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ABSTRACT

Real-world machine learning applications often involve data from multiple modal-
ities that must be integrated effectively to make robust predictions. However, in
many practical settings, not all modalities are available for every sample, and
acquiring additional modalities can be costly. This raises the question: which
samples should be prioritized for additional modality acquisition when resources
are limited? While prior work has explored individual-level acquisition strategies
and training-time active learning paradigms, test-time and cohort-based acquisition
remain underexplored. We introduce Cohort-based Active Modality Acquisition
(CAMA), a novel test-time setting to formalize the challenge of selecting which
samples should receive an additional modality. We derive acquisition strategies
that leverage a combination of generative imputation and discriminative modeling
to estimate the expected benefit of acquiring a missing modality based on common
evaluation metrics. We also introduce upper-bound heuristics that provide perfor-
mance ceilings to benchmark acquisition strategies. Experiments on multimodal
datasets with up to 15 modalities demonstrate that our proposed imputation-based
strategies can more effectively guide the acquisition of an additional modality for
selected samples compared with methods relying solely on pre-acquisition infor-
mation, entropy-based guidance, or random selection. We showcase the real-world
relevance and scalability of our method by demonstrating its ability to effectively
guide the costly acquisition of proteomics data for disease prediction in a large
prospective cohort, the UK Biobank (UKBB). Our work provides an effective
approach for optimizing modality acquisition at the cohort level, enabling more
effective use of resources in constrained settings.'

1 INTRODUCTION

Consider a clinical healthcare setting where all patients in a cohort undergo a standard, inexpensive
set of initial examinations, such as basic blood tests and anamnesis. However, a more advanced,
expensive, or invasive procedure, like genomic sequencing or specialized imaging, could offer crucial
diagnostic or prognostic information for a subset of these patients (Huang et al., 2021). Given a limited
budget or capacity for the more advanced procedure, the central question becomes: which patients
should receive this additional resource to maximize the overall diagnostic yield or improve treatment
outcomes across the entire cohort? For healthcare, budgets are often resource-specific rather than
flexible. For example, a hospital may have a fixed capacity for one MRI scanner, or a cohort may have
a specific grant for one modality. The critical decision is prioritizing access to that single resource
across the cohort, and not necessarily dynamically acquiring for different modalities per patient.
Consider a healthcare system that can afford 1,000 expensive tests for a 100,000-person cohort. The
goal is to improve health outcomes across the whole population, and this typically happens through
resource allocation: who receives preventive interventions, who gets enrolled in clinical trials, who is
flagged for closer monitoring. These decisions depend on accurate risk stratification. A global ranking
of all 100,000 individuals by predicted risk (measured, for example, by Area Under the Receiver
Operating Characteristic (AUROC)) becomes the tool through which such allocation decisions are
made. The question is: which 1,000 patients should we test so that our final ranking of all 100,000
is as accurate as possible? Balancing potential gains from data modalities against the costs and
complexities of acquisition is not unique to healthcare. In remote sensing, for instance, decisions
must be made regarding which geographical areas warrant costly high-resolution satellite imagery
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Figure 1: Motivational example for CAMA determining the added value of obtaining the magnetic
resonance image (MRI) modality. (A) A heterogeneous cohort for which each sample has P distinct
modalities. (B) Instead of using the initial subset logit scores s?va‘l, a generative model fi,, imputes
the target missing modality for every patient in the cohort. This yields imputed, augmented-modality
logit scores {s;m,f £ | that approximate the logits as if that modality were available. These scores

approximate 52" i.¢., the counterfactual with only the imputed modality added. (C) An acquisition

function (AF) utilizes these scores to rank samples by acquisition priority. The graph demonstrates
how the global performance metric improves from the initial baseline towards the performance of
a model with access to post-acquisition data, as an increasing fraction of the cohort receives the
additional modality. This acquisition process is guided by the proposed strategies operating under the
acquisition budget constraint (3.

to supplement widely available, lower-resolution data, aiming to optimize regional environmental
monitoring under budget constraints. Likewise, in industrial quality assurance, manufacturers could
decide which components from a production batch should undergo detailed, time-consuming testing
in addition to rapid, standard visual inspections to effectively identify defects at a batch level. The
topic of efficient data acquisition has led to several established paradigms in machine learning, such
as Active Learning (AL) (Holzmiiller et al., 2023), Active Feature Acquisition (AFA) (Shim et al.,
2018), Active Modality Acquisition (AMA) (Kossen et al., 2023), and multimodal learning with
missing data (Wu et al., 2024). However, previous research predominantly centers on optimizing
acquisition for individual samples and often does not directly address test-time budget constraints
for an entire cohort. Consequently, the strategic, test-time acquisition of an additional modality
from a cohort perspective remains a significant, largely unaddressed gap. This setting involves
deciding, for a given batch of new samples where different subsets of modalities are available, which
specific samples should receive an additional, costly modality to best achieve a global objective, e.g.,
maximizing overall predictive performance or diagnostic accuracy for the cohort, subject to budget
constraints. We hypothesize that imputation-based acquisition functions (AFs) can effectively guide
resource allocation under cohort-level constraints. The main contributions of this work are as follows:

* The CAMA setting We introduce and formalize CAMA, a previously unexplored setting
that addresses the challenge of prioritizing which samples within a test-time cohort should
undergo additional modality acquisition based on an available subset of modalities.

* Development of AFs for CAMA We propose a theoretical framework, derived from
established evaluation metrics, e.g., AUROC and Area Under the Precision-Recall Curve
(AUPRQ), that provides a foundation for developing AFs within the CAMA setting.

* Architectures for CAMA We develop novel architectures for approaching CAMA, includ-
ing a) derivations of AFs by combining generative and discriminative deep learning and b)
the definition of corresponding upper bounds to serve as performance benchmarks.

* Comprehensive evaluation We present a comprehensive empirical evaluation of our pro-
posed methods across several multimodal datasets, which vary in their number of modalities
and application domains, with up to 100,000 samples and 15 modalities. This includes an
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analysis of key assumptions, upper bounds and oracle strategies, performance challenges,
and robustness.

2 RELATED WORK

In the following, we contextualize our work on CAMA by reviewing the key concepts and contribu-
tions from several relevant research domains summarized briefly in Table 1.

Table 1: Comparison of active data acquisition paradigms. Our proposed CAMA setting is unique in
its focus on cohort-level, test-time modality acquisition.

Paradigm Acquisition Decision Level Time Primary Objective

AL Labels Individual Training Maximize model performance
AFA Features Individual Test Optimize sample-level prediction
AMA Modalities Individual Test Optimize sample-level prediction
CAMA (Ours)  Modalities Cohort Test Maximize global cohort metric

Active Learning (AL) AL seeks to enhance model training by selecting unlabeled data points for
annotation by an oracle (Settles, 2012; Ren et al., 2022; Li et al., 2025). Our methodology draws
significantly from AL principles, particularly in the development of an AF to guide the selection
process. Consequently, established AL strategies and concepts, such as those rooted in measuring
uncertainty (Settles, 2012; Han & Kang, 2021; Hoarau et al., 2025; Raj & Bach, 2022; Ma et al.,
2019) or using generative models (Tran et al., 2019; Zhu & Bento, 2017; Zhang et al., 2024; Ma et al.,
2019; Peis et al., 2022), are central to our work. Existing work on multimodal acquisition (Rudovic
et al., 2019; Das et al., 2022), batch-level selection (Ash et al., 2020; Kirsch et al., 2019; Holzmiiller
et al., 2023), and balanced AL (Aggarwal et al., 2020; Shen et al., 2023; Zhang et al., 2023; Hoarau
et al., 2025) is especially relevant. Our approach, however, diverges from the conventional goals of
directly optimizing model training or seeking labels for specific data points: We aim to identify those
samples for which the acquisition of an additional data modality would be most beneficial.

Active Feature Acquisition (AFA) AFA builds upon AL by focusing on selecting the most
informative individual features for a given sample, often considering their acquisition costs (Rahbar
et al., 2025). Similar to AL approaches, methods for AFA encompass a diverse range of techniques,
including strategies based on measuring uncertainty (Hoarau et al., 2025; Astorga et al., 2024),
the use of generative models (Li & Oliva, 2021; 2024; Gong et al., 2019; Zannone et al., 2019),
and Reinforcement Learning (RL) (Valancius et al., 2024; Janisch et al., 2020; Kleist et al., 2025;
Shim et al., 2018; Baja et al., 2025). Other common methodologies involve batch-level perspectives
(Asgaonkar et al., 2024), leveraging information bottlenecks (Norcliffe et al., 2025), or employing the
Kullback-Leibler Divergence (KL-Divergence) (Natarajan et al., 2018). Some AFA techniques rely
on gradient calculations (Ghosh & Lan, 2023), while distinct approaches are formulated as individual,
sequential recommender systems (Freyberg et al., 2024; Vivar et al., 2020). At an application level,
even Large Language Models (LLMs), such as Med-PaLLM 2 (Singhal et al., 2025), could be employed
for AFA, although such deployments remain unexplored in this context. While our setting shares
the core idea of AFA, it differs significantly: We are not concerned with the selection of individual
features, but rather with identifying which entire data modalities to acquire. Furthermore, this
decision-making process is applied at the cohort level, rather than optimizing for individual samples.

Active Modality Acquisition (AMA) AMA can be conceptualized as an extension of AFA,
distinguished by its focus on selecting entire data modalities rather than individual features or
labels. Prominent related research includes approaches employing RL for multimodal data (Kossen
et al., 2023; Jain et al., 2025; Li & Oliva, 2025) and methods utilizing submodular optimization in
conjunction with Shapley values (Shapley, 1953; He et al., 2024). The approach by Kossen et al.
(2023) differs from ours through its reliance on RL, whereas He et al. (2024) primarily investigate how
modalities affect optimal learning performance. Further studies have explored the use of Gaussian
mixtures within Bayesian optimal experimental design to enhance data acquisition efficiency for
model training (Long, 2022). This objective differs from ours, as our focus is not on improving the
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model training process itself, but rather on optimizing performance for a downstream task at test time.
The relative sparsity of existing work for AMA underscores the significance of the research gap that
our proposed setting, i.e., CAMA aims to address.

Multimodal Learning with Missing Data Modalities Research in multimodal learning with
missing data modalities offers techniques for robustly handling incomplete datasets. These methods
are broadly classified into strategy design aspects, i.e., architecture-focused designs and model
combinations, and data processing aspects, i.e., representation learning and modality imputation
(Wu et al., 2024). Acknowledging the utility of these approaches, our work emphasizes imputation-
based strategies, and thus this paragraph highlights those methods. Imputation of missing features
is commonly performed using Auto Encoders (AEs) (Hinton & Zemel, 1993), Variational Auto
Encoders (VAEs) (Kingma & Welling, 2014), Generative Adversarial Networks (GANs) (Goodfellow
et al., 2014), or Denoising Diffusion Probabilistic Models (DDPMs) (Ho et al., 2020; Rombach
et al., 2022). These methods naturally extend to multiple modalities, for example, with VAE-based
(Wesego & Rooshenas, 2024; Sutter et al., 2021; Lewis et al., 2021) and DDPM-based (Wang
et al., 2023) approaches. Notably, the latter, i.e., IMDer (Wang et al., 2023), a multimodal deep
learning architecture that imputes missing values with DDPMs in latent spaces, is adapted in our
work (Section 5). However, this research area focuses on handling absent modalities rather than
deciding which ones to acquire.

3 PROBLEM FORMULATION

Let D = {(zi,y;)}}Y, be a dataset of N samples. For each sample 4, the full feature set x; is
composed of P distinct data modalities, x; = {wgl), ey a:EP)}, andy; € {0,1} is the corresponding
binary label. In practice, only a subset of these modalities may be available. We denote the set of
indices of available modalities for sample i as P! C {1,..., P}. Our goal is to decide for which
samples to acquire costly missing data to maximize a cohort-level performance metric. This decision
is guided by predictive scores (logits), and we consider three key predictive scores for each sample i:

o s?ail; The available score, computed using the subset of data modalities that are already
observed for the sample.

R Sgcquired .

The acquired score, computed using the sample’s available modalities plus the
newly acquired modality.

acquired
i

. {s;mkp }E | A set of K imputed scores that estimate the unknown s
available data modalities.

using only the

For instance, given the example from Figure 1, in a simple clinical setting with a cheap, universally
available base modality, e.g., cardiac biomarkers such as troponin or B-type natriuretic peptide (BNP),
and an expensive additional modality, e.g., cardiac MRI, s;»“’a“ would be the score from the blood

tests alone, while 52! would be the score using both tests and MRI. To compute these scores, we
assume a single model f parameterized by 6 that can process any subset of modalities. The available
and acquired scores are thus:

il il
s2 — £, 6) M
acquired acquired
S; = f(=; ,0) (2)
where 2! and 22°""** represent the feature sets for the available and acquired modalities, respec-

tively. To estimate the acquired score without costly acquisition, we use a generative imputation
model finp. This model generates a set of K plausible embeddings that enable the classifier fc
to predict the scores {s;m,f 521. These imputation-based scores form the basis of our acquisition
functions.

The goal of the optimization is to select a subset of samples S from the cohort of IV total samples for
which an additional modality should be acquired. This subset S C {1, ..., N} has a predetermined
size |S| = 3, where §3 is the acquisition budget, i.e., the number of samples for which additional
modalities will be acquired. The final score s;(S) used for the evaluation of a sample ¢ is then
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determined by the selection:

acquired .o .
S; ifieS
sl(S) - {ngail if s ¢ S . (3)

The optimization problem is to find the set S* that maximizes the chosen performance metric:

S§*=  argmax  Metric(y,s(S)) ()]
SC{1,..,N}:|8|=8

where y = {y;} Y, is the vector of true labels, and s(S) = {s;(S)}Y, is the vector of resulting
scores for all samples in the cohort. Consequently, the task is to identify an optimal, constrained
subset for which to acquire additional modalities, while maximizing a performance metric across the
entire cohort.

4  ACQUISITION FUNCTION STRATEGIES

Directly solving the cohort-level optimization problem to identify the optimal sample set S* is
computationally intractable due to its combinatorial nature. Therefore, we employ several heuristic
acquisition functions (AFs) that approximate the optimal selection by ranking samples for modality
acquisition. These strategies, detailed further in Section C, are derived from standard discriminative
metrics (Section C.1) and can be categorized as follows (Table 2):

* Oracle Strategies: As upper-bound benchmarks, they assume perfect knowledge of out-
comes and true labels to greedily select samples yielding the largest immediate gain in the
target metric.

» Upper-Bound Heuristic Strategies: These heuristics assume knowledge of scores under
modality completion but are label-agnostic, relying on metrics like the true uncertainty
reduction, rank change, or KL-Divergence.

* Imputation-Based Strategies: Grounded in counterfactual reasoning, these strategies use a
generative model to predict how a sample’s score might change if a missing modality were
acquired.

» Baseline Information Strategies: These strategies make decisions using only information
from the initially available modalities, i.e., without any imputation and pre-acquisition, such
as its predicted uncertainty or probability.

* Random Strategy: This serves as a fundamental baseline by selecting samples randomly,
without regard to any model scores.

Table 2: Summary of AF Strategies.

Category Strategies Input Variables Ranking Criteria
Oracle AUROC, AUPRC True labels & ac- Greedy selection for maximum
quired scores gain.

Upper-Bound KL-Divergence, True acquired True change in prediction, cohort
Rank, Uncertainty scores rank, or uncertainty.

Imputation-Based ~ KL-Divergence, Imputed acquired Expected change in prediction,
Rank, Uncertainty scores rank, or uncertainty.
& Probability

Baselines Uncertainty, Proba-  Pre-acquisition Uncertainty or probability using
bility scores the available modality.

Random Random None Random selection.

Intuitively, these acquisition functions approximate the expected information gain (EIG) from ac-
quiring an additional modality. In our setting, EIG quantifies the expected improvement in a chosen
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Figure 2: End-to-end architectures to determine the scores for different AFs in our proposed CAMA
setting. (A) Vanilla late fusion (LF) architecture of a model f that can handle missing data modalities
by masking. The model creates scores s given the available modalities. (B) Architecture for
training (left) and inference (right) with a late fusion (LF) model f and a generative model fiy, to

create scores s for the imputation-based AFs.

performance metric given the additional information that would become available through a new
modality.

For evaluation, we introduce a metric that describes the cumulative performance of an AF, normalized
by the total possible gain achievable by transitioning all samples to post-acquisition performance (see
Figure 1 C, for an illustrative curve). Let Mag(b) denote the performance curve of an AF strategy
for a primary metric M as a function of the budget fraction b of the acquisition budget 3, M. the
performance of the pre-acquisition baseline, and M, the performance of the post-acquisition model.
The normalized area of gain for an acquisition function AF, which measures the portion of achievable
performance gain captured across different budgets, is defined as the area under the performance gain
curve, normalized by the maximum possible gain (Equation (5)). Intuitively, a value of 0 indicates
no improvement over the pre-acquisition baseline across budgets. A value of 1 indicates matching
the post-acquisition performance on average across budgets. Values greater than 1 occur when the
cohort’s performance at intermediate budgets temporarily exceeds the post-acquisition cohort as
detailed later and shown in Figure 3.

Jo (Map(b) — Mye) db

GM (AF) =
f ll( ) Mposl - Mpre

&)

5 EVALUATION

To evaluate these strategies in practice, we require architectures that produce the necessary scores.
The oracle, upper-bound, baseline, and random AFs can be evaluated using a vanilla discriminative

late fusion (LF) model (Figure 2 A), as they operate on true labels y, and true scores s-“®""* and
sdail (Section 3). In contrast, our proposed imputation-based AFs are grounded in counterfactual
reasoning: They require the model to predict how its output would change if a missing modality were
present. This necessitates a more sophisticated architecture that combines the discriminative classifier

with a generative component capable of imputing the missing modality (Figure 2 B).

Model Architecture First, we implement a multimodal architecture consisting of modality-specific
encoders f gn) : X0m) 5 R and a fusion classifier fo (Figure 2 A). The encoders map raw inputs for

a sample i and modality m to latent embeddings zi(m) =f ](Em) (a:l(»m) ), e.g., with a Vision Transformer
(ViT) (Dosovitskiy et al., 2021) for images and BERT (Devlin et al., 2019) for text. The discriminative
classifier fc aggregates these embeddings to produce logits s34 depending on the availability of
the raw inputs, i.e., with a Transformer encoder (Vaswani et al., 2017). Second, for our generative
AFs, we incorporate generative modules additionally to the discriminative late fusion (Figure 2
B) (Wang et al., 2023). The generative modules fiy, are parameterized as Diffusion Transformers
(DiTs) (Peebles & Xie, 2023) or Beta-Conditional-VAEs (BC-VAEs) (Higgins et al., 2017) trading off
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Figure 3: (a) AUROC curves for several AFs on the MOSEI dataset (Zadeh et al., 2018) at an
acquisition budget of 25% of the dataset size. (b) Acquisition performance of the best-performing AF
from (a), visualizing the gain achieved during the progressive acquisition of modalities as the cohort
transitions from pre-acquisition scores towards post-acquisition. Notably, the oracle AF can exceed
the post-acquisition cohort’s AUROC at certain fractions of acquired modalities before subsequently
declining towards it again.

performance vs. efficiency. The generative modules fin, are trained to approximate the conditional
distribution pp(2(F)|{2("™)}, _pwa) for each target modality k. The generative loss for sample i is:

Lg, = Z ‘Cgen(zi(k); {ZZQH/)}mGP;wn) 6)

ke fPavall
i

where L, is a variational bound on the negative conditional log-likelihood: for DDPMs, this
corresponds to the denoising objective (Ho et al., 2020); for BC-VAEs, this is the negative conditional
evidence lower bound (ELBO) (Higgins et al., 2017). For the discriminative task, the loss for sample
1 is defined as binary cross entropy loss with the label y and the predicted probability p:

Lcg;, = — [yilog(p:) + (1 — y;) log(1 — p;)] - (M
The final loss function for the whole architecture is defined as the combination of both loss terms:
L= MLcg + XLag (8)

with loss weightings A for which we find A\; = A = 1 is important for downstream performance.
During inference, the classifier fc also uses samples of p(2®)[{2(™)}, _pwa) for missing modalities

to create the scores s;mp needed for our generative AFs (Figure 2 B, right). During training, samples
from p(z*) |{Z(m)}m€fpsvail) are not passed to fc, even when modalities are missing (Figure 2 B,

left). Instead, the discriminative components ( f ;Em) and f¢) are trained only on available modalities
via attention masks. This means that the generative and discriminative parts are trained jointly, but the
generative outputs do not directly influence the classifier during training beyond the shared encoders
being updated by the classification loss. For model training, we use the ScheduleFree optimizer
(Defazio et al., 2024) with hyperparameters determined through sweeps. We find the following
architectural decisions essential, which are ablated in Table 7: (a) applying Layer Normalization
(Ba et al., 2016) at the end of each modality’s encoder to stabilize the DDPMs operating between
latent spaces, (b) calibrating the model with label smoothing (Szegedy et al., 2016) to produce less
overconfident and better-calibrated probability distributions, (c) decoupling the generative modules
from the classifier during training and (d) class balancing the training dataset as detailed in the next
paragraph. Regarding missing modalities, we do not pre-train on all available data modalities, in
contrast to Wang et al. (2023). We use a predefined, seed-dependent missing-modality mask to
control data modality leakage during training unlike batch-dependent masks, which eventually reveal
all modalities for every sample across numerous epochs. Further details in Section D.

Datasets We evaluate the setting of CAMA on four real-world multimodal datasets: UKBB (Sudlow
et al., 2015), MIMIC Symile (Saporta et al., 2024), MIMIC HAIM (Soenksen et al., 2022a;b), and
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Table 3: Acquisition performance on Symile, with G, shown for AUROC/AUPRC as an example
for the class with the best and worst performance and the mean value of all ten classes. Strategies are
grouped by category. Best strategy among proposed ones and baselines in bold for each column.

Acquisitions by AUROC, Gy 1 == SEM Acquisitions by AUPRC, Gy T &= SEM

Strategy Cardi ly P thorax Mean Lung Lesion Pneumothorax Mean

Upper Bounds (for reference)

Oracle 2.787 +0.139 9.461 + 1.049 4.580 2.520 + 0.250 10.623 + 0.708 4.231
True KL-Div. 0.885 + 0.011 0.910 &+ 0.054 0.883 0.828 + 0.073 0.827 4+ 0.043 0.871
True Rank 0.878 £+ 0.019 0.605 + 0.053 0.811 0.676 + 0.088 0.483 + 0.075 0.776
True Uncert. 0.524 + 0.025 —0.136 £ 0.065 0.481 0.181 £ 0.067 0.293 + 0.052 0.450

Imputation-based (proposed)
KL-Divergence  0.747 + 0.039 0.773 £ 0.134 0.833 0.896 +0.146 0.581 + 0.084 0.777

Probability 0.350 4+ 0.053 0.898 + 0.061 0.426 0.320 +0.104 0.965 + 0.027 0.449
Rank 0.378 + 0.016 0.115 4+ 0.082 0.378 0.564 4+ 0.086 0.396 4+ 0.054 0.407
Uncertainty 0.450 + 0.041 0.055 4 0.060 0.440 0.130 4+ 0.053 0.513 4+ 0.066 0.444
Baselines (no imputation)

Uncertainty 0.480 + 0.013 0.536 + 0.040 0.480 0.215 + 0.033 0.811 4+ 0.041 0.443
Probability 0.431 + 0.015 0.536 + 0.040 0.458 0.756 + 0.136 0.811 4+ 0.041 0.550
Random 0.385 + 0.015 0.327 + 0.061 0.376 0.503 4+ 0.103 0.527 + 0.053 0.388

MOSEI (Zadeh et al., 2018), which cover diverse domains such as healthcare and emotion recognition.
For the publicly available datasets, missing modalities are synthetically created, whereas for UKBB
they are an inherent characteristic. We design the datasets for binary classification, resulting in ten
binary targets for the MIMIC datasets and one binary target for MOSEI and UKBB. While MOSETI is
already class-balanced (Zadeh et al., 2018), HAIM and Symile exhibit significant class imbalance
(Soenksen et al., 2022a; Zadeh et al., 2018). To address this, we employ random oversampling
during training, which we find essential for the effective operation of AFs (Table 7). Importantly,
during testing we retain the original imbalanced distributions, and no class-balancing steps are
applied to UKBB. We highlight UKBB as the most challenging dataset to demonstrate that CAMA
scales to a broad multimodal range and large-scale cohorts with approximately 100,000 samples and
15 modalities. In this setting, we focus on acquiring the exceptionally costly proteomics data for
predicting the onset of systemic lupus erythematosus (SLE), which has been shown to benefit from
proteomics combined with other clinical data (Yang et al., 2025). Additional details are provided in
Section E.

Model and AF Evaluation For datasets with at least three modalities, we apply five-fold cross-
validation. Due to initially noisy results for MIMIC HAIM, we increase the number of folds to
ten. For each sample in the test set, the initial score s3**! is established by randomly assigning a
subset of available modalities vaa“. This procedure is repeated over several runs for robustness.
In each run, every sample is stochastically assigned a new subset P!, Performance metrics are
averaged across these independent runs to ensure our evaluation is robust to any single random
assignment of patient data. Acquisition is simulated by incrementally increasing the budget 5. We
focus on tasks where the post-acquisition model demonstrates a performance improvement over the
pre-acquisition baseline. For certain prediction tasks, a simpler pre-acquisition model can outperform
a more complex post-acquisition one, potentially due to the introduction of noisy or conflicting
signals. In such cases, the final post-acquisition performance falls below the pre-acquisition baseline,
resulting in a negative normalized area of gain, indicating that acquisition was detrimental. To ensure
a meaningful evaluation, we exclude any tasks exhibiting this negative gain from the analysis at the

split level. For each budget, the top-ranked samples in S are considered acquired, and their logits
are updated from s to s*°®"™*, Final reported results are aggregated across all cross-validation
splits, combinations of missing and available modalities, and random runs to ensure robustness of the
evaluation.

6 RESULTS

Our empirical evaluation confirms the effectiveness of CAMA. We benchmark our imputation-
based strategies against oracles, upper-bound heuristics, and baselines across multiple datasets. Full
results are aggregated in Tables 3 to 5 by averaging over permutations of missing input modali-



Under review as a conference paper at ICLR 2026

Table 4: Acquisition performance on UKBB,
showing Gy, for AUROC/AUPRC. Strategies
are grouped by category. Best strategy among
proposed ones and baselines in bold.

Table 5: Acquisition performance on MOSEI,
showing G, for AUROC/AUPRC. Strategies
are grouped by category. Best strategy among
proposed ones and baselines in bold.

AUROC AUPRC AUROC AUPRC
Strategy G = SEM 1 G = SEM 1 Strategy G = SEM 1 G = SEM 1
Upper Bounds (for reference) Upper Bounds (for reference)
Oracle 1.141 £ 0.051 1.721 £ 0.315 Oracle 1.478 £ 0.091 1.666 £ 0.161
True KL-Div. 0.978 + 0.007 0.986 + 0.005 True KL-Div. 0.882 + 0.006 0.838 + 0.006
True Rank 0.887 + 0.022 0.466 + 0.110 True Rank 0.849 + 0.008 0.806 + 0.010
True Uncert. 0.436 + 0.088 0.507 + 0.074 True Uncert. 0.663 + 0.006 0.708 4+ 0.005
Imputation-based (proposed) Imputation-based (proposed)
KL-Divergence 0.641 + 0.029 0.658 4+ 0.045 KL-Divergence 0.855 + 0.034 0.889 + 0.052
Probability 0.535 + 0.026 0.713 + 0.029 Probability 0.707 + 0.037 0.846 + 0.070
Rank 0.437 + 0.028 0.340 +0.114 Rank 0.432 +0.014 0.457 + 0.019
Uncertainty 0.373 + 0.053 0.332 + 0.058 Uncertainty 0.630 + 0.015 0.706 + 0.037
Baselines (no imputation) Baselines (no imputation)
Uncertainty 0.365 £ 0.042 0.556 + 0.073 Uncertainty 0.525 4+ 0.005 0.540 %+ 0.006
Probability 0.365 + 0.042 0.556 + 0.073 Probability 0.433 + 0.007 0.543 + 0.009
Random 0.528 + 0.018 0.485 + 0.052 Random 0.490 + 0.004 0.525 + 0.003
Table 6: Efficiency analysis for different architectures.

Architecture Train (sec) | Validation (sec) | Parameters (M) |

Late fusion 0.02 0.015 86.5

Late fusion w/ DDPMs 0.17 0.16 125

Late fusion w/ BC-VAEs 0.08 0.08 313

ties and multiple random instantiations for each missingness configuration. As expected, oracle
strategies serve as an upper bound and consistently achieve the highest performance. Surprisingly,
oracle gains can exceed the value of one, as a strategic mix of pre-acquisition and post-acquisition
samples can outperform a purely post-acquisition cohort. To benchmark the acquisition logic it-

self, we use label-agnostic upper-bound heuristics that access acquired scores s*“"*!, Among
these, strategies based on KL-Divergence and rank change perform well, indicating that prioritiz-
ing large predictive shifts or cohort reordering is an effective heuristic in this setting. Our main
approach for handling the CAMA setting comprises imputation-based strategies that leverage a
generative model fiy, to predict counterfactual outcomes. The imputation-based KL-Divergence
strategy consistently and significantly outperforms all other non-oracle methods. This AF effectively
identifies samples predicted to have the largest shift in their class probability distribution (Figure 3).
In contrast, imputation-based strategies relying
on rank change, final uncertainty, or final prob-
ability are considerably weaker, suggesting that
quantifying the change in prediction is more ef-
fective than estimating the final state. While our
primary results with respect to imputation-based
AFs use DDPMs, a BC-VAE variant offers sig-
nificantly faster inference for a minor trade-off

Table 7: Cross-validated ablation of the proposed
model adjustments on the Symile dataset, exem-
plary for the mean across all endpoints with the
expected KL-Divergence and acquisitions by AU-
ROC.

in performance (Table 6 and section F). The rel- Ablation G 7
ative performance ranking of these strategies KL-Divergence (w.r.t. Table 3) ~ 0.833
is largely consistent across all datasets, includ- w/o Layer Norm 0.772
ing the large-scale UKBB cohort with approxi- w/o label smoothing 0.746
mately 100,000 samples and 15 modalities. This w/o decoupled data flow 0.599

w/o balanced train set 0.568

confirms the robustness and scalability of our
framework in a challenging setting. In summary,
our results affirm the superiority of the imputation-based KL-Divergence strategy, which achieved
substantial and reliable gains over all baselines and heuristic methods. Additional results in Sections G
to L.
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7 DISCUSSION

We introduce CAMA to address the challenge of strategic data acquisition under budget constraints.
Our experiments consistently demonstrate that imputation-based AFs provide a robust and effective
solution. In the following, we discuss the key implications. The ability of oracles to yield gains
exceeding that of a model using post-acquisition data for all samples (Figure 3 (b)), suggests that
an underlying predictive model can achieve better global performance with a strategic curation of
samples, rather than applying all modalities across the cohort. This likely occurs because additional
modalities may introduce variance, redundancy, or conflicting information that imperfect models
cannot optimally reconcile. The oracles circumvent this by selecting only additional modalities
beneficial to the global metric. To our surprise, the imputation-based KL-Divergence AF can
slightly outperform the corresponding upper-bound heuristic (Table 5). Conversely, the substantial
performance gap between the rank-change heuristic and its imputation-based counterpart suggests
that global, rank-based metrics may be particularly vulnerable to imputation noise. While the
KL-Divergence AF demonstrated strong performance, not all imputation-based AFs consistently
outperformed simpler strategies across all datasets or endpoints (Sections H and I). This indicates that
optimal CAMA AFs can be context-dependent and that effectiveness hinges on how imputations are
leveraged rather than on imputation quality alone. Regarding the impact of imputation quality, it is
important to note that we impute latent embeddings optimized for the discriminative task rather than
raw data. Consequently, standard generative metrics (like Fréchet inception distance (FID)) are not
applicable for comparing imputation quality across different generative models since every generative
model influences the encoders latent spaces indirectly. While we observe that utilizing stronger
generative models, e.g., DDPMs, results in higher acquisition performance compared to weaker
models, e.g., VAEs, our findings indicate that the generative imputation quality is not the only factor.
As detailed in Table 7, the coherence of the overall architecture design, i.e., ensuring the classifier
is robust to the distribution of imputed latents, is equally critical for effective acquisition. We show
CAMA s robustness to imputation errors since fim, models a distribution of plausible outcomes rather
than aiming for a single reconstruction. By averaging the expected impact across this distribution, the
acquisition decision becomes less sensitive to uncertainty. Additionally, the primary KL-Divergence
AF is resilient to noise, as it prioritizes samples expected to cause a large predictive shift, effectively
ignoring minor imputation errors. Taken together, CAMA is not only practical for constrained
settings, but also reveals insights into post-acquisition behavior. The successful KL-Divergence
strategy and the surprising oracle performance underscore that the value of an additional modality
is not absolute but highly contextual. The most effective AFs are not those that simply predict an
outcome, but estimate the magnitude of the predictive shift.

8 CONCLUSION AND FUTURE WORK

We introduce CAMA, a novel setting addressing the real-world challenge of optimizing global
discriminative performance through strategic test-time acquisition of an additional modality under
resource constraints. Our evaluation across multiple multimodal datasets shows that imputation-based
AFs can effectively guide resource allocation under cohort-level constraints. The generally consistent
relative ordering of AFs across diverse datasets and the low variance in overall results lend confidence
to the robustness of our core findings. In settings such as healthcare, strategic allocation of costly or
invasive diagnostic procedures is essential, and our approach offers a promising direction for these
applications. Future work includes extending CAMA to multi-class problems or regression tasks,
exploring additional imputation techniques, directly optimizing cohort-level metrics, and dynamically
selecting which modality to acquire instead of pre-selecting one.
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A BROADER IMPACT AND ETHICS

The CAMA setting introduced in this paper offers potential for positive broader impacts, primarily by
enabling more efficient use of resources in multimodal machine learning. In resource-constrained
fields like healthcare, this could facilitate access to more robust and comprehensive model perfor-
mance by strategically guiding the acquisition of costly or limited additional data modalities. This
could translate to improved diagnostic accuracy where such data is critical but not uniformly available
for all samples in a cohort. However, the deployment of CAMA, particularly its core function of
ranking and prioritizing samples for modality acquisition, necessitates careful ethical consideration.
This raises concerns about equity and fairness, especially if the downstream application impacts
critical decisions. A significant risk is the potential to introduce biases, including racial, socioeco-
nomic, or other demographic biases. Therefore, the development and application of CAMA must be
approached with a strong commitment to ethical principles.

B REPRODUCIBILITY
To ensure the reproducibility of our results, we provide the following details:

Code The complete source code used for all experiments will be made publicly available on GitHub
upon publication. The repository will include scripts for model training and evaluation.

Hyperparameters All hyperparameters, including learning rates, batch sizes, and model-specific
parameters, are explicitly listed in Section D. Additionally, we provide the complete sweep configura-
tions used for hyperparameter tuning to allow for full replication of our optimization process.

Datasets Three of the four datasets used in our evaluation are publicly available. For more details
see Section 5 and Section E.

Implementation Details We provide a full section in Section D and a dedicated paragraph in
Section 5 describing implementation details that we found to be crucial.

C DETAILS ABOUT ACQUISITION FUNCTION STRATEGIES

C.1 AUROC AND AUPRC

To derive the proposed acquisition strategies, we briefly explain the metrics used in the following
paragraphs.

AUROC The Area Under the Receiver Operating Characteristic (AUROC) measures the model’s
ability to discriminate between positive and negative classes and is defined as

AUROC(y.) = - 30 3 (166> 5+ 315 =) ©

iy, =17:y;=0
where Ny, = [{i |y, = 1}|and N_ = [{j | y; = 0}.
AUPRC The Area Under the Precision-Recall Curve (AUPRC) summarizes the trade-off between

precision (F;) and recall (2;) across different decision thresholds ¢ and is defined as

N/
AUPRC(y,p) = > (R — Ri—1) Py (10)
k=1

where points (Ry, Pj;) are ordered by threshold from the PR curve, N’ is the number of unique
thresholds, and p = o (s).
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C.2 ORACLE ACQUISITION STRATEGIES: EXACT GAIN CALCULATION

Oracle acquisition strategies serve as theoretical upper limits for the performance of greedy acquisition
approaches. They operate under the ideal assumption that the true labels y, and the outcome scores

52904 are known for all samples i € {1,..., N'}. While not implementable in practice, these oracle
strategies provide benchmarks by selecting samples based on their exact marginal contribution to the
global evaluation metric. The general principle is to iteratively select 3 samples. At each step, among
the samples for which the additional modality has not yet been acquired, the oracle picks the one that
provides the largest true immediate gain to the chosen global metric.

AUROC Oracle The AUROC oracle strategy aims to maximize the cohort’s AUROC by identifying,
at each step, the sample ¢ that yields the largest immediate increase in this metric if its additional
modality were acquired (changing its score from sl to §*4""™%) j ¢ a greedy selection. This
prospective increase is quantified by the marginal gain ngROC. The components of this gain,
ngROC(y = 1) (for positive samples) and gAUROC(yi = 0) (for negative samples), reflect the net
change in favorable pairwise score comparisons relative to samples of the other class. Recall the
definition of AUROC from Equation (9):

AUROC(y, s) = NN N >y ( ) —1—2]1( j)>.
wy;=1j:y;=0
The total marginal gain for sample ¢, representing the exact change in the cohort’s AUROC value, is
then, by considering positive and negative samples and neglecting the normalization factor:

Q?UROC(YZ‘ — 1) — Z (H(S?Cquired > S;Vaﬂ) _ H(S:;vail > S;vail)

e (11)
1T acau _ _ _
+ 5 []I(S;lcqulred — szji_vall) _ ]I(S‘;-Wal] — S;va1l):|>

g;foROC(yi _ 0) _ Z (H(Sa}vail > sz}CqUired) _ H(Szvail > s;wail)

1 1)
AT
1
g1 = N, N_ (68 y; = 1) - Iy; = 1) + g7y, = 0) - Iy; = 0))  (13)

AUPRC Oracle The AUPRC oracle strategy seeks to maximize the cohort’s AUPRC. It operates
by identifying, at each step, the sample ¢ which, if its additional modality were acquired (changing
its score from s to s*4""™) would yield the largest immediate increase in the global AUPRC
value, i.e., a greedy selection. This marglnal gain, g*UPRC represents the exact change in the cohort’s
AUPRC. To calculate the marginal gain for a sample ¢, we compute the change in the cohort’s AUPRC.
Let s be the vector of scores for the whole cohort. We define a new vector, s'P92d_ which is
identical to s™™ except that for sample i, the score is changed from s34 to s acqu”ed . The marginal
gain is then:

g;“AUPRC — AUPRC(y, pupdated> _ AUPRC(y, pcurrent) (14)

where pcun'em — o.(scurrem) and pupdated — O.(Supdated).
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C.3 UPPER-BOUND HEURISTIC STRATEGIES

The preceding oracle strategies make the assumption of perfect foresight into both the true labels y,

and the exact outcome scores s-"“"**, We now introduce a distinct class of upper-bound heuristic
strategies. These strategies still presume access to the true future scores s*““"™* for any sample 7 if its
additional modality were acquired. However, the following upper-bound heuristics are label-agnostic,
i.e., the true label y, of a candidate sample is not used when determining its priority for acquisition.

Consequently, the selection principle for these strategies must rely on how the known change from

an initial score s to the future score s is expected to influence the global evaluation metric,
without direct reference to the sample’s ground-truth label.

Maximum True Uncertainty Reduction The uncertainty reduction strategy prioritizes acquiring
the additional modality for samples where doing so is expected to yield the largest decrease in
predictive uncertainty. For each sample 4, uncertainty is quantified using the binary entropy H(p;) of
its predicted probability p; for the positive class, defined as:

H(pi) = —pilogy pi — (1 — pi)logy(1 — pi), (15)

The acquisition strategy operates with knowledge of the initial probability p*3! = o (s'd) derived

from the available modalities, and crucially, the true future probability p?cq“ired = cr(s?cq“ired) that
would be obtained if the additional modality were acquired (where 52" is the oracle score). The

acquisition score g-® for sample i is then the exact reduction in entropy:

0" = Hp™) = HE™). (16)
Samples with higher gP'R values, indicating a greater expected reduction in uncertainty, are prioritized
for modality acquisition.

Maximum True Rank Change This rank change strategy prioritizes samples whose relative
standing within the cohort, based on predicted probability of belonging to the positive class, would
change most significantly if the additional modality were acquired. For each sample i, we consider
its rank R(p;) when all N samples in the cohort are ordered by their respective probabilities p;. The
acquisition score gR® for sample 7 is defined as the absolute magnitude of this change in rank:

95 = (R = R a7

Samples exhibiting a higher gRC are prioritized for modality acquisition, since they are expected to
cause the largest shift in the sample’s rank-ordered position relative to its peers.

KL-Divergence The KL-Divergence acquisition strategy aims to identify samples for which acquir-
ing the additional modality would lead to the largest change in the predicted probability distribution.
Specifically, it quantifies the divergence from the predicted probability distribution based on the true

future score, R?Cqmred ~ Bernoulli(p?cqmred), back to the initial distribution based on baseline data,

Pl Bernoulli(p™!). This is measured by the KL-Divergence Dy, (P™!|| P} cauired) and can be
defined as follows for an acquisition function:

ggiLD — DKL (Piavail Piacquired) (18)
ai p?‘vail Lo _ pz;vail
= P logy e + (1= pi™") logy —— G (19)
b; 1—p;

Samples with a higher gX'P are prioritized, as this indicates a greater discrepancy between the
prediction based on available data and the prediction that would be made with the additional modality.

19



Under review as a conference paper at ICLR 2026

C.4 BASELINE INFORMATION STRATEGIES

Shifting from approaches that leverage oracle knowledge of future scores (s:°®""*), the present section
details methods serving as practical, label-agnostic baselines. They make acquisition decisions based
exclusively on information derived from the initially available modality (s2**!). A random acquisition
strategy serves as a fundamental baseline.

Maximum Baseline Uncertainty The Maximum Baseline Uncertainty strategy is a baseline that
prioritizes samples for which the prediction based on the initially available modality is most uncertain.

The acquisition score for sample 7 is directly the binary entropy H (p®!), as defined in Equation (15):

gY =M. (20)

Samples with a higher gV, i.e., p2*@! closer to 0.5, since the entropy H (p*&l') is symmetric around
il
P = 0.5, are selected first.

Maximum Baseline Probability This approach prioritizes acquiring the additional modality for
samples that the baseline model already predicts as belonging to the positive class with high con-
fidence. The acquisition score gP'" for sample i is simply its initial probability p2*3! based on the
available modality:

g =™ 1)

)

Samples with a higher gi'* are prioritized for acquisition.

C.5 IMPUTATION-BASED STRATEGIES

Having explored strategies that assume perfect knowledge of the true labels y, and/or future scores

s7°9"% and simpler baselines relying only on current information s*@!, we now introduce methods

aiming to bridge the gap by offering a practical and label-agnostic pathway to modality acquisition.
They operate by utilizing an imputation model, finp, to generate a set of K plausible future scores,
denoted {s; "} |, conditioned on the initially available data s**!. The core principle of these
strategies is to then derive acquisition scores from statistics of this imputed score distribution, with
the goal of emulating the decision-making process, but without requiring true future knowledge at
test time.

Maximum Expected Probability The Maximum Expected Probability strategy prioritizes samples
which have the highest average probability of belonging to the positive class after modality acquisition.

It relies on the set of K imputed future probabilities {p; }2_,, where each p;'y = o (s; ) is derived
from an imputed future score s;mkp . The acquisition score g¢¥ for sample i is the mean of these imputed
probabilities:

K
eP __ i Z imp (22)
9i = K Pig-
k=1

Samples with a higher ¢5¥ are selected, representing instances where the imputation model, on
average, predicts a high likelihood of being positive if the additional modality were acquired.

Maximum Expected Uncertainty Reduction The Maximum Expected Uncertainty Reduction
strategy aims to select samples for which the acquisition of the additional modality is anticipated to
yield the largest average decrease in predictive uncertainty (Equation (15)). This strategy considers

the initial entropy H (p2*4l!), and the distribution of entropies {H(piim,f )}H<_,. The acquisition score

gSUR is the difference between the initial entropy and the mean of the imputed future entropies:
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K
ngR avall 1 Z H 1mp (23)
k: 1

Samples with higher g¢UR are prioritized, indicating a greater expected clarification of the prediction

upon acquiring the new modality.

Expected Rank Change The Maximum Expected Rank Change strategy prioritizes samples for
which the acquisition of the additional modality is anticipated to cause the largest change in their rank,
relative to the initial ranking based on p2*@l. It aims to mirror the "Maximum True Rank Change"
strategy by using imputed future probabilities. Let R(p2*4!) denote the rank of sample i when all
N samples in the cohort are ordered by their initial probabilities p"‘w‘il (forj =1,...,N). For each

imp

of the K imputed future probabilities plmp for sample ¢, let R(pZ » ) denote the rank of sample i if

p

its probability were plm while all other samples j # i retain their initial probabilities p?va“. The

acquisition score g¢RC is then the mean of the absolute differences between these imputed future

ranks and the initial rank:

K
g€ = Z (pr%) — R (24)
Samples with a higher ¢Sk are selected, as they are expected to experience the largest shift in their

rank-ordered position relative to other samples in the cohort upon modality acquisition.

Expected KL-Divergence The Expected KL-Divergence strategy selects samples where the initial
probability distribution is expected to diverge most significantly from the future probability distribu-
tions derived from the K imputed scores. The acquisition score g¢¥'P is the average KL-Divergence

Dy, (P2 PA™ M)y over the K imputations:

eKLD Z Dk ( Pl_avail

A higher g¢¥IP indicates that, on average, the imputed future predictions substantially differ from the
initial baseline prediction, suggesting a significant informational update from acquiring the additional
modality.

P}i’“p”“)) . (25)

D HYPERPARAMETERS, MODEL DETAILS AND COMPUTE ENVIRONMENT

We employ domain-specific encoders to process the respective modalities: for language inputs, we use
a pre-trained BERT model (Devlin et al., 2019), for vision, a Vision Transformer (ViT) (Dosovitskiy
etal., 2021). Other data types, e.g., temporal sequences, tabular data, or pre-extracted embeddings, are
handled by Transformer encoders (Vaswani et al., 2017). We use well-established hyperparameters
from the literature for the modality-specific encoders and only optimize the remaining parameters.
Notably, our experiments compared three approaches for normalizing the encoder output: No
Normalization, Batch Normalization, and Layer Normalization. We found Layer Normalization to be
particularly advantageous, as it both stabilized training convergence and significantly enhanced the
performance of the DDPMs. We also evaluated the impact of using only the CLS token representation
from the encoder versus leveraging the full output sequence. This comparison revealed no substantial
effect on performance, suggesting the sufficiency of the CLS token representation for our task. Layers
in the network are initialized using He initialization (He et al., 2015) if they were not pre-initialized
by the specific encoder architecture. We find this particularly important for stabilizing the DDPMs
during the early epochs of end-to-end model training.

We perform hyperparameter sweeps for the remaining parts of the designed model in the following
ranges:
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Figure 4: The latent DDPM with its (de)noising functions. Coloring represents less noise in the latent
space, starting with pure noise in X; 7 = X 7 with T steps. The DDPM is conditioned with two
non-missing latent spaces, each from one remaining modality respectively.

¢ Transformer Head
Embedding dimension: [32, 64, 128, 256, 512, 1024]
- Feed-Forward network: [128, 256, 512, 1024, 2048]
- Dropout: [0, 0.1, 0.2]
- Number of heads: [4, 8, 16]
- Number of layers: [2, 4, 6, 8]
« DDPMs
- Embedding dimension: analogous to Transformer head
- Hidden dimension: [32, 64, 128, 256, 512, 1024]
- Dropout: [0, 0.1, 0.2]
- Number of heads: [4, 8, 16]
- Number of layers: [2, 4, 6, 8]
- Number of steps: [10, 25, 50, 100, 250, 500]
* ScheduleFree Optimizer
- Learning rate: [1le-1, le-2, le-3, 3e-4, le-4, le-5]
- Warmup steps: [0, 100, 200]
- Weight decay: [0, 0.01, 0.001]

The models are trained with early stopping but without any maximum number of epochs. For the
imputation-based acquisition functions, 100 DDPM samples are used during inference of the model.

Our experiments are conducted on a High-Performance Cluster (HPC) with the following environ-
ment:

1. 21 Dell PowerEdge R7525 compute nodes, each with:

* 64 AMD Epyc cores (Rome)
* 512GB RAM
* 1 NVIDIA A100 40G GPU

2. 2 Dell PowerEdge XE8545 compute nodes, each with:

* 128 AMD Epyc cores (Milan)
* 512GB RAM
e 4 NVIDIA A100 40G GPUs (NVLink-connected)

E DATASET DETAILS

We evaluate CAMA on four diverse, real-world multimodal datasets, spanning domains from health-
care to emotion recognition.
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MIMIC Symile This clinical dataset is derived from the MIMIC database and is designed for
predicting the diagnosis of ten classes (Fracture, Enlarged Cardiomediastinum, Consolidation, Atelec-
tasis, Edema, Cardiomegaly, Lung Lesion, Lung Opacity, Pneumonia, Pneumothorax). It contains
10,345 samples from patients in intensive care units. For our experiments, we utilize three distinct
modalities: laboratory values, chest X-ray images, and electrocardiograms (ECGs).

MIMIC HAIM This healthcare benchmark also focuses on the diagnostic prediction of ten classes
(Fracture, Enlarged Cardiomediastinum, Consolidation, Atelectasis, Edema, Cardiomegaly, Lung
Lesion, Lung Opacity, Pneumonia, Pneumothorax). The bimodal dataset consists of 45,050 samples.
The two modalities used in our study are laboratory values and chest X-ray images.

CMU-MOSEI This large-scale benchmark targets multimodal sentiment analysis and emotion
recognition with seven classes covering different emotions. It contains 22,856 video samples of
speakers expressing opinions. The dataset comprises three modalities: vision, acoustics, and language.
Notably, unlike the other datasets, we utilize the pre-computed embeddings provided by the authors
rather than the raw data.

UK Biobank (UKBB) The UK Biobank is a large-scale, prospective biomedical database from
half a million UK participants. In our experiments, the costly modality targeted for acquisition
is proteomics, which is available for only a fraction of the full cohort. We constructed a subset
of 100,000 samples in which approximately half include proteomics data, accurately simulating
a resource-constrained acquisition scenario. The 15 modalities utilized include electronic health
records (EHRs), NMR metabolomics, proteomics, physical activity measurements, diet and alcohol
consumption questionnaires, baseline characteristics, smoking status, physiological measurements,
anthropometry, hand grip strength, cognitive function tests, ECGs, polygenic risk scores (PRS), and
arterial stiffness measurements.
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F RESULTS FOR SYMILE WITH BC-VAES

Table 8: Acquisition performance on Symile (AUROC) with Beta-Conditional Variational Auto
Encoders. Strategies are grouped by category. Best strategy among proposed ones and baselines in

bold for each column.

Strategy Fracture Enl. Card. Consolidation Atelectasis Edema Mean
Upper Bounds (for reference)

Oracle 2.807 4+ 0.326 4.224 + 0.501 2.716 4+ 0.147 5.901 4+ 0.861 2.096 4+ 0.078 4.423
True KL-Div. 1.009 £0.115 0.752 + 0.095 0.855 + 0.020 0.689 + 0.092 0.900 + 0.007 0.800
True Rank 0.714 + 0.094 0.728 + 0.070 0.853 + 0.017 0.777 £ 0.104 0.890 + 0.007 0.719
True Uncert. 0.939 + 0.088 0.735 +0.113 0.571 + 0.024 0.106 £+ 0.079 0.719 + 0.009 0.555
Imputation-based (proposed)

KL-Div. 0.834 + 0.060 0.420 + 0.109 0.684 + 0.017 0.527 + 0.077 0.744 +£ 0.013 0.584
Prob. 0.643 + 0.073 0.559 + 0.037 0.489 + 0.022 —0.304 £ 0.170 0.603 + 0.009 0.395
Rank 0.252 + 0.109 0.281 + 0.063 0.526 + 0.019 0.327 + 0.087 0.444 + 0.009 0.366
Uncert. 0.911 + 0.073 0.557 + 0.042 0.593 + 0.023 0.162 + 0.075 0.637 £ 0.012 0.519
Baselines (no imputation)

Uncert. 0.862 + 0.092 0.397 £+ 0.052 0.510 £+ 0.017 0.423 + 0.046 0.592 + 0.008 0.477
Prob. 0.127 + 0.066 0.508 + 0.026 0.526 + 0.016 0.054 + 0.133 0.462 + 0.006 0.388
Random 0.429 + 0.085 0.290 + 0.060 0.497 + 0.019 0.102 + 0.097 0.480 + 0.006 0.350
Strategy Cardiomegaly Lung Lesion Lung Opacity Pneumonia Pneumothorax Mean
Upper Bounds (for reference)

Oracle 2.715 4+ 0.124 4.677 +0.799 6.125 + 0.911 4.317 +£0.181 8.654 + 0.796 4.423
True KL-Div. 0.871 + 0.011 0.701 £+ 0.189 0.582 + 0.146 0.892 + 0.014 0.745 + 0.096 0.800
True Rank 0.843 + 0.015 0.457 + 0.225 0.501 + 0.140 0.825 + 0.022 0.603 + 0.102 0.719
True Uncert. 0.701 + 0.016 0.626 + 0.130 0.147 + 0.057 0.664 + 0.023 0.343 + 0.036 0.555
Imputation-based (proposed)

KL-Div. 0.718 + 0.019 0.456 + 0.097 0.324 + 0.232 0.757 + 0.025 0.380 £+ 0.129 0.584
Prob. 0.553 + 0.014 0.710 + 0.213 0.023 + 0.076 0.096 + 0.030 0.580 + 0.052 0.395
Rank 0.416 + 0.020 0.357 + 0.309 0.311 + 0.087 0.493 + 0.019 0.251 + 0.065 0.366
Uncert. 0.629 + 0.018 0.596 + 0.131 0.095 + 0.161 0.567 + 0.019 0.448 + 0.041 0.519
Baselines (no imputation)

Uncert. 0.531 + 0.015 0.534 + 0.087 —0.022 £+ 0.318 0.441 + 0.017 0.500 + 0.023 0.477
Prob. 0.424 + 0.013 0.468 + 0.137 0.291 + 0.066 0.518 + 0.028 0.499 + 0.023 0.388
Random 0.418 +0.014 0.441 + 0.220 0.152 + 0.115 0.399 + 0.018 0.291 + 0.087 0.350
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Table 9: Acquisition performance on Symile (AUPRC) with Beta-Conditional Variational Auto
Encoders. Strategies are grouped by category. Best strategy among proposed ones and baselines in

bold for each column.

Strategy Fracture Enl. Card. Consolidation Atelectasis Edema Mean
Upper Bounds (for reference)

Oracle 1.785 £ 0.110 3.468 + 0.317 2.780 4+ 0.146 2.632 4+ 0.146 2.460 4+ 0.099 4.116
True KL-Div. 0.798 + 0.050 0.700 + 0.101 0.828 + 0.020 0.686 + 0.026 0.888 + 0.007 0.766
True Rank 0.736 + 0.061 0.625 + 0.096 0.822 + 0.022 0.733 + 0.046 0.843 + 0.009 0.689
True Uncert. 0.778 + 0.050 0.623 + 0.044 0.606 + 0.034 0.206 + 0.033 0.731 £ 0.011 0.513
Imputation-based (proposed)

KL-Div. 0.725 + 0.062 0.574 + 0.095 0.636 + 0.023 0.599 +0.034 0.733 +£0.013 0.624
Prob. 0.642 + 0.033 0.610 + 0.037 0.539 + 0.039 0.072 + 0.059 0.696 + 0.009 0.433
Rank 0.355 + 0.050 0.334 + 0.101 0.409 + 0.029 0.405 + 0.032 0.427 £ 0.010 0.409
Uncert. 0.757 + 0.056 0.584 + 0.048 0.592 + 0.032 0.228 + 0.030 0.637 £ 0.013 0.480
Baselines (no imputation)

Uncert. 0.713 + 0.054 0.239 + 0.127 0.429 + 0.024 0.335 + 0.022 0.579 + 0.008 0.438
Prob. 0.265 + 0.039 0.594 + 0.023 0.567 + 0.025 0.405 + 0.035 0.565 + 0.009 0.523
Random 0.455 + 0.056 0.248 + 0.076 0.444 + 0.027 0.336 + 0.044 0.485 + 0.010 0.380
Strategy Cardiomegaly Lung Lesion Lung Opacity Pneumonia Pneumothorax Mean
Upper Bounds (for reference)

Oracle 2.902 +£0.184 2.559 + 0.272 3.156 + 0.152 5.255 4+ 0.253 14.162 4+ 1.561 4.116
True KL-Div. 0.871 + 0.014 0.488 + 0.088 0.700 + 0.026 0.879 + 0.021 0.818 + 0.044 0.766
True Rank 0.828 + 0.022 0.533 + 0.068 0.667 + 0.036 0.824 + 0.028 0.278 + 0.139 0.689
True Uncert. 0.745 + 0.016 0.183 + 0.045 0.151 + 0.032 0.525 + 0.023 0.579 + 0.076 0.513
Imputation-based (proposed)

KL-Div. 0.749 + 0.023 0.390 + 0.117 0.584 + 0.023 0.736 + 0.021 0.514 + 0.099 0.624
Prob. 0.609 + 0.016 0.221 + 0.103 0.013 + 0.048 0.064 + 0.037 0.868 + 0.034 0.433
Rank 0.472 + 0.015 0.495 + 0.095 0.336 + 0.030 0.412 + 0.026 0.448 + 0.085 0.409
Uncert. 0.663 + 0.019 —0.030 £ 0.109 0.202 + 0.029 0.454 + 0.021 0.719 + 0.105 0.480
Baselines (no imputation)

Uncert. 0.534 + 0.019 0.021 + 0.127 0.301 + 0.025 0.357 £+ 0.018 0.871 + 0.076 0.438
Prob. 0.478 £+ 0.016 0.549 + 0.063 0.407 + 0.037 0.531 + 0.022 0.871 + 0.076 0.523
Random 0.465 + 0.020 0.320 + 0.099 0.202 + 0.030 0.364 + 0.023 0.483 + 0.075 0.380
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G DETAILED RESULTS FOR MOSEI

Table 10: Acquisition performance on MOSEI (Image imputed by Text), showing Gy, for AU-
ROC/AUPRC. Strategies are grouped by category. Best strategy among proposed ones and baselines

in bold.

Table 11: Acquisition performance on MOSEI (Image imputed by Audio), showing Gy, for AU-
ROC/AUPRC. Strategies are grouped by category. Best strategy among proposed ones and baselines

in bold.

AUROC AUPRC
Strategy G = SEM 1 G = SEM 1
Upper Bounds (for reference)
Oracle 0.995 + 0.006 0.995 + 0.012
True KL-Div. 0.777 + 0.005 0.790 + 0.015
True Rank 0.763 + 0.012 0.781 +0.014
True Uncert. 0.599 + 0.015 0.673 £ 0.019
Imputation-based (proposed)
KL-Div 0.551 + 0.012 0.590 + 0.009
Probability 0.473 + 0.010 0.598 + 0.006
Rank 0.524 + 0.012 0.560 + 0.012
Uncertainty 0.500 + 0.021 0.567 + 0.009
Baselines (no imputation)
Uncertainty 0.507 + 0.015 0.565 + 0.018
Probability 0.451 +0.013 0.578 + 0.009
Random 0.521 + 0.006 0.575 + 0.008

AUROC AUPRC
Strategy G = SEM 1 G = SEM 1
Upper Bounds (for reference)
Oracle 1.052 £ 0.007 1.011 £ 0.010
True KL-Div. 0.785 + 0.009 0.803 + 0.005
True Rank 0.783 + 0.010 0.802 + 0.012
True Uncert. 0.672 + 0.007 0.742 + 0.006
Imputation-based (proposed)
KL-Div 0.566 + 0.011 0.601 + 0.009
Probability 0.547 + 0.002 0.629 + 0.004
Rank 0.576 + 0.013 0.614 + 0.007
Uncertainty 0.545 + 0.009 0.586 + 0.007
Baselines (no imputation)
Uncertainty 0.545 + 0.009 0.601 + 0.014
Probability 0.526 + 0.014 0.616 + 0.008
Random 0.553 + 0.008 0.603 + 0.005
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Table 12: Acquisition performance on MOSEI (Image imputed by Text and Audio), showing Gy
for AUROC/AUPRC. Strategies are grouped by category. Best strategy among proposed ones and
baselines in bold.

AUROC AUPRC
Strategy G = SEM 1 G = SEM 71
Upper Bounds (for reference)
Oracle 1.321 £ 0.009 1.315 £ 0.012
True KL-Div. 0.979 + 0.006 0.862 + 0.006
True Rank 0.960 + 0.005 0.811 + 0.006

True Uncert. 0.716 + 0.004 0.750 + 0.004

Imputation-based (proposed)

KL-Div 0.603 + 0.007 0.627 + 0.009
Probability 0.513 + 0.002 0.610 + 0.003
Rank 0.463 + 0.005 0.491 + 0.005
Uncertainty 0.499 + 0.004 0.452 + 0.004

Baselines (no imputation)

Uncertainty 0.513 + 0.004 0.480 + 0.005
Probability 0.534 + 0.008 0.676 + 0.007
Random 0.489 + 0.002 0.527 £ 0.002

Table 13: Acquisition performance on MOSEI (Text imputed by Image), showing Gy, for AU-
ROC/AUPRC. Strategies are grouped by category. Best strategy among proposed ones and baselines
in bold.

AUROC AUPRC
Strategy G = SEM 1 G = SEM 1
Upper Bounds (for reference)
Oracle 1.613 £ 0.269 1.493 £ 0.166
True KL-Div. 0.845 + 0.018 0.843 £ 0.010
True Rank 0.772 + 0.024 0.784 + 0.025

True Uncert. 0.633 + 0.060 0.697 + 0.030

Imputation-based (proposed)

KL-Div 0.900 + 0.023 0.896 + 0.022
Probability 0.806 + 0.022 0.861 £ 0.023
Rank 0.309 + 0.089 0.420 £ 0.065
Uncertainty 0.651 + 0.049 0.747 + 0.030

Baselines (no imputation)

Uncertainty 0.466 + 0.045 0.537 £ 0.014
Probability 0.418 £ 0.055 0.532 £ 0.045
Random 0.417 £ 0.061 0.489 + 0.051

Table 14: Acquisition performance on MOSEI (Text imputed by Audio), showing Gy, for AU-
ROC/AUPRC. Strategies are grouped by category. Best strategy among proposed ones and baselines
in bold.

AUROC AUPRC
Strategy G = SEM 1 G = SEM 1
Upper Bounds (for reference)
Oracle 8.867 £ 1.712 16.066 + 2.592
True KL-Div. 0.645 + 0.051 0.387 + 0.136
True Rank 0.494 + 0.147 0.015 + 0.262
True Uncert. 0.913 + 0.121 0.893 + 0.141

Imputation-based (proposed)

KL-Div 2.962 4+ 0.925 4.582 + 1.938
Probability 3.157 + 1.229 6.861 + 1.806
Rank —0.413 £ 0.421 —1.134 £+ 0.463
Uncertainty 1.592 £ 0.350 3.844 + 0.806

Baselines (no imputation)

Uncertainty 0.591 + 0.147 0.473 + 0.204
Probability 0.662 £ 0.071 0.971 £ 0.014
Random 0.316 + 0.059 0.376 + 0.086
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Table 15: Acquisition performance on MOSEI (Text imputed by Image and Audio), showing Gy
for AUROC/AUPRC. Strategies are grouped by category. Best strategy among proposed ones and
baselines in bold.

AUROC AUPRC
Strategy G = SEM 1 G = SEM 71
Upper Bounds (for reference)
Oracle 1.207 £0.012 1.280 £ 0.013
True KL-Div. 0.851 + 0.002 0.842 + 0.004
True Rank 0.836 + 0.004 0.840 + 0.005

True Uncert. 0.649 + 0.009 0.691 + 0.009

Imputation-based (proposed)

KL-Div 0.892 +0.002 0.894 + 0.004
Probability 0.665 + 0.004 0.727 £ 0.003
Rank 0.489 + 0.003 0.520 + 0.003
Uncertainty 0.662 + 0.008 0.720 + 0.007

Baselines (no imputation)

Uncertainty 0.538 + 0.009 0.567 = 0.009
Probability 0.379 + 0.003 0.462 + 0.004
Random 0.512 £ 0.002 0.531 £ 0.003

Table 16: Acquisition performance on MOSEI (Audio imputed by Image), showing Gy, for AU-
ROC/AUPRC. Strategies are grouped by category. Best strategy among proposed ones and baselines
in bold.

AUROC AUPRC
Strategy G = SEM 1 G = SEM 1
Upper Bounds (for reference)
Oracle 1.238 £0.124 1.207 £ 0.093
True KL-Div. 0.826 + 0.014 0.821 + 0.019
True Rank 0.752 + 0.030 0.780 + 0.025

True Uncert. 0.544 + 0.034 0.627 + 0.023

Imputation-based (proposed)

KL-Div 0.800 +0.012 0.803 +0.017
Probability 0.684 + 0.020 0.737 £ 0.024
Rank 0.326 £+ 0.072 0.445 + 0.052
Uncertainty 0.552 + 0.035 0.625 + 0.023

Baselines (no imputation)

Uncertainty 0.436 + 0.043 0.502 + 0.016
Probability 0.374 £ 0.034 0.510 £ 0.034
Random 0.397 + 0.052 0.478 £+ 0.039

Table 17: Acquisition performance on MOSEI (Audio imputed by Text), showing Gy, for AU-
ROC/AUPRC. Strategies are grouped by category. Best strategy among proposed ones and baselines
in bold.

AUROC AUPRC
Strategy G = SEM 1 G = SEM 1
Upper Bounds (for reference)
Oracle 4.955 + 0.417 6.275 + 0.948
True KL-Div. 0.815 + 0.043 0.817 + 0.057
True Rank 0.563 + 0.073 0.645 + 0.098
True Uncert. 0.520 + 0.026 0.604 + 0.059

Imputation-based (proposed)

KL-Div 2.305 £+ 0.360 2.335 £ 0.499
Probability 2.306 + 0.259 2.571 +0.483
Rank —0.210 £ 0.123 —0.093 + 0.135
Uncertainty 1.154 £+ 0.141 1.626 £ 0.303

Baselines (no imputation)

Uncertainty 0.519 + 0.023 0.604 + 0.044
Probability 0.416 £ 0.007 0.511 £ 0.018
Random 0.326 + 0.024 0.439 + 0.023
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Table 18: Acquisition performance on MOSEI (Audio imputed by Image and Text), showing Gy
for AUROC/AUPRC. Strategies are grouped by category. Best strategy among proposed ones and
baselines in bold.

AUROC AUPRC
Strategy G = SEM 1 G = SEM 1
Upper Bounds (for reference)
Oracle 1.215 £ 0.010 1.275 £0.011
True KL-Div. 0.865 + 0.002 0.850 + 0.004
True Rank 0.833 + 0.004 0.837 + 0.005

True Uncert. 0.645 + 0.007 0.693 + 0.006

Imputation-based (proposed)

KL-Div 0.857 +0.002 0.846 + 0.004
Probability 0.667 £ 0.003 0.725 £ 0.003
Rank 0.459 + 0.004 0.489 + 0.004
Uncertainty 0.646 + 0.007 0.694 + 0.007

Baselines (no imputation)

Uncertainty 0.536 + 0.008 0.566 + 0.008
Probability 0.368 £ 0.005 0.462 £ 0.005
Random 0.503 + 0.003 0.530 + 0.003
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H DETAILED RESULTS FOR MIMIC SYMILE

Table 19: Acquisition performance on MIMIC Symile for AUROC, showing Gfyy. Strategies are
grouped by category. Best strategy among proposed and baseline methods in bold for each column.

Strategy Fracture Enl. Card. Consolidation Atelectasis Edema Mean

Upper Bounds (for reference)

Oracle 2.876 + 0.368 3.722 + 0.370 2.856 4+ 0.147 4.862 + 0.356 2.793 + 0.324 4.580

True KL-Div. 1.029 £ 0.165 1.019 £ 0.051 0.885 + 0.025 0.841 + 0.045 0.920 + 0.011 0.883

True Rank 0.963 + 0.153 0.924 + 0.058 0.946 + 0.025 0.802 + 0.068 0.887 + 0.022 0.811

True Uncert. 0.915 + 0.138 0.763 + 0.052 0.749 + 0.031 0.152 + 0.052 0.648 £+ 0.012 0.481

Imputation-based (proposed)

KL-Div 0.838 + 0.164 0.882+0.064 0.706 £0.021 0.779+0.114 0.893 +0.080 0.833
Probability 0.861 + 0.118 0.638 + 0.046 0.610 + 0.021 0.099 + 0.107 0.514 + 0.099 0.426

Rank 0.123 + 0.155 0.331 + 0.043 0.434 + 0.026 0.371 + 0.083 0.352 + 0.030 0.378

Uncertainty 0.851 + 0.138 0.686 + 0.051 0.701 + 0.029 0.188 + 0.094 0.588 £+ 0.018 0.440

Baselines (no imputation)

Uncertainty 0.616 + 0.100 0.482 + 0.033 0.543 + 0.024 0.380 + 0.031 0.539 £+ 0.010 0.480

Probability 0.153 + 0.086 0.519 + 0.035 0.464 + 0.020 0.446 + 0.068 0.421 £+ 0.010 0.458

Random 0.241 + 0.121 0.399 + 0.044 0.479 + 0.020 0.250 + 0.080 0.425 + 0.017 0.376

Strategy Cardiomegaly Lung Lesion Lung Opacity Pneumonia Pneumothorax Mean
Upper Bounds (for reference)

Oracle 2.787 +0.139 4.974 £ 0.581 6.657 + 0.649 4.817 £ 0.430 9.461 + 1.049 4.580
True KL-Div. 0.885 + 0.011 0.753 £ 0.179 0.750 + 0.087 0.837 + 0.043 0.910 + 0.054 0.883
True Rank 0.878 + 0.019 0.411 + 0.216 0.793 + 0.056 0.902 + 0.029 0.605 + 0.053 0.811
True Uncert. 0.524 + 0.025 0.251 £ 0.177 0.212 + 0.054 0.728 + 0.023 —0.136 £ 0.065 0.481
Imputation-based (proposed)

KL-Div 0.747 + 0.039 1.266 £ 0.258 0.683 + 0.106 0.761 + 0.060 0.773 £ 0.134 0.833
Probability 0.350 + 0.053 0.190 + 0.223 —0.075 £ 0.077 0.172 £+ 0.142 0.898 + 0.061 0.426
Rank 0.378 £ 0.016 0.607 £+ 0.150 0.635 + 0.080 0.437 + 0.054 0.115 + 0.082 0.378
Uncertainty 0.450 + 0.041 0.022 +£0.173 0.199 + 0.057 0.658 + 0.045 0.055 + 0.060 0.440
Baselines (no imputation)

Uncertainty 0.480 + 0.013 0.201 £ 0.179 0.406 + 0.041 0.615 + 0.019 0.536 + 0.040 0.480
Probability 0.431 + 0.015 0.778 £ 0.212 0.417 + 0.065 0.416 + 0.055 0.536 + 0.040 0.458
Random 0.385 + 0.015 0.365 £+ 0.225 0.381 + 0.057 0.505 + 0.038 0.327 £+ 0.061 0.376
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Table 20: Acquisition performance on MIMIC Symile for AUPRC, showing Gy, . Strategies are
grouped by category. Best strategy among proposed and baseline methods in bold for each column.

Strategy Fracture Enl. Card. Consolidation Atelectasis Edema Mean
Upper Bounds (for reference)

Oracle 2.579 + 0.343 2.964 + 0.201 4.784 +1.130 3.093 + 0.201 3.015 £ 0.141 4.231
True KL-Div. 0.883 + 0.094 0.970 £ 0.038 0.933 £ 0.057 0.781 £ 0.038 0.939 £+ 0.013 0.871
True Rank 0.659 + 0.176 0.858 + 0.033 0.903 £ 0.090 0.720 £ 0.064 0.897 £ 0.022 0.776
True Uncert. 0.604 + 0.073 0.812 + 0.044 0.709 + 0.036 0.050 + 0.039 0.645 £ 0.015 0.450
Imputation-based (proposed)

KL-Div 0.770 + 0.210 0.899 + 0.044 0.895 + 0.159 0.684 + 0.063 0.832 + 0.039 0.777
Probability 0.631 + 0.073 0.673 + 0.036 0.503 £ 0.106 0.028 £ 0.069 0.624 £ 0.049 0.449
Rank 0.461 + 0.188 0.388 + 0.034 0.421 + 0.064 0.318 £ 0.053 0.351 £ 0.022 0.407
Uncertainty 0.663 + 0.108 0.744 + 0.046 0.611 £+ 0.073 0.118 £+ 0.034 0.569 £+ 0.017 0.444
Baselines (no imputation)

Uncertainty 0.428 + 0.155 0.524 + 0.031 0.509 + 0.036 0.246 + 0.018 0.519 £+ 0.011 0.443
Probability 0.242 + 0.068 0.523 + 0.026 0.546 £ 0.030 0.512 £ 0.064 0.533 £ 0.013 0.550
Random 0.149 + 0.103 0.423 + 0.032 0.429 + 0.097 0.222 + 0.094 0.448 £ 0.012 0.388
Strategy Cardiomegaly Lung Lesion Lung Opacity Pneumonia Pneumothorax Mean
Upper Bounds (for reference)

Oracle 2.746 +0.110 2.520 4 0.250 4.092 + 0.259 5.895 4+ 0.406 10.623 + 0.708 4.231
True KL-Div. 0.853 + 0.010 0.828 £ 0.073 0.792 £ 0.037 0.906 £ 0.032 0.827 £ 0.043 0.871
True Rank 0.882 + 0.018 0.676 + 0.088 0.771 £ 0.045 0.911 + 0.030 0.483 £ 0.075 0.776
True Uncert. 0.473 + 0.029 0.181 + 0.067 0.140 + 0.029 0.595 + 0.024 0.293 + 0.052 0.450
Imputation-based (proposed)

KL-Div 0.729 + 0.034 0.896 + 0.146 0.722 + 0.043 0.763 + 0.059 0.581 + 0.084 0.777
Probability 0.366 + 0.047 0.320 £ 0.104 0.041 + 0.065 0.339 + 0.079 0.965 + 0.027 0.449
Rank 0.384 +0.014 0.564 + 0.086 0.402 + 0.050 0.389 + 0.034 0.396 + 0.054 0.407
Uncertainty 0.424 + 0.038 0.130 + 0.053 0.149 + 0.034 0.519 + 0.033 0.513 + 0.066 0.444
Baselines (no imputation)

Uncertainty 0.434 + 0.018 0.215 + 0.033 0.260 + 0.023 0.482 £ 0.019 0.811 £ 0.041 0.443
Probability 0.479 + 0.017 0.756 + 0.136 0.555 £ 0.037 0.541 £ 0.029 0.811 £ 0.041 0.550
Random 0.386 + 0.013 0.503 + 0.103 0.354 + 0.053 0.435 + 0.033 0.527 £ 0.053 0.388
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Table 21: Acquisition performance on MIMIC Symile for AUROC (Image imputed by Lab), showing
Gran. Strategies are grouped by category. Best strategy among proposed and baseline methods in

bold for each column.

Strategy Fracture Enl. Card. Consolidation Atelectasis Edema Mean
Upper Bounds (for reference)

Oracle 4.144 +2.172 2.120 + 0.465 2.803 + 0.306 2.381 +0.215 1.684 £ 0.070 4.104
True KL-Div. 0.728 + 0.137 0.816 + 0.011 0.611 + 0.084 0.837 + 0.028 0.813 + 0.009 0.825
True Rank 1.062 £ 0.643 0.614 + 0.111 0.591 + 0.157 0.816 + 0.065 0.765 + 0.024 0.707
True Uncert. 0.686 + 0.374 0.606 + 0.068 0.637 + 0.140 0.496 + 0.148 0.619 + 0.024 0.601
Imputation-based (proposed)

KL-Div —1.410 £ 0.037 0.477 + 0.108 0.282 + 0.146 0.626 + 0.137 0.503 + 0.022 0.247
Probability 0.231 + 0.288 0.498 + 0.036 0.514 + 0.060 0.503 + 0.056 0.454 + 0.020 0.379
Rank —0.725 + 0.858 0.190 + 0.201 0.520 + 0.018 0.403 + 0.085 0.527 + 0.032 0.225
Uncertainty 0.168 + 0.317 0.400 + 0.025 0.620 + 0.179 0.422 + 0.130 0.493 + 0.019 0.448
Baselines (no imputation)

Uncertainty 0.129 + 0.339 0.332 + 0.069 0.423 + 0.201 0.456 + 0.106 0.503 + 0.020 0.433
Probability 0.129 + 0.339 0.515 + 0.057 0.530 + 0.049 0.601 + 0.101 0.477 £ 0.018 0.444
Random —0.509 + 0.041 0.356 + 0.070 0.503 + 0.163 0.609 + 0.091 0.492 + 0.023 0.307
Strategy Cardiomegaly Lung Lesion Lung Opacity Pneumonia Pneumothorax Mean
Upper Bounds (for reference)

Oracle 1.793 £0.077 5.417 4+ 4.001 7.073 £+ 2.202 4.743 £+ 1.268 8.881 + 1.894 4.104
True KL-Div. 0.822 + 0.010 1.543 £ 0.689 0.663 + 0.095 0.884 + 0.063 0.530 + 0.109 0.825
True Rank 0.663 + 0.042 1.291 £ 0.557 0.530 + 0.154 0.705 + 0.170 0.035 + 0.068 0.707
True Uncert. 0.272 + 0.091 1.128 £ 0.870 0.622 + 0.187 0.687 + 0.038 0.254 + 0.213 0.601
Imputation-based (proposed)

KL-Div 0.492 + 0.030 0.847 + 0.033 0.459 + 0.146 0.481 +0.158 —0.285 4+ 0.221 0.247
Probability 0.301 + 0.081 0.418 + 0.193 0.034 + 0.303 0.372 + 0.256 0.461 + 0.128 0.379
Rank 0.434 + 0.045 —0.219+ 0.837 0.956 + 0.383 0.363 + 0.080 —0.201 £+ 0.261 0.225
Uncertainty 0.395 + 0.020 0.574 + 0.327 0.400 + 0.126 0.395 + 0.040 0.608 + 0.201 0.448
Baselines (no imputation)

Uncertainty 0.433 £+ 0.015 0.490 + 0.096 0.558 + 0.358 0.424 + 0.053 0.587 + 0.180 0.433
Probability 0.419 + 0.065 0.505 + 0.108 0.263 + 0.254 0.417 + 0.228 0.587 + 0.180 0.444
Random 0.420 + 0.063 0.384 + 0.068 0.200 + 0.455 0.444 + 0.085 0.169 + 0.359 0.307
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Table 22: Acquisition performance on MIMIC Symile for AUPRC (Image imputed by Lab), showing
Gran. Strategies are grouped by category. Best strategy among proposed and baseline methods in

bold for each column.

Strategy Fracture Enl. Card. Consolidation Atelectasis Edema Mean
Upper Bounds (for reference)

Oracle 3.844 + 2.595 1.792 £ 0.288 2.826 + 0.677 1.930 £ 0.221 1.778 £0.101 4.862
True KL-Div. 0.869 + 0.023 0.827 + 0.021 0.620 + 0.156 0.812 + 0.024 0.775 + 0.013 0.770
True Rank 1.398 £ 0.874 0.566 + 0.140 0.492 + 0.345 0.827 + 0.034 0.759 + 0.024 0.575
True Uncert. 0.712 + 0.210 0.650 + 0.111 0.655 + 0.118 0.538 + 0.165 0.579 + 0.041 0.498
Imputation-based (proposed)

KL-Div —1.450 £ 1.121 0.464 + 0.132 0.149 + 0.370 0.652 + 0.149 0.610 + 0.010 0.131
Probability 0.210 + 0.451 0.575 + 0.018 0.735 + 0.084 0.591 + 0.035 0.598 + 0.016 0.568
Rank —0.777 + 1.263 0.261 + 0.185 0.548 + 0.051 0.438 +0.134 0.480 + 0.042 0.290
Uncertainty 0.157 + 0.477 0.456 + 0.075 0.516 + 0.245 0.477 £ 0.170 0.358 + 0.021 0.441
Baselines (no imputation)

Uncertainty 0.132 + 0.484 0.369 + 0.094 0.199 + 0.387 0.466 + 0.152 0.368 + 0.022 0.401
Probability 0.132 + 0.484 0.592 + 0.029 0.754 + 0.084 0.632 + 0.071 0.612 + 0.012 0.621
Random —0.110 + 0.296 0.408 + 0.060 0.420 + 0.208 0.599 + 0.156 0.489 + 0.037 0.440
Strategy Cardiomegaly Lung Lesion Lung Opacity Pneumonia Pneumothorax Mean
Upper Bounds (for reference)

Oracle 1.749 £ 0.092 2.456 4+ 1.140 7.505 £+ 3.891 4.470 £ 1.249 20.270 £ 6.707 4.862
True KL-Div. 0.774 + 0.017 1.035 £ 0.214 0.413 £ 0.176 0.793 + 0.046 0.781 + 0.044 0.770
True Rank 0.667 + 0.037 0.888 + 0.274 0.326 + 0.248 0.669 + 0.058 —0.837 + 0.865 0.575
True Uncert. 0.269 + 0.134 0.598 + 0.430 0.291 + 0.099 0.562 + 0.027 0.129 + 0.407 0.498
Imputation-based (proposed)

KL-Div 0.507 £ 0.059 0.742 + 0.101 0.382 + 0.251 0.639 + 0.066 —1.388 +£1.198 0.131
Probability 0.327 + 0.126 0.398 + 0.274 0.407 + 0.140 0.659 + 0.129 1.176 £ 0.314 0.568
Rank 0.390 + 0.068 0.069 + 0.552 1.071 £ 0.611 0.469 + 0.059 —0.047 + 0.555 0.290
Uncertainty 0.321 + 0.042 0.317 + 0.186 0.176 + 0.196 0.242 + 0.030 1.390 £ 0.419 0.441
Baselines (no imputation)

Uncertainty 0.343 + 0.033 0.372 + 0.120 0.142 + 0.320 0.265 + 0.044 1.352 £ 0.410 0.401
Probability 0.452 + 0.103 0.528 +0.184 0.497 + 0.287 0.664 + 0.107 1.352 £ 0.410 0.621
Random 0.369 + 0.101 0.478 £ 0.117 0.810 + 0.961 0.449 + 0.051 0.484 + 0.166 0.440

33



Under review as a conference paper at ICLR 2026

Table 23: Acquisition performance on MIMIC Symile for AUROC (Image imputed by ECG), showing
Gran. Strategies are grouped by category. Best strategy among proposed and baseline methods in

bold for each column.

Strategy Fracture Enl. Card. Consolidation Atelectasis Edema Mean
Upper Bounds (for reference)

Oracle 4.028 £ 2.600 1.959 4+ 0.358 1.960 4+ 0.164 3.526 + 0.947 1.639 £ 0.050 3.892
True KL-Div. 0.963 + 0.224 0.852 + 0.051 0.725 + 0.030 0.614 + 0.152 0.777 + 0.003 0.874
True Rank 0.192 + 0.075 0.559 + 0.101 0.753 + 0.013 —0.784 £ 1.091 0.719 + 0.043 0.327
True Uncert. 0.934 + 0.189 0.700 + 0.131 0.717 + 0.039 —0.853 + 0.584 0.658 + 0.050 0.024
Imputation-based (proposed)

KL-Div 0.425 + 0.323 0.561 + 0.079 0.769 £ 0.096 —0.353 +£0.827 0.621 £ 0.030 0.669
Probability 0.650 + 0.024 0.538 + 0.107 0.709 + 0.095 0.162 + 0.130 0.591 + 0.024 0.443
Rank 0.411 +0.193 0.337 + 0.122 0.538 + 0.050 —0.165 £ 0.412 0.445 + 0.038 0.380
Uncertainty 0.750 + 0.011 0.527 +0.112 0.720 + 0.083 0.466 + 0.229 0.431 + 0.026 0.167
Baselines (no imputation)

Uncertainty —0.962 £ 1.403 0.380 % 0.050 0.567 + 0.064 0.591 + 0.180 0.427 + 0.022 —0.055
Probability 0.133 +0.291 0.442 4+ 0.050 0.500 + 0.028 —0.684 £+ 0.967 0.427 + 0.022 0.650
Random —0.803 £ 0.529 0.482 + 0.038 0.647 + 0.019 0.227 + 0.307 0.513 + 0.018 0.263
Strategy Cardiomegaly Lung Lesion Lung Opacity P P thorax Mean
Upper Bounds (for reference)

Oracle 2.263 + 0.151 9.495 + 7.441 4.112 £ 0.961 2.196 + 0.132 7.745 + 2.386 3.892
True KL-Div. 0.777 + 0.016 1.758 £+ 1.206 0.881 + 0.085 0.725 + 0.019 0.664 + 0.088 0.874
True Rank 0.560 %+ 0.050 —0.731 + 0.850 0.808 + 0.103 0.777 + 0.022 0.416 + 0.209 0.327
True Uncert. 0.741 + 0.021 —3.450 + 3.932 —0.150 + 0.160 0.727 + 0.010 0.213 + 0.412 0.024
Imputation-based (proposed)

KL-Div 0.271 + 0.065 2.123 +1.791 0.776 + 0.125 0.571 + 0.018 0.924 +0.134 0.669
Probability 0.374 + 0.034 —0.235 + 0.921 0.122 +0.178 0.568 + 0.030 0.952 + 0.095 0.443
Rank 0.201 + 0.072 0.764 + 0.047 0.272 + 0.153 0.639 + 0.029 0.363 + 0.307 0.380
Uncertainty 0.382 + 0.028 —2.196 + 2.882 0.086 + 0.165 0.630 + 0.021 —0.129 + 0.190 0.167
Baselines (no imputation)

Uncertainty 0.307 + 0.038 —3.361 + 3.790 0.231 + 0.070 0.649 + 0.017 0.625 4+ 0.086 —0.055
Probability 0.336 + 0.018 3.511 + 2.928 0.632 + 0.027 0.575 + 0.048 0.625 + 0.086 0.650
Random 0.222 + 0.044 0.102 + 0.610 0.485 + 0.131 0.515 + 0.036 0.240 + 0.153 0.263
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Table 24: Acquisition performance on MIMIC Symile for AUPRC (Image imputed by ECG), showing
Gran. Strategies are grouped by category. Best strategy among proposed and baseline methods in

bold for each column.

Strategy Fracture Enl. Card. Consolidation Atelectasis Edema Mean
Upper Bounds (for reference)

Oracle 6.343 + 5.165 1.593 £0.113 1.950 £+ 0.162 2.785 + 0.530 1.832 £ 0.041 4.085
True KL-Div. 1.358 £ 0.553 0.818 + 0.060 0.776 + 0.039 0.526 + 0.206 0.855 4+ 0.004 0.814
True Rank —0.157 £ 0.576 0.643 + 0.064 0.808 + 0.008 —0.477 £ 0.824 0.741 + 0.031 0.420
True Uncert. 1.331 £+ 0.520 0.699 + 0.124 0.790 + 0.026 —0.640 + 0.325 0.745 4+ 0.040 0.489
Imputation-based (proposed)

KL-Div —0.784 +1.571 0.613 + 0.082 0.870 + 0.127 —0.203 £ 0.570 0.737 + 0.035 0.434
Probability 0.498 + 0.210 0.552 + 0.123 0.868 + 0.103 0.136 +0.118 0.722 + 0.027 0.590
Rank 0.116 + 0.576 0.468 + 0.033 0.652 + 0.045 —0.068 £ 0.285 0.524 + 0.027 0.419
Uncertainty 0.642 + 0.147 0.553 + 0.129 0.874 + 0.099 0.297 + 0.183 0.553 + 0.015 0.462
Baselines (no imputation)

Uncertainty —4.523 £ 5.002 0.451 4+ 0.068 0.668 + 0.070 0.360 + 0.105 0.534 +0.013 —0.049
Probability —0.190 £ 0.747 0.496 + 0.049 0.578 + 0.027 —0.626 £ 0.854 0.534 + 0.013 0.382
Random —3.009 + 2.890 0.530 + 0.060 0.715 + 0.037 —0.038 + 0.461 0.591 + 0.012 0.098
Strategy Cardiomegaly Lung Lesion Lung Opacity Pneumonia Pneumothorax Mean
Upper Bounds (for reference)

Oracle 2.458 + 0.268 2.158 + 0.482 2.735 + 0.464 3.162 + 0.383 15.830 + 5.601 4.085
True KL-Div. 0.827 + 0.009 0.679 + 0.250 0.711 4+ 0.063 0.727 + 0.026 0.861 + 0.024 0.814
True Rank 0.555 + 0.041 —0.005 + 0.389 0.715 + 0.109 0.809 + 0.034 0.573 + 0.150 0.420
True Uncert. 0.803 + 0.012 0.184 + 0.270 —0.069 + 0.111 0.723 4+ 0.046 0.326 + 0.207 0.489
Imputation-based (proposed)

KL-Div 0.288 + 0.055 0.468 + 0.419 0.466 + 0.061 0.595 4+ 0.049 1.285 +£0.172 0.434
Probability 0.471 + 0.038 0.519 4+ 0.046 0.173 +0.148 0.712 4+ 0.048 1.249 + 0.094 0.590
Rank 0.234 + 0.057 0.554 + 0.118 0.214 4+ 0.099 0.688 + 0.053 0.810 4+ 0.388 0.419
Uncertainty 0.477 + 0.035 0.224 + 0.340 0.181 + 0.070 0.625 4+ 0.030 0.192 + 0.082 0.462
Baselines (no imputation)

Uncertainty 0.304 + 0.125 0.033 + 0.364 0.225 + 0.012 0.659 + 0.046 0.801 + 0.041 —0.049
Probability 0.427 + 0.037 0.704 + 0.458 0.524 + 0.057 0.574 + 0.072 0.801 + 0.041 0.382
Random 0.227 + 0.042 0.518 + 0.037 0.362 4+ 0.020 0.505 4+ 0.048 0.584 + 0.155 0.098
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Table 25: Acquisition performance on MIMIC Symile for AUROC (Image imputed by Lab and
ECG), showing Gy . Strategies are grouped by category. Best strategy among proposed and baseline
methods in bold for each column.

Strategy Fracture Enl. Card. Consolidation Atelectasis Edema Mean

Upper Bounds (for reference)

Oracle 2.679 + 0.496 3.081 + 0.257 2.539 4+ 0.150 5.098 4+ 0.624 2.119 4+ 0.086 3.911

True KL-Div. 1.006 £ 0.111 1.105 £ 0.082 0.880 + 0.033 0.703 £ 0.095 1.017 £ 0.023 0.922

True Rank 0.760 + 0.142 1.076 £ 0.073 0.993 + 0.052 0.930 + 0.136 1.036 £ 0.023 0.884

True Uncert. 0.975 + 0.140 0.877 + 0.083 0.886 + 0.065 0.300 + 0.043 0.634 £+ 0.018 0.494

Imputation-based (proposed)

KL-Div 0.770 £ 0.122 0.736 + 0.077 0.711 + 0.031 0.049 + 0.191 0.535 £+ 0.015 0.512

Probability 0.883 +0.111 0.563 + 0.062 0.620 + 0.034 0.706 + 0.096 0.593 + 0.010 0.628
Rank 0.594 + 0.082 0.335 + 0.079 0.423 + 0.070 0.130 + 0.226 0.466 + 0.012 0.392

Uncertainty 0.785 + 0.085 0.535 + 0.064 0.728 + 0.050 0.545 + 0.088 0.556 £+ 0.015 0.505

Baselines (no imputation)

Uncertainty 0.514 + 0.151 0.495 + 0.038 0.529 + 0.045 0.466 + 0.056 0.545 £+ 0.014 0.474
Probability 0.265 + 0.046 0.463 + 0.035 0.461 + 0.037 0.268 + 0.136 0.401 + 0.009 0.421

Random 0.005 + 0.204 0.386 + 0.047 0.467 + 0.031 0.373 £ 0.145 0.472 £+ 0.014 0.425
Strategy Cardiomegaly Lung Lesion Lung Opacity Pneumonia Pneumothorax Mean
Upper Bounds (for reference)

Oracle 2.552 +£0.116 3.249 + 0.605 4.964 + 0.431 3.736 £ 0.369 9.096 + 1.223 3.911
True KL-Div. 0.910 + 0.030 0.517 + 0.243 0.811 + 0.052 0.967 + 0.061 1.298 £ 0.121 0.922
True Rank 1.047 £ 0.032 0.545 + 0.093 0.839 + 0.055 1.010 £ 0.056 0.607 £+ 0.109 0.884
True Uncert. 0.514 + 0.027 0.200 + 0.151 0.293 + 0.058 0.729 + 0.044 —0.468 + 0.155 0.494
Imputation-based (proposed)

KL-Div 0.374 + 0.016 0.403 £ 0.210 0.457 £ 0.079 0.518 + 0.036 0.565 + 0.103 0.512
Probability 0.453 + 0.016 0.680 + 0.352 0.391 + 0.064 0.443 + 0.042 0.950 + 0.096 0.628
Rank 0.408 + 0.017 0.581 + 0.211 0.493 + 0.063 0.487 + 0.054 —0.000 + 0.092 0.392
Uncertainty 0.476 + 0.011 0.289 + 0.162 0.366 + 0.052 0.599 + 0.031 0.171 £ 0.078 0.505
Baselines (no imputation)

Uncertainty 0.457 +0.013 0.241 + 0.261 0.381 + 0.040 0.588 + 0.023 0.520 £ 0.055 0.474
Probability 0.437 £+ 0.011 0.448 + 0.230 0.496 + 0.057 0.449 + 0.027 0.519 + 0.055 0.421
Random 0.418 + 0.015 0.739+ 0.256 0.530 + 0.100 0.493 + 0.051 0.362 + 0.101 0.425
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Table 26: Acquisition performance on MIMIC Symile for AUPRC (Image imputed by Lab and
ECG), showing Gy . Strategies are grouped by category. Best strategy among proposed and baseline

methods in bold for each column.

Strategy Fracture Enl. Card. Consolidation Atelectasis Edema Mean
Upper Bounds (for reference)

Oracle 3.244 + 0.899 2.660 + 0.365 3.290 + 0.320 3.756 + 0.538 2.484 4+ 0.159 4.063
True KL-Div. 1.111 £ 0.223 0.983 + 1.014 0.998 + 0.079 0.674 + 0.088 1.014 £ 0.034 0.939
True Rank 0.503 + 0.538 0.727 + 0.084 1.063 £ 0.108 0.762 + 0.088 1.014 £ 0.036 0.822
True Uncert. 0.826 + 0.166 0.950 + 0.103 0.923 + 0.060 0.143 + 0.041 0.636 + 0.029 0.493
Imputation-based (proposed)

KL-Div 1.238 £ 0.634 0.636 + 0.075 0.754 + 0.075 0.330 + 0.146 0.467 £ 0.020 0.585
Probability 0.821 + 0.184 0.581 + 0.048 0.714 + 0.055 0.478 +0.083 0.648 +0.012 0.610
Rank 1.133 £ 0.543 0.375 + 0.081 0.582 + 0.103 0.139 £ 0.174 0.469 + 0.018 0.491
Uncertainty 1.018 £ 0.316 0.516 + 0.058 0.783 + 0.081 0.285 + 0.039 0.505 + 0.015 0.500
Baselines (no imputation)

Uncertainty 0.843 + 0.289 0.410 + 0.050 0.562 + 0.061 0.275 + 0.038 0.521 + 0.019 0.467
Probability 0.196 + 0.143 0.567 + 0.044 0.520 + 0.042 0.442 + 0.111 0.572 + 0.014 0.515
Random —0.073 £+ 0.199 0.397 + 0.084 0.556 + 0.053 0.411 + 0.100 0.470 £+ 0.013 0.406
Strategy Cardiomegaly Lung Lesion Lung Opacity Pneumonia Pneumothorax Mean
Upper Bounds (for reference)

Oracle 2.494 + 0.181 2.376 £ 0.472 4.061 + 0.416 4.964 + 0.520 11.303 £ 0.974 4.063
True KL-Div. 0.823 + 0.022 0.809 + 0.139 0.873 + 0.081 1.002 £ 0.049 1.105 £ 0.058 0.939
True Rank 1.012 £ 0.039 0.573 + 0.099 0.952 + 0.093 1.027 £ 0.058 0.591 + 0.077 0.822
True Uncert. 0.394 + 0.037 0.201 + 0.029 0.184 + 0.050 0.624 + 0.044 0.054 + 0.058 0.493
Imputation-based (proposed)

KL-Div 0.346 + 0.023 0.560 + 0.075 0.524 + 0.074 0.441 + 0.037 0.551 £ 0.075 0.585
Probability 0.448 + 0.029 0.569 + 0.185 0.404 + 0.073 0.481 + 0.039 0.959 + 0.048 0.610
Rank 0.390 + 0.023 0.523 + 0.091 0.359 + 0.088 0.449 + 0.034 0.492 + 0.045 0.491
Uncertainty 0.346 + 0.019 0.323 + 0.061 0.279 + 0.041 0.466 + 0.034 0.475 + 0.062 0.500
Baselines (no imputation)

Uncertainty 0.334 + 0.018 0.257 + 0.049 0.262 + 0.035 0.491 + 0.029 0.715 £+ 0.033 0.467
Probability 0.555 + 0.015 0.448 + 0.096 0.607 + 0.062 0.528 + 0.032 0.715 £+ 0.033 0.515
Random 0.415 + 0.015 0.575 + 0.228 0.368 + 0.069 0.432 + 0.057 0.510 £ 0.090 0.406
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Table 27: Acquisition performance on MIMIC Symile for AUROC (Lab imputed by Image), showing
Gran. Strategies are grouped by category. Best strategy among proposed and baseline methods in
bold for each column.

Strategy Fracture Enl. Card. Consolidation Atelectasis Edema Mean

Upper Bounds (for reference)

Oracle 2.404 4 0.448 5.403 + 1.547 2.446 + 0.350 4.261 4.715 £ 0.988 6.306
True KL-Div. 0.901 + 0.104 0.727 £ 0.113 0.874 + 0.045 0.807 0.670 £ 0.093 0.634
True Rank 0.490 + 0.208 0.872 + 0.019 0.873 + 0.081 1.691 0.627 + 0.148 0.604
True Uncert. —0.204 + 0.122 0.690 + 0.193 0.319 + 0.084 —0.511 0.507 £+ 0.100 0.154
Imputation-based (proposed)
KL-Div 0.443 + 0.028 0.503 + 0.316 0.523 + 0.078 0.383 0.193 + 0.090 0.684
Probability 0.087 + 0.217 0.428 + 0.155 0.574 + 0.117 0.221 0.457 + 0.056 0.380
Rank 0.848 + 0.131 —0.103 + 0.100 0.309 + 0.073 —0.390 0.463 £+ 0.125 —0.139
Uncertainty 0.074 + 0.187 0.593 + 0.168 0.415 + 0.107 0.278 0.624 + 0.029 0.311
Baselines (no imputation)
Uncertainty 0.515 + 0.062 0.781 + 0.101 0.394 + 0.106 0.310 0.636 + 0.041 0.487
Probability 0.105 + 0.251 0.444 + 0.144 0.567 + 0.112 0.267 0.449 + 0.055 0.390
Random 0.366 + 0.519 0.662 + 0.085 0.504 + 0.111 0.087 0.229 + 0.142 0.419
Strategy Cardiomegaly Lung Lesion Lung Opacity Pneumonia Pneumothorax Mean
Upper Bounds (for reference)
Oracle 11.461 9.175 + 4.619 10.440 4+ 4.341 4.058 + 0.233 8.693 + 2.295 6.306
True KL-Div. 0.359 0.043 + 1.152 0.608 + 0.141 0.793 + 0.054 0.561 £ 0.157 0.634
True Rank 0.396 0.640 + 1.426 —0.637 £ 0.091 0.797 + 0.031 0.296 + 0.208 0.604
True Uncert. 0.507 1.296 £ 0.137 —1.510 £ 0.311 0.320 £+ 0.119 0.128 + 0.257 0.154
Imputation-based (proposed)
KL-Div 0.477 3.593 + 0.801 0.055 + 1.005 0.630 + 0.024 0.037 + 0.291 0.684
Probability 0.551 2.347 4+ 0.438 —2.017 + 0.592 0.581 + 0.030 0.575 + 0.116 0.380
Rank —0.413 —1.673 +£4.164 —0.741 £ 0.142 0.398 + 0.150 —0.084 +£0.300 —0.139
Uncertainty 0.646 0.200 + 0.174 —0.684 + 0.697 0.401 + 0.073 0.566 + 0.142 0.311
Baselines (no imputation)
Uncertainty 0.277 0.172 + 0.139 0.706 + 0.448 0.501 + 0.107 0.575 + 0.126 0.487
Probability 0.471 1.854 £ 1.407 —1.445 + 0.962 0.615 + 0.016 0.575 £ 0.126 0.390
Random —0.872 2.030 £ 1.179 0.329 + 0.460 0.490 + 0.124 0.365 + 0.137 0.419
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Table 28: Acquisition performance on MIMIC Symile for AUPRC (Lab imputed by Image), showing
Gran. Strategies are grouped by category. Best strategy among proposed and baseline methods in

bold for each column.

Strategy Fracture Enl. Card. Consolidation Atelectasis Edema Mean
Upper Bounds (for reference)

Oracle 2.142 4+ 0.360 3.772 + 0.624 4.042 £ 1.747 - 5.560 + 1.093 4.751
True KL-Div. 0.916 + 0.056 0.648 + 0.079 0.997 + 0.160 - 0.568 + 0.132 0.699
True Rank 0.400 % 0.206 0.686 + 0.095 1.106 £+ 0.342 - 0.603 + 0.139 0.590
True Uncert. —1.106 + 0.446 0.506 + 0.100 0.258 + 0.136 - 0.477 £+ 0.270 0.153
Imputation-based (proposed)

KL-Div 0.499 + 0.117 0.481 4+ 0.203 0.413 +0.187 - 0.269 + 0.189 0.680
Probability —0.381 £ 0.441 0.618 4+ 0.008 0.339 + 0.318 - 0.681 +0.114 0.442
Rank 0.824 + 0.103 —0.157 £ 0.006 —0.044 £ 0.404 - 0.246 +0.115 0.186
Uncertainty —0.429 £+ 0.473 0.415 + 0.161 0.541 + 0.220 - 0.570 & 0.164 0.124
Baselines (no imputation)

Uncertainty 0.455 4+ 0.060 0.484 4+ 0.099 0.537 + 0.231 - 0.585 + 0.160 0.440
Probability —0.362 £ 0.445 0.629 + 0.007 0.325 + 0.326 - 0.672 +0.112 0.572
Random 0.283 + 0.513 0.635 + 0.001 0.303 4+ 0.231 - 0.253 £ 0.115 0.356
Strategy Cardiomegaly Lung Lesion Lung Opacity Pneumonia Pneumothorax Mean

Upper Bounds (for reference)

Oracle - 3.615 + 0.753 3.868 4.819 + 0.587 10.192 + 4.607 4.751

True KL-Div. - 0.503 + 0.458 0.513 0.865 + 0.112 0.585 + 0.087 0.699

True Rank - 0.974 + 0.661 —0.184 0.709 + 0.066 0.426 + 0.076 0.590

True Uncert. - 0.621 + 0.157 —0.406 0.202 + 0.069 0.674 + 0.151 0.153

Imputation-based (proposed)

KL-Div - 1.905 £+ 0.140 0.987 0.723 +0.115 0.162 + 0.123 0.680
Probability - 1.133 £0.483 —0.486 0.659 + 0.050 0.976 + 0.085 0.442

Rank - 0.274 + 1.456 —0.263 0.304 + 0.238 0.301 £+ 0.113 0.186

Uncertainty - —0.397 £ 0.271 —0.893 0.261 + 0.024 0.925 + 0.045 0.124

Baselines (no imputation)

Uncertainty - 0.053 + 0.070 0.109 0.330 + 0.055 0.963 + 0.071 0.440

Probability - 1.363 £ 0.660 0.282 0.708 + 0.061 0.963 + 0.071 0.572

Random - 0.088 + 0.319 0.534 0.455 + 0.187 0.296 + 0.199 0.356
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Table 29: Acquisition performance on MIMIC Symile for AUROC (Lab imputed by ECG), showing
Gran. Strategies are grouped by category. Best strategy among proposed and baseline methods in

bold for each column.

Strategy Fracture Enl. Card. Consolidation Atelectasis Edema Mean
Upper Bounds (for reference)
Oracle 2.830 + 1.006 6.507 + 2.813 1.993 + 0.252 13.751 + 3.349 5.706 + 1.964 7.637
True KL-Div. 0.807 + 0.072 1.043 £0.176 0.855 + 0.056 0.933 + 0.345 0.841 + 0.028 0.727
True Rank 0.454 + 0.258 0.880 + 0.255 0.756 + 0.027 0.462 + 0.641 0.398 + 0.151 0.290
True Uncert. 0.665 + 0.104 0.273 + 0.305 0.688 + 0.056 —0.218 + 1.149 0.568 + 0.041 0.437
Imputation-based (proposed)
KL-Div 0.735 +0.130 1.221 £+ 0.208 0.670 + 0.136 4.739 + 1.683 2.234 + 0.684 2.096
Probability 0.569 + 0.115 0.126 + 0.370 0.775 + 0.075  —4.498 +1.913 2.255 + 0.646 —0.333
Rank 0.395 + 0.117 0.160 + 0.439 0.298 + 0.039 1.303 £ 1.170 —1.119 + 0.726 0.619
Uncertainty 0.612 + 0.125 0.499 + 0.346 0.773 + 0.078 —4.102 + 1.614 0.071 £ 0.175 —0.744
Baselines (no imputation)
Uncertainty 0.421 + 0.290 0.544 + 0.303 0.456 + 0.081 0.431 +0.170 0.324 + 0.024 0.574
Probability 0.069 + 0.066 0.372 + 0.420 0.505 + 0.102 0.161 + 0.787 0.324 4+ 0.024 0.521
Random 0.117 + 0.418 0.737 + 0.338 0.531 + 0.041 —0.400 + 1.001 0.107 + 0.142 0.189
Strategy Cardiomegaly Lung Lesion Lung Opacity Pneumonia Pneumothorax Mean
Upper Bounds (for reference)
Oracle - 13.135 4+ 7.362 9.638 + 2.483 3.075 £ 0.250 12.098 £ 2.848 7.637
True KL-Div. - —0.560 + 1.556 0.982 + 0.050 0.761 + 0.031 0.884 + 0.076 0.727
True Rank - —2.847 + 4.746 1.545 £ 0.340 0.776 + 0.020 0.185 + 0.511 0.290
True Uncert. - 2.300 4+ 1.585 0.157 + 0.299 0.563 + 0.120 —1.060 £ 0.540 0.437
Imputation-based (proposed)
KL-Div - 4.580 + 1.600 2.539 + 0.511 0.646 + 0.117 1.494 £ 0.303 2.096
Probability - —2.903 + 3.257 —1.391 + 0.383 0.455 + 0.124 1.617 + 0.337 —0.333
Rank - 2.305 4+ 0.688 1.567 £0.771 0.642 + 0.053 0.017 + 0.983 0.619
Uncertainty - —2.336 +1.344  —1.290 4+ 0.341 0.494 + 0.140 —1.416 + 0.454 —0.744
Baselines (no imputation)
Uncertainty - 1.397 £ 1.699 0.190 + 0.028 0.541 + 0.082 0.867 + 0.198 0.574
Probability - 0.657 + 2.145 1.107 £ 0.654 0.626 + 0.050 0.867 + 0.198 0.521
Random - —0.793 + 3.159 0.931 + 0.196 0.555 + 0.085 —0.086 + 0.456 0.189
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Table 30: Acquisition performance on MIMIC Symile for AUPRC (Lab imputed by ECG), showing
Gran. Strategies are grouped by category. Best strategy among proposed and baseline methods in

bold for each column.

Strategy Fracture Enl. Card. Consolidation Atelectasis Edema Mean
Upper Bounds (for reference)
Oracle 4.231 + 2.318 4.018 +1.224 2.093 4+ 0.267 6.269 + 0.383 5.741 +1.374 6.317
True KL-Div. 0.924 + 0.069 0.825 + 0.017 0.883 + 0.030 0.717 £ 0.570 0.897 + 0.019 0.972
True Rank 0.030 + 0.698 0.643 + 0.103 0.846 + 0.041 0.619 + 1.260 0.351 + 0.208 0.900
True Uncert. 0.730 + 0.109 0.793 + 0.209 0.784 + 0.034 0.030 £+ 0.615 0.740 + 0.024 0.550
Imputation-based (proposed)
KL-Div 0.721 + 0.166 1.292 £ 0.411 0.780 + 0.157 1.533 £0.215 2.267 4 0.487 1.779
Probability 0.532 £ 0.179 1.116 £ 0.598 0.920 + 0.086 —0.332 + 0.041 2.300 + 0.464 0.751
Rank 0.092 + 0.485 0.353 + 0.268 0.372 + 0.058 —0.032 £ 0.027  —0.641 4+ 0.441 0.458
Uncertainty 0.580 + 0.189 1.080 £ 0.651 0.930 +£ 0.088  —0.549 £ 0.088 0.351 +0.131 0.145
Baselines (no imputation)
Uncertainty —1.088 £+ 1.658 0.451 +0.118 0.605 + 0.085 0.152 + 0.036 0.645 + 0.093 0.260
Probability —0.282 + 0.309 0.672 + 0.126 0.594 + 0.102 0.769 + 0.144 0.645 + 0.093 1.112
Random —0.458 + 0.636 0.631 + 0.184 0.659 + 0.051 0.925 + 0.146 0.264 + 0.154 0.556
Strategy Cardiomegaly Lung Lesion Lung Opacity Pneumonia Pneumothorax Mean
Upper Bounds (for reference)
Oracle - 8.610 + 6.961 5.951 + 0.522 7.534 + 2.031 12.402 4+ 2.525 6.317
True KL-Div. - 2.009 + 1.288 0.811 4+ 0.344 0.772 £ 0.111 0.910 £ 0.021 0.972
True Rank - 3.099 + 2.419 1.137 £ 0.603 0.812 4+ 0.056 0.561 + 0.207 0.900
True Uncert. - 1.431 +£1.304 —0.150 + 0.288 0.555 + 0.159 0.032£0.114 0.550
Imputation-based (proposed)
KL-Div - 5.709 +4.716 1.662 £+ 0.095 0.667 + 0.138 1.378 £0.274 1.779
Probability - 0.927 + 0.497 —0.770 £ 0.192 0.647 + 0.140 1.420 £+ 0.260 0.751
Rank - 1.988 £+ 1.092 0.643 + 0.448 0.564 + 0.136 0.788 + 0.367 0.458
Uncertainty - —0.954 + 0.761 —0.714 £ 0.206 0.591 4+ 0.192 —0.013 £ 0.125 0.145
Baselines (no imputation)
Uncertainty - —0.023 £ 0.028 0.078 + 0.073 0.516 + 0.137 1.005 £ 0.151 0.260
Probability - 5.083 +4.111 0.941 +0.112 0.581 4+ 0.069 1.005 £ 0.151 1.112
Random - 1.804 +£0.871 0.053 + 0.419 0.510 + 0.130 0.616 £ 0.097 0.556
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Table 31: Acquisition performance on MIMIC Symile for AUROC (Lab imputed by Image and
ECG), showing Gy . Strategies are grouped by category. Best strategy among proposed and baseline
methods in bold for each column.

Strategy Fracture Enl. Card. Consolidation Atelectasis Edema Mean
Upper Bounds (for reference)

Oracle 2.416 4+ 0.727 2.670 + 0.218 3.090 + 0.355 3.712 + 0.446 2.174 4+ 0.050 4.233
True KL-Div. 1.165 £ 0.267 0.883 + 0.024 1.050 £ 0.058 1.092 £ 0.080 0.925 + 0.006 0.981
True Rank 1.373 £ 0.427 0.811 + 0.024 1.076 £ 0.050 0.904 + 0.066 0.888 + 0.008 0.883
True Uncert. 1.008 £ 0.213 0.720 + 0.056 0.781 + 0.030 —0.092 + 0.044 0.675 + 0.027 0.494
Imputation-based (proposed)

KL-Div 1.088 £ 0.224 0.875 + 0.022 0.667 + 0.039 1.193 £ 0.091 0.885 + 0.008 1.035
Probability 1.084 £ 0.241 0.647 + 0.048 0.657 + 0.039 —0.270 + 0.085 0.767 + 0.008 0.390
Rank —0.190 + 0.547 0.273 + 0.051 0.415 + 0.044 0.448 + 0.088 0.192 + 0.017 0.350
Uncertainty 0.981 + 0.208 0.718 + 0.054 0.736 + 0.028 —0.143 +0.044 0.636 + 0.027 0.448
Baselines (no imputation)

Uncertainty 0.772 £+ 0.126 0.492 + 0.034 0.627 + 0.033 0.183 + 0.030 0.506 + 0.019 0.469
Probability 0.088 + 0.147 0.529 + 0.030 0.376 + 0.025 0.804 + 0.069 0.324 + 0.007 0.521
Random 0.212 + 0.278 0.404 + 0.030 0.503 + 0.030 0.247 + 0.113 0.439 + 0.014 0.268
Strategy Cardiomegaly Lung Lesion Lung Opacity Pneumonia Pneumothorax Mean
Upper Bounds (for reference)

Oracle 2.438 £0.113 6.864 + 1.482 6.398 + 0.783 4.889 + 0.635 7.680 £ 0.820 4.233
True KL-Div. 0.887 + 0.007 1.245 £ 0.526 0.863 + 0.089 0.809 + 0.032 0.892 + 0.057 0.981
True Rank 0.777 £ 0.012 0.383 + 0.609 0.822 + 0.095 0.940 + 0.026 0.855 + 0.073 0.883
True Uncert. 0.878 £+ 0.008 0.148 +£0.198 0.045 + 0.084 0.831 + 0.047 —0.059 £+ 0.078 0.494
Imputation-based (proposed)

KL-Div 0.887 + 0.006 2.529 + 0.817 0.914 + 0.102 0.661 + 0.036 0.651 + 0.058 1.035
Probability 0.718 + 0.008 —0.467 £ 0.520 —0.425 4+ 0.153 0.445 + 0.063 0.743 + 0.056 0.390
Rank 0.326 + 0.026 0.909 + 0.407 0.492 + 0.087 0.561 + 0.035 0.079 £+ 0.133 0.350
Uncertainty 0.882 + 0.007 —0.351 £+ 0.366 0.040 + 0.080 0.838 + 0.047 0.141 + 0.068 0.448
Baselines (no imputation)

Uncertainty 0.693 + 0.009 —0.022 £+ 0.318 0.281 + 0.070 0.730 + 0.044 0.425 + 0.039 0.469
Probability 0.260 + 0.006 1.476 £ 0.565 0.538 + 0.131 0.387 + 0.044 0.425 + 0.039 0.521
Random 0.334 + 0.016 —0.383 + 0.692 0.212 + 0.120 0.492 + 0.033 0.216 + 0.078 0.268
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Table 32: Acquisition performance on MIMIC Symile for AUPRC (Lab imputed by Image and
ECG), showing Gy . Strategies are grouped by category. Best strategy among proposed and baseline

methods in bold for each column.

Strategy Fracture Enl. Card. Consolidation Atelectasis Edema Mean
Upper Bounds (for reference)

Oracle 1.965 £ 0.497 2.573 4+ 0.236 3.714 £+ 0.473 2.444 +0.174 2.962 4+ 0.166 3.748
True KL-Div. 0.961 + 0.228 0.918 + 0.033 1.042 £ 0.082 0.985 + 0.053 0.954 + 0.013 0.878
True Rank 0.899 + 0.233 0.896 + 0.037 1.138 £0.112 0.886 + 0.051 0.922 + 0.019 0.820
True Uncert. 0.610 + 0.076 0.741 + 0.066 0.736 + 0.075 —0.096 £ 0.042 0.718 + 0.030 0.482
Imputation-based (proposed)

KL-Div 0.914 + 0.236 0.921 4+ 0.039 0.587 + 0.056 1.038 £ 0.046 0.925 +0.011 0.835
Probability 0.811 + 0.100 0.619 + 0.048 0.677 £+ 0.026 —0.376 + 0.097 0.848 + 0.014 0.469
Rank 0.516 + 0.085 0.343 + 0.047 0.412 + 0.046 0.355 + 0.050 0.202 + 0.019 0.370
Uncertainty 0.662 + 0.086 0.759 + 0.070 0.723 £+ 0.084 —0.131 +0.030 0.691 + 0.028 0.482
Baselines (no imputation)

Uncertainty 0.573 + 0.099 0.564 + 0.041 0.601 + 0.074 0.152 + 0.016 0.527 + 0.023 0.485
Probability 0.265 + 0.173 0.475 + 0.038 0.424 + 0.060 0.712 + 0.038 0.344 + 0.012 0.518
Random 0.504 + 0.107 0.449 + 0.031 0.612 + 0.063 0.242 + 0.096 0.471 + 0.024 0.431
Strategy Cardiomegaly Lung Lesion Lung Opacity Pneumonia Pneumothorax Mean
Upper Bounds (for reference)

Oracle 3.070 + 0.202 2.036 £ 0.167 3.622 + 0.323 5.602 £ 0.520 9.490 + 1.511 3.748
True KL-Div. 0.890 + 0.014 0.761 + 0.095 0.815 + 0.055 0.824 + 0.051 0.629 + 0.127 0.878
True Rank 0.807 + 0.020 0.452 +0.119 0.721 + 0.057 0.920 + 0.047 0.560 + 0.254 0.820
True Uncert. 0.880 + 0.018 0.171 £ 0.115 0.034 + 0.040 0.616 + 0.032 0.411 + 0.168 0.482
Imputation-based (proposed)

KL-Div 0.938 + 0.017 0.964 + 0.166 0.923 + 0.067 0.675 + 0.045 0.466 + 0.230 0.835
Probability 0.756 + 0.008 0.182 + 0.257 —0.400 £ 0.112 0.669 + 0.034 0.906 + 0.035 0.469
Rank 0.368 + 0.036 0.486 + 0.142 0.363 + 0.070 0.418 + 0.039 0.234 + 0.154 0.370
Uncertainty 0.932 + 0.018 0.020 + 0.100 —0.017 + 0.041 0.606 + 0.037 0.573 + 0.244 0.482
Baselines (no imputation)

Uncertainty 0.720 + 0.018 0.158 + 0.050 0.219 + 0.024 0.560 + 0.038 0.781 + 0.148 0.485
Probability 0.266 + 0.012 0.860 + 0.124 0.576 + 0.066 0.479 + 0.048 0.781 + 0.148 0.518
Random 0.375 + 0.027 0.362 + 0.172 0.296 + 0.055 0.464 + 0.057 0.539 £+ 0.133 0.431
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Table 33: Acquisition performance on MIMIC Symile for AUROC (ECG imputed by Image), showing
Gran. Strategies are grouped by category. Best strategy among proposed and baseline methods in
bold for each column.

Strategy Fracture Enl. Card. Consolidation  Atelectasis Edema Mean
Upper Bounds (for reference)
Oracle 3.489 + 1.656 21.015 £ 5.247 - - 37.701 28.964
True KL-Div. 0.546 + 0.073 0.036 + 0.994 - - 0.028 0.032
True Rank 0.550 + 0.379 —2.342 £ 1.928 - - —1.276 0.122
True Uncert. 0.648 + 0.497 —0.099 + 0.724 - - 0.379 0.135
Imputation-based (proposed)
KL-Div 0.084 + 0.465 —1.318 + 0.868 - - 6.736 3.317
Probability 0.542 + 0.247 0.096 + 0.156 - - —0.629 0.507
Rank —0.355+0.092 —1.669 &+ 0.386 - - 1.017 0.062
Uncertainty 0.672 + 0.578 0.131 + 0.351 - - —1.407  —0.817
Baselines (no imputation)
Uncertainty 0.637 +0.113 —0.592 + 0.877 - - 0.868 0.515
Probability 0.507 + 0.072 0.236 + 0.361 - - —0.431 —0.192
Random 0.440 + 0.455 0.389 +1.478 - - —1.424 0.484
Strategy Cardiomegaly Lung Lesion Lung Opacity  Pneumonia  Pneumothorax Mean
Upper Bounds (for reference)
Oracle 10.077 + 4.361 2.979 +1.139 7.291 - 120.197 28.964
True KL-Div. 0.834 + 0.029 0.528 + 0.682 —0.013 - —1.737 0.032
True Rank 0.645 + 0.055 1.070 £ 0.717 0.008 - 2.199 0.122
True Uncert. 0.804 + 0.006 —0.572 £ 0.283 —1.485 - 1.267 0.135
Imputation-based (proposed)
KL-Div 0.564 £+ 0.077 —0.078 £ 0.298 0.510 - 16.719 3.317
Probability 0.450 + 0.024 —0.870 + 0.334 —2.693 - 6.656 0.507
Rank —0.519 + 0.529 0.730 + 1.632 —0.053 - 1.286 0.062
Uncertainty 0.762 + 0.061 —0.322 + 0.369 —1.467 - —4.089 —0.817
Baselines (no imputation)
Uncertainty 0.530 £ 0.132 0.704 + 0.031 0.307 - 1.149 0.515
Probability 0.371 £ 0.024 —1.503 £ 0.841 —1.676 - 1.149 —0.192
Random 0.379 £+ 0.012 —1.139 + 0.014 —0.550 - 5.293 0.484

44



Under review as a conference paper at ICLR 2026

Table 34: Acquisition performance on MIMIC Symile for AUPRC (ECG imputed by Image), showing
Gran. Strategies are grouped by category. Best strategy among proposed and baseline methods in
bold for each column.

Strategy Fracture  Enl. Card. Consolidation Atelectasis Edema Mean

Upper Bounds (for reference)

Oracle 1.631 - 100.646 £ 71.555 - - 33.428
True KL-Div. 0.635 - 2.975 4+ 3.762 - - 1.163
True Rank 0.943 - —7.003 £ 1.999 - - —1.214
True Uncert. —0.027 - 0.199 + 0.327 - - 0.542
Imputation-based (proposed)
KL-Div 0.600 - 15.994 + 7.400 - - 4.721
Probability 0.075 - —10.442 £+ 1.040 - - —2.263
Rank —1.052 - —0.692 + 4.909 - - —0.467
Uncertainty —0.225 - —5.787 £1.743 - - —0.999
Baselines (no imputation)
Uncertainty 0.456 - 0.652 £ 0.902 - - 0.692
Probability 0.408 - 0.503 £ 0.861 - - 0.567
Random —0.336 - —7.531 £ 5.766 - - —1.297
Strategy Cardiomegaly  Lung Lesion = Lung Opacity  Pneumonia Pneumothorax Mean

Upper Bounds (for reference)

Oracle 5.642 - - - 25.793 £ 2.491 33.428
True KL-Div. 0.855 - = - 0.187 £ 0.187 1.163

True Rank 0.784 - - - 0.421 £+ 0.150 —1.214
True Uncert. 0.919 - - - 1.080 £ 0.443 0.542

Imputation-based (proposed)

KL-Div 0.419 - - - 1.872 £ 0.563 4.721

Probability 0.491 - = - 0.824 + 0.321 —2.263
Rank 0.340 - - - —0.463 £1.077  —0.467
Uncertainty 0.880 - - - 1.136 £ 0.162 —0.999
Baselines (no imputation)

Uncertainty 0.685 - - - 0.975 £ 0.304 0.692

Probability 0.383 - - - 0.975 £ 0.304 0.567

Random 0.360 - - - 2.318 £ 0.166 —1.297
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Table 35: Acquisition performance on MIMIC Symile for AUROC (ECG imputed by Lab), showing
Gran. Strategies are grouped by category. Best strategy among proposed and baseline methods in

bold for each column.

Strategy Fracture Enl. Card. Consolidation Atelectasis Edema Mean
Upper Bounds (for reference)
Oracle 9.961 + 1.805 7.528 +1.743 7.425 9.429 + 3.404 42.327 14.888
True KL-Div.  —0.137 + 1.838 0.978 £+ 0.072 0.178 0.356 + 0.377 0.288 0.405
True Rank —0.183 + 0.795 0.976 + 0.600 0.012 0.962 + 0.193 —1.285 0.308
True Uncert. 0.271 + 0.133 0.892 + 0.394 1.249 0.377 + 0.354 —0.143 0.399
Imputation-based (proposed)
KL-Div —0.756 + 0.967 0.491 + 1.880 1.805 1.782 +0.998 12.001 2.649
Probability 0.203 + 0.341 2.386 + 0.784 1.834 1.222 £+ 0.693 —15.313  —1.990
Rank —2.489 + 1.558 0.182 + 0.173 —0.177 0.630 + 0.303 0.104 —0.312
Uncertainty 0.078 + 0.296 1.509 £ 0.221 1.945 1.538 £ 1.059 1.277 0.335
Baselines (no imputation)
Uncertainty 0.201 + 0.098 0.537 + 0.099 0.628 0.023 + 0.305 —0.118 0.384
Probability 0.201 + 0.098 0.474 + 0.027 0.760 0.650 + 0.152 0.394 0.074
Random 1.112 £ 1.486 0.492 + 0.457 —0.650 0.656 + 0.102 —1.051 0.387
Strategy Cardiomegaly Lung Lesion Lung Opacity Pneumonia Pneumothorax Mean
Upper Bounds (for reference)
Oracle 6.604 + 1.266 2.091 £0.714 16.140 + 11.342 32.694 £+ 13.014 14.683 14.888
True KL-Div. 0.800 + 0.103 1.316 £ 0.077 1.403 £ 0.913 —1.552 +1.821 0.425 0.405
True Rank 0.202 + 0.192 0.974 + 0.041 2.298 +1.714 —0.790 + 0.663 —0.083 0.308
True Uncert. 0.121 +0.119 —0.012 £+ 0.256 1.245 £ 0.700 0.285 + 0.133 —0.292 0.399
Imputation-based (proposed)
KL-Div 2.764 + 0.736 0.746 + 0.429 0.277 + 0.403 4.973 £+ 2.248 2.409 2.649
Probability —2.784 £ 0.997 0.475 4+ 0.982 0.657 + 0.299 —10.662 £+ 5.205 2.079 —1.990
Rank 0.337 + 0.091 0.246 + 0.433 1.594 +1.021 —3.591 + 1.582 0.040 —0.312
Uncertainty —1.728 + 0.662 0.190 4+ 0.470 1.224 £+ 0.536 —0.974 + 2.384 —1.706 0.335
Baselines (no imputation)
Uncertainty 0.397 + 0.031 0.312 4+ 0.090 1.060 £ 0.408 0.287 + 0.093 0.512 0.384
Probability —0.015 £ 0.186 0.989 + 0.490 0.043 +0.189 —3.264 + 2.220 0.513 0.074
Random —0.048 £ 0.167 0.671 4+ 0.542 1.329 £ 0.512 2.189 + 1.764 —0.832 0.387
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Table 36: Acquisition performance on MIMIC Symile for AUPRC (ECG imputed by Lab), showing
Gran. Strategies are grouped by category. Best strategy among proposed and baseline methods in

bold for each column.

Strategy Fracture Enl. Card. Consolidation Atelectasis Edema Mean
Upper Bounds (for reference)

Oracle 7.894 £+ 1.207 7.935 4+ 0.606 7.801 £+ 1.620 3.681 13.663 + 0.667 9.827
True KL-Div.  —0.038 + 1.091 0.843 + 0.368 —0.530 £ 0.679 0.175 0.815 + 0.157 0.501
True Rank 0.172 + 0.009 0.532 + 0.379 1.309 £ 0.247 0.635 —0.719 + 0.197 0.354
True Uncert. 0.480 + 0.166 0.645 + 0.089 0.762 + 0.322 0.205 0.039 £+ 0.013 0.240
Imputation-based (proposed)

KL-Div —1.014 £ 0.482 1.979 £1.044 0.596 + 0.626 0.331 3.890 + 0.009 1.408
Probability —0.291 + 0.867 2.492 + 0.270 1.173 £ 0.256 1.229 —3.963 £ 0.175  —0.348
Rank —3.557 + 1.533 0.231 + 0.154 —0.653 + 0.806 0.206 0.003 + 0.267 —0.331
Uncertainty 0.079 + 0.427 2.413 +0.318 1.197 £ 0.340 0.817 —0.565 + 0.214 0.324
Baselines (no imputation)

Uncertainty 0.398 +0.120 0.641 + 0.487 0.114 + 0.434 —0.013 0.097 £ 0.015 0.265
Probability 0.398 + 0.120 0.796 + 0.109 0.747 £+ 0.126 0.861 0.424 + 0.202 0.581
Random 0.667 + 1.260 0.750 + 0.531 0.520 + 0.275 0.946 0.091 + 0.283 0.585
Strategy Cardiomegaly Lung Lesion Lung Opacity Pneumonia Pneumothorax Mean
Upper Bounds (for reference)

Oracle 5.680 + 1.134 3.483 + 1.480 7.752 29.069 + 4.831 11.309 9.827
True KL-Div. 0.840 + 0.151 1.316 £ 0.130 0.423 0.558 + 0.955 0.607 0.501
True Rank 0.341 + 0.150 1.125 £ 0.278 0.399 —0.106 £ 0.270 —0.148 0.354
True Uncert. 0.037 +0.123 —0.790 £ 0.744 0.221 0.157 + 0.074 0.648 0.240
Imputation-based (proposed)

KL-Div 2.195 + 0.603 0.565 + 0.242 0.762 4.430 £ 1.624 0.343 1.408
Probability —2.197 + 0.763 0.887 + 0.999 0.932 —4.773 £1.949 1.029 —0.348
Rank 0.218 + 0.086 1.061 + 1.227 0.155 —1.583 + 0.600 0.613 —0.331
Uncertainty —1.266 + 0.476 0.223 + 0.360 0.606 —0.563 + 1.118 0.304 0.324
Baselines (no imputation)

Uncertainty 0.267 + 0.041 0.055 + 0.237 —0.024 0.178 + 0.051 0.936 0.265
Probability 0.038 + 0.225 1.274 + 0.637 0.945 —0.603 £ 1.027 0.936 0.581
Random —0.098 + 0.129 1.243 £0.713 0.239 1.417 £ 0.819 0.076 0.585
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Table 37: Acquisition performance on MIMIC Symile for AUROC (ECG imputed by Image and
Lab), showing Gyy). Strategies are grouped by category. Best strategy among proposed and baseline
methods in bold for each column.

Strategy Fracture Enl. Card. Consolidation Atelectasis Edema Mean
Upper Bounds (for reference)

Oracle 2.634 + 0.819 4.500 + 1.001 3.062 + 0.288 4.806 + 0.645 2.415 4+ 0.090 4.486
True KL-Div. 1.145 £ 0.450 1.172 £0.141 0.774 £+ 0.037 0.821 + 0.061 0.897 + 0.006 0.839
True Rank 1.120 £ 0.318 1.107 £0.131 0.858 + 0.021 0.776 £+ 0.057 0.916 + 0.007 0.836
True Uncert. 1.047 £ 0.381 0.787 + 0.136 0.632 + 0.069 0.338 £ 0.071 0.675 £+ 0.013 0.537
Imputation-based (proposed)

KL-Div 1.120+0.452 1.200+0.150 0.771 +0.037 0.812+0.065 0.894 1+0.006 0.838
Probability 0.933 + 0.302 0.676 + 0.106 0.508 + 0.038 0.111 + 0.120 0.349 + 0.014 0.438
Rank 0.126 + 0.141 0.517 + 0.086 0.489 + 0.027 0.507 + 0.059 0.504 + 0.009 0.473
Uncertainty 1.063 £ 0.392 0.820 + 0.140 0.638 + 0.072 0.358 £+ 0.070 0.673 £ 0.013 0.551
Baselines (no imputation)

Uncertainty 0.785 + 0.249 0.509 + 0.088 0.499 + 0.058 0.468 + 0.062 0.604 + 0.009 0.544
Probability 0.097 + 0.243 0.594 + 0.105 0.528 + 0.047 0.435 £+ 0.077 0.556 + 0.012 0.466
Random 0.487 + 0.212 0.363 + 0.126 0.463 + 0.043 0.118 £ 0.177 0.458 £+ 0.013 0.427
Strategy Cardiomegaly Lung Lesion Lung Opacity Pneumonia Pneumothorax Mean
Upper Bounds (for reference)

Oracle 2.675 + 0.236 3.710 £ 0.511 7.949 £ 2.090 4.600 + 0.301 8.512 + 1.512 4.486
True KL-Div. 0.897 + 0.010 0.549 + 0.239 0.504 + 0.303 0.902 + 0.021 0.724 + 0.092 0.839
True Rank 0.951 + 0.011 0.578 + 0.154 0.661 + 0.122 0.912 + 0.025 0.485 + 0.086 0.836
True Uncert. 0.214 + 0.031 0.460 + 0.273 0.414 + 0.121 0.696 + 0.035 0.107 £ 0.073 0.537
Imputation-based (proposed)

KL-Div 0.865 + 0.013 0.617 + 0.239 0.474 + 0.345 0.927 + 0.022 0.704 £ 0.090 0.838
Probability 0.188 + 0.025 0.518 + 0.303 0.125 + 0.121 0.178 + 0.041 0.789 + 0.051 0.438
Rank 0.469 + 0.018 0.458 + 0.105 0.886 + 0.236 0.483 + 0.030 0.287 + 0.206 0.473
Uncertainty 0.205 + 0.029 0.496 + 0.283 0.436 + 0.127 0.701 + 0.034 0.121 £+ 0.074 0.551
Baselines (no imputation)

Uncertainty 0.324 + 0.015 0.517 + 0.183 0.569 + 0.102 0.575 + 0.036 0.592 + 0.127 0.544
Probability 0.654 + 0.014 0.348 + 0.250 0.256 + 0.120 0.604 + 0.017 0.591 + 0.127 0.466
Random 0.486 + 0.023 0.736 + 0.238 0.351 + 0.077 0.420 + 0.038 0.392 £+ 0.071 0.427
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Table 38: Acquisition performance on MIMIC Symile for AUPRC (ECG imputed by Image and
Lab), showing Gyy). Strategies are grouped by category. Best strategy among proposed and baseline

methods in bold for each column.

Strategy Fracture Enl. Card. Consolidation Atelectasis Edema Mean
Upper Bounds (for reference)

Oracle 1.578 £0.119 3.454 + 0.465 3.604 + 0.479 3.295 + 0.414 2.989 4+ 0.181 3.703
True KL-Div. 0.634 + 0.094 1.070 £ 0.078 0.807 + 0.038 0.702 + 0.052 0.904 + 0.017 0.814
True Rank 0.782 + 0.060 1.014 £ 0.057 0.873 £+ 0.054 0.707 £ 0.076 0.923 + 0.019 0.800
True Uncert. 0.565 + 0.081 0.826 + 0.085 0.531 + 0.060 0.175 £+ 0.056 0.601 + 0.018 0.431
Imputation-based (proposed)

KL-Div 0.621 +0.092 1.087 £0.082 0.815 + 0.041 0.702 + 0.061 0.903 + 0.017 0.812
Probability 0.577 + 0.055 0.687 + 0.059 0.484 + 0.052 —0.037 £ 0.152 0.382 + 0.026 0.336
Rank 0.182 + 0.091 0.481 + 0.066 0.422 + 0.074 0.514 + 0.052 0.469 + 0.015 0.430
Uncertainty 0.572 + 0.081 0.851 + 0.087 0.533 + 0.061 0.188 + 0.056 0.602 + 0.018 0.441
Baselines (no imputation)

Uncertainty 0.456 + 0.053 0.596 + 0.072 0.377 £ 0.054 0.287 + 0.026 0.521 + 0.017 0.444
Probability 0.435 + 0.052 0.502 + 0.063 0.684 + 0.050 0.499 + 0.081 0.660 + 0.015 0.585
Random 0.374 + 0.078 0.367 + 0.062 0.432 + 0.083 —0.072 + 0.281 0.430 + 0.021 0.347
Strategy Cardiomegaly Lung Lesion Lung Opacity Pneumonia Pneumothorax Mean
Upper Bounds (for reference)

Oracle 2.445 4+ 0.148 2.303 + 0.239 4.150 + 0.421 5.900 £+ 0.609 7.316 £ 0.974 3.703
True KL-Div. 0.856 + 0.016 0.749 + 0.133 0.746 + 0.062 0.952 + 0.058 0.714 + 0.062 0.814
True Rank 0.938 + 0.014 0.690 + 0.094 0.702 + 0.072 0.914 + 0.049 0.461 + 0.074 0.800
True Uncert. 0.161 + 0.031 0.098 + 0.098 0.321 + 0.066 0.598 + 0.057 0.438 + 0.061 0.431
Imputation-based (proposed)

KL-Div 0.832 + 0.018 0.772 + 0.124 0.707 + 0.056 0.978 + 0.061 0.707 £ 0.067 0.812
Probability 0.137 + 0.036 —0.030 £ 0.151 0.176 + 0.123 0.112 + 0.108 0.877 + 0.029 0.336
Rank 0.426 + 0.015 0.559 + 0.123 0.463 + 0.081 0.378 £+ 0.055 0.401 + 0.059 0.430
Uncertainty 0.154 + 0.029 0.123 + 0.086 0.334 + 0.062 0.603 + 0.059 0.445 + 0.061 0.441
Baselines (no imputation)

Uncertainty 0.279 + 0.017 0.272 + 0.065 0.400 + 0.050 0.436 + 0.036 0.820 + 0.050 0.444
Probability 0.674 + 0.014 0.517 + 0.139 0.403 + 0.072 0.655 + 0.032 0.821 + 0.050 0.585
Random 0.435 + 0.016 0.368 + 0.178 0.362 + 0.119 0.325 + 0.048 0.447 £+ 0.078 0.347
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I RESULTS FOR MIMIC HAIM

Table 39: Acquisition performance on MIMIC HAIM for AUROC, showing Gy, . Strategies are
grouped by category. Best strategy among proposed ones and baselines in bold for each column.

Strategy Fracture Enl. Card. Consolidation Atelectasis Edema Mean
Upper Bounds (for reference)

Oracle 5.121 4+ 1.873 6.802 + 2.953 4.228 +1.374 5.862 4 0.933 3.435 + 0.792 4.602
True KL-Div. 0.842 + 0.154 0.558 + 0.187 0.673 + 0.054 0.518 + 0.093 0.708 + 0.025 0.608
True Rank 0.853 + 0.107 0.684 + 0.056 0.706 + 0.034 0.676 + 0.087 0.714 + 0.041 0.723
True Uncert. 0.429 + 0.264 0.647 + 0.107 0.729 + 0.099 0.332 +0.116 0.555 + 0.057 0.538
Imputation-based (proposed)

KL-Div 0.827 + 0.213 0.561 + 0.142 0.488 + 0.053 0.505 + 0.109 0.459 + 0.074 0.465
Probability 0.318 + 0.280 0.657 + 0.105 0.761 + 0.133 0.620 + 0.082 0.578 + 0.051 0.494
Rank 0.530 + 0.685 —0.048 + 0.305 0.311 + 0.079 0.429 + 0.150 0.485 + 0.032 0.391
Uncertainty 0.022 + 0.463 0.647 + 0.108 0.880 + 0.241 0.503 + 0.123 0.493 + 0.056 0.554
Baselines (no imputation)

Uncertainty 0.492 + 0.209 0.598 + 0.038 0.486 + 0.061 0.244 + 0.163 0.525 + 0.032 0.452
Probability 0.244 + 0.302 0.615 + 0.116 0.550 + 0.045 0.641 + 0.065 0.580 + 0.042 0.457
Random 1.005 £+ 0.367 0.143 + 0.289 0.470 + 0.045 0.546 + 0.096 0.510 + 0.025 0.526
Strategy Cardiomegaly Lung Lesion Lung Opacity Pneumonia Pneumothorax Mean
Upper Bounds (for reference)

Oracle 4.246 + 0.416 1.912 £ 0.205 5.429 4+ 1.539 2.864 + 0.716 6.119 + 2.055 4.602
True KL-Div. 0.609 + 0.059 0.674 + 0.148 0.801 + 0.086 0.775 £+ 0.019 —0.083 £ 0.370 0.608
True Rank 0.756 + 0.027 0.751 + 0.166 0.898 + 0.051 0.738 £+ 0.022 0.455 + 0.155 0.723
True Uncert. 0.554 + 0.047 0.638 +0.131 0.330 £ 0.127 0.720 £+ 0.019 0.446 + 0.110 0.538
Imputation-based (proposed)

KL-Div 0.385 + 0.058 0.362 + 0.161 0.418 £+ 0.109 0.499 + 0.046 0.140 £ 0.290 0.465
Probability 0.618 + 0.041 0.601 + 0.048 0.636 + 0.066 0.591 + 0.023 —0.435 £ 0.322 0.494
Rank 0.305 + 0.061 0.422 + 0.157 0.306 + 0.194 0.519 + 0.044 0.653 + 0.050 0.391
Uncertainty 0.561 + 0.042 0.744 + 0.146 0.541 + 0.050 0.587 £ 0.013 0.558 £+ 0.102 0.554
Baselines (no imputation)

Uncertainty 0.460 + 0.038 0.511 + 0.063 0.396 + 0.095 0.539 + 0.023 0.272 + 0.185 0.452
Probability 0.619 + 0.043 0.508 + 0.086 0.754 + 0.050 0.575 £ 0.025 —0.513 £ 0.421 0.457
Random 0.482 + 0.022 0.703 + 0.129 0.534 + 0.038 0.553 £+ 0.009 0.319 £ 0.136 0.526
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Table 40: Acquisition performance on MIMIC HAIM for AUPRC, showing Gyy. Strategies are
grouped by category. Best strategy among proposed ones and baselines in bold for each column.

Strategy Fracture Enl. Card. Consolidation Atelectasis Edema Mean
Upper Bounds (for reference)

Oracle 1.490 £ 0.249 3.181 + 0.283 3.084 + 0.331 2.738 +0.363 2.782 4+ 0.349 3.087
True KL-Div. 0.967 + 0.098 0.652 £ 0.076 0.435 £ 0.167 0.847 £ 0.065 0.717 £ 0.030 0.662
True Rank 1.014 £ 0.085 0.721 + 0.068 0.541 £ 0.112 0.958 £ 0.097 0.769 £ 0.031 0.754
True Uncert. 0.842 + 0.068 0.592 + 0.081 0.605 + 0.047 0.425 + 0.084 0.611 £ 0.057 0.587
Imputation-based (proposed)

KL-Div 0.889 + 0.097 0.578 + 0.054 0.301 + 0.163 0.655 + 0.110 0.518 £+ 0.030 0.516
Probability 0.584 + 0.111 0.672 + 0.041 0.807 + 0.075 0.480 £ 0.018 0.754 £ 0.017 0.686
Rank 0.890 + 0.120 0.337 £ 0.081 0.247 £ 0.115 0.706 + 0.052 0.474 4+ 0.023 0.456
Uncertainty 0.799 + 0.056 0.540 + 0.082 0.680 + 0.071 0.353 £ 0.047 0.584 £ 0.030 0.570
Baselines (no imputation)

Uncertainty 0.920 + 0.131 0.556 + 0.082 0.409 + 0.085 0.365 + 0.011 0.487 £ 0.053 0.479
Probability 0.480 + 0.112 0.713 + 0.046 0.755 + 0.054 0.589 + 0.053 0.752 £ 0.017 0.701
Random 0.941 + 0.107 0.404 + 0.060 0.455 + 0.057 0.452 + 0.180 0.546 + 0.024 0.561
Strategy Cardiomegaly Lung Lesion Lung Opacity Pneumonia Pneumothorax Mean
Upper Bounds (for reference)

Oracle 4.751 + 0.276 1.878 £ 0.237 2.730 + 0.219 3.910 + 0.892 4.329 + 0.483 3.087
True KL-Div. 0.374 £+ 0.137 0.688 £ 0.130 0.660 £ 0.196 0.699 £ 0.035 0.575 £ 0.039 0.662
True Rank 0.636 + 0.071 0.725 + 0.153 0.861 + 0.144 0.683 £ 0.035 0.630 £ 0.042 0.754
True Uncert. 0.599 + 0.059 0.430 + 0.127 0.505 + 0.173 0.732 + 0.031 0.530 + 0.043 0.587
Imputation-based (proposed)

KL-Div 0.248 + 0.124 0.573 + 0.133 0.413 + 0.218 0.399 + 0.089 0.588 + 0.043 0.516
Probability 0.808 + 0.057 0.764 £+ 0.115 0.737 £+ 0.030 0.736 + 0.025 0.518 £ 0.040 0.686
Rank 0.167 £+ 0.117 0.216 £ 0.119 0.494 + 0.147 0.490 + 0.079 0.538 + 0.024 0.456
Uncertainty 0.641 + 0.052 0.450 + 0.120 0.561 + 0.092 0.621 + 0.030 0.468 + 0.030 0.570
Baselines (no imputation)

Uncertainty 0.372 + 0.063 0.274 +0.111 0.359 + 0.220 0.496 + 0.042 0.550 £ 0.036 0.479
Probability 0.795 + 0.076 0.806 +0.109 0.855 4 0.043 0.725 £ 0.021 0.536 £ 0.033 0.701
Random 0.504 + 0.042 0.606 + 0.151 0.572 + 0.086 0.569 + 0.022 0.556 £ 0.022 0.561
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Table 41: Acquisition performance on MIMIC HAIM for AUROC (Image imputed by Lab), showing
Gran. Strategies are grouped by category. Best strategy among proposed and baseline methods in

bold for each column.

Strategy Fracture Enl. Card. Consolidation Atelectasis Edema Mean

Upper Bounds (for reference)

Oracle 4.447 + 3.050 3.381 + 1.055 2.055 4+ 0.185 6.068 + 1.280 1.710 £ 0.036 3.810

True KL-Div. 1.002 £ 0.142 0.425 + 0.184 0.623 + 0.061 0.299 +0.113 0.687 £ 0.022 0.476

True Rank 0.902 + 0.059 0.704 + 0.044 0.667 + 0.035 0.575 + 0.139 0.698 + 0.010 0.671

True Uncert. 0.908 + 0.185 0.768 + 0.035 0.641 + 0.022 0.301 + 0.207 0.709 £ 0.008 0.610

Imputation-based (proposed)

KL-Div 0.686 + 0.060 0.579 + 0.031 0.463 + 0.054 0.412 + 0.085 0.539 + 0.022 0.416

Probability 0.514 + 0.051 0.773 + 0.153 0.560 + 0.026 0.768 +0.113 0.590 + 0.010 0.445

Rank 1.530 £ 0.782 0.045 + 0.280 0.418 + 0.037 0.203 £+ 0.164 0.450 + 0.021 0.497
Uncertainty 0.710 + 0.087 0.730 + 0.091 0.548 + 0.029 0.597 £+ 0.215 0.587 £ 0.012 0.625
Baselines (no imputation)

Uncertainty 0.512 + 0.247 0.635 + 0.040 0.491 + 0.032 0.086 + 0.287 0.587 £ 0.015 0.438

Probability 0.109 + 0.371 0.759 + 0.146 0.533 + 0.026 0.739 + 0.095 0.592 + 0.010 0.392

Random 1.112 £ 0.371 0.483 + 0.041 0.509 + 0.015 0.556 + 0.138 0.542 + 0.008 0.582

Strategy Cardiomegaly Lung Lesion Lung Opacity Pneumonia Pneumothorax Mean
Upper Bounds (for reference)

Oracle 3.257 + 0.286 2.139 £ 0.317 3.951 + 0.558 1.968 £ 0.068 9.124 + 3.961 3.810
True KL-Div. 0.440 + 0.063 0.714 + 0.312 0.734 + 0.096 0.775 £+ 0.021 —0.936 + 0.646 0.476
True Rank 0.671 + 0.017 0.808 + 0.318 0.898 + 0.066 0.711 + 0.015 0.081 + 0.265 0.671
True Uncert. 0.558 + 0.042 0.625 + 0.057 0.456 + 0.097 0.734 + 0.020 0.400 + 0.221 0.610
Imputation-based (proposed)

KL-Div 0.321 + 0.083 0.458 +0.273 0.342 + 0.129 0.552 + 0.027 —0.187 £ 0.576 0.416
Probability 0.698 + 0.059 0.544 + 0.099 0.693 + 0.063 0.600 + 0.020 —1.295 £+ 0.522 0.445
Rank 0.233 + 0.093 0.339 + 0.349 0.468 + 0.090 0.498 + 0.017 0.783 + 0.075 0.497
Uncertainty 0.620 + 0.047 0.668 + 0.165 0.581 + 0.057 0.591 £+ 0.015 0.613 + 0.206 0.625
Baselines (no imputation)

Uncertainty 0.434 + 0.052 0.568 + 0.074 0.394 + 0.109 0.557 £+ 0.023 0.114 £+ 0.373 0.438
Probability 0.693 + 0.057 0.541 + 0.162 0.790 + 0.054 0.589 + 0.018 —1.427 £ 0.750 0.392
Random 0.482 + 0.030 0.941 + 0.176 0.518 + 0.049 0.558 £+ 0.010 0.119 + 0.262 0.582

52



Under review as a conference paper at ICLR 2026

Table 42: Acquisition performance on MIMIC HAIM for AUPRC (Image imputed by Lab), showing
Gran. Strategies are grouped by category. Best strategy among proposed and baseline methods in

bold for each column.

Strategy Fracture Enl. Card. Consolidation Atelectasis Edema Mean
Upper Bounds (for reference)
Oracle 1.490 £ 0.249 3.177 + 0.420 3.038 + 0.399 2.586 1.812 + 0.037 2.790
True KL-Div. 0.967 + 0.098 0.523 + 0.091 0.372 + 0.195 0.717 0.664 + 0.033 0.579
True Rank 1.014 £+ 0.085 0.632 + 0.084 0.498 + 0.128 0.773 0.685 + 0.019 0.706
True Uncert. 0.842 4+ 0.068 0.790 + 0.040 0.624 + 0.054 0.575 0.776 + 0.014 0.660
Imputation-based (proposed)
KL-Div 0.889 4+ 0.097 0.540 4 0.066 0.260 + 0.194 0.456 0.586 + 0.031 0.478
Probability 0.584 + 0.111 0.674 + 0.058 0.796 + 0.087 0.455 0.710 + 0.011 0.662
Rank 0.890 + 0.120 0.288 +0.118 0.229 + 0.139 0.650 0.459 + 0.026 0.416
Uncertainty 0.799 4+ 0.056 0.683 + 0.085 0.700 + 0.081 0.263 0.665 + 0.022 0.615
Baselines (no imputation)
Uncertainty 0.920 +0.131 0.700 4 0.096 0.448 4+ 0.096 0.387 0.651 + 0.025 0.553
Probability 0.480 + 0.112 0.714 + 0.071 0.749 + 0.063 0.483 0.715+ 0.011 0.686
Random 0.941 + 0.107 0.429 4+ 0.088 0.464 + 0.067 0.590 0.595 + 0.012 0.615
Strategy Cardiomegaly Lung Lesion Lung Opacity Pneumonia Pneumothorax Mean
Upper Bounds (for reference)
Oracle 4.700 + 0.289 1.725 £ 0.306 2.830 + 0.264 2.510 £ 0.170 4.037 £ 0.525 2.790
True KL-Div. 0.054 + 0.147 0.651 + 0.392 0.621 + 0.266 0.731 + 0.039 0.493 + 0.045 0.579
True Rank 0.463 + 0.068 0.834 + 0.425 0.903 + 0.193 0.661 + 0.030 0.601 + 0.047 0.706
True Uncert. 0.490 + 0.057 0.666 + 0.066 0.495 + 0.235 0.726 + 0.038 0.615 + 0.050 0.660
Imputation-based (proposed)
KL-Div 0.064 + 0.176 0.384 + 0.277 0.385 + 0.295 0.540 + 0.044 0.680 + 0.038 0.478
Probability 0.920 + 0.072 0.556 + 0.160 0.718 + 0.033 0.725 + 0.030 0.485 + 0.043 0.662
Rank —0.025 + 0.160 0.216 + 0.282 0.456 + 0.198 0.478 + 0.034 0.518 + 0.025 0.416
Uncertainty 0.655 + 0.077 0.656 + 0.200 0.574 + 0.124 0.638 + 0.037 0.519 + 0.034 0.615
Baselines (no imputation)
Uncertainty 0.293 + 0.089 0.529 + 0.084 0.416 + 0.296 0.544 + 0.042 0.643 + 0.024 0.553
Probability 0.944 + 0.092 0.671 + 0.071 0.850 + 0.058 0.732 + 0.022 0.523 + 0.031 0.686
Random 0.462 + 0.059 0.958 + 0.269 0.576 + 0.117 0.580 + 0.019 0.553 + 0.031 0.615
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Table 43: Acquisition performance on MIMIC HAIM for AUROC (Lab imputed by Image), showing
Gran. Strategies are grouped by category. Best strategy among proposed and baseline methods in

bold for each column.

Strategy Fracture Enl. Card. Consolidation Atelectasis Edema Mean
Upper Bounds (for reference)
Oracle 6.244 + 0.851 12.503 4 7.484 11.469 4+ 3.810 5.604 + 1.451 5.899 + 1.530 6.851
True KL-Div. 0.575 + 0.311 0.780 + 0.402 0.842 + 0.049 0.792 + 0.088 0.737 + 0.054 0.770
True Rank 0.773 £ 0.299 0.649 + 0.136 0.836 + 0.030 0.802 + 0.076 0.736 + 0.102 0.796
True Uncert. —0.370 + 0.158 0.445 + 0.274 1.020 £ 0.440 0.371 + 0.065 0.334 + 0.084 0.416
Imputation-based (proposed)

KL-Div 1.063 £+ 0.606 0.531 + 0.397 0.572 + 0.156 0.622 + 0.223 0.345 + 0.175 0.519
Probability —0.010 £ 0.798 0.463 + 0.079 1.433 £0.393 0.435 + 0.086 0.560 + 0.129 0.551
Rank —1.136 £ 0.350 —0.202 +£0.707 —0.044 £0.241 0.712 £ 0.244 0.535 + 0.072 0.180
Uncertainty —1.124 + 0.961 0.508 + 0.248 1.986 + 0.840 0.385 + 0.063 0.359 + 0.123 0.492
Baselines (no imputation)

Uncertainty 0.460 + 0.449 0.535 + 0.076 0.467 + 0.283 0.441 + 0.053 0.438 + 0.063 0.458
Probability 0.470 + 0.594 0.375 + 0.158 0.608 + 0.200 0.519 + 0.069 0.563 + 0.105 0.511
Random 0.826 + 0.879 —0.425 + 0.748 0.337 £+ 0.193 0.534 + 0.143 0.464 + 0.056 0.435
Strategy Cardiomegaly Lung Lesion Lung Opacity Pneumonia Pneumothorax Mean
Upper Bounds (for reference)

Oracle 5.483 £+ 0.647 1.730 £ 0.268 9.123 + 5.217 7.345 4+ 3.084 3.113 £ 0.375 6.851
True KL-Div. 0.821 + 0.038 0.641 + 0.142 0.969 + 0.173 0.774 £+ 0.071 0.771 £+ 0.016 0.770
True Rank 0.861 + 0.023 0.706 + 0.194 0.896 + 0.088 0.873 + 0.035 0.830 + 0.017 0.796
True Uncert. 0.550 + 0.096 0.648 + 0.244 0.017 + 0.360 0.652 + 0.013 0.492 + 0.038 0.416
Imputation-based (proposed)

KL-Div 0.465 + 0.074 0.286 + 0.213 0.608 + 0.194 0.233 + 0.147 0.467 + 0.028 0.519
Probability 0.518 + 0.032 0.646 + 0.037 0.492 + 0.164 0.543 +0.113 0.425 + 0.017 0.551
Rank 0.395 + 0.065 0.489 +0.114 —0.098 £ 0.659 0.626 +=0.318 0.522 + 0.033 0.180
Uncertainty 0.487 + 0.070 0.805 + 0.241 0.441 + 0.090 0.570 + 0.037 0.503 + 0.028 0.492
Baselines (no imputation)

Uncertainty 0.492 + 0.057 0.466 + 0.100 0.401 + 0.220 0.454 + 0.058 0.430 + 0.020 0.458
Probability 0.526 + 0.049 0.482 + 0.103 0.664 + 0.114 0.508 + 0.151 0.400 + 0.018 0.511
Random 0.482 + 0.033 0.512 + 0.145 0.575 + 0.056 0.530 + 0.018 0.519 + 0.024 0.435
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Table 44: Acquisition performance on MIMIC HAIM for AUPRC (Lab imputed by Image), showing
Gran. Strategies are grouped by category. Best strategy among proposed and baseline methods in

bold for each column.

Strategy Fracture Enl. Card. Consolidation Atelectasis Edema Mean
Upper Bounds (for reference)
Oracle — 3.188 + 0.307 3.312 + 0.007 2.814 + 0.615 4.169 + 0.490 4.011
True KL-Div. — 0.884 + 0.047 0.749 + 0.053 0.912 + 0.012 0.792 + 0.043 0.776
True Rank — 0.881 + 0.081 0.758 + 0.195 1.051 £ 0.050 0.889 + 0.035 0.811
True Uncert. - 0.237 + 0.075 0.508 + 0.005 0.350 + 0.067 0.376 £ 0.071 0.467
Imputation-based (proposed)
KL-Div — 0.647 + 0.098 0.508 + 0.078 0.755 + 0.079 0.419 + 0.032 0.489
Probability — 0.668 + 0.054 0.858 + 0.163 0.492 + 0.022 0.816 + 0.022 0.723
Rank — 0.424 + 0.082 0.335 + 0.044 0.734 + 0.076 0.495 + 0.042 0.485
Uncertainty - 0.282 + 0.094 0.580 + 0.160 0.398 + 0.022 0.469 + 0.034 0.461
Baselines (no imputation)
Uncertainty — 0.298 + 0.039 0.214 +0.113 0.354 + 0.001 0.254 + 0.039 0.294
Probability — 0.712 + 0.031 0.782 + 0.104 0.642 + 0.002 0.806 + 0.028 0.726
Random — 0.361 + 0.069 0.406 + 0.089 0.383 + 0.287 0.478 + 0.045 0.472
Strategy Cardiomegaly Lung Lesion Lung Opacity Pneumonia Pneumothorax Mean
Upper Bounds (for reference)
Oracle 4.828 + 0.574 1.969 £ 0.352 2.430 4+ 0.426 8.578 + 2.467 4.816 + 0.981 4.011
True KL-Div. 0.854 + 0.056 0.711 + 0.032 0.776 £+ 0.034 0.595 + 0.055 0.712 + 0.014 0.776
True Rank 0.895 + 0.034 0.660 + 0.093 0.735 + 0.039 0.756 + 0.125 0.678 + 0.081 0.811
True Uncert. 0.762 + 0.089 0.289 + 0.175 0.537 + 0.099 0.752 + 0.052 0.389 + 0.036 0.467

Imputation-based (proposed)

KL-Div 0.524 + 0.084 0.687 £+ 0.135 0.495 + 0.131 —0.069 £ 0.185 0.434 + 0.051 0.489
Probability 0.640 + 0.029 0.889 +0.138 0.794 £+ 0.073 0.773 + 0.051 0.574 + 0.078 0.723
Rank 0.455 + 0.084 0.216 + 0.127 0.607 + 0.038 0.533 + 0.382 0.570 + 0.049 0.485
Uncertainty 0.621 + 0.069 0.326 £ 0.134 0.523 + 0.042 0.566 + 0.018 0.381 + 0.036 0.461
Baselines (no imputation)

Uncertainty 0.489 + 0.062 0.121 +0.130 0.187 £+ 0.017 0.333 £ 0.042 0.396 + 0.034 0.294
Probability 0.571 + 0.058 0.887 + 0.166 0.870 + 0.029 0.703 + 0.060 0.559 + 0.076 0.726
Random 0.568 + 0.050 0.395 £+ 0.110 0.561 + 0.044 0.535 £ 0.077 0.560 + 0.029 0.472

55



	Introduction
	Related Work
	Problem Formulation
	Acquisition Function Strategies
	Evaluation
	Results
	Discussion
	Conclusion and Future Work
	Broader Impact and Ethics
	Reproducibility
	Details about Acquisition Function Strategies
	AUROC and AUPRC
	Oracle Acquisition Strategies: Exact Gain Calculation
	Upper-Bound Heuristic Strategies
	Baseline Information Strategies
	Imputation-Based Strategies

	Hyperparameters, Model Details and Compute Environment
	Dataset Details
	Results for Symile with bcvae
	Detailed Results for MOSEI
	Detailed Results for MIMIC Symile
	Results for MIMIC HAIM

