.117 0.481 ± 0.203 0.413 ± 0.187 – 0.269 ± 0.189 0.680
Probability −0.381 ± 0.441 0.618 ± 0.008 0.339 ± 0.318 – 0.681 ± 0.114 0.442
Rank 0.824 ± 0.103 −0.157 ± 0.006 −0.044 ± 0.404 – 0.246 ± 0.115 0.186
Uncertainty −0.429 ± 0.473 0.415 ± 0.161 0.541 ± 0.220 – 0.570 ± 0.164 0.124

Baselines (no imputation)
Uncertainty 0.455 ± 0.060 0.484 ± 0.099 0.537 ± 0.231 – 0.585 ± 0.160 0.440
Probability −0.362 ± 0.445 0.629 ± 0.007 0.325 ± 0.326 – 0.672 ± 0.112 0.572
Random 0.283 ± 0.513 0.635 ± 0.001 0.303 ± 0.231 – 0.253 ± 0.115 0.356

Strategy Cardiomegaly Lung Lesion Lung Opacity Pneumonia Pneumothorax Mean

Upper Bounds (for reference)
Oracle – 3.615 ± 0.753 3.868 4.819 ± 0.587 10.192 ± 4.607 4.751
True KL-Div. – 0.503 ± 0.458 0.513 0.865 ± 0.112 0.585 ± 0.087 0.699
True Rank – 0.974 ± 0.661 −0.184 0.709 ± 0.066 0.426 ± 0.076 0.590
True Uncert. – 0.621 ± 0.157 −0.406 0.202 ± 0.069 0.674 ± 0.151 0.153

Imputation-based (proposed)
KL-Div – 1.905 ± 0.140 0.987 0.723 ± 0.115 0.162 ± 0.123 0.680
Probability – 1.133 ± 0.483 −0.486 0.659 ± 0.050 0.976 ± 0.085 0.442
Rank – 0.274 ± 1.456 −0.263 0.304 ± 0.238 0.301 ± 0.113 0.186
Uncertainty – −0.397 ± 0.271 −0.893 0.261 ± 0.024 0.925 ± 0.045 0.124

Baselines (no imputation)
Uncertainty – 0.053 ± 0.070 0.109 0.330 ± 0.055 0.963 ± 0.071 0.440
Probability – 1.363 ± 0.660 0.282 0.708 ± 0.061 0.963 ± 0.071 0.572
Random – 0.088 ± 0.319 0.534 0.455 ± 0.187 0.296 ± 0.199 0.356
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Table 29: Acquisition performance on MIMIC Symile for AUROC (Lab imputed by ECG), showing
Gfull. Strategies are grouped by category. Best strategy among proposed and baseline methods in
bold for each column.

Strategy Fracture Enl. Card. Consolidation Atelectasis Edema Mean

Upper Bounds (for reference)
Oracle 2.830 ± 1.006 6.507 ± 2.813 1.993 ± 0.252 13.751 ± 3.349 5.706 ± 1.964 7.637
True KL-Div. 0.807 ± 0.072 1.043 ± 0.176 0.855 ± 0.056 0.933 ± 0.345 0.841 ± 0.028 0.727
True Rank 0.454 ± 0.258 0.880 ± 0.255 0.756 ± 0.027 0.462 ± 0.641 0.398 ± 0.151 0.290
True Uncert. 0.665 ± 0.104 0.273 ± 0.305 0.688 ± 0.056 −0.218 ± 1.149 0.568 ± 0.041 0.437

Imputation-based (proposed)
KL-Div 0.735 ± 0.130 1.221 ± 0.208 0.670 ± 0.136 4.739 ± 1.683 2.234 ± 0.684 2.096
Probability 0.569 ± 0.115 0.126 ± 0.370 0.775 ± 0.075 −4.498 ± 1.913 2.255 ± 0.646 −0.333
Rank 0.395 ± 0.117 0.160 ± 0.439 0.298 ± 0.039 1.303 ± 1.170 −1.119 ± 0.726 0.619
Uncertainty 0.612 ± 0.125 0.499 ± 0.346 0.773 ± 0.078 −4.102 ± 1.614 0.071 ± 0.175 −0.744

Baselines (no imputation)
Uncertainty 0.421 ± 0.290 0.544 ± 0.303 0.456 ± 0.081 0.431 ± 0.170 0.324 ± 0.024 0.574
Probability 0.069 ± 0.066 0.372 ± 0.420 0.505 ± 0.102 0.161 ± 0.787 0.324 ± 0.024 0.521
Random 0.117 ± 0.418 0.737 ± 0.338 0.531 ± 0.041 −0.400 ± 1.001 0.107 ± 0.142 0.189

Strategy Cardiomegaly Lung Lesion Lung Opacity Pneumonia Pneumothorax Mean

Upper Bounds (for reference)
Oracle – 13.135 ± 7.362 9.638 ± 2.483 3.075 ± 0.250 12.098 ± 2.848 7.637
True KL-Div. – −0.560 ± 1.556 0.982 ± 0.050 0.761 ± 0.031 0.884 ± 0.076 0.727
True Rank – −2.847 ± 4.746 1.545 ± 0.340 0.776 ± 0.020 0.185 ± 0.511 0.290
True Uncert. – 2.300 ± 1.585 0.157 ± 0.299 0.563 ± 0.120 −1.060 ± 0.540 0.437

Imputation-based (proposed)
KL-Div – 4.580 ± 1.600 2.539 ± 0.511 0.646 ± 0.117 1.494 ± 0.303 2.096
Probability – −2.903 ± 3.257 −1.391 ± 0.383 0.455 ± 0.124 1.617 ± 0.337 −0.333
Rank – 2.305 ± 0.688 1.567 ± 0.771 0.642 ± 0.053 0.017 ± 0.983 0.619
Uncertainty – −2.336 ± 1.344 −1.290 ± 0.341 0.494 ± 0.140 −1.416 ± 0.454 −0.744

Baselines (no imputation)
Uncertainty – 1.397 ± 1.699 0.190 ± 0.028 0.541 ± 0.082 0.867 ± 0.198 0.574
Probability – 0.657 ± 2.145 1.107 ± 0.654 0.626 ± 0.050 0.867 ± 0.198 0.521
Random – −0.793 ± 3.159 0.931 ± 0.196 0.555 ± 0.085 −0.086 ± 0.456 0.189
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Table 30: Acquisition performance on MIMIC Symile for AUPRC (Lab imputed by ECG), showing
Gfull. Strategies are grouped by category. Best strategy among proposed and baseline methods in
bold for each column.

Strategy Fracture Enl. Card. Consolidation Atelectasis Edema Mean

Upper Bounds (for reference)
Oracle 4.231 ± 2.318 4.018 ± 1.224 2.093 ± 0.267 6.269 ± 0.383 5.741 ± 1.374 6.317
True KL-Div. 0.924 ± 0.069 0.825 ± 0.017 0.883 ± 0.030 0.717 ± 0.570 0.897 ± 0.019 0.972
True Rank 0.030 ± 0.698 0.643 ± 0.103 0.846 ± 0.041 0.619 ± 1.260 0.351 ± 0.208 0.900
True Uncert. 0.730 ± 0.109 0.793 ± 0.209 0.784 ± 0.034 0.030 ± 0.615 0.740 ± 0.024 0.550

Imputation-based (proposed)
KL-Div 0.721 ± 0.166 1.292 ± 0.411 0.780 ± 0.157 1.533 ± 0.215 2.267 ± 0.487 1.779
Probability 0.532 ± 0.179 1.116 ± 0.598 0.920 ± 0.086 −0.332 ± 0.041 2.300 ± 0.464 0.751
Rank 0.092 ± 0.485 0.353 ± 0.268 0.372 ± 0.058 −0.032 ± 0.027 −0.641 ± 0.441 0.458
Uncertainty 0.580 ± 0.189 1.080 ± 0.651 0.930 ± 0.088 −0.549 ± 0.088 0.351 ± 0.131 0.145

Baselines (no imputation)
Uncertainty −1.088 ± 1.658 0.451 ± 0.118 0.605 ± 0.085 0.152 ± 0.036 0.645 ± 0.093 0.260
Probability −0.282 ± 0.309 0.672 ± 0.126 0.594 ± 0.102 0.769 ± 0.144 0.645 ± 0.093 1.112
Random −0.458 ± 0.636 0.631 ± 0.184 0.659 ± 0.051 0.925 ± 0.146 0.264 ± 0.154 0.556

Strategy Cardiomegaly Lung Lesion Lung Opacity Pneumonia Pneumothorax Mean

Upper Bounds (for reference)
Oracle – 8.610 ± 6.961 5.951 ± 0.522 7.534 ± 2.031 12.402 ± 2.525 6.317
True KL-Div. – 2.009 ± 1.288 0.811 ± 0.344 0.772 ± 0.111 0.910 ± 0.021 0.972
True Rank – 3.099 ± 2.419 1.137 ± 0.603 0.812 ± 0.056 0.561 ± 0.207 0.900
True Uncert. – 1.431 ± 1.304 −0.150 ± 0.288 0.555 ± 0.159 0.032 ± 0.114 0.550

Imputation-based (proposed)
KL-Div – 5.709 ± 4.716 1.662 ± 0.095 0.667 ± 0.138 1.378 ± 0.274 1.779
Probability – 0.927 ± 0.497 −0.770 ± 0.192 0.647 ± 0.140 1.420 ± 0.260 0.751
Rank – 1.988 ± 1.092 0.643 ± 0.448 0.564 ± 0.136 0.788 ± 0.367 0.458
Uncertainty – −0.954 ± 0.761 −0.714 ± 0.206 0.591 ± 0.192 −0.013 ± 0.125 0.145

Baselines (no imputation)
Uncertainty – −0.023 ± 0.028 0.078 ± 0.073 0.516 ± 0.137 1.005 ± 0.151 0.260
Probability – 5.083 ± 4.111 0.941 ± 0.112 0.581 ± 0.069 1.005 ± 0.151 1.112
Random – 1.804 ± 0.871 0.053 ± 0.419 0.510 ± 0.130 0.616 ± 0.097 0.556
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Table 31: Acquisition performance on MIMIC Symile for AUROC (Lab imputed by Image and
ECG), showing Gfull. Strategies are grouped by category. Best strategy among proposed and baseline
methods in bold for each column.

Strategy Fracture Enl. Card. Consolidation Atelectasis Edema Mean

Upper Bounds (for reference)
Oracle 2.416 ± 0.727 2.670 ± 0.218 3.090 ± 0.355 3.712 ± 0.446 2.174 ± 0.050 4.233
True KL-Div. 1.165 ± 0.267 0.883 ± 0.024 1.050 ± 0.058 1.092 ± 0.080 0.925 ± 0.006 0.981
True Rank 1.373 ± 0.427 0.811 ± 0.024 1.076 ± 0.050 0.904 ± 0.066 0.888 ± 0.008 0.883
True Uncert. 1.008 ± 0.213 0.720 ± 0.056 0.781 ± 0.030 −0.092 ± 0.044 0.675 ± 0.027 0.494

Imputation-based (proposed)
KL-Div 1.088 ± 0.224 0.875 ± 0.022 0.667 ± 0.039 1.193 ± 0.091 0.885 ± 0.008 1.035
Probability 1.084 ± 0.241 0.647 ± 0.048 0.657 ± 0.039 −0.270 ± 0.085 0.767 ± 0.008 0.390
Rank −0.190 ± 0.547 0.273 ± 0.051 0.415 ± 0.044 0.448 ± 0.088 0.192 ± 0.017 0.350
Uncertainty 0.981 ± 0.208 0.718 ± 0.054 0.736 ± 0.028 −0.143 ± 0.044 0.636 ± 0.027 0.448

Baselines (no imputation)
Uncertainty 0.772 ± 0.126 0.492 ± 0.034 0.627 ± 0.033 0.183 ± 0.030 0.506 ± 0.019 0.469
Probability 0.088 ± 0.147 0.529 ± 0.030 0.376 ± 0.025 0.804 ± 0.069 0.324 ± 0.007 0.521
Random 0.212 ± 0.278 0.404 ± 0.030 0.503 ± 0.030 0.247 ± 0.113 0.439 ± 0.014 0.268

Strategy Cardiomegaly Lung Lesion Lung Opacity Pneumonia Pneumothorax Mean

Upper Bounds (for reference)
Oracle 2.438 ± 0.113 6.864 ± 1.482 6.398 ± 0.783 4.889 ± 0.635 7.680 ± 0.820 4.233
True KL-Div. 0.887 ± 0.007 1.245 ± 0.526 0.863 ± 0.089 0.809 ± 0.032 0.892 ± 0.057 0.981
True Rank 0.777 ± 0.012 0.383 ± 0.609 0.822 ± 0.095 0.940 ± 0.026 0.855 ± 0.073 0.883
True Uncert. 0.878 ± 0.008 0.148 ± 0.198 0.045 ± 0.084 0.831 ± 0.047 −0.059 ± 0.078 0.494

Imputation-based (proposed)
KL-Div 0.887 ± 0.006 2.529 ± 0.817 0.914 ± 0.102 0.661 ± 0.036 0.651 ± 0.058 1.035
Probability 0.718 ± 0.008 −0.467 ± 0.520 −0.425 ± 0.153 0.445 ± 0.063 0.743 ± 0.056 0.390
Rank 0.326 ± 0.026 0.909 ± 0.407 0.492 ± 0.087 0.561 ± 0.035 0.079 ± 0.133 0.350
Uncertainty 0.882 ± 0.007 −0.351 ± 0.366 0.040 ± 0.080 0.838 ± 0.047 0.141 ± 0.068 0.448

Baselines (no imputation)
Uncertainty 0.693 ± 0.009 −0.022 ± 0.318 0.281 ± 0.070 0.730 ± 0.044 0.425 ± 0.039 0.469
Probability 0.260 ± 0.006 1.476 ± 0.565 0.538 ± 0.131 0.387 ± 0.044 0.425 ± 0.039 0.521
Random 0.334 ± 0.016 −0.383 ± 0.692 0.212 ± 0.120 0.492 ± 0.033 0.216 ± 0.078 0.268
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Table 32: Acquisition performance on MIMIC Symile for AUPRC (Lab imputed by Image and
ECG), showing Gfull. Strategies are grouped by category. Best strategy among proposed and baseline
methods in bold for each column.

Strategy Fracture Enl. Card. Consolidation Atelectasis Edema Mean

Upper Bounds (for reference)
Oracle 1.965 ± 0.497 2.573 ± 0.236 3.714 ± 0.473 2.444 ± 0.174 2.962 ± 0.166 3.748
True KL-Div. 0.961 ± 0.228 0.918 ± 0.033 1.042 ± 0.082 0.985 ± 0.053 0.954 ± 0.013 0.878
True Rank 0.899 ± 0.233 0.896 ± 0.037 1.138 ± 0.112 0.886 ± 0.051 0.922 ± 0.019 0.820
True Uncert. 0.610 ± 0.076 0.741 ± 0.066 0.736 ± 0.075 −0.096 ± 0.042 0.718 ± 0.030 0.482

Imputation-based (proposed)
KL-Div 0.914 ± 0.236 0.921 ± 0.039 0.587 ± 0.056 1.038 ± 0.046 0.925 ± 0.011 0.835
Probability 0.811 ± 0.100 0.619 ± 0.048 0.677 ± 0.026 −0.376 ± 0.097 0.848 ± 0.014 0.469
Rank 0.516 ± 0.085 0.343 ± 0.047 0.412 ± 0.046 0.355 ± 0.050 0.202 ± 0.019 0.370
Uncertainty 0.662 ± 0.086 0.759 ± 0.070 0.723 ± 0.084 −0.131 ± 0.030 0.691 ± 0.028 0.482

Baselines (no imputation)
Uncertainty 0.573 ± 0.099 0.564 ± 0.041 0.601 ± 0.074 0.152 ± 0.016 0.527 ± 0.023 0.485
Probability 0.265 ± 0.173 0.475 ± 0.038 0.424 ± 0.060 0.712 ± 0.038 0.344 ± 0.012 0.518
Random 0.504 ± 0.107 0.449 ± 0.031 0.612 ± 0.063 0.242 ± 0.096 0.471 ± 0.024 0.431

Strategy Cardiomegaly Lung Lesion Lung Opacity Pneumonia Pneumothorax Mean

Upper Bounds (for reference)
Oracle 3.070 ± 0.202 2.036 ± 0.167 3.622 ± 0.323 5.602 ± 0.520 9.490 ± 1.511 3.748
True KL-Div. 0.890 ± 0.014 0.761 ± 0.095 0.815 ± 0.055 0.824 ± 0.051 0.629 ± 0.127 0.878
True Rank 0.807 ± 0.020 0.452 ± 0.119 0.721 ± 0.057 0.920 ± 0.047 0.560 ± 0.254 0.820
True Uncert. 0.880 ± 0.018 0.171 ± 0.115 0.034 ± 0.040 0.616 ± 0.032 0.411 ± 0.168 0.482

Imputation-based (proposed)
KL-Div 0.938 ± 0.017 0.964 ± 0.166 0.923 ± 0.067 0.675 ± 0.045 0.466 ± 0.230 0.835
Probability 0.756 ± 0.008 0.182 ± 0.257 −0.400 ± 0.112 0.669 ± 0.034 0.906 ± 0.035 0.469
Rank 0.368 ± 0.036 0.486 ± 0.142 0.363 ± 0.070 0.418 ± 0.039 0.234 ± 0.154 0.370
Uncertainty 0.932 ± 0.018 0.020 ± 0.100 −0.017 ± 0.041 0.606 ± 0.037 0.573 ± 0.244 0.482

Baselines (no imputation)
Uncertainty 0.720 ± 0.018 0.158 ± 0.050 0.219 ± 0.024 0.560 ± 0.038 0.781 ± 0.148 0.485
Probability 0.266 ± 0.012 0.860 ± 0.124 0.576 ± 0.066 0.479 ± 0.048 0.781 ± 0.148 0.518
Random 0.375 ± 0.027 0.362 ± 0.172 0.296 ± 0.055 0.464 ± 0.057 0.539 ± 0.133 0.431
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Table 33: Acquisition performance on MIMIC Symile for AUROC (ECG imputed by Image), showing
Gfull. Strategies are grouped by category. Best strategy among proposed and baseline methods in
bold for each column.

Strategy Fracture Enl. Card. Consolidation Atelectasis Edema Mean

Upper Bounds (for reference)
Oracle 3.489 ± 1.656 21.015 ± 5.247 – – 37.701 28.964
True KL-Div. 0.546 ± 0.073 0.036 ± 0.994 – – 0.028 0.032
True Rank 0.550 ± 0.379 −2.342 ± 1.928 – – −1.276 0.122
True Uncert. 0.648 ± 0.497 −0.099 ± 0.724 – – 0.379 0.135

Imputation-based (proposed)
KL-Div 0.084 ± 0.465 −1.318 ± 0.868 – – 6.736 3.317
Probability 0.542 ± 0.247 0.096 ± 0.156 – – −0.629 0.507
Rank −0.355 ± 0.092 −1.669 ± 0.386 – – 1.017 0.062
Uncertainty 0.672 ± 0.578 0.131 ± 0.351 – – −1.407 −0.817

Baselines (no imputation)
Uncertainty 0.637 ± 0.113 −0.592 ± 0.877 – – 0.868 0.515
Probability 0.507 ± 0.072 0.236 ± 0.361 – – −0.431 −0.192
Random 0.440 ± 0.455 0.389 ± 1.478 – – −1.424 0.484

Strategy Cardiomegaly Lung Lesion Lung Opacity Pneumonia Pneumothorax Mean

Upper Bounds (for reference)
Oracle 10.077 ± 4.361 2.979 ± 1.139 7.291 – 120.197 28.964
True KL-Div. 0.834 ± 0.029 0.528 ± 0.682 −0.013 – −1.737 0.032
True Rank 0.645 ± 0.055 1.070 ± 0.717 0.008 – 2.199 0.122
True Uncert. 0.804 ± 0.006 −0.572 ± 0.283 −1.485 – 1.267 0.135

Imputation-based (proposed)
KL-Div 0.564 ± 0.077 −0.078 ± 0.298 0.510 – 16.719 3.317
Probability 0.450 ± 0.024 −0.870 ± 0.334 −2.693 – 6.656 0.507
Rank −0.519 ± 0.529 0.730 ± 1.632 −0.053 – 1.286 0.062
Uncertainty 0.762 ± 0.061 −0.322 ± 0.369 −1.467 – −4.089 −0.817

Baselines (no imputation)
Uncertainty 0.530 ± 0.132 0.704 ± 0.031 0.307 – 1.149 0.515
Probability 0.371 ± 0.024 −1.503 ± 0.841 −1.676 – 1.149 −0.192
Random 0.379 ± 0.012 −1.139 ± 0.014 −0.550 – 5.293 0.484
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Table 34: Acquisition performance on MIMIC Symile for AUPRC (ECG imputed by Image), showing
Gfull. Strategies are grouped by category. Best strategy among proposed and baseline methods in
bold for each column.

Strategy Fracture Enl. Card. Consolidation Atelectasis Edema Mean

Upper Bounds (for reference)
Oracle 1.631 – 100.646 ± 71.555 – – 33.428
True KL-Div. 0.635 – 2.975 ± 3.762 – – 1.163
True Rank 0.943 – −7.003 ± 1.999 – – −1.214
True Uncert. −0.027 – 0.199 ± 0.327 – – 0.542

Imputation-based (proposed)
KL-Div 0.600 – 15.994 ± 7.400 – – 4.721
Probability 0.075 – −10.442 ± 1.040 – – −2.263
Rank −1.052 – −0.692 ± 4.909 – – −0.467
Uncertainty −0.225 – −5.787 ± 1.743 – – −0.999

Baselines (no imputation)
Uncertainty 0.456 – 0.652 ± 0.902 – – 0.692
Probability 0.408 – 0.503 ± 0.861 – – 0.567
Random −0.336 – −7.531 ± 5.766 – – −1.297

Strategy Cardiomegaly Lung Lesion Lung Opacity Pneumonia Pneumothorax Mean

Upper Bounds (for reference)
Oracle 5.642 – – – 25.793 ± 2.491 33.428
True KL-Div. 0.855 – – – 0.187 ± 0.187 1.163
True Rank 0.784 – – – 0.421 ± 0.150 −1.214
True Uncert. 0.919 – – – 1.080 ± 0.443 0.542

Imputation-based (proposed)
KL-Div 0.419 – – – 1.872 ± 0.563 4.721
Probability 0.491 – – – 0.824 ± 0.321 −2.263
Rank 0.340 – – – −0.463 ± 1.077 −0.467
Uncertainty 0.880 – – – 1.136 ± 0.162 −0.999

Baselines (no imputation)
Uncertainty 0.685 – – – 0.975 ± 0.304 0.692
Probability 0.383 – – – 0.975 ± 0.304 0.567
Random 0.360 – – – 2.318 ± 0.166 −1.297
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Table 35: Acquisition performance on MIMIC Symile for AUROC (ECG imputed by Lab), showing
Gfull. Strategies are grouped by category. Best strategy among proposed and baseline methods in
bold for each column.

Strategy Fracture Enl. Card. Consolidation Atelectasis Edema Mean

Upper Bounds (for reference)
Oracle 9.961 ± 1.805 7.528 ± 1.743 7.425 9.429 ± 3.404 42.327 14.888
True KL-Div. −0.137 ± 1.838 0.978 ± 0.072 0.178 0.356 ± 0.377 0.288 0.405
True Rank −0.183 ± 0.795 0.976 ± 0.600 0.012 0.962 ± 0.193 −1.285 0.308
True Uncert. 0.271 ± 0.133 0.892 ± 0.394 1.249 0.377 ± 0.354 −0.143 0.399

Imputation-based (proposed)
KL-Div −0.756 ± 0.967 0.491 ± 1.880 1.805 1.782 ± 0.998 12.001 2.649
Probability 0.203 ± 0.341 2.386 ± 0.784 1.834 1.222 ± 0.693 −15.313 −1.990
Rank −2.489 ± 1.558 0.182 ± 0.173 −0.177 0.630 ± 0.303 0.104 −0.312
Uncertainty 0.078 ± 0.296 1.509 ± 0.221 1.945 1.538 ± 1.059 1.277 0.335

Baselines (no imputation)
Uncertainty 0.201 ± 0.098 0.537 ± 0.099 0.628 0.023 ± 0.305 −0.118 0.384
Probability 0.201 ± 0.098 0.474 ± 0.027 0.760 0.650 ± 0.152 0.394 0.074
Random 1.112 ± 1.486 0.492 ± 0.457 −0.650 0.656 ± 0.102 −1.051 0.387

Strategy Cardiomegaly Lung Lesion Lung Opacity Pneumonia Pneumothorax Mean

Upper Bounds (for reference)
Oracle 6.604 ± 1.266 2.091 ± 0.714 16.140 ± 11.342 32.694 ± 13.014 14.683 14.888
True KL-Div. 0.800 ± 0.103 1.316 ± 0.077 1.403 ± 0.913 −1.552 ± 1.821 0.425 0.405
True Rank 0.202 ± 0.192 0.974 ± 0.041 2.298 ± 1.714 −0.790 ± 0.663 −0.083 0.308
True Uncert. 0.121 ± 0.119 −0.012 ± 0.256 1.245 ± 0.700 0.285 ± 0.133 −0.292 0.399

Imputation-based (proposed)
KL-Div 2.764 ± 0.736 0.746 ± 0.429 0.277 ± 0.403 4.973 ± 2.248 2.409 2.649
Probability −2.784 ± 0.997 0.475 ± 0.982 0.657 ± 0.299 −10.662 ± 5.205 2.079 −1.990
Rank 0.337 ± 0.091 0.246 ± 0.433 1.594 ± 1.021 −3.591 ± 1.582 0.040 −0.312
Uncertainty −1.728 ± 0.662 0.190 ± 0.470 1.224 ± 0.536 −0.974 ± 2.384 −1.706 0.335

Baselines (no imputation)
Uncertainty 0.397 ± 0.031 0.312 ± 0.090 1.060 ± 0.408 0.287 ± 0.093 0.512 0.384
Probability −0.015 ± 0.186 0.989 ± 0.490 0.043 ± 0.189 −3.264 ± 2.220 0.513 0.074
Random −0.048 ± 0.167 0.671 ± 0.542 1.329 ± 0.512 2.189 ± 1.764 −0.832 0.387
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Table 36: Acquisition performance on MIMIC Symile for AUPRC (ECG imputed by Lab), showing
Gfull. Strategies are grouped by category. Best strategy among proposed and baseline methods in
bold for each column.

Strategy Fracture Enl. Card. Consolidation Atelectasis Edema Mean

Upper Bounds (for reference)
Oracle 7.894 ± 1.207 7.935 ± 0.606 7.801 ± 1.620 3.681 13.663 ± 0.667 9.827
True KL-Div. −0.038 ± 1.091 0.843 ± 0.368 −0.530 ± 0.679 0.175 0.815 ± 0.157 0.501
True Rank 0.172 ± 0.009 0.532 ± 0.379 1.309 ± 0.247 0.635 −0.719 ± 0.197 0.354
True Uncert. 0.480 ± 0.166 0.645 ± 0.089 0.762 ± 0.322 0.205 0.039 ± 0.013 0.240

Imputation-based (proposed)
KL-Div −1.014 ± 0.482 1.979 ± 1.044 0.596 ± 0.626 0.331 3.890 ± 0.009 1.408
Probability −0.291 ± 0.867 2.492 ± 0.270 1.173 ± 0.256 1.229 −3.963 ± 0.175 −0.348
Rank −3.557 ± 1.533 0.231 ± 0.154 −0.653 ± 0.806 0.206 0.003 ± 0.267 −0.331
Uncertainty 0.079 ± 0.427 2.413 ± 0.318 1.197 ± 0.340 0.817 −0.565 ± 0.214 0.324

Baselines (no imputation)
Uncertainty 0.398 ± 0.120 0.641 ± 0.487 0.114 ± 0.434 −0.013 0.097 ± 0.015 0.265
Probability 0.398 ± 0.120 0.796 ± 0.109 0.747 ± 0.126 0.861 0.424 ± 0.202 0.581
Random 0.667 ± 1.260 0.750 ± 0.531 0.520 ± 0.275 0.946 0.091 ± 0.283 0.585

Strategy Cardiomegaly Lung Lesion Lung Opacity Pneumonia Pneumothorax Mean

Upper Bounds (for reference)
Oracle 5.680 ± 1.134 3.483 ± 1.480 7.752 29.069 ± 4.831 11.309 9.827
True KL-Div. 0.840 ± 0.151 1.316 ± 0.130 0.423 0.558 ± 0.955 0.607 0.501
True Rank 0.341 ± 0.150 1.125 ± 0.278 0.399 −0.106 ± 0.270 −0.148 0.354
True Uncert. 0.037 ± 0.123 −0.790 ± 0.744 0.221 0.157 ± 0.074 0.648 0.240

Imputation-based (proposed)
KL-Div 2.195 ± 0.603 0.565 ± 0.242 0.762 4.430 ± 1.624 0.343 1.408
Probability −2.197 ± 0.763 0.887 ± 0.999 0.932 −4.773 ± 1.949 1.029 −0.348
Rank 0.218 ± 0.086 1.061 ± 1.227 0.155 −1.583 ± 0.600 0.613 −0.331
Uncertainty −1.266 ± 0.476 0.223 ± 0.360 0.606 −0.563 ± 1.118 0.304 0.324

Baselines (no imputation)
Uncertainty 0.267 ± 0.041 0.055 ± 0.237 −0.024 0.178 ± 0.051 0.936 0.265
Probability 0.038 ± 0.225 1.274 ± 0.637 0.945 −0.603 ± 1.027 0.936 0.581
Random −0.098 ± 0.129 1.243 ± 0.713 0.239 1.417 ± 0.819 0.076 0.585
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Table 37: Acquisition performance on MIMIC Symile for AUROC (ECG imputed by Image and
Lab), showing Gfull. Strategies are grouped by category. Best strategy among proposed and baseline
methods in bold for each column.

Strategy Fracture Enl. Card. Consolidation Atelectasis Edema Mean

Upper Bounds (for reference)
Oracle 2.634 ± 0.819 4.500 ± 1.001 3.062 ± 0.288 4.806 ± 0.645 2.415 ± 0.090 4.486
True KL-Div. 1.145 ± 0.450 1.172 ± 0.141 0.774 ± 0.037 0.821 ± 0.061 0.897 ± 0.006 0.839
True Rank 1.120 ± 0.318 1.107 ± 0.131 0.858 ± 0.021 0.776 ± 0.057 0.916 ± 0.007 0.836
True Uncert. 1.047 ± 0.381 0.787 ± 0.136 0.632 ± 0.069 0.338 ± 0.071 0.675 ± 0.013 0.537

Imputation-based (proposed)
KL-Div 1.120 ± 0.452 1.200 ± 0.150 0.771 ± 0.037 0.812 ± 0.065 0.894 ± 0.006 0.838
Probability 0.933 ± 0.302 0.676 ± 0.106 0.508 ± 0.038 0.111 ± 0.120 0.349 ± 0.014 0.438
Rank 0.126 ± 0.141 0.517 ± 0.086 0.489 ± 0.027 0.507 ± 0.059 0.504 ± 0.009 0.473
Uncertainty 1.063 ± 0.392 0.820 ± 0.140 0.638 ± 0.072 0.358 ± 0.070 0.673 ± 0.013 0.551

Baselines (no imputation)
Uncertainty 0.785 ± 0.249 0.509 ± 0.088 0.499 ± 0.058 0.468 ± 0.062 0.604 ± 0.009 0.544
Probability 0.097 ± 0.243 0.594 ± 0.105 0.528 ± 0.047 0.435 ± 0.077 0.556 ± 0.012 0.466
Random 0.487 ± 0.212 0.363 ± 0.126 0.463 ± 0.043 0.118 ± 0.177 0.458 ± 0.013 0.427

Strategy Cardiomegaly Lung Lesion Lung Opacity Pneumonia Pneumothorax Mean

Upper Bounds (for reference)
Oracle 2.675 ± 0.236 3.710 ± 0.511 7.949 ± 2.090 4.600 ± 0.301 8.512 ± 1.512 4.486
True KL-Div. 0.897 ± 0.010 0.549 ± 0.239 0.504 ± 0.303 0.902 ± 0.021 0.724 ± 0.092 0.839
True Rank 0.951 ± 0.011 0.578 ± 0.154 0.661 ± 0.122 0.912 ± 0.025 0.485 ± 0.086 0.836
True Uncert. 0.214 ± 0.031 0.460 ± 0.273 0.414 ± 0.121 0.696 ± 0.035 0.107 ± 0.073 0.537

Imputation-based (proposed)
KL-Div 0.865 ± 0.013 0.617 ± 0.239 0.474 ± 0.345 0.927 ± 0.022 0.704 ± 0.090 0.838
Probability 0.188 ± 0.025 0.518 ± 0.303 0.125 ± 0.121 0.178 ± 0.041 0.789 ± 0.051 0.438
Rank 0.469 ± 0.018 0.458 ± 0.105 0.886 ± 0.236 0.483 ± 0.030 0.287 ± 0.206 0.473
Uncertainty 0.205 ± 0.029 0.496 ± 0.283 0.436 ± 0.127 0.701 ± 0.034 0.121 ± 0.074 0.551

Baselines (no imputation)
Uncertainty 0.324 ± 0.015 0.517 ± 0.183 0.569 ± 0.102 0.575 ± 0.036 0.592 ± 0.127 0.544
Probability 0.654 ± 0.014 0.348 ± 0.250 0.256 ± 0.120 0.604 ± 0.017 0.591 ± 0.127 0.466
Random 0.486 ± 0.023 0.736 ± 0.238 0.351 ± 0.077 0.420 ± 0.038 0.392 ± 0.071 0.427
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Table 38: Acquisition performance on MIMIC Symile for AUPRC (ECG imputed by Image and
Lab), showing Gfull. Strategies are grouped by category. Best strategy among proposed and baseline
methods in bold for each column.

Strategy Fracture Enl. Card. Consolidation Atelectasis Edema Mean

Upper Bounds (for reference)
Oracle 1.578 ± 0.119 3.454 ± 0.465 3.604 ± 0.479 3.295 ± 0.414 2.989 ± 0.181 3.703
True KL-Div. 0.634 ± 0.094 1.070 ± 0.078 0.807 ± 0.038 0.702 ± 0.052 0.904 ± 0.017 0.814
True Rank 0.782 ± 0.060 1.014 ± 0.057 0.873 ± 0.054 0.707 ± 0.076 0.923 ± 0.019 0.800
True Uncert. 0.565 ± 0.081 0.826 ± 0.085 0.531 ± 0.060 0.175 ± 0.056 0.601 ± 0.018 0.431

Imputation-based (proposed)
KL-Div 0.621 ± 0.092 1.087 ± 0.082 0.815 ± 0.041 0.702 ± 0.061 0.903 ± 0.017 0.812
Probability 0.577 ± 0.055 0.687 ± 0.059 0.484 ± 0.052 −0.037 ± 0.152 0.382 ± 0.026 0.336
Rank 0.182 ± 0.091 0.481 ± 0.066 0.422 ± 0.074 0.514 ± 0.052 0.469 ± 0.015 0.430
Uncertainty 0.572 ± 0.081 0.851 ± 0.087 0.533 ± 0.061 0.188 ± 0.056 0.602 ± 0.018 0.441

Baselines (no imputation)
Uncertainty 0.456 ± 0.053 0.596 ± 0.072 0.377 ± 0.054 0.287 ± 0.026 0.521 ± 0.017 0.444
Probability 0.435 ± 0.052 0.502 ± 0.063 0.684 ± 0.050 0.499 ± 0.081 0.660 ± 0.015 0.585
Random 0.374 ± 0.078 0.367 ± 0.062 0.432 ± 0.083 −0.072 ± 0.281 0.430 ± 0.021 0.347

Strategy Cardiomegaly Lung Lesion Lung Opacity Pneumonia Pneumothorax Mean

Upper Bounds (for reference)
Oracle 2.445 ± 0.148 2.303 ± 0.239 4.150 ± 0.421 5.900 ± 0.609 7.316 ± 0.974 3.703
True KL-Div. 0.856 ± 0.016 0.749 ± 0.133 0.746 ± 0.062 0.952 ± 0.058 0.714 ± 0.062 0.814
True Rank 0.938 ± 0.014 0.690 ± 0.094 0.702 ± 0.072 0.914 ± 0.049 0.461 ± 0.074 0.800
True Uncert. 0.161 ± 0.031 0.098 ± 0.098 0.321 ± 0.066 0.598 ± 0.057 0.438 ± 0.061 0.431

Imputation-based (proposed)
KL-Div 0.832 ± 0.018 0.772 ± 0.124 0.707 ± 0.056 0.978 ± 0.061 0.707 ± 0.067 0.812
Probability 0.137 ± 0.036 −0.030 ± 0.151 0.176 ± 0.123 0.112 ± 0.108 0.877 ± 0.029 0.336
Rank 0.426 ± 0.015 0.559 ± 0.123 0.463 ± 0.081 0.378 ± 0.055 0.401 ± 0.059 0.430
Uncertainty 0.154 ± 0.029 0.123 ± 0.086 0.334 ± 0.062 0.603 ± 0.059 0.445 ± 0.061 0.441

Baselines (no imputation)
Uncertainty 0.279 ± 0.017 0.272 ± 0.065 0.400 ± 0.050 0.436 ± 0.036 0.820 ± 0.050 0.444
Probability 0.674 ± 0.014 0.517 ± 0.139 0.403 ± 0.072 0.655 ± 0.032 0.821 ± 0.050 0.585
Random 0.435 ± 0.016 0.368 ± 0.178 0.362 ± 0.119 0.325 ± 0.048 0.447 ± 0.078 0.347
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I RESULTS FOR MIMIC HAIM

Table 39: Acquisition performance on MIMIC HAIM for AUROC, showing Gfull. Strategies are
grouped by category. Best strategy among proposed ones and baselines in bold for each column.

Strategy Fracture Enl. Card. Consolidation Atelectasis Edema Mean

Upper Bounds (for reference)
Oracle 5.121 ± 1.873 6.802 ± 2.953 4.228 ± 1.374 5.862 ± 0.933 3.435 ± 0.792 4.602
True KL-Div. 0.842 ± 0.154 0.558 ± 0.187 0.673 ± 0.054 0.518 ± 0.093 0.708 ± 0.025 0.608
True Rank 0.853 ± 0.107 0.684 ± 0.056 0.706 ± 0.034 0.676 ± 0.087 0.714 ± 0.041 0.723
True Uncert. 0.429 ± 0.264 0.647 ± 0.107 0.729 ± 0.099 0.332 ± 0.116 0.555 ± 0.057 0.538

Imputation-based (proposed)
KL-Div 0.827 ± 0.213 0.561 ± 0.142 0.488 ± 0.053 0.505 ± 0.109 0.459 ± 0.074 0.465
Probability 0.318 ± 0.280 0.657 ± 0.105 0.761 ± 0.133 0.620 ± 0.082 0.578 ± 0.051 0.494
Rank 0.530 ± 0.685 −0.048 ± 0.305 0.311 ± 0.079 0.429 ± 0.150 0.485 ± 0.032 0.391
Uncertainty 0.022 ± 0.463 0.647 ± 0.108 0.880 ± 0.241 0.503 ± 0.123 0.493 ± 0.056 0.554

Baselines (no imputation)
Uncertainty 0.492 ± 0.209 0.598 ± 0.038 0.486 ± 0.061 0.244 ± 0.163 0.525 ± 0.032 0.452
Probability 0.244 ± 0.302 0.615 ± 0.116 0.550 ± 0.045 0.641 ± 0.065 0.580 ± 0.042 0.457
Random 1.005 ± 0.367 0.143 ± 0.289 0.470 ± 0.045 0.546 ± 0.096 0.510 ± 0.025 0.526

Strategy Cardiomegaly Lung Lesion Lung Opacity Pneumonia Pneumothorax Mean

Upper Bounds (for reference)
Oracle 4.246 ± 0.416 1.912 ± 0.205 5.429 ± 1.539 2.864 ± 0.716 6.119 ± 2.055 4.602
True KL-Div. 0.609 ± 0.059 0.674 ± 0.148 0.801 ± 0.086 0.775 ± 0.019 −0.083 ± 0.370 0.608
True Rank 0.756 ± 0.027 0.751 ± 0.166 0.898 ± 0.051 0.738 ± 0.022 0.455 ± 0.155 0.723
True Uncert. 0.554 ± 0.047 0.638 ± 0.131 0.330 ± 0.127 0.720 ± 0.019 0.446 ± 0.110 0.538

Imputation-based (proposed)
KL-Div 0.385 ± 0.058 0.362 ± 0.161 0.418 ± 0.109 0.499 ± 0.046 0.140 ± 0.290 0.465
Probability 0.618 ± 0.041 0.601 ± 0.048 0.636 ± 0.066 0.591 ± 0.023 −0.435 ± 0.322 0.494
Rank 0.305 ± 0.061 0.422 ± 0.157 0.306 ± 0.194 0.519 ± 0.044 0.653 ± 0.050 0.391
Uncertainty 0.561 ± 0.042 0.744 ± 0.146 0.541 ± 0.050 0.587 ± 0.013 0.558 ± 0.102 0.554

Baselines (no imputation)
Uncertainty 0.460 ± 0.038 0.511 ± 0.063 0.396 ± 0.095 0.539 ± 0.023 0.272 ± 0.185 0.452
Probability 0.619 ± 0.043 0.508 ± 0.086 0.754 ± 0.050 0.575 ± 0.025 −0.513 ± 0.421 0.457
Random 0.482 ± 0.022 0.703 ± 0.129 0.534 ± 0.038 0.553 ± 0.009 0.319 ± 0.136 0.526
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Table 40: Acquisition performance on MIMIC HAIM for AUPRC, showing Gfull. Strategies are
grouped by category. Best strategy among proposed ones and baselines in bold for each column.

Strategy Fracture Enl. Card. Consolidation Atelectasis Edema Mean

Upper Bounds (for reference)
Oracle 1.490 ± 0.249 3.181 ± 0.283 3.084 ± 0.331 2.738 ± 0.363 2.782 ± 0.349 3.087
True KL-Div. 0.967 ± 0.098 0.652 ± 0.076 0.435 ± 0.167 0.847 ± 0.065 0.717 ± 0.030 0.662
True Rank 1.014 ± 0.085 0.721 ± 0.068 0.541 ± 0.112 0.958 ± 0.097 0.769 ± 0.031 0.754
True Uncert. 0.842 ± 0.068 0.592 ± 0.081 0.605 ± 0.047 0.425 ± 0.084 0.611 ± 0.057 0.587

Imputation-based (proposed)
KL-Div 0.889 ± 0.097 0.578 ± 0.054 0.301 ± 0.163 0.655 ± 0.110 0.518 ± 0.030 0.516
Probability 0.584 ± 0.111 0.672 ± 0.041 0.807 ± 0.075 0.480 ± 0.018 0.754 ± 0.017 0.686
Rank 0.890 ± 0.120 0.337 ± 0.081 0.247 ± 0.115 0.706 ± 0.052 0.474 ± 0.023 0.456
Uncertainty 0.799 ± 0.056 0.540 ± 0.082 0.680 ± 0.071 0.353 ± 0.047 0.584 ± 0.030 0.570

Baselines (no imputation)
Uncertainty 0.920 ± 0.131 0.556 ± 0.082 0.409 ± 0.085 0.365 ± 0.011 0.487 ± 0.053 0.479
Probability 0.480 ± 0.112 0.713 ± 0.046 0.755 ± 0.054 0.589 ± 0.053 0.752 ± 0.017 0.701
Random 0.941 ± 0.107 0.404 ± 0.060 0.455 ± 0.057 0.452 ± 0.180 0.546 ± 0.024 0.561

Strategy Cardiomegaly Lung Lesion Lung Opacity Pneumonia Pneumothorax Mean

Upper Bounds (for reference)
Oracle 4.751 ± 0.276 1.878 ± 0.237 2.730 ± 0.219 3.910 ± 0.892 4.329 ± 0.483 3.087
True KL-Div. 0.374 ± 0.137 0.688 ± 0.130 0.660 ± 0.196 0.699 ± 0.035 0.575 ± 0.039 0.662
True Rank 0.636 ± 0.071 0.725 ± 0.153 0.861 ± 0.144 0.683 ± 0.035 0.630 ± 0.042 0.754
True Uncert. 0.599 ± 0.059 0.430 ± 0.127 0.505 ± 0.173 0.732 ± 0.031 0.530 ± 0.043 0.587

Imputation-based (proposed)
KL-Div 0.248 ± 0.124 0.573 ± 0.133 0.413 ± 0.218 0.399 ± 0.089 0.588 ± 0.043 0.516
Probability 0.808 ± 0.057 0.764 ± 0.115 0.737 ± 0.030 0.736 ± 0.025 0.518 ± 0.040 0.686
Rank 0.167 ± 0.117 0.216 ± 0.119 0.494 ± 0.147 0.490 ± 0.079 0.538 ± 0.024 0.456
Uncertainty 0.641 ± 0.052 0.450 ± 0.120 0.561 ± 0.092 0.621 ± 0.030 0.468 ± 0.030 0.570

Baselines (no imputation)
Uncertainty 0.372 ± 0.063 0.274 ± 0.111 0.359 ± 0.220 0.496 ± 0.042 0.550 ± 0.036 0.479
Probability 0.795 ± 0.076 0.806 ± 0.109 0.855 ± 0.043 0.725 ± 0.021 0.536 ± 0.033 0.701
Random 0.504 ± 0.042 0.606 ± 0.151 0.572 ± 0.086 0.569 ± 0.022 0.556 ± 0.022 0.561
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Table 41: Acquisition performance on MIMIC HAIM for AUROC (Image imputed by Lab), showing
Gfull. Strategies are grouped by category. Best strategy among proposed and baseline methods in
bold for each column.

Strategy Fracture Enl. Card. Consolidation Atelectasis Edema Mean

Upper Bounds (for reference)
Oracle 4.447 ± 3.050 3.381 ± 1.055 2.055 ± 0.185 6.068 ± 1.280 1.710 ± 0.036 3.810
True KL-Div. 1.002 ± 0.142 0.425 ± 0.184 0.623 ± 0.061 0.299 ± 0.113 0.687 ± 0.022 0.476
True Rank 0.902 ± 0.059 0.704 ± 0.044 0.667 ± 0.035 0.575 ± 0.139 0.698 ± 0.010 0.671
True Uncert. 0.908 ± 0.185 0.768 ± 0.035 0.641 ± 0.022 0.301 ± 0.207 0.709 ± 0.008 0.610

Imputation-based (proposed)
KL-Div 0.686 ± 0.060 0.579 ± 0.031 0.463 ± 0.054 0.412 ± 0.085 0.539 ± 0.022 0.416
Probability 0.514 ± 0.051 0.773 ± 0.153 0.560 ± 0.026 0.768 ± 0.113 0.590 ± 0.010 0.445
Rank 1.530 ± 0.782 0.045 ± 0.280 0.418 ± 0.037 0.203 ± 0.164 0.450 ± 0.021 0.497
Uncertainty 0.710 ± 0.087 0.730 ± 0.091 0.548 ± 0.029 0.597 ± 0.215 0.587 ± 0.012 0.625

Baselines (no imputation)
Uncertainty 0.512 ± 0.247 0.635 ± 0.040 0.491 ± 0.032 0.086 ± 0.287 0.587 ± 0.015 0.438
Probability 0.109 ± 0.371 0.759 ± 0.146 0.533 ± 0.026 0.739 ± 0.095 0.592 ± 0.010 0.392
Random 1.112 ± 0.371 0.483 ± 0.041 0.509 ± 0.015 0.556 ± 0.138 0.542 ± 0.008 0.582

Strategy Cardiomegaly Lung Lesion Lung Opacity Pneumonia Pneumothorax Mean

Upper Bounds (for reference)
Oracle 3.257 ± 0.286 2.139 ± 0.317 3.951 ± 0.558 1.968 ± 0.068 9.124 ± 3.961 3.810
True KL-Div. 0.440 ± 0.063 0.714 ± 0.312 0.734 ± 0.096 0.775 ± 0.021 −0.936 ± 0.646 0.476
True Rank 0.671 ± 0.017 0.808 ± 0.318 0.898 ± 0.066 0.711 ± 0.015 0.081 ± 0.265 0.671
True Uncert. 0.558 ± 0.042 0.625 ± 0.057 0.456 ± 0.097 0.734 ± 0.020 0.400 ± 0.221 0.610

Imputation-based (proposed)
KL-Div 0.321 ± 0.083 0.458 ± 0.273 0.342 ± 0.129 0.552 ± 0.027 −0.187 ± 0.576 0.416
Probability 0.698 ± 0.059 0.544 ± 0.099 0.693 ± 0.063 0.600 ± 0.020 −1.295 ± 0.522 0.445
Rank 0.233 ± 0.093 0.339 ± 0.349 0.468 ± 0.090 0.498 ± 0.017 0.783 ± 0.075 0.497
Uncertainty 0.620 ± 0.047 0.668 ± 0.165 0.581 ± 0.057 0.591 ± 0.015 0.613 ± 0.206 0.625

Baselines (no imputation)
Uncertainty 0.434 ± 0.052 0.568 ± 0.074 0.394 ± 0.109 0.557 ± 0.023 0.114 ± 0.373 0.438
Probability 0.693 ± 0.057 0.541 ± 0.162 0.790 ± 0.054 0.589 ± 0.018 −1.427 ± 0.750 0.392
Random 0.482 ± 0.030 0.941 ± 0.176 0.518 ± 0.049 0.558 ± 0.010 0.119 ± 0.262 0.582
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Table 42: Acquisition performance on MIMIC HAIM for AUPRC (Image imputed by Lab), showing
Gfull. Strategies are grouped by category. Best strategy among proposed and baseline methods in
bold for each column.

Strategy Fracture Enl. Card. Consolidation Atelectasis Edema Mean

Upper Bounds (for reference)
Oracle 1.490 ± 0.249 3.177 ± 0.420 3.038 ± 0.399 2.586 1.812 ± 0.037 2.790
True KL-Div. 0.967 ± 0.098 0.523 ± 0.091 0.372 ± 0.195 0.717 0.664 ± 0.033 0.579
True Rank 1.014 ± 0.085 0.632 ± 0.084 0.498 ± 0.128 0.773 0.685 ± 0.019 0.706
True Uncert. 0.842 ± 0.068 0.790 ± 0.040 0.624 ± 0.054 0.575 0.776 ± 0.014 0.660

Imputation-based (proposed)
KL-Div 0.889 ± 0.097 0.540 ± 0.066 0.260 ± 0.194 0.456 0.586 ± 0.031 0.478
Probability 0.584 ± 0.111 0.674 ± 0.058 0.796 ± 0.087 0.455 0.710 ± 0.011 0.662
Rank 0.890 ± 0.120 0.288 ± 0.118 0.229 ± 0.139 0.650 0.459 ± 0.026 0.416
Uncertainty 0.799 ± 0.056 0.683 ± 0.085 0.700 ± 0.081 0.263 0.665 ± 0.022 0.615

Baselines (no imputation)
Uncertainty 0.920 ± 0.131 0.700 ± 0.096 0.448 ± 0.096 0.387 0.651 ± 0.025 0.553
Probability 0.480 ± 0.112 0.714 ± 0.071 0.749 ± 0.063 0.483 0.715 ± 0.011 0.686
Random 0.941 ± 0.107 0.429 ± 0.088 0.464 ± 0.067 0.590 0.595 ± 0.012 0.615

Strategy Cardiomegaly Lung Lesion Lung Opacity Pneumonia Pneumothorax Mean

Upper Bounds (for reference)
Oracle 4.700 ± 0.289 1.725 ± 0.306 2.830 ± 0.264 2.510 ± 0.170 4.037 ± 0.525 2.790
True KL-Div. 0.054 ± 0.147 0.651 ± 0.392 0.621 ± 0.266 0.731 ± 0.039 0.493 ± 0.045 0.579
True Rank 0.463 ± 0.068 0.834 ± 0.425 0.903 ± 0.193 0.661 ± 0.030 0.601 ± 0.047 0.706
True Uncert. 0.490 ± 0.057 0.666 ± 0.066 0.495 ± 0.235 0.726 ± 0.038 0.615 ± 0.050 0.660

Imputation-based (proposed)
KL-Div 0.064 ± 0.176 0.384 ± 0.277 0.385 ± 0.295 0.540 ± 0.044 0.680 ± 0.038 0.478
Probability 0.920 ± 0.072 0.556 ± 0.160 0.718 ± 0.033 0.725 ± 0.030 0.485 ± 0.043 0.662
Rank −0.025 ± 0.160 0.216 ± 0.282 0.456 ± 0.198 0.478 ± 0.034 0.518 ± 0.025 0.416
Uncertainty 0.655 ± 0.077 0.656 ± 0.200 0.574 ± 0.124 0.638 ± 0.037 0.519 ± 0.034 0.615

Baselines (no imputation)
Uncertainty 0.293 ± 0.089 0.529 ± 0.084 0.416 ± 0.296 0.544 ± 0.042 0.643 ± 0.024 0.553
Probability 0.944 ± 0.092 0.671 ± 0.071 0.850 ± 0.058 0.732 ± 0.022 0.523 ± 0.031 0.686
Random 0.462 ± 0.059 0.958 ± 0.269 0.576 ± 0.117 0.580 ± 0.019 0.553 ± 0.031 0.615
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Table 43: Acquisition performance on MIMIC HAIM for AUROC (Lab imputed by Image), showing
Gfull. Strategies are grouped by category. Best strategy among proposed and baseline methods in
bold for each column.

Strategy Fracture Enl. Card. Consolidation Atelectasis Edema Mean

Upper Bounds (for reference)
Oracle 6.244 ± 0.851 12.503 ± 7.484 11.469 ± 3.810 5.604 ± 1.451 5.899 ± 1.530 6.851
True KL-Div. 0.575 ± 0.311 0.780 ± 0.402 0.842 ± 0.049 0.792 ± 0.088 0.737 ± 0.054 0.770
True Rank 0.773 ± 0.299 0.649 ± 0.136 0.836 ± 0.030 0.802 ± 0.076 0.736 ± 0.102 0.796
True Uncert. −0.370 ± 0.158 0.445 ± 0.274 1.020 ± 0.440 0.371 ± 0.065 0.334 ± 0.084 0.416

Imputation-based (proposed)
KL-Div 1.063 ± 0.606 0.531 ± 0.397 0.572 ± 0.156 0.622 ± 0.223 0.345 ± 0.175 0.519
Probability −0.010 ± 0.798 0.463 ± 0.079 1.433 ± 0.393 0.435 ± 0.086 0.560 ± 0.129 0.551
Rank −1.136 ± 0.350 −0.202 ± 0.707 −0.044 ± 0.241 0.712 ± 0.244 0.535 ± 0.072 0.180
Uncertainty −1.124 ± 0.961 0.508 ± 0.248 1.986 ± 0.840 0.385 ± 0.063 0.359 ± 0.123 0.492

Baselines (no imputation)
Uncertainty 0.460 ± 0.449 0.535 ± 0.076 0.467 ± 0.283 0.441 ± 0.053 0.438 ± 0.063 0.458
Probability 0.470 ± 0.594 0.375 ± 0.158 0.608 ± 0.200 0.519 ± 0.069 0.563 ± 0.105 0.511
Random 0.826 ± 0.879 −0.425 ± 0.748 0.337 ± 0.193 0.534 ± 0.143 0.464 ± 0.056 0.435

Strategy Cardiomegaly Lung Lesion Lung Opacity Pneumonia Pneumothorax Mean

Upper Bounds (for reference)
Oracle 5.483 ± 0.647 1.730 ± 0.268 9.123 ± 5.217 7.345 ± 3.084 3.113 ± 0.375 6.851
True KL-Div. 0.821 ± 0.038 0.641 ± 0.142 0.969 ± 0.173 0.774 ± 0.071 0.771 ± 0.016 0.770
True Rank 0.861 ± 0.023 0.706 ± 0.194 0.896 ± 0.088 0.873 ± 0.035 0.830 ± 0.017 0.796
True Uncert. 0.550 ± 0.096 0.648 ± 0.244 0.017 ± 0.360 0.652 ± 0.013 0.492 ± 0.038 0.416

Imputation-based (proposed)
KL-Div 0.465 ± 0.074 0.286 ± 0.213 0.608 ± 0.194 0.233 ± 0.147 0.467 ± 0.028 0.519
Probability 0.518 ± 0.032 0.646 ± 0.037 0.492 ± 0.164 0.543 ± 0.113 0.425 ± 0.017 0.551
Rank 0.395 ± 0.065 0.489 ± 0.114 −0.098 ± 0.659 0.626 ± 0.318 0.522 ± 0.033 0.180
Uncertainty 0.487 ± 0.070 0.805 ± 0.241 0.441 ± 0.090 0.570 ± 0.037 0.503 ± 0.028 0.492

Baselines (no imputation)
Uncertainty 0.492 ± 0.057 0.466 ± 0.100 0.401 ± 0.220 0.454 ± 0.058 0.430 ± 0.020 0.458
Probability 0.526 ± 0.049 0.482 ± 0.103 0.664 ± 0.114 0.508 ± 0.151 0.400 ± 0.018 0.511
Random 0.482 ± 0.033 0.512 ± 0.145 0.575 ± 0.056 0.530 ± 0.018 0.519 ± 0.024 0.435
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Table 44: Acquisition performance on MIMIC HAIM for AUPRC (Lab imputed by Image), showing
Gfull. Strategies are grouped by category. Best strategy among proposed and baseline methods in
bold for each column.

Strategy Fracture Enl. Card. Consolidation Atelectasis Edema Mean

Upper Bounds (for reference)
Oracle − 3.188 ± 0.307 3.312 ± 0.007 2.814 ± 0.615 4.169 ± 0.490 4.011
True KL-Div. − 0.884 ± 0.047 0.749 ± 0.053 0.912 ± 0.012 0.792 ± 0.043 0.776
True Rank − 0.881 ± 0.081 0.758 ± 0.195 1.051 ± 0.050 0.889 ± 0.035 0.811
True Uncert. − 0.237 ± 0.075 0.508 ± 0.005 0.350 ± 0.067 0.376 ± 0.071 0.467

Imputation-based (proposed)
KL-Div − 0.647 ± 0.098 0.508 ± 0.078 0.755 ± 0.079 0.419 ± 0.032 0.489
Probability − 0.668 ± 0.054 0.858 ± 0.163 0.492 ± 0.022 0.816 ± 0.022 0.723
Rank − 0.424 ± 0.082 0.335 ± 0.044 0.734 ± 0.076 0.495 ± 0.042 0.485
Uncertainty − 0.282 ± 0.094 0.580 ± 0.160 0.398 ± 0.022 0.469 ± 0.034 0.461

Baselines (no imputation)
Uncertainty − 0.298 ± 0.039 0.214 ± 0.113 0.354 ± 0.001 0.254 ± 0.039 0.294
Probability − 0.712 ± 0.031 0.782 ± 0.104 0.642 ± 0.002 0.806 ± 0.028 0.726
Random − 0.361 ± 0.069 0.406 ± 0.089 0.383 ± 0.287 0.478 ± 0.045 0.472

Strategy Cardiomegaly Lung Lesion Lung Opacity Pneumonia Pneumothorax Mean

Upper Bounds (for reference)
Oracle 4.828 ± 0.574 1.969 ± 0.352 2.430 ± 0.426 8.578 ± 2.467 4.816 ± 0.981 4.011
True KL-Div. 0.854 ± 0.056 0.711 ± 0.032 0.776 ± 0.034 0.595 ± 0.055 0.712 ± 0.014 0.776
True Rank 0.895 ± 0.034 0.660 ± 0.093 0.735 ± 0.039 0.756 ± 0.125 0.678 ± 0.081 0.811
True Uncert. 0.762 ± 0.089 0.289 ± 0.175 0.537 ± 0.099 0.752 ± 0.052 0.389 ± 0.036 0.467

Imputation-based (proposed)
KL-Div 0.524 ± 0.084 0.687 ± 0.135 0.495 ± 0.131 −0.069 ± 0.185 0.434 ± 0.051 0.489
Probability 0.640 ± 0.029 0.889 ± 0.138 0.794 ± 0.073 0.773 ± 0.051 0.574 ± 0.078 0.723
Rank 0.455 ± 0.084 0.216 ± 0.127 0.607 ± 0.038 0.533 ± 0.382 0.570 ± 0.049 0.485
Uncertainty 0.621 ± 0.069 0.326 ± 0.134 0.523 ± 0.042 0.566 ± 0.018 0.381 ± 0.036 0.461

Baselines (no imputation)
Uncertainty 0.489 ± 0.062 0.121 ± 0.130 0.187 ± 0.017 0.333 ± 0.042 0.396 ± 0.034 0.294
Probability 0.571 ± 0.058 0.887 ± 0.166 0.870 ± 0.029 0.703 ± 0.060 0.559 ± 0.076 0.726
Random 0.568 ± 0.050 0.395 ± 0.110 0.561 ± 0.044 0.535 ± 0.077 0.560 ± 0.029 0.472
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