

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030

COHORT-BASED ACTIVE MODALITY ACQUISITION

Anonymous authors

Paper under double-blind review

ABSTRACT

Real-world machine learning applications often involve data from multiple modalities that must be integrated effectively to make robust predictions. However, in many practical settings, not all modalities are available for every sample, and acquiring additional modalities can be costly. This raises the question: which samples should be prioritized for additional modality acquisition when resources are limited? While prior work has explored individual-level acquisition strategies and training-time active learning paradigms, test-time and cohort-based acquisition remain underexplored. We introduce Cohort-based Active Modality Acquisition (CAMA), a novel test-time setting to formalize the challenge of selecting which samples should receive an additional modality. We derive acquisition strategies that leverage a combination of generative imputation and discriminative modeling to estimate the expected benefit of acquiring a missing modality based on common evaluation metrics. We also introduce upper-bound heuristics that provide performance ceilings to benchmark acquisition strategies. Experiments on multimodal datasets with up to 15 modalities demonstrate that our proposed imputation-based strategies can more effectively guide the acquisition of an additional modality for selected samples compared with methods relying solely on pre-acquisition information, entropy-based guidance, or random selection. We showcase the real-world relevance and scalability of our method by demonstrating its ability to effectively guide the costly acquisition of proteomics data for disease prediction in a large prospective cohort, the UK Biobank (UKBB). Our work provides an effective approach for optimizing modality acquisition at the cohort level, enabling more effective use of resources in constrained settings.¹

1 INTRODUCTION

Consider a clinical healthcare setting where all patients in a cohort undergo a standard, inexpensive set of initial examinations, such as basic blood tests and anamnesis. However, a more advanced, expensive, or invasive procedure, like genomic sequencing or specialized imaging, could offer crucial diagnostic or prognostic information for a subset of these patients (Huang et al., 2021). Given a limited budget or capacity for the more advanced procedure, the central question becomes: which patients should receive this additional resource to maximize the overall diagnostic yield or improve treatment outcomes across the entire cohort? For healthcare, budgets are often resource-specific rather than flexible. For example, a hospital may have a fixed capacity for one MRI scanner, or a cohort may have a specific grant for one modality. The critical decision is prioritizing access to that single resource across the cohort, and not necessarily dynamically acquiring for different modalities per patient. Consider a healthcare system that can afford 1,000 expensive tests for a 100,000-person cohort. The goal is to improve health outcomes across the whole population, and this typically happens through resource allocation: who receives preventive interventions, who gets enrolled in clinical trials, who is flagged for closer monitoring. These decisions depend on accurate risk stratification. A global ranking of all 100,000 individuals by predicted risk (measured, for example, by Area Under the Receiver Operating Characteristic (AUROC)) becomes the tool through which such allocation decisions are made. The question is: which 1,000 patients should we test so that our final ranking of all 100,000 is as accurate as possible? Balancing potential gains from data modalities against the costs and complexities of acquisition is not unique to healthcare. In remote sensing, for instance, decisions must be made regarding which geographical areas warrant costly high-resolution satellite imagery

¹Code will be published on GitHub.

Figure 1: Motivational example for CAMA determining the added value of obtaining the magnetic resonance image (MRI) modality. **(A)** A heterogeneous cohort for which each sample has P distinct modalities. **(B)** Instead of using the initial subset logit scores s_i^{avail} , a generative model f_{imp} imputes the target missing modality for every patient in the cohort. This yields imputed, augmented-modality logit scores $\{s_{i,k}^{\text{imp}}\}_{k=1}^K$ that approximate the logits as if that modality were available. These scores approximate s_i^{acquired} , *i.e.*, the counterfactual with only the imputed modality added. **(C)** An acquisition function (AF) utilizes these scores to rank samples by acquisition priority. The graph demonstrates how the global performance metric improves from the initial baseline towards the performance of a model with access to post-acquisition data, as an increasing fraction of the cohort receives the additional modality. This acquisition process is guided by the proposed strategies operating under the acquisition budget constraint β .

to supplement widely available, lower-resolution data, aiming to optimize regional environmental monitoring under budget constraints. Likewise, in industrial quality assurance, manufacturers could decide which components from a production batch should undergo detailed, time-consuming testing in addition to rapid, standard visual inspections to effectively identify defects at a batch level. The topic of efficient data acquisition has led to several established paradigms in machine learning, such as Active Learning (AL) (Holzmüller et al., 2023), Active Feature Acquisition (AFA) (Shim et al., 2018), Active Modality Acquisition (AMA) (Kossen et al., 2023), and multimodal learning with missing data (Wu et al., 2024). However, previous research predominantly centers on optimizing acquisition for individual samples and often does not directly address test-time budget constraints for an entire cohort. Consequently, the strategic, test-time acquisition of an additional modality from a cohort perspective remains a significant, largely unaddressed gap. This setting involves deciding, for a given batch of new samples where different subsets of modalities are available, which specific samples should receive an additional, costly modality to best achieve a global objective, *e.g.*, maximizing overall predictive performance or diagnostic accuracy for the cohort, subject to budget constraints. We hypothesize that imputation-based acquisition functions (AFs) can effectively guide resource allocation under cohort-level constraints. The main contributions of this work are as follows:

- **The CAMA setting** We introduce and formalize CAMA, a previously unexplored setting that addresses the challenge of prioritizing which samples within a test-time cohort should undergo additional modality acquisition based on an available subset of modalities.
- **Development of AFs for CAMA** We propose a theoretical framework, derived from established evaluation metrics, *e.g.*, AUROC and Area Under the Precision-Recall Curve (AUPRC), that provides a foundation for developing AFs within the CAMA setting.
- **Architectures for CAMA** We develop novel architectures for approaching CAMA, including a) derivations of AFs by combining generative and discriminative deep learning and b) the definition of corresponding upper bounds to serve as performance benchmarks.
- **Comprehensive evaluation** We present a comprehensive empirical evaluation of our proposed methods across several multimodal datasets, which vary in their number of modalities and application domains, with up to 100,000 samples and 15 modalities. This includes an

108 analysis of key assumptions, upper bounds and oracle strategies, performance challenges,
 109 and robustness.
 110

111 **2 RELATED WORK**

114 In the following, we contextualize our work on CAMA by reviewing the key concepts and contribu-
 115 tions from several relevant research domains summarized briefly in Table 1.

116 Table 1: Comparison of active data acquisition paradigms. Our proposed CAMA setting is unique in
 117 its focus on cohort-level, test-time modality acquisition.
 118

Paradigm	Acquisition	Decision Level	Time	Primary Objective
AL	Labels	Individual	Training	Maximize model performance
AFA	Features	Individual	Test	Optimize sample-level prediction
AMA	Modalities	Individual	Test	Optimize sample-level prediction
CAMA (Ours)	Modalities	Cohort	Test	Maximize global cohort metric

121 **Active Learning (AL)** AL seeks to enhance model training by selecting unlabeled data points for
 122 annotation by an oracle (Settles, 2012; Ren et al., 2022; Li et al., 2025). Our methodology draws
 123 significantly from AL principles, particularly in the development of an AF to guide the selection
 124 process. Consequently, established AL strategies and concepts, such as those rooted in measuring
 125 uncertainty (Settles, 2012; Han & Kang, 2021; Hoarau et al., 2025; Raj & Bach, 2022; Ma et al.,
 126 2019) or using generative models (Tran et al., 2019; Zhu & Bento, 2017; Zhang et al., 2024; Ma et al.,
 127 2019; Peis et al., 2022), are central to our work. Existing work on multimodal acquisition (Rudovic
 128 et al., 2019; Das et al., 2022), batch-level selection (Ash et al., 2020; Kirsch et al., 2019; Holzmüller
 129 et al., 2023), and balanced AL (Aggarwal et al., 2020; Shen et al., 2023; Zhang et al., 2023; Hoarau
 130 et al., 2025) is especially relevant. Our approach, however, diverges from the conventional goals of
 131 directly optimizing model training or seeking labels for specific data points: We aim to identify those
 132 samples for which the acquisition of an additional data modality would be most beneficial.
 133

138 **Active Feature Acquisition (AFA)** AFA builds upon AL by focusing on selecting the most
 139 informative individual features for a given sample, often considering their acquisition costs (Rahbar
 140 et al., 2025). Similar to AL approaches, methods for AFA encompass a diverse range of techniques,
 141 including strategies based on measuring uncertainty (Hoarau et al., 2025; Astorga et al., 2024),
 142 the use of generative models (Li & Oliva, 2021; 2024; Gong et al., 2019; Zannone et al., 2019),
 143 and Reinforcement Learning (RL) (Valancius et al., 2024; Janisch et al., 2020; Kleist et al., 2025;
 144 Shim et al., 2018; Baja et al., 2025). Other common methodologies involve batch-level perspectives
 145 (Asgaonkar et al., 2024), leveraging information bottlenecks (Norcliffe et al., 2025), or employing the
 146 Kullback-Leibler Divergence (KL-Divergence) (Natarajan et al., 2018). Some AFA techniques rely
 147 on gradient calculations (Ghosh & Lan, 2023), while distinct approaches are formulated as individual,
 148 sequential recommender systems (Freyberg et al., 2024; Vivar et al., 2020). At an application level,
 149 even Large Language Models (LLMs), such as Med-PaLM 2 (Singhal et al., 2025), could be employed
 150 for AFA, although such deployments remain unexplored in this context. While our setting shares
 151 the core idea of AFA, it differs significantly: We are not concerned with the selection of individual
 152 features, but rather with identifying which entire data modalities to acquire. Furthermore, this
 153 decision-making process is applied at the cohort level, rather than optimizing for individual samples.

154 **Active Modality Acquisition (AMA)** AMA can be conceptualized as an extension of AFA,
 155 distinguished by its focus on selecting entire data modalities rather than individual features or
 156 labels. Prominent related research includes approaches employing RL for multimodal data (Kossen
 157 et al., 2023; Jain et al., 2025; Li & Oliva, 2025) and methods utilizing submodular optimization in
 158 conjunction with Shapley values (Shapley, 1953; He et al., 2024). The approach by Kossen et al.
 159 (2023) differs from ours through its reliance on RL, whereas He et al. (2024) primarily investigate how
 160 modalities affect optimal learning performance. Further studies have explored the use of Gaussian
 161 mixtures within Bayesian optimal experimental design to enhance data acquisition efficiency for
 162 model training (Long, 2022). This objective differs from ours, as our focus is not on improving the

162 model training process itself, but rather on optimizing performance for a downstream task at test time.
 163 The relative sparsity of existing work for AMA underscores the significance of the research gap that
 164 our proposed setting, *i.e.*, CAMA aims to address.
 165

166 **Multimodal Learning with Missing Data Modalities** Research in multimodal learning with
 167 missing data modalities offers techniques for robustly handling incomplete datasets. These methods
 168 are broadly classified into strategy design aspects, *i.e.*, architecture-focused designs and model
 169 combinations, and data processing aspects, *i.e.*, representation learning and modality imputation
 170 (Wu et al., 2024). Acknowledging the utility of these approaches, our work emphasizes imputation-
 171 based strategies, and thus this paragraph highlights those methods. Imputation of missing features
 172 is commonly performed using Auto Encoders (AEs) (Hinton & Zemel, 1993), Variational Auto
 173 Encoders (VAEs) (Kingma & Welling, 2014), Generative Adversarial Networks (GANs) (Goodfellow
 174 et al., 2014), or Denoising Diffusion Probabilistic Models (DDPMs) (Ho et al., 2020; Rombach
 175 et al., 2022). These methods naturally extend to multiple modalities, for example, with VAE-based
 176 (Wesego & Rooshenas, 2024; Sutter et al., 2021; Lewis et al., 2021) and DDPM-based (Wang
 177 et al., 2023) approaches. Notably, the latter, *i.e.*, *IMDer* (Wang et al., 2023), a multimodal deep
 178 learning architecture that imputes missing values with DDPMs in latent spaces, is adapted in our
 179 work (Section 5). However, this research area focuses on handling absent modalities rather than
 180 deciding which ones to acquire.
 181

3 PROBLEM FORMULATION

182 Let $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^N$ be a dataset of N samples. For each sample i , the full feature set \mathbf{x}_i is
 183 composed of P distinct data modalities, $\mathbf{x}_i = \{\mathbf{x}_i^{(1)}, \dots, \mathbf{x}_i^{(P)}\}$, and $y_i \in \{0, 1\}$ is the corresponding
 184 binary label. In practice, only a subset of these modalities may be available. We denote the set of
 185 indices of available modalities for sample i as $\mathcal{P}_i^{\text{avail}} \subseteq \{1, \dots, P\}$. Our goal is to decide for which
 186 samples to acquire costly missing data to maximize a cohort-level performance metric. This decision
 187 is guided by predictive scores (logits), and we consider three key predictive scores for each sample i :
 188

- 189 • s_i^{avail} : The available score, computed using the subset of data modalities that are already
 190 observed for the sample.
- 191 • s_i^{acquired} : The acquired score, computed using the sample’s available modalities plus the
 192 newly acquired modality.
- 193 • $\{s_{i,k}^{\text{imp}}\}_{k=1}^K$: A set of K imputed scores that estimate the unknown s_i^{acquired} using only the
 194 available data modalities.

195 For instance, given the example from Figure 1, in a simple clinical setting with a cheap, universally
 196 available base modality, *e.g.*, cardiac biomarkers such as troponin or B-type natriuretic peptide (BNP),
 197 and an expensive additional modality, *e.g.*, cardiac MRI, s_i^{avail} would be the score from the blood
 198 tests alone, while s_i^{acquired} would be the score using both tests and MRI. To compute these scores, we
 199 assume a single model f parameterized by θ that can process any subset of modalities. The available
 200 and acquired scores are thus:
 201

$$s_i^{\text{avail}} = f(\mathbf{x}_i^{\text{avail}}, \theta) \quad (1)$$

$$s_i^{\text{acquired}} = f(\mathbf{x}_i^{\text{acquired}}, \theta) \quad (2)$$

202 where $\mathbf{x}_i^{\text{avail}}$ and $\mathbf{x}_i^{\text{acquired}}$ represent the feature sets for the available and acquired modalities, respec-
 203 tively. To estimate the acquired score without costly acquisition, we use a generative imputation
 204 model f_{imp} . This model generates a set of K plausible embeddings that enable the classifier f_C
 205 to predict the scores $\{s_{i,k}^{\text{imp}}\}_{k=1}^K$. These imputation-based scores form the basis of our acquisition
 206 functions.
 207

208 The goal of the optimization is to select a subset of samples \mathcal{S} from the cohort of N total samples for
 209 which an additional modality should be acquired. This subset $\mathcal{S} \subseteq \{1, \dots, N\}$ has a predetermined
 210 size $|\mathcal{S}| = \beta$, where β is the acquisition budget, *i.e.*, the number of samples for which additional
 211 modalities will be acquired. The final score $s_i(\mathcal{S})$ used for the evaluation of a sample i is then
 212

216 determined by the selection:

$$218 \quad s_i(\mathcal{S}) = \begin{cases} s_i^{\text{acquired}} & \text{if } i \in \mathcal{S} \\ s_i^{\text{avail}} & \text{if } i \notin \mathcal{S} \end{cases} \quad 219 \quad 220 \quad 221 \quad 222 \quad 223 \quad 224 \quad 225 \quad 226 \quad 227 \quad 228 \quad 229 \quad 230 \quad 231 \quad 232 \quad 233 \quad 234 \quad 235 \quad 236 \quad 237$$

The optimization problem is to find the set \mathcal{S}^* that maximizes the chosen performance metric:

$$233 \quad \mathcal{S}^* = \arg \max_{\mathcal{S} \subseteq \{1, \dots, N\}: |\mathcal{S}|=\beta} \text{Metric}(\mathbf{y}, \mathbf{s}(\mathcal{S})) \quad 234 \quad 235 \quad 236 \quad 237$$

225 where $\mathbf{y} = \{y_i\}_{i=1}^N$ is the vector of true labels, and $\mathbf{s}(\mathcal{S}) = \{s_i(\mathcal{S})\}_{i=1}^N$ is the vector of resulting 226 scores for all samples in the cohort. Consequently, the task is to identify an optimal, constrained 227 subset for which to acquire additional modalities, while maximizing a performance metric across the 228 entire cohort.

230 4 ACQUISITION FUNCTION STRATEGIES

233 Directly solving the cohort-level optimization problem to identify the optimal sample set \mathcal{S}^* is 234 computationally intractable due to its combinatorial nature. Therefore, we employ several heuristic 235 acquisition functions (AFs) that approximate the optimal selection by ranking samples for modality 236 acquisition. These strategies, detailed further in Section C, are derived from standard discriminative 237 metrics (Section C.1) and can be categorized as follows (Table 2):

- 238 • **Oracle Strategies:** As upper-bound benchmarks, they assume perfect knowledge of out-
239 comes and true labels to greedily select samples yielding the largest immediate gain in the
240 target metric.
- 241 • **Upper-Bound Heuristic Strategies:** These heuristics assume knowledge of scores under
242 modality completion but are label-agnostic, relying on metrics like the true uncertainty
243 reduction, rank change, or KL-Divergence.
- 244 • **Imputation-Based Strategies:** Grounded in counterfactual reasoning, these strategies use a
245 generative model to predict how a sample’s score might change if a missing modality were
246 acquired.
- 247 • **Baseline Information Strategies:** These strategies make decisions using only information
248 from the initially available modalities, *i.e.*, without any imputation and pre-acquisition, such
249 as its predicted uncertainty or probability.
- 250 • **Random Strategy:** This serves as a fundamental baseline by selecting samples randomly,
251 without regard to any model scores.

253
254 Table 2: Summary of AF Strategies.
255

256 Category	257 Strategies	258 Input Variables	259 Ranking Criteria
260 Oracle	261 AUROC, AUPRC	262 True labels & ac- 263 quired scores	264 Greedy selection for maximum 265 gain.
266 Upper-Bound	267 KL-Divergence, 268 Rank, Uncertainty	269 True acquired 270 scores	271 True change in prediction, cohort 272 rank, or uncertainty.
273 Imputation-Based	274 KL-Divergence, 275 Rank, Uncertainty 276 & Probability	277 Imputed acquired 278 scores	279 Expected change in prediction, 280 rank, or uncertainty.
281 Baselines	282 Uncertainty, Prob- 283 ability	284 Pre-acquisition 285 scores	286 Uncertainty or probability using 287 the available modality.
288 Random	289 Random	290 None	291 Random selection.

268 Intuitively, these acquisition functions approximate the expected information gain (EIG) from
269 acquiring an additional modality. In our setting, EIG quantifies the expected improvement in a chosen

Figure 2: End-to-end architectures to determine the scores for different AFs in our proposed CAMA setting. **(A)** Vanilla late fusion (LF) architecture of a model f that can handle missing data modalities by masking. The model creates scores s_i^{avail} given the available modalities. **(B)** Architecture for training (left) and inference (right) with a late fusion (LF) model f and a generative model f_{imp} to create scores s_i^{imp} for the imputation-based AFs.

performance metric given the additional information that would become available through a new modality.

For evaluation, we introduce a metric that describes the cumulative performance of an AF, normalized by the total possible gain achievable by transitioning all samples to post-acquisition performance (see Figure 1 C, for an illustrative curve). Let $M_{\text{AF}}(b)$ denote the performance curve of an AF strategy for a primary metric M as a function of the budget fraction b of the acquisition budget β , M_{pre} the performance of the pre-acquisition baseline, and M_{post} the performance of the post-acquisition model. The normalized area of gain for an acquisition function AF, which measures the portion of achievable performance gain captured across different budgets, is defined as the area under the performance gain curve, normalized by the maximum possible gain (Equation (5)). Intuitively, a value of 0 indicates no improvement over the pre-acquisition baseline across budgets. A value of 1 indicates matching the post-acquisition performance on average across budgets. Values greater than 1 occur when the cohort’s performance at intermediate budgets temporarily exceeds the post-acquisition cohort as detailed later and shown in Figure 3.

$$G_{\text{full}}^M(\text{AF}) = \frac{\int_0^1 (M_{\text{AF}}(b) - M_{\text{pre}}) db}{M_{\text{post}} - M_{\text{pre}}} \quad (5)$$

5 EVALUATION

To evaluate these strategies in practice, we require architectures that produce the necessary scores. The oracle, upper-bound, baseline, and random AFs can be evaluated using a vanilla discriminative late fusion (LF) model (Figure 2 A), as they operate on true labels y_i and true scores s_i^{acquired} and s_i^{avail} (Section 3). In contrast, our proposed imputation-based AFs are grounded in counterfactual reasoning: They require the model to predict how its output would change if a missing modality were present. This necessitates a more sophisticated architecture that combines the discriminative classifier with a generative component capable of imputing the missing modality (Figure 2 B).

Model Architecture First, we implement a multimodal architecture consisting of modality-specific encoders $f_E^{(m)} : \mathcal{X}^{(m)} \rightarrow \mathbb{R}^d$ and a fusion classifier f_C (Figure 2 A). The encoders map raw inputs for a sample i and modality m to latent embeddings $z_i^{(m)} = f_E^{(m)}(x_i^{(m)})$, e.g., with a Vision Transformer (ViT) (Dosovitskiy et al., 2021) for images and BERT (Devlin et al., 2019) for text. The discriminative classifier f_C aggregates these embeddings to produce logits s_i^{avail} depending on the availability of the raw inputs, i.e., with a Transformer encoder (Vaswani et al., 2017). Second, for our generative AFs, we incorporate generative modules additionally to the discriminative late fusion (Figure 2 B) (Wang et al., 2023). The generative modules f_{imp} are parameterized as Diffusion Transformers (DiTs) (Peebles & Xie, 2023) or Beta-Conditional-VAEs (BC-VAEs) (Higgins et al., 2017) trading off

Figure 3: (a) AUROC curves for several AFs on the MOSEI dataset (Zadeh et al., 2018) at an acquisition budget of 25% of the dataset size. (b) Acquisition performance of the best-performing AF from (a), visualizing the gain achieved during the progressive acquisition of modalities as the cohort transitions from pre-acquisition scores towards post-acquisition. Notably, the oracle AF can exceed the post-acquisition cohort’s AUROC at certain fractions of acquired modalities before subsequently declining towards it again.

performance vs. efficiency. The generative modules f_{imp} are trained to approximate the conditional distribution $p_{\theta}(z^{(k)} | \{z^{(m)}\}_{m \in \mathcal{P}_i^{\text{avail}}})$ for each target modality k . The generative loss for sample i is:

$$\mathcal{L}_{G_i} = \sum_{k \in \mathcal{P}_i^{\text{avail}}} \mathcal{L}_{\text{gen}}\left(z_i^{(k)}; \{z_i^{(m)}\}_{m \in \mathcal{P}_i^{\text{avail}}}\right) \quad (6)$$

where \mathcal{L}_{gen} is a variational bound on the negative conditional log-likelihood: for DDPMs, this corresponds to the denoising objective (Ho et al., 2020); for BC-VAEs, this is the negative conditional evidence lower bound (ELBO) (Higgins et al., 2017). For the discriminative task, the loss for sample i is defined as binary cross entropy loss with the label y and the predicted probability p :

$$\mathcal{L}_{\text{CE}_i} = -[y_i \log(p_i) + (1 - y_i) \log(1 - p_i)]. \quad (7)$$

The final loss function for the whole architecture is defined as the combination of both loss terms:

$$\mathcal{L} = \lambda_1 \mathcal{L}_{\text{CE}} + \lambda_2 \mathcal{L}_G \quad (8)$$

with loss weightings λ for which we find $\lambda_1 = \lambda_2 = 1$ is important for downstream performance. During inference, the classifier f_C also uses samples of $p(z^{(k)} | \{z^{(m)}\}_{m \in \mathcal{P}_i^{\text{avail}}})$ for missing modalities to create the scores s_i^{imp} needed for our generative AFs (Figure 2 B, right). During training, samples from $p(z^{(k)} | \{z^{(m)}\}_{m \in \mathcal{P}_i^{\text{avail}}})$ are not passed to f_C , even when modalities are missing (Figure 2 B, left). Instead, the discriminative components ($f_E^{(m)}$ and f_C) are trained only on available modalities via attention masks. This means that the generative and discriminative parts are trained jointly, but the generative outputs do not directly influence the classifier during training beyond the shared encoders being updated by the classification loss. For model training, we use the ScheduleFree optimizer (Defazio et al., 2024) with hyperparameters determined through sweeps. We find the following architectural decisions essential, which are ablated in Table 7: (a) applying Layer Normalization (Ba et al., 2016) at the end of each modality’s encoder to stabilize the DDPMs operating between latent spaces, (b) calibrating the model with label smoothing (Szegedy et al., 2016) to produce less overconfident and better-calibrated probability distributions, (c) decoupling the generative modules from the classifier during training and (d) class balancing the training dataset as detailed in the next paragraph. Regarding missing modalities, we do not pre-train on all available data modalities, in contrast to Wang et al. (2023). We use a predefined, seed-dependent missing-modality mask to control data modality leakage during training unlike batch-dependent masks, which eventually reveal all modalities for every sample across numerous epochs. Further details in Section D.

Datasets We evaluate the setting of CAMA on four real-world multimodal datasets: UKBB (Sudlow et al., 2015), MIMIC Symile (Saporta et al., 2024), MIMIC HAIM (Soenksen et al., 2022a;b), and

378 Table 3: Acquisition performance on Symile, with G_{full} shown for AUROC/AUPRC as an example
 379 for the class with the best and worst performance and the mean value of all ten classes. Strategies are
 380 grouped by category. Best strategy among proposed ones and baselines in bold for each column.

Strategy	Acquisitions by AUROC, $G_{\text{full}} \uparrow \pm \text{SEM}$			Acquisitions by AUPRC, $G_{\text{full}} \uparrow \pm \text{SEM}$		
	Cardiomegaly	Pneumothorax	Mean	Lung Lesion	Pneumothorax	Mean
<i>Upper Bounds (for reference)</i>						
Oracle	2.787 \pm 0.139	9.461 \pm 1.049	4.580	2.520 \pm 0.250	10.623 \pm 0.708	4.231
True KL-Div.	0.885 \pm 0.011	0.910 \pm 0.054	0.883	0.828 \pm 0.073	0.827 \pm 0.043	0.871
True Rank	0.878 \pm 0.019	0.605 \pm 0.053	0.811	0.676 \pm 0.088	0.483 \pm 0.075	0.776
True Uncert.	0.524 \pm 0.025	-0.136 \pm 0.065	0.481	0.181 \pm 0.067	0.293 \pm 0.052	0.450
<i>Imputation-based (proposed)</i>						
KL-Divergence	0.747 \pm 0.039	0.773 \pm 0.134	0.833	0.896 \pm 0.146	0.581 \pm 0.084	0.777
Probability	0.350 \pm 0.053	0.898 \pm 0.061	0.426	0.320 \pm 0.104	0.965 \pm 0.027	0.449
Rank	0.378 \pm 0.016	0.115 \pm 0.082	0.378	0.564 \pm 0.086	0.396 \pm 0.054	0.407
Uncertainty	0.450 \pm 0.041	0.055 \pm 0.060	0.440	0.130 \pm 0.053	0.513 \pm 0.066	0.444
<i>Baselines (no imputation)</i>						
Uncertainty	0.480 \pm 0.013	0.536 \pm 0.040	0.480	0.215 \pm 0.033	0.811 \pm 0.041	0.443
Probability	0.431 \pm 0.015	0.536 \pm 0.040	0.458	0.756 \pm 0.136	0.811 \pm 0.041	0.550
Random	0.385 \pm 0.015	0.327 \pm 0.061	0.376	0.503 \pm 0.103	0.527 \pm 0.053	0.388

395
 396 MOSEI (Zadeh et al., 2018), which cover diverse domains such as healthcare and emotion recognition.
 397 For the publicly available datasets, missing modalities are synthetically created, whereas for UKBB
 398 they are an inherent characteristic. We design the datasets for binary classification, resulting in ten
 399 binary targets for the MIMIC datasets and one binary target for MOSEI and UKBB. While MOSEI is
 400 already class-balanced (Zadeh et al., 2018), HAIM and Symile exhibit significant class imbalance
 401 (Soenksen et al., 2022a; Zadeh et al., 2018). To address this, we employ random oversampling
 402 during training, which we find essential for the effective operation of AFs (Table 7). Importantly,
 403 during testing we retain the original imbalanced distributions, and no class-balancing steps are
 404 applied to UKBB. We highlight UKBB as the most challenging dataset to demonstrate that CAMA
 405 scales to a broad multimodal range and large-scale cohorts with approximately 100,000 samples and
 406 15 modalities. In this setting, we focus on acquiring the exceptionally costly proteomics data for
 407 predicting the onset of systemic lupus erythematosus (SLE), which has been shown to benefit from
 408 proteomics combined with other clinical data (Yang et al., 2025). Additional details are provided in
 409 Section E.
 410

411 **Model and AF Evaluation** For datasets with at least three modalities, we apply five-fold cross-
 412 validation. Due to initially noisy results for MIMIC HAIM, we increase the number of folds to
 413 ten. For each sample in the test set, the initial score s_i^{avail} is established by randomly assigning a
 414 subset of available modalities $\mathcal{P}_i^{\text{avail}}$. This procedure is repeated over several runs for robustness.
 415 In each run, every sample is stochastically assigned a new subset $\mathcal{P}_i^{\text{avail}}$. Performance metrics are
 416 averaged across these independent runs to ensure our evaluation is robust to any single random
 417 assignment of patient data. Acquisition is simulated by incrementally increasing the budget β . We
 418 focus on tasks where the post-acquisition model demonstrates a performance improvement over the
 419 pre-acquisition baseline. For certain prediction tasks, a simpler pre-acquisition model can outperform
 420 a more complex post-acquisition one, potentially due to the introduction of noisy or conflicting
 421 signals. In such cases, the final post-acquisition performance falls below the pre-acquisition baseline,
 422 resulting in a negative normalized area of gain, indicating that acquisition was detrimental. To ensure
 423 a meaningful evaluation, we exclude any tasks exhibiting this negative gain from the analysis at the
 424 split level. For each budget, the top-ranked samples in \mathcal{S} are considered acquired, and their logits
 425 are updated from s_i^{avail} to s_i^{acquired} . Final reported results are aggregated across all cross-validation
 426 splits, combinations of missing and available modalities, and random runs to ensure robustness of the
 427 evaluation.
 428

6 RESULTS

429 Our empirical evaluation confirms the effectiveness of CAMA. We benchmark our imputation-
 430 based strategies against oracles, upper-bound heuristics, and baselines across multiple datasets. Full
 431 results are aggregated in Tables 3 to 5 by averaging over permutations of missing input modalities.

432
 433 Table 4: Acquisition performance on UKBB,
 434 showing G_{full} for AUROC/AUPRC. Strategies
 435 are grouped by category. Best strategy among
 436 proposed ones and baselines in bold.

Strategy	AUROC		AUPRC	
	$G_{\text{full}} \pm \text{SEM} \uparrow$			
<i>Upper Bounds (for reference)</i>				
Oracle	1.141 \pm 0.051		1.721 \pm 0.315	
True KL-Div.	0.978 \pm 0.007		0.986 \pm 0.005	
True Rank	0.887 \pm 0.022		0.466 \pm 0.110	
True Uncert.	0.436 \pm 0.088		0.507 \pm 0.074	
<i>Imputation-based (proposed)</i>				
KL-Divergence	0.641 \pm 0.029		0.658 \pm 0.045	
Probability	0.535 \pm 0.026		0.713 \pm 0.029	
Rank	0.437 \pm 0.028		0.340 \pm 0.114	
Uncertainty	0.373 \pm 0.053		0.332 \pm 0.058	
<i>Baselines (no imputation)</i>				
Uncertainty	0.365 \pm 0.042		0.556 \pm 0.073	
Probability	0.365 \pm 0.042		0.556 \pm 0.073	
Random	0.528 \pm 0.018		0.485 \pm 0.052	

50
 51 Table 5: Acquisition performance on MOSEI,
 52 showing G_{full} for AUROC/AUPRC. Strategies
 53 are grouped by category. Best strategy among
 54 proposed ones and baselines in bold.

Strategy	AUROC		AUPRC	
	$G_{\text{full}} \pm \text{SEM} \uparrow$			
<i>Upper Bounds (for reference)</i>				
Oracle	1.478 \pm 0.091		1.666 \pm 0.161	
True KL-Div.	0.882 \pm 0.006		0.838 \pm 0.006	
True Rank	0.849 \pm 0.008		0.806 \pm 0.010	
True Uncert.	0.663 \pm 0.006		0.708 \pm 0.005	
<i>Imputation-based (proposed)</i>				
KL-Divergence	0.855 \pm 0.034		0.889 \pm 0.052	
Probability	0.707 \pm 0.037		0.846 \pm 0.070	
Rank	0.432 \pm 0.014		0.457 \pm 0.019	
Uncertainty	0.630 \pm 0.015		0.706 \pm 0.037	
<i>Baselines (no imputation)</i>				
Uncertainty	0.525 \pm 0.005		0.540 \pm 0.006	
Probability	0.433 \pm 0.007		0.543 \pm 0.009	
Random	0.490 \pm 0.004		0.525 \pm 0.003	

55
 56 Table 6: Efficiency analysis for different architectures.

Architecture	Train (sec) \downarrow	Validation (sec) \downarrow	Parameters (M) \downarrow
Late fusion	0.02	0.015	86.5
Late fusion w/ DDPMs	0.17	0.16	125
Late fusion w/ BC-VAEs	0.08	0.08	313

57
 58 ties and multiple random instantiations for each missingness configuration. As expected, oracle
 59 strategies serve as an upper bound and consistently achieve the highest performance. Surprisingly,
 60 oracle gains can exceed the value of one, as a strategic mix of pre-acquisition and post-acquisition
 61 samples can outperform a purely post-acquisition cohort. To benchmark the acquisition logic it-
 62 self, we use label-agnostic upper-bound heuristics that access acquired scores s_i^{acquired} . Among
 63 these, strategies based on KL-Divergence and rank change perform well, indicating that prioritiz-
 64 ing large predictive shifts or cohort reordering is an effective heuristic in this setting. Our main
 65 approach for handling the CAMA setting comprises imputation-based strategies that leverage a
 66 generative model f_{imp} to predict counterfactual outcomes. The imputation-based KL-Divergence
 67 strategy consistently and significantly outperforms all other non-oracle methods. This AF effectively
 68 identifies samples predicted to have the largest shift in their class probability distribution (Figure 3).
 69 In contrast, imputation-based strategies relying
 70 on rank change, final uncertainty, or final prob-
 71 ability are considerably weaker, suggesting that
 72 quantifying the change in prediction is more ef-
 73 fective than estimating the final state. While our
 74 primary results with respect to imputation-based
 75 AFs use DDPMs, a BC-VAE variant offers sig-
 76 nificantly faster inference for a minor trade-off
 77 in performance (Table 6 and section F). The rel-
 78 ative performance ranking of these strategies
 79 is largely consistent across all datasets, includ-
 80 ing the large-scale UKBB cohort with approxi-
 81 mately 100,000 samples and 15 modalities. This
 82 confirms the robustness and scalability of our
 83 framework in a challenging setting. In summary,
 84 our results affirm the superiority of the imputation-based KL-Divergence strategy, which achieved
 85 substantial and reliable gains over all baselines and heuristic methods. Additional results in Sections G
 86 to I.

87 Table 7: Cross-validated ablation of the proposed
 88 model adjustments on the Symile dataset, exem-
 89 plary for the mean across all endpoints with the
 90 expected KL-Divergence and acquisitions by AU-
 91 ROC.

Ablation	$G_{\text{full}} \uparrow$
KL-Divergence (w.r.t. Table 3)	0.833
w/o Layer Norm	0.772
w/o label smoothing	0.746
w/o decoupled data flow	0.599
w/o balanced train set	0.568

486 **7 DISCUSSION**

488 We introduce CAMA to address the challenge of strategic data acquisition under budget constraints.
 489 Our experiments consistently demonstrate that imputation-based AFs provide a robust and effective
 490 solution. In the following, we discuss the key implications. The ability of oracles to yield gains
 491 exceeding that of a model using post-acquisition data for all samples (Figure 3 (b)), suggests that
 492 an underlying predictive model can achieve better global performance with a strategic curation of
 493 samples, rather than applying all modalities across the cohort. This likely occurs because additional
 494 modalities may introduce variance, redundancy, or conflicting information that imperfect models
 495 cannot optimally reconcile. The oracles circumvent this by selecting only additional modalities
 496 beneficial to the global metric. To our surprise, the imputation-based KL-Divergence AF can
 497 slightly outperform the corresponding upper-bound heuristic (Table 5). Conversely, the substantial
 498 performance gap between the rank-change heuristic and its imputation-based counterpart suggests
 499 that global, rank-based metrics may be particularly vulnerable to imputation noise. While the
 500 KL-Divergence AF demonstrated strong performance, not all imputation-based AFs consistently
 501 outperformed simpler strategies across all datasets or endpoints (Sections H and I). This indicates that
 502 optimal CAMA AFs can be context-dependent and that effectiveness hinges on how imputations are
 503 leveraged rather than on imputation quality alone. Regarding the impact of imputation quality, it is
 504 important to note that we impute latent embeddings optimized for the discriminative task rather than
 505 raw data. Consequently, standard generative metrics (like Fréchet inception distance (FID)) are not
 506 applicable for comparing imputation quality across different generative models since every generative
 507 model influences the encoders latent spaces indirectly. While we observe that utilizing stronger
 508 generative models, *e.g.*, DDPMs, results in higher acquisition performance compared to weaker
 509 models, *e.g.*, VAEs, our findings indicate that the generative imputation quality is not the only factor.
 510 As detailed in Table 7, the coherence of the overall architecture design, *i.e.*, ensuring the classifier
 511 is robust to the distribution of imputed latents, is equally critical for effective acquisition. We show
 512 CAMAs robustness to imputation errors since f_{imp} models a distribution of plausible outcomes rather
 513 than aiming for a single reconstruction. By averaging the expected impact across this distribution, the
 514 acquisition decision becomes less sensitive to uncertainty. Additionally, the primary KL-Divergence
 515 AF is resilient to noise, as it prioritizes samples expected to cause a large predictive shift, effectively
 516 ignoring minor imputation errors. Taken together, CAMA is not only practical for constrained
 517 settings, but also reveals insights into post-acquisition behavior. The successful KL-Divergence
 518 strategy and the surprising oracle performance underscore that the value of an additional modality
 519 is not absolute but highly contextual. The most effective AFs are not those that simply predict an
 520 outcome, but estimate the magnitude of the predictive shift.

521 **8 CONCLUSION AND FUTURE WORK**

522 We introduce CAMA, a novel setting addressing the real-world challenge of optimizing global
 523 discriminative performance through strategic test-time acquisition of an additional modality under
 524 resource constraints. Our evaluation across multiple multimodal datasets shows that imputation-based
 525 AFs can effectively guide resource allocation under cohort-level constraints. The generally consistent
 526 relative ordering of AFs across diverse datasets and the low variance in overall results lend confidence
 527 to the robustness of our core findings. In settings such as healthcare, strategic allocation of costly or
 528 invasive diagnostic procedures is essential, and our approach offers a promising direction for these
 529 applications. Future work includes extending CAMA to multi-class problems or regression tasks,
 530 exploring additional imputation techniques, directly optimizing cohort-level metrics, and dynamically
 531 selecting which modality to acquire instead of pre-selecting one.

532 **REFERENCES**

533 Umang Aggarwal, Adrian Popescu, and Céline Hudelot. Active Learning for Imbalanced Datasets. In
 534 *IEEE Winter Conference on Applications of Computer Vision, WACV 2020, Snowmass Village, CO,*
 535 *USA, March 1-5, 2020*, pp. 1417–1426. IEEE, 2020. doi: 10.1109/WACV45572.2020.9093475.

536 Vedang Asgaonkar, Aditya Jain, and Abir De. Generator Assisted Mixture of Experts for Feature
 537 Acquisition in Batch. In Michael J. Wooldridge, Jennifer G. Dy, and Sriraam Natarajan (eds.),
 538 *Thirty-Eighth AAAI Conference on Artificial Intelligence, AAAI 2024, Thirty-Sixth Conference on*

540 *Innovative Applications of Artificial Intelligence, IAAI 2024, Fourteenth Symposium on Educational*
 541 *Advances in Artificial Intelligence, EAAI 2014, February 20-27, 2024, Vancouver, Canada, pp.*
 542 10927–10934. AAAI Press, 2024. doi: 10.1609/AAAI.V38I10.28967.

543

544 Jordan T. Ash, Chicheng Zhang, Akshay Krishnamurthy, John Langford, and Alekh Agarwal. Deep
 545 Batch Active Learning by Diverse, Uncertain Gradient Lower Bounds. In *8th International*
 546 *Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.*
 547 OpenReview.net, 2020.

548 Nicolás Astorga, Tennison Liu, Nabeel Seedat, and Mihaela van der Schaar. Active Learning with
 549 LLMs for Partially Observed and Cost-Aware Scenarios. In Amir Globersons, Lester Mackey,
 550 Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.),
 551 *Advances in Neural Information Processing Systems 38: Annual Conference on Neural Information*
 552 *Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15, 2024.* 2024.

553

554 Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer Normalization, July 2016.
 555 arXiv:1607.06450 [stat].

556 Hilmy Baja, Michiel Kallenberg, and Ioannis N. Athanasiadis. To Measure or Not: A Cost-Sensitive,
 557 Selective Measuring Environment for Agricultural Management Decisions with Reinforcement
 558 Learning, January 2025. arXiv:2501.12823 [cs].

559

560 Gyanendra Das, Xavier Thomas, Anant Raj, and Vikram Gupta. MAViC: Multimodal Active Learning
 561 for Video Captioning, December 2022. arXiv:2212.11109 [cs].

562

563 Aaron Defazio, Xingyu Yang, Ahmed Khaled, Konstantin Mishchenko, Harsh Mehta, and Ashok
 564 Cutkosky. The Road Less Scheduled. In Amir Globersons, Lester Mackey, Danielle Belgrave,
 565 Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), *Advances in Neural*
 566 *Information Processing Systems 38: Annual Conference on Neural Information Processing Systems*
 567 *2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15, 2024.* 2024.

568 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of Deep
 569 Bidirectional Transformers for Language Understanding. In Jill Burstein, Christy Doran, and
 570 Thamar Solorio (eds.), *Proceedings of the 2019 Conference of the North American Chapter of*
 571 *the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT*
 572 *2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers)*, pp. 4171–4186.
 573 Association for Computational Linguistics, 2019. doi: 10.18653/V1/N19-1423.

574

575 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 576 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
 577 and Neil Houlsby. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale.
 578 *9th International Conference on Learning Representations, ICLR 2021*, 2021.

579

580 Jan Freyberg, Abhijit Guha Roy, Terry Spitz, Beverly Freeman, Mike Schaekermann, Patricia
 581 Strachan, Eva Schnider, Renee Wong, Dale R. Webster, Alan Karthikesalingam, Yun Liu, Krishnamurthy
 582 Dvijotham, and Umesh Telang. MINT: A wrapper to make multi-modal and multi-image
 583 AI models interactive, January 2024. arXiv:2401.12032 [cs].

584

585 Aritra Ghosh and Andrew S. Lan. DiFA: Differentiable Feature Acquisition. In Brian Williams,
 586 Yiling Chen, and Jennifer Neville (eds.), *Thirty-Seventh AAAI Conference on Artificial Intelligence,*
 587 *AAAI 2023, Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence, IAAI 2023,*
 588 *Thirteenth Symposium on Educational Advances in Artificial Intelligence, EAAI 2023, Washington,*
 589 *DC, USA, February 7-14, 2023*, pp. 7705–7713. AAAI Press, 2023. doi: 10.1609/AAAI.V37I6.
 25934.

590 Wenbo Gong, Sebastian Tschiatschek, Sebastian Nowozin, Richard E Turner, José Miguel Hernández-
 591 Lobato, and Cheng Zhang. Icebreaker: Element-wise Efficient Information Acquisition with
 592 a Bayesian Deep Latent Gaussian Model. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’
 593 Alché-Buc, E. Fox, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*,
 volume 32. Curran Associates, Inc., 2019.

594 Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
 595 Aaron C. Courville, and Yoshua Bengio. Generative Adversarial Nets. In Zoubin Ghahramani,
 596 Max Welling, Corinna Cortes, Neil D. Lawrence, and Kilian Q. Weinberger (eds.), *Advances in
 597 Neural Information Processing Systems 27: Annual Conference on Neural Information Processing
 598 Systems 2014, December 8-13 2014, Montreal, Quebec, Canada*, pp. 2672–2680, 2014.

599
 600 Jongmin Han and Seokho Kang. Active learning with missing values considering imputation
 601 uncertainty. *Knowledge-Based Systems*, 224:107079, July 2021. ISSN 09507051. doi: 10.1016/j.
 602 knosys.2021.107079.

603 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving Deep into Rectifiers: Surpassing
 604 Human-Level Performance on ImageNet Classification. In *2015 IEEE International Conference
 605 on Computer Vision, ICCV 2015, Santiago, Chile, December 7-13, 2015*, pp. 1026–1034. IEEE
 606 Computer Society, 2015. doi: 10.1109/ICCV.2015.123.

607
 608 Yifei He, Runxiang Cheng, Gargi Balasubramaniam, Yao-Hung Hubert Tsai, and Han Zhao. Efficient
 609 Modality Selection in Multimodal Learning. *Journal of Machine Learning Research*, 25(47):1–39,
 610 2024.

611 Irina Higgins, Loïc Matthey, Arka Pal, Christopher P. Burgess, Xavier Glorot, Matthew M. Botvinick,
 612 Shakir Mohamed, and Alexander Lerchner. beta-VAE: Learning Basic Visual Concepts with a
 613 Constrained Variational Framework. In *5th International Conference on Learning Representations,
 614 ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings*. OpenReview.net,
 615 2017.

616
 617 Geoffrey E. Hinton and Richard S. Zemel. Autoencoders, Minimum Description Length and
 618 Helmholtz Free Energy. In Jack D. Cowan, Gerald Tesauro, and Joshua Alspector (eds.), *Advances
 619 in Neural Information Processing Systems 6, [7th NIPS Conference, Denver, Colorado, USA,
 620 1993]*, pp. 3–10. Morgan Kaufmann, 1993.

621 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models. In Hugo
 622 Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.),
 623 *Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information
 624 Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual*, 2020.

625
 626 Arthur Hoarau, Benjamin Quost, Sébastien Destercke, and Willem Waegeman. Reducing
 627 Aleatoric and Epistemic Uncertainty through Multi-modal Data Acquisition, January 2025.
 628 arXiv:2501.18268 [cs].

629
 630 David Holzmüller, Viktor Zaverkin, Johannes Kästner, and Ingo Steinwart. A Framework and
 631 Benchmark for Deep Batch Active Learning for Regression. *J. Mach. Learn. Res.*, 24:164:1–
 632 164:81, 2023.

633 Yu Huang, Chenzhuang Du, Zihui Xue, Xuanyao Chen, Hang Zhao, and Longbo Huang. What
 634 Makes Multi-Modal Learning Better than Single (Provably). In Marc’Aurelio Ranzato, Alina
 635 Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), *Advances in
 636 Neural Information Processing Systems 34: Annual Conference on Neural Information Processing
 637 Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual*, pp. 10944–10956, 2021.

638
 639 Eeshaan Jain, Johann Wenckstern, Benedikt von Querfurth, and Charlotte Bunne. Test-Time View
 640 Selection for Multi-Modal Decision Making. In *ICLR 2025 Workshop on Machine Learning for
 641 Genomics Explorations*, 2025.

642 Jaromír Janisch, Tomáš Pevný, and Viliam Lisý. Classification with costly features as a sequential
 643 decision-making problem. *Machine Learning*, 109(8):1587–1615, August 2020. ISSN 0885-6125,
 644 1573-0565. doi: 10.1007/s10994-020-05874-8.

645
 646 Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. In Yoshua Bengio and
 647 Yann LeCun (eds.), *2nd International Conference on Learning Representations, ICLR 2014, Banff,
 AB, Canada, April 14-16, 2014, Conference Track Proceedings*, 2014.

648 Andreas Kirsch, Joost van Amersfoort, and Yarin Gal. BatchBALD: Efficient and Diverse Batch
 649 Acquisition for Deep Bayesian Active Learning. In Hanna M. Wallach, Hugo Larochelle, Alina
 650 Beygelzimer, Florence d'Alché Buc, Emily B. Fox, and Roman Garnett (eds.), *Advances in Neural*
 651 *Information Processing Systems 32: Annual Conference on Neural Information Processing Systems*
 652 *2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada*, pp. 7024–7035, 2019.

653 Henrik von Kleist, Alireza Zamanian, Ilya Shpitser, and Narges Ahmadi. Evaluation of Active Feature
 654 Acquisition Methods for Time-varying Feature Settings. *Journal of Machine Learning Research*,
 655 26(60):1–84, 2025.

656 Jannik Kossen, Cătălina Cangea, Eszter Vértes, Andrew Jaegle, Viorica Patraucean, Ira Ktena,
 657 Nenad Tomasev, and Danielle Belgrave. Active Acquisition for Multimodal Temporal Data: A
 658 Challenging Decision-Making Task. *Transactions on Machine Learning Research*, 2023.

659 Sarah Lewis, Tatiana Matejovicova, Yingzhen Li, Angus Lamb, Yordan Zaykov, Miltiadis Allamanis,
 660 and Cheng Zhang. Accurate Imputation and Efficient Data Acquisition with Transformer-based
 661 VAEs. In *Advances in Neural Information Processing Systems 35: Annual Conference on Neural*
 662 *Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021*, 2021.

663 Dongyuan Li, Zhen Wang, Yankai Chen, Renhe Jiang, Weiping Ding, and Manabu Okumura. A
 664 Survey on Deep Active Learning: Recent Advances and New Frontiers. *IEEE Trans. Neural*
 665 *Networks Learn. Syst.*, 36(4):5879–5899, 2025. doi: 10.1109/TNNLS.2024.3396463.

666 Yang Li and Junier Oliva. Active Feature Acquisition with Generative Surrogate Models. In Marina
 667 Meila and Tong Zhang (eds.), *Proceedings of the 38th International Conference on Machine*
 668 *Learning, ICML 2021, 18-24 July 2021, Virtual Event*, volume 139 of *Proceedings of Machine*
 669 *Learning Research*, pp. 6450–6459. PMLR, 2021.

670 Yang Li and Junier Oliva. Distribution Guided Active Feature Acquisition, October 2024.
 671 arXiv:2410.03915 [cs].

672 Yang Li and Junier Oliva. Towards Cost Sensitive Decision Making. In Yingzhen Li, Stephan Mandt,
 673 Shipra Agrawal, and Mohammad Emamiyan Khan (eds.), *International Conference on Artificial*
 674 *Intelligence and Statistics, AISTATS 2025, Mai Khao, Thailand, 3-5 May 2025*, volume 258 of
 675 *Proceedings of Machine Learning Research*, pp. 3601–3609. PMLR, 2025.

676 Quan Long. Multimodal information gain in Bayesian design of experiments. *Comput. Stat.*, 37(2):
 677 865–885, 2022. doi: 10.1007/S00180-021-01145-9.

678 Chao Ma, Sebastian Tschiatschek, Konstantina Palla, José Miguel Hernández-Lobato, Sebastian
 679 Nowozin, and Cheng Zhang. EDDI: Efficient Dynamic Discovery of High-Value Information
 680 with Partial VAE. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), *Proceedings of the*
 681 *36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach,*
 682 *California, USA*, volume 97 of *Proceedings of Machine Learning Research*, pp. 4234–4243. PMLR,
 683 2019.

684 Sriraam Natarajan, Srijita Das, Nandini Ramanan, Gautam Kunapuli, and Predrag Radivojac. On
 685 Whom Should I Perform this Lab Test Next? An Active Feature Elicitation Approach. In *Proceed-
 686 ings of the Twenty-Seventh International Joint Conference on Artificial Intelligence*, pp. 3498–3505,
 687 Stockholm, Sweden, July 2018. International Joint Conferences on Artificial Intelligence Organi-
 688 zation. ISBN 978-0-9992411-2-7. doi: 10.24963/ijcai.2018/486.

689 Alexander Luke Ian Norcliffe, Changhee Lee, Fergus Imrie, Mihaela van der Schaar, and Pietro Lio.
 690 Information Bottleneck for Active Feature Acquisition, 2025.

691 William Peebles and Saining Xie. Scalable Diffusion Models with Transformers. In *IEEE/CVF*
 692 *International Conference on Computer Vision, ICCV 2023, Paris, France, October 1-6, 2023*, pp.
 693 4172–4182. IEEE, 2023.

694 Ignacio Peis, Chao Ma, and José Miguel Hernández-Lobato. Missing Data Imputation and Acquisition
 695 with Deep Hierarchical Models and Hamiltonian Monte Carlo. In Sanmi Koyejo, S. Mohamed,
 696 A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural Information*
 697 *Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022,*
 698 *NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022*, 2022.

702 Arman Rahbar, Linus Aronsson, and Morteza Haghir Chehreghani. A Survey on Active Feature
 703 Acquisition Strategies, February 2025. arXiv:2502.11067 [cs].
 704

705 Anant Raj and Francis R. Bach. Convergence of Uncertainty Sampling for Active Learning. In
 706 Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato
 707 (eds.), *International Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore,
 708 Maryland, USA*, volume 162 of *Proceedings of Machine Learning Research*, pp. 18310–18331.
 709 PMLR, 2022.

710 Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Brij B. Gupta, Xiaojiang
 711 Chen, and Xin Wang. A Survey of Deep Active Learning. *ACM Computing Surveys*, 54(9):1–40,
 712 December 2022. ISSN 0360-0300, 1557-7341. doi: 10.1145/3472291.

713 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 714 Resolution Image Synthesis with Latent Diffusion Models. In *IEEE/CVF Conference on Computer
 715 Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022*, pp.
 716 10674–10685. IEEE, 2022. doi: 10.1109/CVPR52688.2022.01042.

717 Ognjen Rudovic, Meiru Zhang, Björn W. Schuller, and Rosalind W. Picard. Multi-modal Active
 718 Learning From Human Data: A Deep Reinforcement Learning Approach. In Wen Gao, Helen
 719 Mei-Ling Meng, Matthew Turk, Susan R. Fussell, Björn W. Schuller, Yale Song, and Kai Yu (eds.),
 720 *International Conference on Multimodal Interaction, ICMI 2019, Suzhou, China, October 14-18,
 721 2019*, pp. 6–15. ACM, 2019. doi: 10.1145/3340555.3353742.

722 Adriel Saporta, Aahlad Puli, Mark Goldstein, and Rajesh Ranganath. Contrasting with Symile:
 723 Simple Model-Agnostic Representation Learning for Unlimited Modalities. In *Advances in Neural
 724 Information Processing Systems*, 2024.

725 Burr Settles. *Active Learning*. Synthesis Lectures on Artificial Intelligence and Machine Learning.
 726 Springer International Publishing, Cham, 2012. ISBN 978-3-031-00432-2 978-3-031-01560-1.
 727 doi: 10.1007/978-3-031-01560-1.

728 L. S. Shapley. A Value for n-Person Games. In Harold William Kuhn and Albert William Tucker (eds.),
 729 *Contributions to the Theory of Games (AM-28), Volume II*, pp. 307–318. Princeton University
 730 Press, December 1953. ISBN 978-1-4008-8197-0. doi: 10.1515/9781400881970-018.

731 Meng Shen, Yizheng Huang, Jianxiong Yin, Heqing Zou, Deepu Rajan, and Simon See. Towards Bal-
 732 anced Active Learning for Multimodal Classification. In *Proceedings of the 31st ACM International
 733 Conference on Multimedia*, pp. 3434–3445, October 2023. doi: 10.1145/3581783.3612463.

734 Hajin Shim, Sung Ju Hwang, and Eunho Yang. Joint Active Feature Acquisition and Classification
 735 with Variable-Size Set Encoding. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
 736 Bianchi, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 31.
 737 Curran Associates, Inc., 2018.

738 Karan Singhal, Tao Tu, Juraj Gottweis, Rory Sayres, Ellery Wulczyn, Mohamed Amin, Le Hou, Kevin
 739 Clark, Stephen R. Pfahl, Heather Cole-Lewis, Darlene Neal, Qazi Mamunur Rashid, Mike Schaek-
 740 ermann, Amy Wang, Dev Dash, Jonathan H. Chen, Nigam H. Shah, Sami Lachgar, Philip Andrew
 741 Mansfield, Sushant Prakash, Bradley Green, Ewa Dominowska, Blaise Agüera Y Arcas, Nenad
 742 Tomašev, Yun Liu, Renee Wong, Christopher Semturs, S. Sara Mahdavi, Joelle K. Barral, Dale R.
 743 Webster, Greg S. Corrado, Yossi Matias, Shekoofeh Azizi, Alan Karthikesalingam, and Vivek
 744 Natarajan. Toward expert-level medical question answering with large language models. *Nature
 745 Medicine*, January 2025. ISSN 1078-8956, 1546-170X. doi: 10.1038/s41591-024-03423-7.

746 Luis R. Soenksen, Yu Ma, Cynthia Zeng, Leonard Boussioux, Kimberly Villalobos Carballo,
 747 Liangyuan Na, Holly M. Wiberg, Michael L. Li, Ignacio Fuentes, and Dimitris Bertsimas. In-
 748 tegrated multimodal artificial intelligence framework for healthcare applications. *npj Digital
 749 Medicine*, 5(1):149, September 2022a. ISSN 2398-6352. doi: 10.1038/s41746-022-00689-4.

750 Luis R Soenksen, Yu Ma, Cynthia Zeng, Leonard David Jean Boussioux, Kimberly Villalobos Car-
 751 ballo, Liangyuan Na, Holly Wiberg, Michael Li, Ignacio Fuentes, and Dimitris Bertsimas. Code
 752 for generating the HAIM multimodal dataset of MIMIC-IV clinical data and x-rays, 2022b.

756 Cathie Sudlow, John Gallacher, Naomi Allen, Valerie Beral, Paul Burton, John Danesh, Paul Downey,
 757 Paul Elliott, Jane Green, Martin Landray, Bette Liu, Paul Matthews, Giok Ong, Jill Pell, Alan
 758 Silman, Alan Young, Tim Sprosen, Tim Peakman, and Rory Collins. UK Biobank: An Open
 759 Access Resource for Identifying the Causes of a Wide Range of Complex Diseases of Middle and
 760 Old Age. *PLOS Medicine*, 12(3):e1001779, March 2015. ISSN 1549-1676. doi: 10.1371/journal.
 761 pmed.1001779.

762 Thomas M. Sutter, Imant Daunhawer, and Julia E. Vogt. Generalized Multimodal ELBO. In *9th*
 763 *International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May*
 764 *3-7, 2021*. OpenReview.net, 2021.

765 Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking
 766 the Inception Architecture for Computer Vision. In *Proceedings of the IEEE Conference on*
 767 *Computer Vision and Pattern Recognition (CVPR)*, June 2016.

768 Toan Tran, Thanh-Toan Do, Ian Reid, and Gustavo Carneiro. Bayesian Generative Active Deep
 769 Learning. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), *Proceedings of the 36th*
 770 *International Conference on Machine Learning*, volume 97 of *Proceedings of Machine Learning*
 771 *Research*, pp. 6295–6304. PMLR, June 2019.

772 Michael Valancius, Max Lennon, and Junier Oliva. Acquisition Conditioned Oracle for Nongreedy
 773 Active Feature Acquisition. In *Forty-first International Conference on Machine Learning, ICML*
 774 *2024, Vienna, Austria, July 21-27, 2024*. OpenReview.net, 2024.

775 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
 776 Kaiser, and Illia Polosukhin. Attention is All you Need. In Isabelle Guyon, Ulrike von Luxburg,
 777 Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (eds.),
 778 *Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information*
 779 *Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA*, pp. 5998–6008, 2017.

780 Gerome Vivar, Kamilia Mullakaeva, Andreas Zwergal, Nassir Navab, and Seyed-Ahmad Ahmadi.
 781 Peri-Diagnostic Decision Support Through Cost-Efficient Feature Acquisition at Test-Time. In
 782 Anne L. Martel, Purang Abolmaesumi, Danail Stoyanov, Diana Mateus, Maria A. Zuluaga, S. Kevin
 783 Zhou, Daniel Racoceanu, and Leo Joskowicz (eds.), *Medical Image Computing and Computer*
 784 *Assisted Intervention - MICCAI 2020*, volume 12262, pp. 572–581. Springer International Publishing,
 785 Cham, 2020. ISBN 978-3-030-59712-2 978-3-030-59713-9. doi: 10.1007/978-3-030-59713-9_55.
 786 Series Title: *Lecture Notes in Computer Science*.

787 Yuanzhi Wang, Yong Li, and Zhen Cui. Incomplete Multimodality-Diffused Emotion Recognition.
 788 In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine
 789 (eds.), *Advances in Neural Information Processing Systems 36: Annual Conference on Neural*
 790 *Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,*
 791 *2023*, 2023.

792 Daniel Wesego and Pedram Rooshenas. Score-Based Multimodal Autoencoder. *Transactions on*
 793 *Machine Learning Research*, 2024. ISSN 2835-8856.

794 Renjie Wu, Hu Wang, Hsiang-Ting Chen, and Gustavo Carneiro. Deep Multimodal Learning with
 795 Missing Modality: A Survey, October 2024. arXiv:2409.07825 [cs].

796 Sisi Yang, Yuanyuan Zhang, Ziliang Ye, Yanjun Zhang, Xiaoqin Gan, Yu Huang, Hao Xiang, Yiting
 797 Wu, Yiwei Zhang, and Xianhui Qin. Plasma proteomics for risk prediction and identification of
 798 novel drug targets in systemic lupus erythematosus. *Rheumatology*, 64(6):4032–4040, June 2025.
 799 ISSN 1462-0324, 1462-0332. doi: 10.1093/rheumatology/keaf055.

800 Amir Zadeh, Paul Pu Liang, Soujanya Poria, E. Cambria, and Louis-Philippe Morency. Multimodal
 801 Language Analysis in the Wild: CMU-MOSEI Dataset and Interpretable Dynamic Fusion Graph.
 802 In *Annual Meeting of the Association for Computational Linguistics*, 2018.

803 Sara Zannone, Jose Miguel Hernandez Lobato, Cheng Zhang, and Konstantina Palla. ODIN: Optimal
 804 Discovery of High-value INformation Using Model-based Deep Reinforcement Learning. In
 805 *Real-world Sequential Decision Making Workshop, ICML*, June 2019.

810 Jifan Zhang, Shuai Shao, Saurabh Verma, and Robert D. Nowak. Algorithm Selection for Deep
811 Active Learning with Imbalanced Datasets. In Alice Oh, Tristan Naumann, Amir Globerson, Kate
812 Saenko, Moritz Hardt, and Sergey Levine (eds.), *Advances in Neural Information Processing
813 Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023,
814 New Orleans, LA, USA, December 10 - 16, 2023*, 2023.

815 Xulu Zhang, Wengyu Zhang, Xiaoyong Wei, Jinlin Wu, Zhaoxiang Zhang, Zhen Lei, and Qing Li.
816 Generative active learning for image synthesis personalization. In *ACM Multimedia 2024*, 2024.

817 818 Jia-Jie Zhu and José Bento. Generative Adversarial Active Learning, November 2017.
819 arXiv:1702.07956 [cs].

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864 **A BROADER IMPACT AND ETHICS**
865

866 The CAMA setting introduced in this paper offers potential for positive broader impacts, primarily by
867 enabling more efficient use of resources in multimodal machine learning. In resource-constrained
868 fields like healthcare, this could facilitate access to more robust and comprehensive model perfor-
869 mance by strategically guiding the acquisition of costly or limited additional data modalities. This
870 could translate to improved diagnostic accuracy where such data is critical but not uniformly available
871 for all samples in a cohort. However, the deployment of CAMA, particularly its core function of
872 ranking and prioritizing samples for modality acquisition, necessitates careful ethical considera-
873 tion. This raises concerns about equity and fairness, especially if the downstream application impacts
874 critical decisions. A significant risk is the potential to introduce biases, including racial, socioeco-
875 nomic, or other demographic biases. Therefore, the development and application of CAMA must be
876 approached with a strong commitment to ethical principles.

877 **B REPRODUCIBILITY**
878

879 To ensure the reproducibility of our results, we provide the following details:

880 **Code** The complete source code used for all experiments will be made publicly available on GitHub
881 upon publication. The repository will include scripts for model training and evaluation.

882 **Hyperparameters** All hyperparameters, including learning rates, batch sizes, and model-specific
883 parameters, are explicitly listed in Section D. Additionally, we provide the complete sweep configura-
884 tions used for hyperparameter tuning to allow for full replication of our optimization process.

885 **Datasets** Three of the four datasets used in our evaluation are publicly available. For more details
886 see Section 5 and Section E.

887 **Implementation Details** We provide a full section in Section D and a dedicated paragraph in
888 Section 5 describing implementation details that we found to be crucial.

889 **C DETAILS ABOUT ACQUISITION FUNCTION STRATEGIES**
890891 **C.1 AUROC AND AUPRC**
892

893 To derive the proposed acquisition strategies, we briefly explain the metrics used in the following
894 paragraphs.

895 **AUROC** The Area Under the Receiver Operating Characteristic (AUROC) measures the model’s
896 ability to discriminate between positive and negative classes and is defined as

$$901 \text{AUROC}(\mathbf{y}, \mathbf{s}) = \frac{1}{N_+ N_-} \sum_{i:y_i=1} \sum_{j:y_j=0} \left(\mathbb{I}(s_i > s_j) + \frac{1}{2} \mathbb{I}(s_i = s_j) \right) \quad (9)$$

902 where $N_+ = |\{i \mid y_i = 1\}|$ and $N_- = |\{j \mid y_j = 0\}|$.

903 **AUPRC** The Area Under the Precision-Recall Curve (AUPRC) summarizes the trade-off between
904 precision (P_t) and recall (R_t) across different decision thresholds t and is defined as

$$913 \text{AUPRC}(\mathbf{y}, \mathbf{p}) = \sum_{k=1}^{N'} (R_k - R_{k-1}) P_k \quad (10)$$

914 where points (R_k, P_k) are ordered by threshold from the PR curve, N' is the number of unique
915 thresholds, and $\mathbf{p} = \sigma(\mathbf{s})$.

918 C.2 ORACLE ACQUISITION STRATEGIES: EXACT GAIN CALCULATION
919

920 Oracle acquisition strategies serve as theoretical upper limits for the performance of greedy acquisition
921 approaches. They operate under the ideal assumption that the true labels y_i and the outcome scores
922 s_i^{acquired} are known for all samples $i \in \{1, \dots, N\}$. While not implementable in practice, these oracle
923 strategies provide benchmarks by selecting samples based on their exact marginal contribution to the
924 global evaluation metric. The general principle is to iteratively select β samples. At each step, among
925 the samples for which the additional modality has not yet been acquired, the oracle picks the one that
926 provides the largest true immediate gain to the chosen global metric.

927 **AUROC Oracle** The AUROC oracle strategy aims to maximize the cohort’s AUROC by identifying,
928 at each step, the sample i that yields the largest immediate increase in this metric if its additional
929 modality were acquired (changing its score from s_i^{avail} to s_i^{acquired}), *i.e.*, a greedy selection. This
930 prospective increase is quantified by the marginal gain g_i^{AUROC} . The components of this gain,
931 $g_i^{\text{AUROC}}(y_i = 1)$ (for positive samples) and $g_i^{\text{AUROC}}(y_i = 0)$ (for negative samples), reflect the net
932 change in favorable pairwise score comparisons relative to samples of the other class. Recall the
933 definition of AUROC from Equation (9):

$$936 \quad 937 \quad \text{AUROC}(\mathbf{y}, \mathbf{s}) = \frac{1}{N_+ N_-} \sum_{i:y_i=1} \sum_{j:y_j=0} \left(\mathbb{I}(s_i > s_j) + \frac{1}{2} \mathbb{I}(s_i = s_j) \right).$$

939 The total marginal gain for sample i , representing the exact change in the cohort’s AUROC value, is
940 then, by considering positive and negative samples and neglecting the normalization factor:

$$944 \quad 945 \quad g_i^{\text{AUROC}}(y_i = 1) = \sum_{j:y_j=0} \left(\mathbb{I}(s_i^{\text{acquired}} > s_j^{\text{avail}}) - \mathbb{I}(s_i^{\text{avail}} > s_j^{\text{avail}}) \right. \\ 946 \quad 947 \quad \left. + \frac{1}{2} [\mathbb{I}(s_i^{\text{acquired}} = s_j^{\text{avail}}) - \mathbb{I}(s_i^{\text{avail}} = s_j^{\text{avail}})] \right) \quad (11)$$

$$951 \quad 952 \quad g_i^{\text{AUROC}}(y_i = 0) = \sum_{j:y_j=1} \left(\mathbb{I}(s_j^{\text{avail}} > s_i^{\text{acquired}}) - \mathbb{I}(s_j^{\text{avail}} > s_i^{\text{avail}}) \right. \\ 953 \quad 954 \quad \left. + \frac{1}{2} [\mathbb{I}(s_j^{\text{avail}} = s_i^{\text{acquired}}) - \mathbb{I}(s_j^{\text{avail}} = s_i^{\text{avail}})] \right) \quad (12)$$

$$957 \quad 958 \quad g_i^{\text{AUROC}} = \frac{1}{N_+ N_-} (g_i^{\text{AUROC}}(y_i = 1) \cdot \mathbb{I}(y_i = 1) + g_i^{\text{AUROC}}(y_i = 0) \cdot \mathbb{I}(y_i = 0)) \quad (13)$$

960 **AUPRC Oracle** The AUPRC oracle strategy seeks to maximize the cohort’s AUPRC. It operates
961 by identifying, at each step, the sample i which, if its additional modality were acquired (changing
962 its score from s_i^{avail} to s_i^{acquired}), would yield the largest immediate increase in the global AUPRC
963 value, *i.e.*, a greedy selection. This marginal gain, g_i^{AUPRC} , represents the exact change in the cohort’s
964 AUPRC. To calculate the marginal gain for a sample i , we compute the change in the cohort’s AUPRC.
965 Let $\mathbf{s}^{\text{current}}$ be the vector of scores for the whole cohort. We define a new vector, $\mathbf{s}^{\text{updated}}$, which is
966 identical to $\mathbf{s}^{\text{current}}$ except that for sample i , the score is changed from s_i^{avail} to s_i^{acquired} . The marginal
967 gain is then:

$$969 \quad 970 \quad g_i^{\text{AUPRC}} = \text{AUPRC}(\mathbf{y}, \mathbf{p}^{\text{updated}}) - \text{AUPRC}(\mathbf{y}, \mathbf{p}^{\text{current}}) \quad (14)$$

971 where $\mathbf{p}^{\text{current}} = \sigma(\mathbf{s}^{\text{current}})$ and $\mathbf{p}^{\text{updated}} = \sigma(\mathbf{s}^{\text{updated}})$.

972 C.3 UPPER-BOUND HEURISTIC STRATEGIES
973

974 The preceding oracle strategies make the assumption of perfect foresight into both the true labels y_i
975 and the exact outcome scores s_i^{acquired} . We now introduce a distinct class of upper-bound heuristic
976 strategies. These strategies still presume access to the true future scores s_i^{acquired} for any sample i if its
977 additional modality were acquired. However, the following upper-bound heuristics are label-agnostic,
978 *i.e.*, the true label y_i of a candidate sample is not used when determining its priority for acquisition.
979 Consequently, the selection principle for these strategies must rely on how the known change from
980 an initial score s_i^{avail} to the future score s_i^{acquired} is expected to influence the global evaluation metric,
981 without direct reference to the sample’s ground-truth label.

982
983 **Maximum True Uncertainty Reduction** The uncertainty reduction strategy prioritizes acquiring
984 the additional modality for samples where doing so is expected to yield the largest decrease in
985 predictive uncertainty. For each sample i , uncertainty is quantified using the binary entropy $\mathcal{H}(p_i)$ of
986 its predicted probability p_i for the positive class, defined as:

$$988 \mathcal{H}(p_i) = -p_i \log_2 p_i - (1 - p_i) \log_2(1 - p_i), \quad (15)$$

989
990 The acquisition strategy operates with knowledge of the initial probability $p_i^{\text{avail}} = \sigma(s_i^{\text{avail}})$ derived
991 from the available modalities, and crucially, the true future probability $p_i^{\text{acquired}} = \sigma(s_i^{\text{acquired}})$ that
992 would be obtained if the additional modality were acquired (where s_i^{acquired} is the oracle score). The
993 acquisition score g_i^{UR} for sample i is then the exact reduction in entropy:

$$995 \quad 996 \quad 997 \quad 998 \quad 999 \quad g_i^{\text{UR}} = \mathcal{H}(p_i^{\text{avail}}) - \mathcal{H}(p_i^{\text{acquired}}). \quad (16)$$

1000 Samples with higher g_i^{UR} values, indicating a greater expected reduction in uncertainty, are prioritized
1001 for modality acquisition.

1002 **Maximum True Rank Change** This rank change strategy prioritizes samples whose relative
1003 standing within the cohort, based on predicted probability of belonging to the positive class, would
1004 change most significantly if the additional modality were acquired. For each sample i , we consider
1005 its rank $R(p_i)$ when all N samples in the cohort are ordered by their respective probabilities p_i . The
1006 acquisition score g_i^{RC} for sample i is defined as the absolute magnitude of this change in rank:

$$1007 \quad g_i^{\text{RC}} = |R(p_i^{\text{acquired}}) - R(p_i^{\text{avail}})|. \quad (17)$$

1008 Samples exhibiting a higher g_i^{RC} are prioritized for modality acquisition, since they are expected to
1009 cause the largest shift in the sample’s rank-ordered position relative to its peers.

1010 **KL-Divergence** The KL-Divergence acquisition strategy aims to identify samples for which acquiring
1011 the additional modality would lead to the largest change in the predicted probability distribution.
1012 Specifically, it quantifies the divergence from the predicted probability distribution based on the true
1013 future score, $P_i^{\text{acquired}} \sim \text{Bernoulli}(p_i^{\text{acquired}})$, back to the initial distribution based on baseline data,
1014 $P_i^{\text{avail}} \sim \text{Bernoulli}(p_i^{\text{avail}})$. This is measured by the KL-Divergence $D_{\text{KL}}(P_i^{\text{avail}} \parallel P_i^{\text{acquired}})$ and can be
1015 defined as follows for an acquisition function:

$$1019 \quad g_i^{\text{KLD}} = D_{\text{KL}} \left(P_i^{\text{avail}} \parallel P_i^{\text{acquired}} \right) \quad (18)$$

$$1020 \quad 1021 \quad 1022 \quad 1023 \quad = p_i^{\text{avail}} \log_2 \frac{p_i^{\text{avail}}}{p_i^{\text{acquired}}} + (1 - p_i^{\text{avail}}) \log_2 \frac{1 - p_i^{\text{avail}}}{1 - p_i^{\text{acquired}}} \quad (19)$$

1024 Samples with a higher g_i^{KLD} are prioritized, as this indicates a greater discrepancy between the
1025 prediction based on available data and the prediction that would be made with the additional modality.

1026 C.4 BASELINE INFORMATION STRATEGIES
1027

1028 Shifting from approaches that leverage oracle knowledge of future scores (s_i^{acquired}), the present section
1029 details methods serving as practical, label-agnostic baselines. They make acquisition decisions based
1030 exclusively on information derived from the initially available modality (s_i^{avail}). A random acquisition
1031 strategy serves as a fundamental baseline.

1032
1033 **Maximum Baseline Uncertainty** The Maximum Baseline Uncertainty strategy is a baseline that
1034 prioritizes samples for which the prediction based on the initially available modality is most uncertain.
1035 The acquisition score for sample i is directly the binary entropy $\mathcal{H}(p_i^{\text{avail}})$, as defined in Equation (15):
1036

$$1037 g_i^{\text{UU}} = \mathcal{H}(p_i^{\text{avail}}). \quad (20)$$

1039 Samples with a higher g_i^{UU} , *i.e.*, p_i^{avail} closer to 0.5, since the entropy $H(p_i^{\text{avail}})$ is symmetric around
1040 $p_i^{\text{avail}} = 0.5$, are selected first.
1041

1042 **Maximum Baseline Probability** This approach prioritizes acquiring the additional modality for
1043 samples that the baseline model already predicts as belonging to the positive class with high con-
1044 fidence. The acquisition score g_i^{UP} for sample i is simply its initial probability p_i^{avail} based on the
1045 available modality:
1046

$$1047 g_i^{\text{UP}} = p_i^{\text{avail}}, \quad (21)$$

1049 Samples with a higher g_i^{UP} are prioritized for acquisition.
1050

1051 C.5 IMPUTATION-BASED STRATEGIES
1052

1053 Having explored strategies that assume perfect knowledge of the true labels y_i and/or future scores
1054 s_i^{acquired} , and simpler baselines relying only on current information s_i^{avail} , we now introduce methods
1055 aiming to bridge the gap by offering a practical and label-agnostic pathway to modality acquisition.
1056 They operate by utilizing an imputation model, f_{imp} , to generate a set of K plausible future scores,
1057 denoted $\{s_{i,k}^{\text{imp}}\}_{k=1}^K$, conditioned on the initially available data s_i^{avail} . The core principle of these
1058 strategies is to then derive acquisition scores from statistics of this imputed score distribution, with
1059 the goal of emulating the decision-making process, but without requiring true future knowledge at
1060 test time.
1061

1062 **Maximum Expected Probability** The Maximum Expected Probability strategy prioritizes samples
1063 which have the highest average probability of belonging to the positive class after modality acquisition.
1064 It relies on the set of K imputed future probabilities $\{p_{i,k}^{\text{imp}}\}_{k=1}^K$, where each $p_{i,k}^{\text{imp}} = \sigma(s_{i,k}^{\text{imp}})$ is derived
1065 from an imputed future score $s_{i,k}^{\text{imp}}$. The acquisition score g_i^{eP} for sample i is the mean of these imputed
1066 probabilities:
1067

$$1069 g_i^{\text{eP}} = \frac{1}{K} \sum_{k=1}^K p_{i,k}^{\text{imp}}. \quad (22)$$

1072 Samples with a higher g_i^{eP} are selected, representing instances where the imputation model, on
1073 average, predicts a high likelihood of being positive if the additional modality were acquired.
1074

1075 **Maximum Expected Uncertainty Reduction** The Maximum Expected Uncertainty Reduction
1076 strategy aims to select samples for which the acquisition of the additional modality is anticipated to
1077 yield the largest average decrease in predictive uncertainty (Equation (15)). This strategy considers
1078 the initial entropy $\mathcal{H}(p_i^{\text{avail}})$, and the distribution of entropies $\{\mathcal{H}(p_{i,k}^{\text{imp}})\}_{k=1}^K$. The acquisition score
1079 g_i^{eUR} is the difference between the initial entropy and the mean of the imputed future entropies:
1080

1080

1081

1082

1083

1084

1085

1086

$$g_i^{\text{eUR}} = \mathcal{H}(p_i^{\text{avail}}) - \frac{1}{K} \sum_{k=1}^K \mathcal{H}(p_{i,k}^{\text{imp}}). \quad (23)$$

Samples with higher g_i^{eUR} are prioritized, indicating a greater expected clarification of the prediction upon acquiring the new modality.

Expected Rank Change The Maximum Expected Rank Change strategy prioritizes samples for which the acquisition of the additional modality is anticipated to cause the largest change in their rank, relative to the initial ranking based on p_i^{avail} . It aims to mirror the "Maximum True Rank Change" strategy by using imputed future probabilities. Let $R(p_i^{\text{avail}})$ denote the rank of sample i when all N samples in the cohort are ordered by their initial probabilities p_j^{avail} (for $j = 1, \dots, N$). For each of the K imputed future probabilities $p_{i,k}^{\text{imp}}$ for sample i , let $R(p_{i,k}^{\text{imp}})$ denote the rank of sample i if its probability were $p_{i,k}^{\text{imp}}$ while all other samples $j \neq i$ retain their initial probabilities p_j^{avail} . The acquisition score g_i^{eRC} is then the mean of the absolute differences between these imputed future ranks and the initial rank:

$$g_i^{\text{eRC}} = \frac{1}{K} \sum_{k=1}^K |R(p_{i,k}^{\text{imp}}) - R(p_i^{\text{avail}})|. \quad (24)$$

Samples with a higher g_i^{eRC} are selected, as they are expected to experience the largest shift in their rank-ordered position relative to other samples in the cohort upon modality acquisition.

Expected KL-Divergence The Expected KL-Divergence strategy selects samples where the initial probability distribution is expected to diverge most significantly from the future probability distributions derived from the K imputed scores. The acquisition score g_i^{eKLD} is the average KL-Divergence $D_{\text{KL}}(P_i^{\text{avail}} \parallel P_i^{(\text{imp},k)})$ over the K imputations:

$$g_i^{\text{eKLD}} = \frac{1}{K} \sum_{k=1}^K D_{\text{KL}} \left(P_i^{\text{avail}} \parallel P_i^{(\text{imp},k)} \right). \quad (25)$$

A higher g_i^{eKLD} indicates that, on average, the imputed future predictions substantially differ from the initial baseline prediction, suggesting a significant informational update from acquiring the additional modality.

D HYPERPARAMETERS, MODEL DETAILS AND COMPUTE ENVIRONMENT

We employ domain-specific encoders to process the respective modalities: for language inputs, we use a pre-trained BERT model (Devlin et al., 2019), for vision, a Vision Transformer (ViT) (Dosovitskiy et al., 2021). Other data types, *e.g.*, temporal sequences, tabular data, or pre-extracted embeddings, are handled by Transformer encoders (Vaswani et al., 2017). We use well-established hyperparameters from the literature for the modality-specific encoders and only optimize the remaining parameters. Notably, our experiments compared three approaches for normalizing the encoder output: No Normalization, Batch Normalization, and Layer Normalization. We found Layer Normalization to be particularly advantageous, as it both stabilized training convergence and significantly enhanced the performance of the DDPMs. We also evaluated the impact of using only the `CLS` token representation from the encoder versus leveraging the full output sequence. This comparison revealed no substantial effect on performance, suggesting the sufficiency of the `CLS` token representation for our task. Layers in the network are initialized using He initialization (He et al., 2015) if they were not pre-initialized by the specific encoder architecture. We find this particularly important for stabilizing the DDPMs during the early epochs of end-to-end model training.

We perform hyperparameter sweeps for the remaining parts of the designed model in the following ranges:

Figure 4: The latent DDPM with its (de)noising functions. Coloring represents less noise in the latent space, starting with pure noise in $X_{1,T} = X_{1,T}$ with T steps. The DDPM is conditioned with two non-missing latent spaces, each from one remaining modality respectively.

- Transformer Head
 - Embedding dimension: [32, 64, 128, 256, 512, 1024]
 - Feed-Forward network: [128, 256, 512, 1024, 2048]
 - Dropout: [0, 0.1, 0.2]
 - Number of heads: [4, 8, 16]
 - Number of layers: [2, 4, 6, 8]
- DDPMs
 - Embedding dimension: analogous to Transformer head
 - Hidden dimension: [32, 64, 128, 256, 512, 1024]
 - Dropout: [0, 0.1, 0.2]
 - Number of heads: [4, 8, 16]
 - Number of layers: [2, 4, 6, 8]
 - Number of steps: [10, 25, 50, 100, 250, 500]
- ScheduleFree Optimizer
 - Learning rate: [1e-1, 1e-2, 1e-3, 3e-4, 1e-4, 1e-5]
 - Warmup steps: [0, 100, 200]
 - Weight decay: [0, 0.01, 0.001]

The models are trained with early stopping but without any maximum number of epochs. For the imputation-based acquisition functions, 100 DDPM samples are used during inference of the model.

Our experiments are conducted on a High-Performance Cluster (HPC) with the following environment:

1. 21 Dell PowerEdge R7525 compute nodes, each with:
 - 64 AMD Epyc cores (Rome)
 - 512GB RAM
 - 1 NVIDIA A100 40G GPU
2. 2 Dell PowerEdge XE8545 compute nodes, each with:
 - 128 AMD Epyc cores (Milan)
 - 512GB RAM
 - 4 NVIDIA A100 40G GPUs (NVLink-connected)

E DATASET DETAILS

We evaluate CAMA on four diverse, real-world multimodal datasets, spanning domains from healthcare to emotion recognition.

1188 **MIMIC Symile** This clinical dataset is derived from the MIMIC database and is designed for
1189 predicting the diagnosis of ten classes (Fracture, Enlarged Cardiomediastinum, Consolidation, Atelec-
1190 tasis, Edema, Cardiomegaly, Lung Lesion, Lung Opacity, Pneumonia, Pneumothorax). It contains
1191 10,345 samples from patients in intensive care units. For our experiments, we utilize three distinct
1192 modalities: laboratory values, chest X-ray images, and electrocardiograms (ECGs).
1193

1194 **MIMIC HAIM** This healthcare benchmark also focuses on the diagnostic prediction of ten classes
1195 (Fracture, Enlarged Cardiomediastinum, Consolidation, Atelectasis, Edema, Cardiomegaly, Lung
1196 Lesion, Lung Opacity, Pneumonia, Pneumothorax). The bimodal dataset consists of 45,050 samples.
1197 The two modalities used in our study are laboratory values and chest X-ray images.
1198

1199 **CMU-MOSEI** This large-scale benchmark targets multimodal sentiment analysis and emotion
1200 recognition with seven classes covering different emotions. It contains 22,856 video samples of
1201 speakers expressing opinions. The dataset comprises three modalities: vision, acoustics, and language.
1202 Notably, unlike the other datasets, we utilize the pre-computed embeddings provided by the authors
1203 rather than the raw data.
1204

1205 **UK Biobank (UKBB)** The UK Biobank is a large-scale, prospective biomedical database from
1206 half a million UK participants. In our experiments, the costly modality targeted for acquisition
1207 is proteomics, which is available for only a fraction of the full cohort. We constructed a subset
1208 of 100,000 samples in which approximately half include proteomics data, accurately simulating
1209 a resource-constrained acquisition scenario. The 15 modalities utilized include electronic health
1210 records (EHRs), NMR metabolomics, proteomics, physical activity measurements, diet and alcohol
1211 consumption questionnaires, baseline characteristics, smoking status, physiological measurements,
1212 anthropometry, hand grip strength, cognitive function tests, ECGs, polygenic risk scores (PRS), and
1213 arterial stiffness measurements.
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

1242 **F RESULTS FOR SYMILE WITH BC-VAEs**
 1243

1244 Table 8: Acquisition performance on Symile (AUROC) with Beta-Conditional Variational Auto
 1245 Encoders. Strategies are grouped by category. Best strategy among proposed ones and baselines in
 1246 bold for each column.
 1247

Strategy	Fracture	Enl. Card.	Consolidation	Atelectasis	Edema	Mean
<i>Upper Bounds (for reference)</i>						
Oracle	2.807 \pm 0.326	4.224 \pm 0.501	2.716 \pm 0.147	5.901 \pm 0.861	2.096 \pm 0.078	4.423
True KL-Div.	1.009 \pm 0.115	0.752 \pm 0.095	0.855 \pm 0.020	0.689 \pm 0.092	0.900 \pm 0.007	0.800
True Rank	0.714 \pm 0.094	0.728 \pm 0.070	0.853 \pm 0.017	0.777 \pm 0.104	0.890 \pm 0.007	0.719
True Uncert.	0.939 \pm 0.088	0.735 \pm 0.113	0.571 \pm 0.024	0.106 \pm 0.079	0.719 \pm 0.009	0.555
<i>Imputation-based (proposed)</i>						
KL-Div.	0.834 \pm 0.060	0.420 \pm 0.109	0.684 \pm 0.017	0.527 \pm 0.077	0.744 \pm 0.013	0.584
Prob.	0.643 \pm 0.073	0.559 \pm 0.037	0.489 \pm 0.022	-0.304 \pm 0.170	0.603 \pm 0.009	0.395
Rank	0.252 \pm 0.109	0.281 \pm 0.063	0.526 \pm 0.019	0.327 \pm 0.087	0.444 \pm 0.009	0.366
Uncert.	0.911 \pm 0.073	0.557 \pm 0.042	0.593 \pm 0.023	0.162 \pm 0.075	0.637 \pm 0.012	0.519
<i>Baselines (no imputation)</i>						
Uncert.	0.862 \pm 0.092	0.397 \pm 0.052	0.510 \pm 0.017	0.423 \pm 0.046	0.592 \pm 0.008	0.477
Prob.	0.127 \pm 0.066	0.508 \pm 0.026	0.526 \pm 0.016	0.054 \pm 0.133	0.462 \pm 0.006	0.388
Random	0.429 \pm 0.085	0.290 \pm 0.060	0.497 \pm 0.019	0.102 \pm 0.097	0.480 \pm 0.006	0.350
Strategy	Cardiomegaly	Lung Lesion	Lung Opacity	Pneumonia	Pneumothorax	Mean
<i>Upper Bounds (for reference)</i>						
Oracle	2.715 \pm 0.124	4.677 \pm 0.799	6.125 \pm 0.911	4.317 \pm 0.181	8.654 \pm 0.796	4.423
True KL-Div.	0.871 \pm 0.011	0.701 \pm 0.189	0.582 \pm 0.146	0.892 \pm 0.014	0.745 \pm 0.096	0.800
True Rank	0.843 \pm 0.015	0.457 \pm 0.225	0.501 \pm 0.140	0.825 \pm 0.022	0.603 \pm 0.102	0.719
True Uncert.	0.701 \pm 0.016	0.626 \pm 0.130	0.147 \pm 0.057	0.664 \pm 0.023	0.343 \pm 0.036	0.555
<i>Imputation-based (proposed)</i>						
KL-Div.	0.718 \pm 0.019	0.456 \pm 0.097	0.324 \pm 0.232	0.757 \pm 0.025	0.380 \pm 0.129	0.584
Prob.	0.553 \pm 0.014	0.710 \pm 0.213	0.023 \pm 0.076	0.096 \pm 0.030	0.580 \pm 0.052	0.395
Rank	0.416 \pm 0.020	0.357 \pm 0.309	0.311 \pm 0.087	0.493 \pm 0.019	0.251 \pm 0.065	0.366
Uncert.	0.629 \pm 0.018	0.596 \pm 0.131	0.095 \pm 0.161	0.567 \pm 0.019	0.448 \pm 0.041	0.519
<i>Baselines (no imputation)</i>						
Uncert.	0.531 \pm 0.015	0.534 \pm 0.087	-0.022 \pm 0.318	0.441 \pm 0.017	0.500 \pm 0.023	0.477
Prob.	0.424 \pm 0.013	0.468 \pm 0.137	0.291 \pm 0.066	0.518 \pm 0.028	0.499 \pm 0.023	0.388
Random	0.418 \pm 0.014	0.441 \pm 0.220	0.152 \pm 0.115	0.399 \pm 0.018	0.291 \pm 0.087	0.350

1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

Table 9: Acquisition performance on Symile (AUPRC) with Beta-Conditional Variational Auto Encoders. Strategies are grouped by category. Best strategy among proposed ones and baselines in bold for each column.

1312

1313

Strategy	Fracture	Enl. Card.	Consolidation	Atelectasis	Edema	Mean
<i>Upper Bounds (for reference)</i>						
Oracle	1.785 ± 0.110	3.468 ± 0.317	2.780 ± 0.146	2.632 ± 0.146	2.460 ± 0.099	4.116
True KL-Div.	0.798 ± 0.050	0.700 ± 0.101	0.828 ± 0.020	0.686 ± 0.026	0.888 ± 0.007	0.766
True Rank	0.736 ± 0.061	0.625 ± 0.096	0.822 ± 0.022	0.733 ± 0.046	0.843 ± 0.009	0.689
True Uncert.	0.778 ± 0.050	0.623 ± 0.044	0.606 ± 0.034	0.206 ± 0.033	0.731 ± 0.011	0.513
<i>Imputation-based (proposed)</i>						
KL-Div.	0.725 ± 0.062	0.574 ± 0.095	0.636 ± 0.023	0.599 ± 0.034	0.733 ± 0.013	0.624
Prob.	0.642 ± 0.033	0.610 ± 0.037	0.539 ± 0.039	0.072 ± 0.059	0.696 ± 0.009	0.433
Rank	0.355 ± 0.050	0.334 ± 0.101	0.409 ± 0.029	0.405 ± 0.032	0.427 ± 0.010	0.409
Uncert.	0.757 ± 0.056	0.584 ± 0.048	0.592 ± 0.032	0.228 ± 0.030	0.637 ± 0.013	0.480
<i>Baselines (no imputation)</i>						
Uncert.	0.713 ± 0.054	0.239 ± 0.127	0.429 ± 0.024	0.335 ± 0.022	0.579 ± 0.008	0.438
Prob.	0.265 ± 0.039	0.594 ± 0.023	0.567 ± 0.025	0.405 ± 0.035	0.565 ± 0.009	0.523
Random	0.455 ± 0.056	0.248 ± 0.076	0.444 ± 0.027	0.336 ± 0.044	0.485 ± 0.010	0.380
Strategy	Cardiomegaly	Lung Lesion	Lung Opacity	Pneumonia	Pneumothorax	Mean
<i>Upper Bounds (for reference)</i>						
Oracle	2.902 ± 0.184	2.559 ± 0.272	3.156 ± 0.152	5.255 ± 0.253	14.162 ± 1.561	4.116
True KL-Div.	0.871 ± 0.014	0.488 ± 0.088	0.700 ± 0.026	0.879 ± 0.021	0.818 ± 0.044	0.766
True Rank	0.828 ± 0.022	0.533 ± 0.068	0.667 ± 0.036	0.824 ± 0.028	0.278 ± 0.139	0.689
True Uncert.	0.745 ± 0.016	0.183 ± 0.045	0.151 ± 0.032	0.525 ± 0.023	0.579 ± 0.076	0.513
<i>Imputation-based (proposed)</i>						
KL-Div.	0.749 ± 0.023	0.390 ± 0.117	0.584 ± 0.023	0.736 ± 0.021	0.514 ± 0.099	0.624
Prob.	0.609 ± 0.016	0.221 ± 0.103	0.013 ± 0.048	0.064 ± 0.037	0.868 ± 0.034	0.433
Rank	0.472 ± 0.015	0.495 ± 0.095	0.336 ± 0.030	0.412 ± 0.026	0.448 ± 0.085	0.409
Uncert.	0.663 ± 0.019	-0.030 ± 0.109	0.202 ± 0.029	0.454 ± 0.021	0.719 ± 0.105	0.480
<i>Baselines (no imputation)</i>						
Uncert.	0.534 ± 0.019	0.021 ± 0.127	0.301 ± 0.025	0.357 ± 0.018	0.871 ± 0.076	0.438
Prob.	0.478 ± 0.016	0.549 ± 0.063	0.407 ± 0.037	0.531 ± 0.022	0.871 ± 0.076	0.523
Random	0.465 ± 0.020	0.320 ± 0.099	0.202 ± 0.030	0.364 ± 0.023	0.483 ± 0.075	0.380

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350 **G DETAILED RESULTS FOR MOSEI**
1351

1352 Table 10: Acquisition performance on MOSEI (Image imputed by Text), showing G_{full} for AU-
1353 ROC/AUPRC. Strategies are grouped by category. Best strategy among proposed ones and baselines
1354 in bold.
1355

1356

Strategy	AUROC		AUPRC	
	$G_{\text{full}} \pm \text{SEM} \uparrow$			
<i>Upper Bounds (for reference)</i>				
Oracle	0.995 \pm 0.006		0.995 \pm 0.012	
True KL-Div.	0.777 \pm 0.005		0.790 \pm 0.015	
True Rank	0.763 \pm 0.012		0.781 \pm 0.014	
True Uncert.	0.599 \pm 0.015		0.673 \pm 0.019	
<i>Imputation-based (proposed)</i>				
KL-Div.	0.551 \pm 0.012		0.590 \pm 0.009	
Probability	0.473 \pm 0.010		0.598 \pm 0.006	
Rank	0.524 \pm 0.012		0.560 \pm 0.012	
Uncertainty	0.500 \pm 0.021		0.567 \pm 0.009	
<i>Baselines (no imputation)</i>				
Uncertainty	0.507 \pm 0.015		0.565 \pm 0.018	
Probability	0.451 \pm 0.013		0.578 \pm 0.009	
Random	0.521 \pm 0.006		0.575 \pm 0.008	

1363 Table 11: Acquisition performance on MOSEI (Image imputed by Audio), showing G_{full} for AU-
1364 ROC/AUPRC. Strategies are grouped by category. Best strategy among proposed ones and baselines
1365 in bold.
1366

1367

Strategy	AUROC		AUPRC	
	$G_{\text{full}} \pm \text{SEM} \uparrow$			
<i>Upper Bounds (for reference)</i>				
Oracle	1.052 \pm 0.007		1.011 \pm 0.010	
True KL-Div.	0.785 \pm 0.009		0.803 \pm 0.005	
True Rank	0.783 \pm 0.010		0.802 \pm 0.012	
True Uncert.	0.672 \pm 0.007		0.742 \pm 0.006	
<i>Imputation-based (proposed)</i>				
KL-Div.	0.566 \pm 0.011		0.601 \pm 0.009	
Probability	0.547 \pm 0.002		0.629 \pm 0.004	
Rank	0.576 \pm 0.013		0.614 \pm 0.007	
Uncertainty	0.545 \pm 0.009		0.586 \pm 0.007	
<i>Baselines (no imputation)</i>				
Uncertainty	0.545 \pm 0.009		0.601 \pm 0.014	
Probability	0.526 \pm 0.014		0.616 \pm 0.008	
Random	0.553 \pm 0.008		0.603 \pm 0.005	

Table 12: Acquisition performance on MOSEI (Image imputed by Text and Audio), showing G_{full} for AUROC/AUPRC. Strategies are grouped by category. Best strategy among proposed ones and baselines in bold.

Strategy	AUROC	AUPRC
	$G_{\text{full}} \pm \text{SEM} \uparrow$	$G_{\text{full}} \pm \text{SEM} \uparrow$
<i>Upper Bounds (for reference)</i>		
Oracle	1.321 ± 0.009	1.315 ± 0.012
True KL-Div.	0.979 ± 0.006	0.862 ± 0.006
True Rank	0.960 ± 0.005	0.811 ± 0.006
True Uncert.	0.716 ± 0.004	0.750 ± 0.004
<i>Imputation-based (proposed)</i>		
KL-Div	0.603 ± 0.007	0.627 ± 0.009
Probability	0.513 ± 0.002	0.610 ± 0.003
Rank	0.463 ± 0.005	0.491 ± 0.005
Uncertainty	0.499 ± 0.004	0.452 ± 0.004
<i>Baselines (no imputation)</i>		
Uncertainty	0.513 ± 0.004	0.480 ± 0.005
Probability	0.534 ± 0.008	0.676 ± 0.007
Random	0.489 ± 0.002	0.527 ± 0.002

Table 13: Acquisition performance on MOSEI (Text imputed by Image), showing G_{full} for AUROC/AUPRC. Strategies are grouped by category. Best strategy among proposed ones and baselines in bold.

Strategy	AUROC	AUPRC
	$G_{\text{full}} \pm \text{SEM} \uparrow$	$G_{\text{full}} \pm \text{SEM} \uparrow$
<i>Upper Bounds (for reference)</i>		
Oracle	1.613 ± 0.269	1.493 ± 0.166
True KL-Div.	0.845 ± 0.018	0.843 ± 0.010
True Rank	0.772 ± 0.024	0.784 ± 0.025
True Uncert.	0.633 ± 0.060	0.697 ± 0.030
<i>Imputation-based (proposed)</i>		
KL-Div	0.900 ± 0.023	0.896 ± 0.022
Probability	0.806 ± 0.022	0.861 ± 0.023
Rank	0.309 ± 0.089	0.420 ± 0.065
Uncertainty	0.651 ± 0.049	0.747 ± 0.030
<i>Baselines (no imputation)</i>		
Uncertainty	0.466 ± 0.045	0.537 ± 0.014
Probability	0.418 ± 0.055	0.532 ± 0.045
Random	0.417 ± 0.061	0.489 ± 0.051

Table 14: Acquisition performance on MOSEI (Text imputed by Audio), showing G_{full} for AUROC/AUPRC. Strategies are grouped by category. Best strategy among proposed ones and baselines in bold.

Strategy	AUROC	AUPRC
	$G_{\text{full}} \pm \text{SEM} \uparrow$	$G_{\text{full}} \pm \text{SEM} \uparrow$
<i>Upper Bounds (for reference)</i>		
Oracle	8.867 ± 1.712	16.066 ± 2.592
True KL-Div.	0.645 ± 0.051	0.387 ± 0.136
True Rank	0.494 ± 0.147	0.015 ± 0.262
True Uncert.	0.913 ± 0.121	0.893 ± 0.141
<i>Imputation-based (proposed)</i>		
KL-Div	2.962 ± 0.925	4.582 ± 1.938
Probability	3.157 ± 1.229	6.861 ± 1.806
Rank	-0.413 ± 0.421	-1.134 ± 0.463
Uncertainty	1.592 ± 0.350	3.844 ± 0.806
<i>Baselines (no imputation)</i>		
Uncertainty	0.591 ± 0.147	0.473 ± 0.204
Probability	0.662 ± 0.071	0.971 ± 0.014
Random	0.316 ± 0.059	0.376 ± 0.086

1458
 1459 Table 15: Acquisition performance on MOSEI (Text imputed by Image and Audio), showing G_{full}
 1460 for AUROC/AUPRC. Strategies are grouped by category. Best strategy among proposed ones and
 1461 baselines in bold.

1461

Strategy	AUROC	AUPRC
	$G_{\text{full}} \pm \text{SEM} \uparrow$	$G_{\text{full}} \pm \text{SEM} \uparrow$
<i>Upper Bounds (for reference)</i>		
Oracle	1.207 ± 0.012	1.280 ± 0.013
True KL-Div.	0.851 ± 0.002	0.842 ± 0.004
True Rank	0.836 ± 0.004	0.840 ± 0.005
True Uncert.	0.649 ± 0.009	0.691 ± 0.009
<i>Imputation-based (proposed)</i>		
KL-Div	0.892 ± 0.002	0.894 ± 0.004
Probability	0.665 ± 0.004	0.727 ± 0.003
Rank	0.489 ± 0.003	0.520 ± 0.003
Uncertainty	0.662 ± 0.008	0.720 ± 0.007
<i>Baselines (no imputation)</i>		
Uncertainty	0.538 ± 0.009	0.567 ± 0.009
Probability	0.379 ± 0.003	0.462 ± 0.004
Random	0.512 ± 0.002	0.531 ± 0.003

1468

1469
 1470 Table 16: Acquisition performance on MOSEI (Audio imputed by Image), showing G_{full} for AU-
 1471 ROC/AUPRC. Strategies are grouped by category. Best strategy among proposed ones and baselines
 1472 in bold.

1473

Strategy	AUROC	AUPRC
	$G_{\text{full}} \pm \text{SEM} \uparrow$	$G_{\text{full}} \pm \text{SEM} \uparrow$
<i>Upper Bounds (for reference)</i>		
Oracle	1.238 ± 0.124	1.207 ± 0.093
True KL-Div.	0.826 ± 0.014	0.821 ± 0.019
True Rank	0.752 ± 0.030	0.780 ± 0.025
True Uncert.	0.544 ± 0.034	0.627 ± 0.023
<i>Imputation-based (proposed)</i>		
KL-Div	0.800 ± 0.012	0.803 ± 0.017
Probability	0.684 ± 0.020	0.737 ± 0.024
Rank	0.326 ± 0.072	0.445 ± 0.052
Uncertainty	0.552 ± 0.035	0.625 ± 0.023
<i>Baselines (no imputation)</i>		
Uncertainty	0.436 ± 0.043	0.502 ± 0.016
Probability	0.374 ± 0.034	0.510 ± 0.034
Random	0.397 ± 0.052	0.478 ± 0.039

1494

1495 Table 17: Acquisition performance on MOSEI (Audio imputed by Text), showing G_{full} for AU-
 1496 ROC/AUPRC. Strategies are grouped by category. Best strategy among proposed ones and baselines
 1497 in bold.

1498

Strategy	AUROC	AUPRC
	$G_{\text{full}} \pm \text{SEM} \uparrow$	$G_{\text{full}} \pm \text{SEM} \uparrow$
<i>Upper Bounds (for reference)</i>		
Oracle	4.955 ± 0.417	6.275 ± 0.948
True KL-Div.	0.815 ± 0.043	0.817 ± 0.057
True Rank	0.563 ± 0.073	0.645 ± 0.098
True Uncert.	0.520 ± 0.026	0.604 ± 0.059
<i>Imputation-based (proposed)</i>		
KL-Div	2.305 ± 0.360	2.335 ± 0.499
Probability	2.306 ± 0.259	2.571 ± 0.483
Rank	-0.210 ± 0.123	-0.093 ± 0.135
Uncertainty	1.154 ± 0.141	1.626 ± 0.303
<i>Baselines (no imputation)</i>		
Uncertainty	0.519 ± 0.023	0.604 ± 0.044
Probability	0.416 ± 0.007	0.511 ± 0.018
Random	0.326 ± 0.024	0.439 ± 0.023

1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533

Table 18: Acquisition performance on MOSEI (Audio imputed by Image and Text), showing G_{full} for AUROC/AUPRC. Strategies are grouped by category. Best strategy among proposed ones and baselines in bold.

Strategy	AUROC		AUPRC	
	$G_{\text{full}} \pm \text{SEM} \uparrow$			
<i>Upper Bounds (for reference)</i>				
Oracle	1.215 ± 0.010		1.275 ± 0.011	
True KL-Div.	0.865 ± 0.002		0.850 ± 0.004	
True Rank	0.833 ± 0.004		0.837 ± 0.005	
True Uncert.	0.645 ± 0.007		0.693 ± 0.006	
<i>Imputation-based (proposed)</i>				
KL-Div	0.857 ± 0.002		0.846 ± 0.004	
Probability	0.667 ± 0.003		0.725 ± 0.003	
Rank	0.459 ± 0.004		0.489 ± 0.004	
Uncertainty	0.646 ± 0.007		0.694 ± 0.007	
<i>Baselines (no imputation)</i>				
Uncertainty	0.536 ± 0.008		0.566 ± 0.008	
Probability	0.368 ± 0.005		0.462 ± 0.005	
Random	0.503 ± 0.003		0.530 ± 0.003	

1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565

1566 **H DETAILED RESULTS FOR MIMIC SYMILE**
1567

1568 Table 19: Acquisition performance on MIMIC Symile for AUROC, showing G_{full} . Strategies are
1569 grouped by category. Best strategy among proposed and baseline methods in bold for each column.
1570

Strategy	Fracture	Enl. Card.	Consolidation	Atelectasis	Edema	Mean
<i>Upper Bounds (for reference)</i>						
Oracle	2.876 \pm 0.368	3.722 \pm 0.370	2.856 \pm 0.147	4.862 \pm 0.356	2.793 \pm 0.324	4.580
True KL-Div.	1.029 \pm 0.165	1.019 \pm 0.051	0.885 \pm 0.025	0.841 \pm 0.045	0.920 \pm 0.011	0.883
True Rank	0.963 \pm 0.153	0.924 \pm 0.058	0.946 \pm 0.025	0.802 \pm 0.068	0.887 \pm 0.022	0.811
True Uncert.	0.915 \pm 0.138	0.763 \pm 0.052	0.749 \pm 0.031	0.152 \pm 0.052	0.648 \pm 0.012	0.481
<i>Imputation-based (proposed)</i>						
KL-Div	0.838 \pm 0.164	0.882 \pm 0.064	0.706 \pm 0.021	0.779 \pm 0.114	0.893 \pm 0.080	0.833
Probability	0.861 \pm 0.118	0.638 \pm 0.046	0.610 \pm 0.021	0.099 \pm 0.107	0.514 \pm 0.099	0.426
Rank	0.123 \pm 0.155	0.331 \pm 0.043	0.434 \pm 0.026	0.371 \pm 0.083	0.352 \pm 0.030	0.378
Uncertainty	0.851 \pm 0.138	0.686 \pm 0.051	0.701 \pm 0.029	0.188 \pm 0.094	0.588 \pm 0.018	0.440
<i>Baselines (no imputation)</i>						
Uncertainty	0.616 \pm 0.100	0.482 \pm 0.033	0.543 \pm 0.024	0.380 \pm 0.031	0.539 \pm 0.010	0.480
Probability	0.153 \pm 0.086	0.519 \pm 0.035	0.464 \pm 0.020	0.446 \pm 0.068	0.421 \pm 0.010	0.458
Random	0.241 \pm 0.121	0.399 \pm 0.044	0.479 \pm 0.020	0.250 \pm 0.080	0.425 \pm 0.017	0.376
Strategy	Cardiomegaly	Lung Lesion	Lung Opacity	Pneumonia	Pneumothorax	Mean
<i>Upper Bounds (for reference)</i>						
Oracle	2.787 \pm 0.139	4.974 \pm 0.581	6.657 \pm 0.649	4.817 \pm 0.430	9.461 \pm 1.049	4.580
True KL-Div.	0.885 \pm 0.011	0.753 \pm 0.179	0.750 \pm 0.087	0.837 \pm 0.043	0.910 \pm 0.054	0.883
True Rank	0.878 \pm 0.019	0.411 \pm 0.216	0.793 \pm 0.056	0.902 \pm 0.029	0.605 \pm 0.053	0.811
True Uncert.	0.524 \pm 0.025	0.251 \pm 0.177	0.212 \pm 0.054	0.728 \pm 0.023	-0.136 \pm 0.065	0.481
<i>Imputation-based (proposed)</i>						
KL-Div	0.747 \pm 0.039	1.266 \pm 0.258	0.683 \pm 0.106	0.761 \pm 0.060	0.773 \pm 0.134	0.833
Probability	0.350 \pm 0.053	0.190 \pm 0.223	-0.075 \pm 0.077	0.172 \pm 0.142	0.898 \pm 0.061	0.426
Rank	0.378 \pm 0.016	0.607 \pm 0.150	0.635 \pm 0.080	0.437 \pm 0.054	0.115 \pm 0.082	0.378
Uncertainty	0.450 \pm 0.041	0.022 \pm 0.173	0.199 \pm 0.057	0.658 \pm 0.045	0.055 \pm 0.060	0.440
<i>Baselines (no imputation)</i>						
Uncertainty	0.480 \pm 0.013	0.201 \pm 0.179	0.406 \pm 0.041	0.615 \pm 0.019	0.536 \pm 0.040	0.480
Probability	0.431 \pm 0.015	0.778 \pm 0.212	0.417 \pm 0.065	0.416 \pm 0.055	0.536 \pm 0.040	0.458
Random	0.385 \pm 0.015	0.365 \pm 0.225	0.381 \pm 0.057	0.505 \pm 0.038	0.327 \pm 0.061	0.376

1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

Table 20: Acquisition performance on MIMIC Symile for AUPRC, showing G_{full} . Strategies are grouped by category. Best strategy among proposed and baseline methods in bold for each column.

1634

1635

1636

1637

Strategy	Fracture	Enl. Card.	Consolidation	Atelectasis	Edema	Mean
<i>Upper Bounds (for reference)</i>						
Oracle	2.579 ± 0.343	2.964 ± 0.201	4.784 ± 1.130	3.093 ± 0.201	3.015 ± 0.141	4.231
True KL-Div.	0.883 ± 0.094	0.970 ± 0.038	0.933 ± 0.057	0.781 ± 0.038	0.939 ± 0.013	0.871
True Rank	0.659 ± 0.176	0.858 ± 0.033	0.903 ± 0.090	0.720 ± 0.064	0.897 ± 0.022	0.776
True Uncert.	0.604 ± 0.073	0.812 ± 0.044	0.709 ± 0.036	0.050 ± 0.039	0.645 ± 0.015	0.450
<i>Imputation-based (proposed)</i>						
KL-Div	0.770 ± 0.210	0.899 ± 0.044	0.895 ± 0.159	0.684 ± 0.063	0.832 ± 0.039	0.777
Probability	0.631 ± 0.073	0.673 ± 0.036	0.503 ± 0.106	0.028 ± 0.069	0.624 ± 0.049	0.449
Rank	0.461 ± 0.188	0.388 ± 0.034	0.421 ± 0.064	0.318 ± 0.053	0.351 ± 0.022	0.407
Uncertainty	0.663 ± 0.108	0.744 ± 0.046	0.611 ± 0.073	0.118 ± 0.034	0.569 ± 0.017	0.444
<i>Baselines (no imputation)</i>						
Uncertainty	0.428 ± 0.155	0.524 ± 0.031	0.509 ± 0.036	0.246 ± 0.018	0.519 ± 0.011	0.443
Probability	0.242 ± 0.068	0.523 ± 0.026	0.546 ± 0.030	0.512 ± 0.064	0.533 ± 0.013	0.550
Random	0.149 ± 0.103	0.423 ± 0.032	0.429 ± 0.097	0.222 ± 0.094	0.448 ± 0.012	0.388
Strategy	Cardiomegaly	Lung Lesion	Lung Opacity	Pneumonia	Pneumothorax	Mean
<i>Upper Bounds (for reference)</i>						
Oracle	2.746 ± 0.110	2.520 ± 0.250	4.092 ± 0.259	5.895 ± 0.406	10.623 ± 0.708	4.231
True KL-Div.	0.853 ± 0.010	0.828 ± 0.073	0.792 ± 0.037	0.906 ± 0.032	0.827 ± 0.043	0.871
True Rank	0.882 ± 0.018	0.676 ± 0.088	0.771 ± 0.045	0.911 ± 0.030	0.483 ± 0.075	0.776
True Uncert.	0.473 ± 0.029	0.181 ± 0.067	0.140 ± 0.029	0.595 ± 0.024	0.293 ± 0.052	0.450
<i>Imputation-based (proposed)</i>						
KL-Div	0.729 ± 0.034	0.896 ± 0.146	0.722 ± 0.043	0.763 ± 0.059	0.581 ± 0.084	0.777
Probability	0.366 ± 0.047	0.320 ± 0.104	0.041 ± 0.065	0.339 ± 0.079	0.965 ± 0.027	0.449
Rank	0.384 ± 0.014	0.564 ± 0.086	0.402 ± 0.050	0.389 ± 0.034	0.396 ± 0.054	0.407
Uncertainty	0.424 ± 0.038	0.130 ± 0.053	0.149 ± 0.034	0.519 ± 0.033	0.513 ± 0.066	0.444
<i>Baselines (no imputation)</i>						
Uncertainty	0.434 ± 0.018	0.215 ± 0.033	0.260 ± 0.023	0.482 ± 0.019	0.811 ± 0.041	0.443
Probability	0.479 ± 0.017	0.756 ± 0.136	0.555 ± 0.037	0.541 ± 0.029	0.811 ± 0.041	0.550
Random	0.386 ± 0.013	0.503 ± 0.103	0.354 ± 0.053	0.435 ± 0.033	0.527 ± 0.053	0.388

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686

1687 Table 21: Acquisition performance on MIMIC Symile for AUROC (Image imputed by Lab), showing
 1688 G_{full} . Strategies are grouped by category. Best strategy among proposed and baseline methods in
 1689 bold for each column.

1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727

Strategy	Fracture	Enl. Card.	Consolidation	Atelectasis	Edema	Mean
<i>Upper Bounds (for reference)</i>						
Oracle	4.144 \pm 2.172	2.120 \pm 0.465	2.803 \pm 0.306	2.381 \pm 0.215	1.684 \pm 0.070	4.104
True KL-Div.	0.728 \pm 0.137	0.816 \pm 0.011	0.611 \pm 0.084	0.837 \pm 0.028	0.813 \pm 0.009	0.825
True Rank	1.062 \pm 0.643	0.614 \pm 0.111	0.591 \pm 0.157	0.816 \pm 0.065	0.765 \pm 0.024	0.707
True Uncert.	0.686 \pm 0.374	0.606 \pm 0.068	0.637 \pm 0.140	0.496 \pm 0.148	0.619 \pm 0.024	0.601
<i>Imputation-based (proposed)</i>						
KL-Div	-1.410 \pm 0.037	0.477 \pm 0.108	0.282 \pm 0.146	0.626 \pm 0.137	0.503 \pm 0.022	0.247
Probability	0.231 \pm 0.288	0.498 \pm 0.036	0.514 \pm 0.060	0.503 \pm 0.056	0.454 \pm 0.020	0.379
Rank	-0.725 \pm 0.858	0.190 \pm 0.201	0.520 \pm 0.018	0.403 \pm 0.085	0.527 \pm 0.032	0.225
Uncertainty	0.168 \pm 0.317	0.400 \pm 0.025	0.620 \pm 0.179	0.422 \pm 0.130	0.493 \pm 0.019	0.448
<i>Baselines (no imputation)</i>						
Uncertainty	0.129 \pm 0.339	0.332 \pm 0.069	0.423 \pm 0.201	0.456 \pm 0.106	0.503 \pm 0.020	0.433
Probability	0.129 \pm 0.339	0.515 \pm 0.057	0.530 \pm 0.049	0.601 \pm 0.101	0.477 \pm 0.018	0.444
Random	-0.509 \pm 0.041	0.356 \pm 0.070	0.503 \pm 0.163	0.609 \pm 0.091	0.492 \pm 0.023	0.307
Strategy	Cardiomegaly	Lung Lesion	Lung Opacity	Pneumonia	Pneumothorax	Mean
<i>Upper Bounds (for reference)</i>						
Oracle	1.793 \pm 0.077	5.417 \pm 4.001	7.073 \pm 2.202	4.743 \pm 1.268	8.881 \pm 1.894	4.104
True KL-Div.	0.822 \pm 0.010	1.543 \pm 0.689	0.663 \pm 0.095	0.884 \pm 0.063	0.530 \pm 0.109	0.825
True Rank	0.663 \pm 0.042	1.291 \pm 0.557	0.530 \pm 0.154	0.705 \pm 0.170	0.035 \pm 0.068	0.707
True Uncert.	0.272 \pm 0.091	1.128 \pm 0.870	0.622 \pm 0.187	0.687 \pm 0.038	0.254 \pm 0.213	0.601
<i>Imputation-based (proposed)</i>						
KL-Div	0.492 \pm 0.030	0.847 \pm 0.033	0.459 \pm 0.146	0.481 \pm 0.158	-0.285 \pm 0.221	0.247
Probability	0.301 \pm 0.081	0.418 \pm 0.193	0.034 \pm 0.303	0.372 \pm 0.256	0.461 \pm 0.128	0.379
Rank	0.434 \pm 0.045	-0.219 \pm 0.837	0.956 \pm 0.383	0.363 \pm 0.080	-0.201 \pm 0.261	0.225
Uncertainty	0.395 \pm 0.020	0.574 \pm 0.327	0.400 \pm 0.126	0.395 \pm 0.040	0.608 \pm 0.201	0.448
<i>Baselines (no imputation)</i>						
Uncertainty	0.433 \pm 0.015	0.490 \pm 0.096	0.558 \pm 0.358	0.424 \pm 0.053	0.587 \pm 0.180	0.433
Probability	0.419 \pm 0.065	0.505 \pm 0.108	0.263 \pm 0.254	0.417 \pm 0.228	0.587 \pm 0.180	0.444
Random	0.420 \pm 0.063	0.384 \pm 0.068	0.200 \pm 0.455	0.444 \pm 0.085	0.169 \pm 0.359	0.307

1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740

1741 Table 22: Acquisition performance on MIMIC Symile for AUPRC (Image imputed by Lab), showing
 1742 G_{full} . Strategies are grouped by category. Best strategy among proposed and baseline methods in
 1743 bold for each column.

1744
 1745
 1746
 1747
 1748
 1749

Strategy	Fracture	Enl. Card.	Consolidation	Atelectasis	Edema	Mean
<i>Upper Bounds (for reference)</i>						
Oracle	3.844 \pm 2.595	1.792 \pm 0.288	2.826 \pm 0.677	1.930 \pm 0.221	1.778 \pm 0.101	4.862
True KL-Div.	0.869 \pm 0.023	0.827 \pm 0.021	0.620 \pm 0.156	0.812 \pm 0.024	0.775 \pm 0.013	0.770
True Rank	1.398 \pm 0.874	0.566 \pm 0.140	0.492 \pm 0.345	0.827 \pm 0.034	0.759 \pm 0.024	0.575
True Uncert.	0.712 \pm 0.210	0.650 \pm 0.111	0.655 \pm 0.118	0.538 \pm 0.165	0.579 \pm 0.041	0.498
<i>Imputation-based (proposed)</i>						
KL-Div	-1.450 \pm 1.121	0.464 \pm 0.132	0.149 \pm 0.370	0.652 \pm 0.149	0.610 \pm 0.010	0.131
Probability	0.210 \pm 0.451	0.575 \pm 0.018	0.735 \pm 0.084	0.591 \pm 0.035	0.598 \pm 0.016	0.568
Rank	-0.777 \pm 1.263	0.261 \pm 0.185	0.548 \pm 0.051	0.438 \pm 0.134	0.480 \pm 0.042	0.290
Uncertainty	0.157 \pm 0.477	0.456 \pm 0.075	0.516 \pm 0.245	0.477 \pm 0.170	0.358 \pm 0.021	0.441
<i>Baselines (no imputation)</i>						
Uncertainty	0.132 \pm 0.484	0.369 \pm 0.094	0.199 \pm 0.387	0.466 \pm 0.152	0.368 \pm 0.022	0.401
Probability	0.132 \pm 0.484	0.592 \pm 0.029	0.754 \pm 0.084	0.632 \pm 0.071	0.612 \pm 0.012	0.621
Random	-0.110 \pm 0.296	0.408 \pm 0.060	0.420 \pm 0.208	0.599 \pm 0.156	0.489 \pm 0.037	0.440
Strategy	Cardiomegaly	Lung Lesion	Lung Opacity	Pneumonia	Pneumothorax	Mean
<i>Upper Bounds (for reference)</i>						
Oracle	1.749 \pm 0.092	2.456 \pm 1.140	7.505 \pm 3.891	4.470 \pm 1.249	20.270 \pm 6.707	4.862
True KL-Div.	0.774 \pm 0.017	1.035 \pm 0.214	0.413 \pm 0.176	0.793 \pm 0.046	0.781 \pm 0.044	0.770
True Rank	0.667 \pm 0.037	0.888 \pm 0.274	0.326 \pm 0.248	0.669 \pm 0.058	-0.837 \pm 0.865	0.575
True Uncert.	0.269 \pm 0.134	0.598 \pm 0.430	0.291 \pm 0.099	0.562 \pm 0.027	0.129 \pm 0.407	0.498
<i>Imputation-based (proposed)</i>						
KL-Div	0.507 \pm 0.059	0.742 \pm 0.101	0.382 \pm 0.251	0.639 \pm 0.066	-1.388 \pm 1.198	0.131
Probability	0.327 \pm 0.126	0.398 \pm 0.274	0.407 \pm 0.140	0.659 \pm 0.129	1.176 \pm 0.314	0.568
Rank	0.390 \pm 0.068	0.069 \pm 0.552	1.071 \pm 0.611	0.469 \pm 0.059	-0.047 \pm 0.555	0.290
Uncertainty	0.321 \pm 0.042	0.317 \pm 0.186	0.176 \pm 0.196	0.242 \pm 0.030	1.390 \pm 0.419	0.441
<i>Baselines (no imputation)</i>						
Uncertainty	0.343 \pm 0.033	0.372 \pm 0.120	0.142 \pm 0.320	0.265 \pm 0.044	1.352 \pm 0.410	0.401
Probability	0.452 \pm 0.103	0.528 \pm 0.184	0.497 \pm 0.287	0.664 \pm 0.107	1.352 \pm 0.410	0.621
Random	0.369 \pm 0.101	0.478 \pm 0.117	0.810 \pm 0.961	0.449 \pm 0.051	0.484 \pm 0.166	0.440

1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781

1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797

Table 23: Acquisition performance on MIMIC Symile for AUROC (Image imputed by ECG), showing G_{full} . Strategies are grouped by category. Best strategy among proposed and baseline methods in bold for each column.

Strategy	Fracture	Enl. Card.	Consolidation	Atelectasis	Edema	Mean
<i>Upper Bounds (for reference)</i>						
Oracle	4.028 \pm 2.600	1.959 \pm 0.358	1.960 \pm 0.164	3.526 \pm 0.947	1.639 \pm 0.050	3.892
True KL-Div.	0.963 \pm 0.224	0.852 \pm 0.051	0.725 \pm 0.030	0.614 \pm 0.152	0.777 \pm 0.003	0.874
True Rank	0.192 \pm 0.075	0.559 \pm 0.101	0.753 \pm 0.013	-0.784 \pm 1.091	0.719 \pm 0.043	0.327
True Uncert.	0.934 \pm 0.189	0.700 \pm 0.131	0.717 \pm 0.039	-0.853 \pm 0.584	0.658 \pm 0.050	0.024
<i>Imputation-based (proposed)</i>						
KL-Div.	0.425 \pm 0.323	0.561 \pm 0.079	0.769 \pm 0.096	-0.353 \pm 0.827	0.621 \pm 0.030	0.669
Probability	0.650 \pm 0.024	0.538 \pm 0.107	0.709 \pm 0.095	0.162 \pm 0.130	0.591 \pm 0.024	0.443
Rank	0.411 \pm 0.193	0.337 \pm 0.122	0.538 \pm 0.050	-0.165 \pm 0.412	0.445 \pm 0.038	0.380
Uncertainty	0.750 \pm 0.011	0.527 \pm 0.112	0.720 \pm 0.083	0.466 \pm 0.229	0.431 \pm 0.026	0.167
<i>Baselines (no imputation)</i>						
Uncertainty	-0.962 \pm 1.403	0.380 \pm 0.050	0.567 \pm 0.064	0.591 \pm 0.180	0.427 \pm 0.022	-0.055
Probability	0.133 \pm 0.291	0.442 \pm 0.050	0.500 \pm 0.028	-0.684 \pm 0.967	0.427 \pm 0.022	0.650
Random	-0.803 \pm 0.529	0.482 \pm 0.038	0.647 \pm 0.019	0.227 \pm 0.307	0.513 \pm 0.018	0.263
Strategy	Cardiomegaly	Lung Lesion	Lung Opacity	Pneumonia	Pneumothorax	Mean
<i>Upper Bounds (for reference)</i>						
Oracle	2.263 \pm 0.151	9.495 \pm 7.441	4.112 \pm 0.961	2.196 \pm 0.132	7.745 \pm 2.386	3.892
True KL-Div.	0.777 \pm 0.016	1.758 \pm 1.206	0.881 \pm 0.085	0.725 \pm 0.019	0.664 \pm 0.088	0.874
True Rank	0.560 \pm 0.050	-0.731 \pm 0.850	0.808 \pm 0.103	0.777 \pm 0.022	0.416 \pm 0.209	0.327
True Uncert.	0.741 \pm 0.021	-3.450 \pm 3.932	-0.150 \pm 0.160	0.727 \pm 0.010	0.213 \pm 0.412	0.024
<i>Imputation-based (proposed)</i>						
KL-Div.	0.271 \pm 0.065	2.123 \pm 1.791	0.776 \pm 0.125	0.571 \pm 0.018	0.924 \pm 0.134	0.669
Probability	0.374 \pm 0.034	-0.235 \pm 0.921	0.122 \pm 0.178	0.568 \pm 0.030	0.952 \pm 0.095	0.443
Rank	0.201 \pm 0.072	0.764 \pm 0.047	0.272 \pm 0.153	0.639 \pm 0.029	0.363 \pm 0.307	0.380
Uncertainty	0.382 \pm 0.028	-2.196 \pm 2.882	0.086 \pm 0.165	0.630 \pm 0.021	-0.129 \pm 0.190	0.167
<i>Baselines (no imputation)</i>						
Uncertainty	0.307 \pm 0.038	-3.361 \pm 3.790	0.231 \pm 0.070	0.649 \pm 0.017	0.625 \pm 0.086	-0.055
Probability	0.336 \pm 0.018	3.511 \pm 2.928	0.632 \pm 0.027	0.575 \pm 0.048	0.625 \pm 0.086	0.650
Random	0.222 \pm 0.044	0.102 \pm 0.610	0.485 \pm 0.131	0.515 \pm 0.036	0.240 \pm 0.153	0.263

1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835

1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851

Table 24: Acquisition performance on MIMIC Symile for AUPRC (Image imputed by ECG), showing G_{full} . Strategies are grouped by category. Best strategy among proposed and baseline methods in bold for each column.

Strategy	Fracture	Enl. Card.	Consolidation	Atelectasis	Edema	Mean
<i>Upper Bounds (for reference)</i>						
Oracle	6.343 \pm 5.165	1.593 \pm 0.113	1.950 \pm 0.162	2.785 \pm 0.530	1.832 \pm 0.041	4.085
True KL-Div.	1.358 \pm 0.553	0.818 \pm 0.060	0.776 \pm 0.039	0.526 \pm 0.206	0.855 \pm 0.004	0.814
True Rank	-0.157 \pm 0.576	0.643 \pm 0.064	0.808 \pm 0.008	-0.477 \pm 0.824	0.741 \pm 0.031	0.420
True Uncert.	1.331 \pm 0.520	0.699 \pm 0.124	0.790 \pm 0.026	-0.640 \pm 0.325	0.745 \pm 0.040	0.489
<i>Imputation-based (proposed)</i>						
KL-Div	-0.784 \pm 1.571	0.613 \pm 0.082	0.870 \pm 0.127	-0.203 \pm 0.570	0.737 \pm 0.035	0.434
Probability	0.498 \pm 0.210	0.552 \pm 0.123	0.868 \pm 0.103	0.136 \pm 0.118	0.722 \pm 0.027	0.590
Rank	0.116 \pm 0.576	0.468 \pm 0.033	0.652 \pm 0.045	-0.068 \pm 0.285	0.524 \pm 0.027	0.419
Uncertainty	0.642 \pm 0.147	0.553 \pm 0.129	0.874 \pm 0.099	0.297 \pm 0.183	0.553 \pm 0.015	0.462
<i>Baselines (no imputation)</i>						
Uncertainty	-4.523 \pm 5.002	0.451 \pm 0.068	0.668 \pm 0.070	0.360 \pm 0.105	0.534 \pm 0.013	-0.049
Probability	-0.190 \pm 0.747	0.496 \pm 0.049	0.578 \pm 0.027	-0.626 \pm 0.854	0.534 \pm 0.013	0.382
Random	-3.009 \pm 2.890	0.530 \pm 0.060	0.715 \pm 0.037	-0.038 \pm 0.461	0.591 \pm 0.012	0.098
Strategy	Cardiomegaly	Lung Lesion	Lung Opacity	Pneumonia	Pneumothorax	Mean
<i>Upper Bounds (for reference)</i>						
Oracle	2.458 \pm 0.268	2.158 \pm 0.482	2.735 \pm 0.464	3.162 \pm 0.383	15.830 \pm 5.601	4.085
True KL-Div.	0.827 \pm 0.009	0.679 \pm 0.250	0.711 \pm 0.063	0.727 \pm 0.026	0.861 \pm 0.024	0.814
True Rank	0.555 \pm 0.041	-0.005 \pm 0.389	0.715 \pm 0.109	0.809 \pm 0.034	0.573 \pm 0.150	0.420
True Uncert.	0.803 \pm 0.012	0.184 \pm 0.270	-0.069 \pm 0.111	0.723 \pm 0.046	0.326 \pm 0.207	0.489
<i>Imputation-based (proposed)</i>						
KL-Div	0.288 \pm 0.055	0.468 \pm 0.419	0.466 \pm 0.061	0.595 \pm 0.049	1.285 \pm 0.172	0.434
Probability	0.471 \pm 0.038	0.519 \pm 0.046	0.173 \pm 0.148	0.712 \pm 0.048	1.249 \pm 0.094	0.590
Rank	0.234 \pm 0.057	0.554 \pm 0.118	0.214 \pm 0.099	0.688 \pm 0.053	0.810 \pm 0.388	0.419
Uncertainty	0.477 \pm 0.035	0.224 \pm 0.340	0.181 \pm 0.070	0.625 \pm 0.030	0.192 \pm 0.082	0.462
<i>Baselines (no imputation)</i>						
Uncertainty	0.304 \pm 0.125	0.033 \pm 0.364	0.225 \pm 0.012	0.659 \pm 0.046	0.801 \pm 0.041	-0.049
Probability	0.427 \pm 0.037	0.704 \pm 0.458	0.524 \pm 0.057	0.574 \pm 0.072	0.801 \pm 0.041	0.382
Random	0.227 \pm 0.042	0.518 \pm 0.037	0.362 \pm 0.020	0.505 \pm 0.048	0.584 \pm 0.155	0.098

1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889

1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905

Table 25: Acquisition performance on MIMIC Symile for AUROC (Image imputed by Lab and ECG), showing G_{full} . Strategies are grouped by category. Best strategy among proposed and baseline methods in bold for each column.

Strategy	Fracture	Enl. Card.	Consolidation	Atelectasis	Edema	Mean
<i>Upper Bounds (for reference)</i>						
Oracle	2.679 \pm 0.496	3.081 \pm 0.257	2.539 \pm 0.150	5.098 \pm 0.624	2.119 \pm 0.086	3.911
True KL-Div.	1.006 \pm 0.111	1.105 \pm 0.082	0.880 \pm 0.033	0.703 \pm 0.095	1.017 \pm 0.023	0.922
True Rank	0.760 \pm 0.142	1.076 \pm 0.073	0.993 \pm 0.052	0.930 \pm 0.136	1.036 \pm 0.023	0.884
True Uncert.	0.975 \pm 0.140	0.877 \pm 0.083	0.886 \pm 0.065	0.300 \pm 0.043	0.634 \pm 0.018	0.494
<i>Imputation-based (proposed)</i>						
KL-Div	0.770 \pm 0.122	0.736 \pm 0.077	0.711 \pm 0.031	0.049 \pm 0.191	0.535 \pm 0.015	0.512
Probability	0.883 \pm 0.111	0.563 \pm 0.062	0.620 \pm 0.034	0.706 \pm 0.096	0.593 \pm 0.010	0.628
Rank	0.594 \pm 0.082	0.335 \pm 0.079	0.423 \pm 0.070	0.130 \pm 0.226	0.466 \pm 0.012	0.392
Uncertainty	0.785 \pm 0.085	0.535 \pm 0.064	0.728 \pm 0.050	0.545 \pm 0.088	0.556 \pm 0.015	0.505
<i>Baselines (no imputation)</i>						
Uncertainty	0.514 \pm 0.151	0.495 \pm 0.038	0.529 \pm 0.045	0.466 \pm 0.056	0.545 \pm 0.014	0.474
Probability	0.265 \pm 0.046	0.463 \pm 0.035	0.461 \pm 0.037	0.268 \pm 0.136	0.401 \pm 0.009	0.421
Random	0.005 \pm 0.204	0.386 \pm 0.047	0.467 \pm 0.031	0.373 \pm 0.145	0.472 \pm 0.014	0.425
Strategy	Cardiomegaly	Lung Lesion	Lung Opacity	Pneumonia	Pneumothorax	Mean
<i>Upper Bounds (for reference)</i>						
Oracle	2.552 \pm 0.116	3.249 \pm 0.605	4.964 \pm 0.431	3.736 \pm 0.369	9.096 \pm 1.223	3.911
True KL-Div.	0.910 \pm 0.030	0.517 \pm 0.243	0.811 \pm 0.052	0.967 \pm 0.061	1.298 \pm 0.121	0.922
True Rank	1.047 \pm 0.032	0.545 \pm 0.093	0.839 \pm 0.055	1.010 \pm 0.056	0.607 \pm 0.109	0.884
True Uncert.	0.514 \pm 0.027	0.200 \pm 0.151	0.293 \pm 0.058	0.729 \pm 0.044	-0.468 \pm 0.155	0.494
<i>Imputation-based (proposed)</i>						
KL-Div	0.374 \pm 0.016	0.403 \pm 0.210	0.457 \pm 0.079	0.518 \pm 0.036	0.565 \pm 0.103	0.512
Probability	0.453 \pm 0.016	0.680 \pm 0.352	0.391 \pm 0.064	0.443 \pm 0.042	0.950 \pm 0.096	0.628
Rank	0.408 \pm 0.017	0.581 \pm 0.211	0.493 \pm 0.063	0.487 \pm 0.054	-0.000 \pm 0.092	0.392
Uncertainty	0.476 \pm 0.011	0.289 \pm 0.162	0.366 \pm 0.052	0.599 \pm 0.031	0.171 \pm 0.078	0.505
<i>Baselines (no imputation)</i>						
Uncertainty	0.457 \pm 0.013	0.241 \pm 0.261	0.381 \pm 0.040	0.588 \pm 0.023	0.520 \pm 0.055	0.474
Probability	0.437 \pm 0.011	0.448 \pm 0.230	0.496 \pm 0.057	0.449 \pm 0.027	0.519 \pm 0.055	0.421
Random	0.418 \pm 0.015	0.739 \pm 0.256	0.530 \pm 0.100	0.493 \pm 0.051	0.362 \pm 0.101	0.425

1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956

1957 Table 26: Acquisition performance on MIMIC Symile for AUPRC (Image imputed by Lab and
1958 ECG), showing G_{full} . Strategies are grouped by category. Best strategy among proposed and baseline
1959 methods in bold for each column.

1960	Strategy	Fracture	Enl. Card.	Consolidation	Atelectasis	Edema	Mean
<i>Upper Bounds (for reference)</i>							
1962	Oracle	3.244 \pm 0.899	2.660 \pm 0.365	3.290 \pm 0.320	3.756 \pm 0.538	2.484 \pm 0.159	4.063
1963	True KL-Div.	1.111 \pm 0.223	0.983 \pm 1.014	0.998 \pm 0.079	0.674 \pm 0.088	1.014 \pm 0.034	0.939
1964	True Rank	0.503 \pm 0.538	0.727 \pm 0.084	1.063 \pm 0.108	0.762 \pm 0.088	1.014 \pm 0.036	0.822
1965	True Uncert.	0.826 \pm 0.166	0.950 \pm 0.103	0.923 \pm 0.060	0.143 \pm 0.041	0.636 \pm 0.029	0.493
<i>Imputation-based (proposed)</i>							
1966	KL-Div	1.238 \pm 0.634	0.636 \pm 0.075	0.754 \pm 0.075	0.330 \pm 0.146	0.467 \pm 0.020	0.585
1967	Probability	0.821 \pm 0.184	0.581 \pm 0.048	0.714 \pm 0.055	0.478 \pm 0.083	0.648 \pm 0.012	0.610
1968	Rank	1.133 \pm 0.543	0.375 \pm 0.081	0.582 \pm 0.103	0.139 \pm 0.174	0.469 \pm 0.018	0.491
1969	Uncertainty	1.018 \pm 0.316	0.516 \pm 0.058	0.783 \pm 0.081	0.285 \pm 0.039	0.505 \pm 0.015	0.500
<i>Baselines (no imputation)</i>							
1970	Uncertainty	0.843 \pm 0.289	0.410 \pm 0.050	0.562 \pm 0.061	0.275 \pm 0.038	0.521 \pm 0.019	0.467
1971	Probability	0.196 \pm 0.143	0.567 \pm 0.044	0.520 \pm 0.042	0.442 \pm 0.111	0.572 \pm 0.014	0.515
1972	Random	-0.073 \pm 0.199	0.397 \pm 0.084	0.556 \pm 0.053	0.411 \pm 0.100	0.470 \pm 0.013	0.406
1973	Strategy	Cardiomegaly	Lung Lesion	Lung Opacity	Pneumonia	Pneumothorax	Mean
<i>Upper Bounds (for reference)</i>							
1975	Oracle	2.494 \pm 0.181	2.376 \pm 0.472	4.061 \pm 0.416	4.964 \pm 0.520	11.303 \pm 0.974	4.063
1976	True KL-Div.	0.823 \pm 0.022	0.809 \pm 0.139	0.873 \pm 0.081	1.002 \pm 0.049	1.105 \pm 0.058	0.939
1977	True Rank	1.012 \pm 0.039	0.573 \pm 0.099	0.952 \pm 0.093	1.027 \pm 0.058	0.591 \pm 0.077	0.822
1978	True Uncert.	0.394 \pm 0.037	0.201 \pm 0.029	0.184 \pm 0.050	0.624 \pm 0.044	0.054 \pm 0.058	0.493
<i>Imputation-based (proposed)</i>							
1979	KL-Div	0.346 \pm 0.023	0.560 \pm 0.075	0.524 \pm 0.074	0.441 \pm 0.037	0.551 \pm 0.075	0.585
1980	Probability	0.448 \pm 0.029	0.569 \pm 0.185	0.404 \pm 0.073	0.481 \pm 0.039	0.959 \pm 0.048	0.610
1981	Rank	0.390 \pm 0.023	0.523 \pm 0.091	0.359 \pm 0.088	0.449 \pm 0.034	0.492 \pm 0.045	0.491
1982	Uncertainty	0.346 \pm 0.019	0.323 \pm 0.061	0.279 \pm 0.041	0.466 \pm 0.034	0.475 \pm 0.062	0.500
<i>Baselines (no imputation)</i>							
1983	Uncertainty	0.334 \pm 0.018	0.257 \pm 0.049	0.262 \pm 0.035	0.491 \pm 0.029	0.715 \pm 0.033	0.467
1984	Probability	0.555 \pm 0.015	0.448 \pm 0.096	0.607 \pm 0.062	0.528 \pm 0.032	0.715 \pm 0.033	0.515
1985	Random	0.415 \pm 0.015	0.575 \pm 0.228	0.368 \pm 0.069	0.432 \pm 0.057	0.510 \pm 0.090	0.406

1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010

2011 Table 27: Acquisition performance on MIMIC Symile for AUROC (Lab imputed by Image), showing
 2012 G_{full} . Strategies are grouped by category. Best strategy among proposed and baseline methods in
 2013 bold for each column.

2014	Strategy	Fracture	Enl. Card.	Consolidation	Atelectasis	Edema	Mean
<i>Upper Bounds (for reference)</i>							
2015	Oracle	2.404 \pm 0.448	5.403 \pm 1.547	2.446 \pm 0.350	4.261	4.715 \pm 0.988	6.306
2016	True KL-Div.	0.901 \pm 0.104	0.727 \pm 0.113	0.874 \pm 0.045	0.807	0.670 \pm 0.093	0.634
2017	True Rank	0.490 \pm 0.208	0.872 \pm 0.019	0.873 \pm 0.081	1.691	0.627 \pm 0.148	0.604
2018	True Uncert.	-0.204 \pm 0.122	0.690 \pm 0.193	0.319 \pm 0.084	-0.511	0.507 \pm 0.100	0.154
<i>Imputation-based (proposed)</i>							
2019	KL-Div	0.443 \pm 0.028	0.503 \pm 0.316	0.523 \pm 0.078	0.383	0.193 \pm 0.090	0.684
2020	Probability	0.087 \pm 0.217	0.428 \pm 0.155	0.574 \pm 0.117	0.221	0.457 \pm 0.056	0.380
2021	Rank	0.848 \pm 0.131	-0.103 \pm 0.100	0.309 \pm 0.073	-0.390	0.463 \pm 0.125	-0.139
2022	Uncertainty	0.074 \pm 0.187	0.593 \pm 0.168	0.415 \pm 0.107	0.278	0.624 \pm 0.029	0.311
<i>Baselines (no imputation)</i>							
2023	Uncertainty	0.515 \pm 0.062	0.781 \pm 0.101	0.394 \pm 0.106	0.310	0.636 \pm 0.041	0.487
2024	Probability	0.105 \pm 0.251	0.444 \pm 0.144	0.567 \pm 0.112	0.267	0.449 \pm 0.055	0.390
2025	Random	0.366 \pm 0.519	0.662 \pm 0.085	0.504 \pm 0.111	0.087	0.229 \pm 0.142	0.419
2026	Strategy	Cardiomegaly	Lung Lesion	Lung Opacity	Pneumonia	Pneumothorax	Mean
<i>Upper Bounds (for reference)</i>							
2027	Oracle	11.461	9.175 \pm 4.619	10.440 \pm 4.341	4.058 \pm 0.233	8.693 \pm 2.295	6.306
2028	True KL-Div.	0.359	0.043 \pm 1.152	0.608 \pm 0.141	0.793 \pm 0.054	0.561 \pm 0.157	0.634
2029	True Rank	0.396	0.640 \pm 1.426	-0.637 \pm 0.091	0.797 \pm 0.031	0.296 \pm 0.208	0.604
2030	True Uncert.	0.507	1.296 \pm 0.137	-1.510 \pm 0.311	0.320 \pm 0.119	0.128 \pm 0.257	0.154
<i>Imputation-based (proposed)</i>							
2031	KL-Div	0.477	3.593 \pm 0.801	0.055 \pm 1.005	0.630 \pm 0.024	0.037 \pm 0.291	0.684
2032	Probability	0.551	2.347 \pm 0.438	-2.017 \pm 0.592	0.581 \pm 0.030	0.575 \pm 0.116	0.380
2033	Rank	-0.413	-1.673 \pm 4.164	-0.741 \pm 0.142	0.398 \pm 0.150	-0.084 \pm 0.300	-0.139
2034	Uncertainty	0.646	0.200 \pm 0.174	-0.684 \pm 0.697	0.401 \pm 0.073	0.566 \pm 0.142	0.311
<i>Baselines (no imputation)</i>							
2035	Uncertainty	0.277	0.172 \pm 0.139	0.706 \pm 0.448	0.501 \pm 0.107	0.575 \pm 0.126	0.487
2036	Probability	0.471	1.854 \pm 1.407	-1.445 \pm 0.962	0.615 \pm 0.016	0.575 \pm 0.126	0.390
2037	Random	-0.872	2.030 \pm 1.179	0.329 \pm 0.460	0.490 \pm 0.124	0.365 \pm 0.137	0.419

2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051

2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067

Table 28: Acquisition performance on MIMIC Symile for AUPRC (Lab imputed by Image), showing G_{full} . Strategies are grouped by category. Best strategy among proposed and baseline methods in bold for each column.

2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105

Strategy	Fracture	Enl. Card.	Consolidation	Atelectasis	Edema	Mean
<i>Upper Bounds (for reference)</i>						
Oracle	2.142 \pm 0.360	3.772 \pm 0.624	4.042 \pm 1.747	–	5.560 \pm 1.093	4.751
True KL-Div.	0.916 \pm 0.056	0.648 \pm 0.079	0.997 \pm 0.160	–	0.568 \pm 0.132	0.699
True Rank	0.400 \pm 0.206	0.686 \pm 0.095	1.106 \pm 0.342	–	0.603 \pm 0.139	0.590
True Uncert.	–1.106 \pm 0.446	0.506 \pm 0.100	0.258 \pm 0.136	–	0.477 \pm 0.270	0.153
<i>Imputation-based (proposed)</i>						
KL-Div	0.499 \pm 0.117	0.481 \pm 0.203	0.413 \pm 0.187	–	0.269 \pm 0.189	0.680
Probability	–0.381 \pm 0.441	0.618 \pm 0.008	0.339 \pm 0.318	–	0.681 \pm 0.114	0.442
Rank	0.824 \pm 0.103	–0.157 \pm 0.006	–0.044 \pm 0.404	–	0.246 \pm 0.115	0.186
Uncertainty	–0.429 \pm 0.473	0.415 \pm 0.161	0.541 \pm 0.220	–	0.570 \pm 0.164	0.124
<i>Baselines (no imputation)</i>						
Uncertainty	0.455 \pm 0.060	0.484 \pm 0.099	0.537 \pm 0.231	–	0.585 \pm 0.160	0.440
Probability	–0.362 \pm 0.445	0.629 \pm 0.007	0.325 \pm 0.326	–	0.672 \pm 0.112	0.572
Random	0.283 \pm 0.513	0.635 \pm 0.001	0.303 \pm 0.231	–	0.253 \pm 0.115	0.356
Strategy	Cardiomegaly	Lung Lesion	Lung Opacity	Pneumonia	Pneumothorax	Mean
<i>Upper Bounds (for reference)</i>						
Oracle	–	3.615 \pm 0.753	3.868	4.819 \pm 0.587	10.192 \pm 4.607	4.751
True KL-Div.	–	0.503 \pm 0.458	0.513	0.865 \pm 0.112	0.585 \pm 0.087	0.699
True Rank	–	0.974 \pm 0.661	–0.184	0.709 \pm 0.066	0.426 \pm 0.076	0.590
True Uncert.	–	0.621 \pm 0.157	–0.406	0.202 \pm 0.069	0.674 \pm 0.151	0.153
<i>Imputation-based (proposed)</i>						
KL-Div	–	1.905 \pm 0.140	0.987	0.723 \pm 0.115	0.162 \pm 0.123	0.680
Probability	–	1.133 \pm 0.483	–0.486	0.659 \pm 0.050	0.976 \pm 0.085	0.442
Rank	–	0.274 \pm 1.456	–0.263	0.304 \pm 0.238	0.301 \pm 0.113	0.186
Uncertainty	–	–0.397 \pm 0.271	–0.893	0.261 \pm 0.024	0.925 \pm 0.045	0.124
<i>Baselines (no imputation)</i>						
Uncertainty	–	0.053 \pm 0.070	0.109	0.330 \pm 0.055	0.963 \pm 0.071	0.440
Probability	–	1.363 \pm 0.660	0.282	0.708 \pm 0.061	0.963 \pm 0.071	0.572
Random	–	0.088 \pm 0.319	0.534	0.455 \pm 0.187	0.296 \pm 0.199	0.356

2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118

2119 Table 29: Acquisition performance on MIMIC Symile for AUROC (Lab imputed by ECG), showing
 2120 G_{full} . Strategies are grouped by category. Best strategy among proposed and baseline methods in
 2121 bold for each column.

Strategy	Fracture	Enl. Card.	Consolidation	Atelectasis	Edema	Mean
<i>Upper Bounds (for reference)</i>						
Oracle	2.830 ± 1.006	6.507 ± 2.813	1.993 ± 0.252	13.751 ± 3.349	5.706 ± 1.964	7.637
True KL-Div.	0.807 ± 0.072	1.043 ± 0.176	0.855 ± 0.056	0.933 ± 0.345	0.841 ± 0.028	0.727
True Rank	0.454 ± 0.258	0.880 ± 0.255	0.756 ± 0.027	0.462 ± 0.641	0.398 ± 0.151	0.290
True Uncert.	0.665 ± 0.104	0.273 ± 0.305	0.688 ± 0.056	-0.218 ± 1.149	0.568 ± 0.041	0.437
<i>Imputation-based (proposed)</i>						
KL-Div	0.735 ± 0.130	1.221 ± 0.208	0.670 ± 0.136	4.739 ± 1.683	2.234 ± 0.684	2.096
Probability	0.569 ± 0.115	0.126 ± 0.370	0.775 ± 0.075	-4.498 ± 1.913	2.255 ± 0.646	-0.333
Rank	0.395 ± 0.117	0.160 ± 0.439	0.298 ± 0.039	1.303 ± 1.170	-1.119 ± 0.726	0.619
Uncertainty	0.612 ± 0.125	0.499 ± 0.346	0.773 ± 0.078	-4.102 ± 1.614	0.071 ± 0.175	-0.744
<i>Baselines (no imputation)</i>						
Uncertainty	0.421 ± 0.290	0.544 ± 0.303	0.456 ± 0.081	0.431 ± 0.170	0.324 ± 0.024	0.574
Probability	0.069 ± 0.066	0.372 ± 0.420	0.505 ± 0.102	0.161 ± 0.787	0.324 ± 0.024	0.521
Random	0.117 ± 0.418	0.737 ± 0.338	0.531 ± 0.041	-0.400 ± 1.001	0.107 ± 0.142	0.189
Strategy	Cardiomegaly	Lung Lesion	Lung Opacity	Pneumonia	Pneumothorax	Mean
<i>Upper Bounds (for reference)</i>						
Oracle	-	13.135 ± 7.362	9.638 ± 2.483	3.075 ± 0.250	12.098 ± 2.848	7.637
True KL-Div.	-	-0.560 ± 1.556	0.982 ± 0.050	0.761 ± 0.031	0.884 ± 0.076	0.727
True Rank	-	-2.847 ± 4.746	1.545 ± 0.340	0.776 ± 0.020	0.185 ± 0.511	0.290
True Uncert.	-	2.300 ± 1.585	0.157 ± 0.299	0.563 ± 0.120	-1.060 ± 0.540	0.437
<i>Imputation-based (proposed)</i>						
KL-Div	-	4.580 ± 1.600	2.539 ± 0.511	0.646 ± 0.117	1.494 ± 0.303	2.096
Probability	-	-2.903 ± 3.257	-1.391 ± 0.383	0.455 ± 0.124	1.617 ± 0.337	-0.333
Rank	-	2.305 ± 0.688	1.567 ± 0.771	0.642 ± 0.053	0.017 ± 0.983	0.619
Uncertainty	-	-2.336 ± 1.344	-1.290 ± 0.341	0.494 ± 0.140	-1.416 ± 0.454	-0.744
<i>Baselines (no imputation)</i>						
Uncertainty	-	1.397 ± 1.699	0.190 ± 0.028	0.541 ± 0.082	0.867 ± 0.198	0.574
Probability	-	0.657 ± 2.145	1.107 ± 0.654	0.626 ± 0.050	0.867 ± 0.198	0.521
Random	-	-0.793 ± 3.159	0.931 ± 0.196	0.555 ± 0.085	-0.086 ± 0.456	0.189

2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159

2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172

2173 Table 30: Acquisition performance on MIMIC Symile for AUPRC (Lab imputed by ECG), showing
 2174 G_{full} . Strategies are grouped by category. Best strategy among proposed and baseline methods in
 2175 bold for each column.

Strategy	Fracture	Enl. Card.	Consolidation	Atelectasis	Edema	Mean
<i>Upper Bounds (for reference)</i>						
Oracle	4.231 ± 2.318	4.018 ± 1.224	2.093 ± 0.267	6.269 ± 0.383	5.741 ± 1.374	6.317
True KL-Div.	0.924 ± 0.069	0.825 ± 0.017	0.883 ± 0.030	0.717 ± 0.570	0.897 ± 0.019	0.972
True Rank	0.030 ± 0.698	0.643 ± 0.103	0.846 ± 0.041	0.619 ± 1.260	0.351 ± 0.208	0.900
True Uncert.	0.730 ± 0.109	0.793 ± 0.209	0.784 ± 0.034	0.030 ± 0.615	0.740 ± 0.024	0.550
<i>Imputation-based (proposed)</i>						
KL-Div	0.721 ± 0.166	1.292 ± 0.411	0.780 ± 0.157	1.533 ± 0.215	2.267 ± 0.487	1.779
Probability	0.532 ± 0.179	1.116 ± 0.598	0.920 ± 0.086	-0.332 ± 0.041	2.300 ± 0.464	0.751
Rank	0.092 ± 0.485	0.353 ± 0.268	0.372 ± 0.058	-0.032 ± 0.027	-0.641 ± 0.441	0.458
Uncertainty	0.580 ± 0.189	1.080 ± 0.651	0.930 ± 0.088	-0.549 ± 0.088	0.351 ± 0.131	0.145
<i>Baselines (no imputation)</i>						
Uncertainty	-1.088 ± 1.658	0.451 ± 0.118	0.605 ± 0.085	0.152 ± 0.036	0.645 ± 0.093	0.260
Probability	-0.282 ± 0.309	0.672 ± 0.126	0.594 ± 0.102	0.769 ± 0.144	0.645 ± 0.093	1.112
Random	-0.458 ± 0.636	0.631 ± 0.184	0.659 ± 0.051	0.925 ± 0.146	0.264 ± 0.154	0.556
Strategy	Cardiomegaly	Lung Lesion	Lung Opacity	Pneumonia	Pneumothorax	Mean
<i>Upper Bounds (for reference)</i>						
Oracle	—	8.610 ± 6.961	5.951 ± 0.522	7.534 ± 2.031	12.402 ± 2.525	6.317
True KL-Div.	—	2.009 ± 1.288	0.811 ± 0.344	0.772 ± 0.111	0.910 ± 0.021	0.972
True Rank	—	3.099 ± 2.419	1.137 ± 0.603	0.812 ± 0.056	0.561 ± 0.207	0.900
True Uncert.	—	1.431 ± 1.304	-0.150 ± 0.288	0.555 ± 0.159	0.032 ± 0.114	0.550
<i>Imputation-based (proposed)</i>						
KL-Div	—	5.709 ± 4.716	1.662 ± 0.095	0.667 ± 0.138	1.378 ± 0.274	1.779
Probability	—	0.927 ± 0.497	-0.770 ± 0.192	0.647 ± 0.140	1.420 ± 0.260	0.751
Rank	—	1.988 ± 1.092	0.643 ± 0.448	0.564 ± 0.136	0.788 ± 0.367	0.458
Uncertainty	—	-0.954 ± 0.761	-0.714 ± 0.206	0.591 ± 0.192	-0.013 ± 0.125	0.145
<i>Baselines (no imputation)</i>						
Uncertainty	—	-0.023 ± 0.028	0.078 ± 0.073	0.516 ± 0.137	1.005 ± 0.151	0.260
Probability	—	5.083 ± 4.111	0.941 ± 0.112	0.581 ± 0.069	1.005 ± 0.151	1.112
Random	—	1.804 ± 0.871	0.053 ± 0.419	0.510 ± 0.130	0.616 ± 0.097	0.556

2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213

2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226

2227 Table 31: Acquisition performance on MIMIC Symile for AUROC (Lab imputed by Image and
 2228 ECG), showing G_{full} . Strategies are grouped by category. Best strategy among proposed and baseline
 2229 methods in bold for each column.

Strategy	Fracture	Enl. Card.	Consolidation	Atelectasis	Edema	Mean
<i>Upper Bounds (for reference)</i>						
Oracle	2.416 \pm 0.727	2.670 \pm 0.218	3.090 \pm 0.355	3.712 \pm 0.446	2.174 \pm 0.050	4.233
True KL-Div.	1.165 \pm 0.267	0.883 \pm 0.024	1.050 \pm 0.058	1.092 \pm 0.080	0.925 \pm 0.006	0.981
True Rank	1.373 \pm 0.427	0.811 \pm 0.024	1.076 \pm 0.050	0.904 \pm 0.066	0.888 \pm 0.008	0.883
True Uncert.	1.008 \pm 0.213	0.720 \pm 0.056	0.781 \pm 0.030	-0.092 \pm 0.044	0.675 \pm 0.027	0.494
<i>Imputation-based (proposed)</i>						
KL-Div	1.088 \pm 0.224	0.875 \pm 0.022	0.667 \pm 0.039	1.193 \pm 0.091	0.885 \pm 0.008	1.035
Probability	1.084 \pm 0.241	0.647 \pm 0.048	0.657 \pm 0.039	-0.270 \pm 0.085	0.767 \pm 0.008	0.390
Rank	-0.190 \pm 0.547	0.273 \pm 0.051	0.415 \pm 0.044	0.448 \pm 0.088	0.192 \pm 0.017	0.350
Uncertainty	0.981 \pm 0.208	0.718 \pm 0.054	0.736 \pm 0.028	-0.143 \pm 0.044	0.636 \pm 0.027	0.448
<i>Baselines (no imputation)</i>						
Uncertainty	0.772 \pm 0.126	0.492 \pm 0.034	0.627 \pm 0.033	0.183 \pm 0.030	0.506 \pm 0.019	0.469
Probability	0.088 \pm 0.147	0.529 \pm 0.030	0.376 \pm 0.025	0.804 \pm 0.069	0.324 \pm 0.007	0.521
Random	0.212 \pm 0.278	0.404 \pm 0.030	0.503 \pm 0.030	0.247 \pm 0.113	0.439 \pm 0.014	0.268
Strategy	Cardiomegaly	Lung Lesion	Lung Opacity	Pneumonia	Pneumothorax	Mean
<i>Upper Bounds (for reference)</i>						
Oracle	2.438 \pm 0.113	6.864 \pm 1.482	6.398 \pm 0.783	4.889 \pm 0.635	7.680 \pm 0.820	4.233
True KL-Div.	0.887 \pm 0.007	1.245 \pm 0.526	0.863 \pm 0.089	0.809 \pm 0.032	0.892 \pm 0.057	0.981
True Rank	0.777 \pm 0.012	0.383 \pm 0.609	0.822 \pm 0.095	0.940 \pm 0.026	0.855 \pm 0.073	0.883
True Uncert.	0.878 \pm 0.008	0.148 \pm 0.198	0.045 \pm 0.084	0.831 \pm 0.047	-0.059 \pm 0.078	0.494
<i>Imputation-based (proposed)</i>						
KL-Div	0.887 \pm 0.006	2.529 \pm 0.817	0.914 \pm 0.102	0.661 \pm 0.036	0.651 \pm 0.058	1.035
Probability	0.718 \pm 0.008	-0.467 \pm 0.520	-0.425 \pm 0.153	0.445 \pm 0.063	0.743 \pm 0.056	0.390
Rank	0.326 \pm 0.026	0.909 \pm 0.407	0.492 \pm 0.087	0.561 \pm 0.035	0.079 \pm 0.133	0.350
Uncertainty	0.882 \pm 0.007	-0.351 \pm 0.366	0.040 \pm 0.080	0.838 \pm 0.047	0.141 \pm 0.068	0.448
<i>Baselines (no imputation)</i>						
Uncertainty	0.693 \pm 0.009	-0.022 \pm 0.318	0.281 \pm 0.070	0.730 \pm 0.044	0.425 \pm 0.039	0.469
Probability	0.260 \pm 0.006	1.476 \pm 0.565	0.538 \pm 0.131	0.387 \pm 0.044	0.425 \pm 0.039	0.521
Random	0.334 \pm 0.016	-0.383 \pm 0.692	0.212 \pm 0.120	0.492 \pm 0.033	0.216 \pm 0.078	0.268

2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267

2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280

2281 Table 32: Acquisition performance on MIMIC Symile for AUPRC (Lab imputed by Image and
 2282 ECG), showing G_{full} . Strategies are grouped by category. Best strategy among proposed and baseline
 2283 methods in bold for each column.

2284
 2285
 2286
 2287
 2288
 2289

Strategy	Fracture	Enl. Card.	Consolidation	Atelectasis	Edema	Mean
<i>Upper Bounds (for reference)</i>						
Oracle	1.965 \pm 0.497	2.573 \pm 0.236	3.714 \pm 0.473	2.444 \pm 0.174	2.962 \pm 0.166	3.748
True KL-Div.	0.961 \pm 0.228	0.918 \pm 0.033	1.042 \pm 0.082	0.985 \pm 0.053	0.954 \pm 0.013	0.878
True Rank	0.899 \pm 0.233	0.896 \pm 0.037	1.138 \pm 0.112	0.886 \pm 0.051	0.922 \pm 0.019	0.820
True Uncert.	0.610 \pm 0.076	0.741 \pm 0.066	0.736 \pm 0.075	-0.096 \pm 0.042	0.718 \pm 0.030	0.482
<i>Imputation-based (proposed)</i>						
KL-Div	0.914 \pm 0.236	0.921 \pm 0.039	0.587 \pm 0.056	1.038 \pm 0.046	0.925 \pm 0.011	0.835
Probability	0.811 \pm 0.100	0.619 \pm 0.048	0.677 \pm 0.026	-0.376 \pm 0.097	0.848 \pm 0.014	0.469
Rank	0.516 \pm 0.085	0.343 \pm 0.047	0.412 \pm 0.046	0.355 \pm 0.050	0.202 \pm 0.019	0.370
Uncertainty	0.662 \pm 0.086	0.759 \pm 0.070	0.723 \pm 0.084	-0.131 \pm 0.030	0.691 \pm 0.028	0.482
<i>Baselines (no imputation)</i>						
Uncertainty	0.573 \pm 0.099	0.564 \pm 0.041	0.601 \pm 0.074	0.152 \pm 0.016	0.527 \pm 0.023	0.485
Probability	0.265 \pm 0.173	0.475 \pm 0.038	0.424 \pm 0.060	0.712 \pm 0.038	0.344 \pm 0.012	0.518
Random	0.504 \pm 0.107	0.449 \pm 0.031	0.612 \pm 0.063	0.242 \pm 0.096	0.471 \pm 0.024	0.431
Strategy	Cardiomegaly	Lung Lesion	Lung Opacity	Pneumonia	Pneumothorax	Mean
<i>Upper Bounds (for reference)</i>						
Oracle	3.070 \pm 0.202	2.036 \pm 0.167	3.622 \pm 0.323	5.602 \pm 0.520	9.490 \pm 1.511	3.748
True KL-Div.	0.890 \pm 0.014	0.761 \pm 0.095	0.815 \pm 0.055	0.824 \pm 0.051	0.629 \pm 0.127	0.878
True Rank	0.807 \pm 0.020	0.452 \pm 0.119	0.721 \pm 0.057	0.920 \pm 0.047	0.560 \pm 0.254	0.820
True Uncert.	0.880 \pm 0.018	0.171 \pm 0.115	0.034 \pm 0.040	0.616 \pm 0.032	0.411 \pm 0.168	0.482
<i>Imputation-based (proposed)</i>						
KL-Div	0.938 \pm 0.017	0.964 \pm 0.166	0.923 \pm 0.067	0.675 \pm 0.045	0.466 \pm 0.230	0.835
Probability	0.756 \pm 0.008	0.182 \pm 0.257	-0.400 \pm 0.112	0.669 \pm 0.034	0.906 \pm 0.035	0.469
Rank	0.368 \pm 0.036	0.486 \pm 0.142	0.363 \pm 0.070	0.418 \pm 0.039	0.234 \pm 0.154	0.370
Uncertainty	0.932 \pm 0.018	0.020 \pm 0.100	-0.017 \pm 0.041	0.606 \pm 0.037	0.573 \pm 0.244	0.482
<i>Baselines (no imputation)</i>						
Uncertainty	0.720 \pm 0.018	0.158 \pm 0.050	0.219 \pm 0.024	0.560 \pm 0.038	0.781 \pm 0.148	0.485
Probability	0.266 \pm 0.012	0.860 \pm 0.124	0.576 \pm 0.066	0.479 \pm 0.048	0.781 \pm 0.148	0.518
Random	0.375 \pm 0.027	0.362 \pm 0.172	0.296 \pm 0.055	0.464 \pm 0.057	0.539 \pm 0.133	0.431

2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321

2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334

2335 Table 33: Acquisition performance on MIMIC Symile for AUROC (ECG imputed by Image), showing
 2336 G_{full} . Strategies are grouped by category. Best strategy among proposed and baseline methods in
 2337 bold for each column.

2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350

Strategy	Fracture	Enl. Card.	Consolidation	Atelectasis	Edema	Mean
<i>Upper Bounds (for reference)</i>						
Oracle	3.489 ± 1.656	21.015 ± 5.247	–	–	37.701	28.964
True KL-Div.	0.546 ± 0.073	0.036 ± 0.994	–	–	0.028	0.032
True Rank	0.550 ± 0.379	-2.342 ± 1.928	–	–	-1.276	0.122
True Uncert.	0.648 ± 0.497	-0.099 ± 0.724	–	–	0.379	0.135
<i>Imputation-based (proposed)</i>						
KL-Div	0.084 ± 0.465	-1.318 ± 0.868	–	–	6.736	3.317
Probability	0.542 ± 0.247	0.096 ± 0.156	–	–	-0.629	0.507
Rank	-0.355 ± 0.092	-1.669 ± 0.386	–	–	1.017	0.062
Uncertainty	0.672 ± 0.578	0.131 ± 0.351	–	–	-1.407	-0.817
<i>Baselines (no imputation)</i>						
Uncertainty	0.637 ± 0.113	-0.592 ± 0.877	–	–	0.868	0.515
Probability	0.507 ± 0.072	0.236 ± 0.361	–	–	-0.431	-0.192
Random	0.440 ± 0.455	0.389 ± 1.478	–	–	-1.424	0.484
Strategy	Cardiomegaly	Lung Lesion	Lung Opacity	Pneumonia	Pneumothorax	Mean
<i>Upper Bounds (for reference)</i>						
Oracle	10.077 ± 4.361	2.979 ± 1.139	7.291	–	120.197	28.964
True KL-Div.	0.834 ± 0.029	0.528 ± 0.682	-0.013	–	-1.737	0.032
True Rank	0.645 ± 0.055	1.070 ± 0.717	0.008	–	2.199	0.122
True Uncert.	0.804 ± 0.006	-0.572 ± 0.283	-1.485	–	1.267	0.135
<i>Imputation-based (proposed)</i>						
KL-Div	0.564 ± 0.077	-0.078 ± 0.298	0.510	–	16.719	3.317
Probability	0.450 ± 0.024	-0.870 ± 0.334	-2.693	–	6.656	0.507
Rank	-0.519 ± 0.529	0.730 ± 1.632	-0.053	–	1.286	0.062
Uncertainty	0.762 ± 0.061	-0.322 ± 0.369	-1.467	–	-4.089	-0.817
<i>Baselines (no imputation)</i>						
Uncertainty	0.530 ± 0.132	0.704 ± 0.031	0.307	–	1.149	0.515
Probability	0.371 ± 0.024	-1.503 ± 0.841	-1.676	–	1.149	-0.192
Random	0.379 ± 0.012	-1.139 ± 0.014	-0.550	–	5.293	0.484

2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

Table 34: Acquisition performance on MIMIC Symile for AUPRC (ECG imputed by Image), showing G_{full} . Strategies are grouped by category. Best strategy among proposed and baseline methods in bold for each column.

2392

2393

Strategy	Fracture	Enl. Card.	Consolidation	Atelectasis	Edema	Mean
<i>Upper Bounds (for reference)</i>						
Oracle	1.631	–	100.646 ± 71.555	–	–	33.428
True KL-Div.	0.635	–	2.975 ± 3.762	–	–	1.163
True Rank	0.943	–	-7.003 ± 1.999	–	–	-1.214
True Uncert.	-0.027	–	0.199 ± 0.327	–	–	0.542
<i>Imputation-based (proposed)</i>						
KL-Div	0.600	–	15.994 ± 7.400	–	–	4.721
Probability	0.075	–	-10.442 ± 1.040	–	–	-2.263
Rank	-1.052	–	-0.692 ± 4.909	–	–	-0.467
Uncertainty	-0.225	–	-5.787 ± 1.743	–	–	-0.999
<i>Baselines (no imputation)</i>						
Uncertainty	0.456	–	0.652 ± 0.902	–	–	0.692
Probability	0.408	–	0.503 ± 0.861	–	–	0.567
Random	-0.336	–	-7.531 ± 5.766	–	–	-1.297
Strategy	Cardiomegaly	Lung Lesion	Lung Opacity	Pneumonia	Pneumothorax	Mean
<i>Upper Bounds (for reference)</i>						
Oracle	5.642	–	–	–	25.793 ± 2.491	33.428
True KL-Div.	0.855	–	–	–	0.187 ± 0.187	1.163
True Rank	0.784	–	–	–	0.421 ± 0.150	-1.214
True Uncert.	0.919	–	–	–	1.080 ± 0.443	0.542
<i>Imputation-based (proposed)</i>						
KL-Div	0.419	–	–	–	1.872 ± 0.563	4.721
Probability	0.491	–	–	–	0.824 ± 0.321	-2.263
Rank	0.340	–	–	–	-0.463 ± 1.077	-0.467
Uncertainty	0.880	–	–	–	1.136 ± 0.162	-0.999
<i>Baselines (no imputation)</i>						
Uncertainty	0.685	–	–	–	0.975 ± 0.304	0.692
Probability	0.383	–	–	–	0.975 ± 0.304	0.567
Random	0.360	–	–	–	2.318 ± 0.166	-1.297

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442

2443 Table 35: Acquisition performance on MIMIC Symile for AUROC (ECG imputed by Lab), showing
 2444 G_{full} . Strategies are grouped by category. Best strategy among proposed and baseline methods in
 2445 bold for each column.

2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483

Strategy	Fracture	Enl. Card.	Consolidation	Atelectasis	Edema	Mean
<i>Upper Bounds (for reference)</i>						
Oracle	9.961 \pm 1.805	7.528 \pm 1.743	7.425	9.429 \pm 3.404	42.327	14.888
True KL-Div.	-0.137 \pm 1.838	0.978 \pm 0.072	0.178	0.356 \pm 0.377	0.288	0.405
True Rank	-0.183 \pm 0.795	0.976 \pm 0.600	0.012	0.962 \pm 0.193	-1.285	0.308
True Uncert.	0.271 \pm 0.133	0.892 \pm 0.394	1.249	0.377 \pm 0.354	-0.143	0.399
<i>Imputation-based (proposed)</i>						
KL-Div	-0.756 \pm 0.967	0.491 \pm 1.880	1.805	1.782 \pm 0.998	12.001	2.649
Probability	0.203 \pm 0.341	2.386 \pm 0.784	1.834	1.222 \pm 0.693	-15.313	-1.990
Rank	-2.489 \pm 1.558	0.182 \pm 0.173	-0.177	0.630 \pm 0.303	0.104	-0.312
Uncertainty	0.078 \pm 0.296	1.509 \pm 0.221	1.945	1.538 \pm 1.059	1.277	0.335
<i>Baselines (no imputation)</i>						
Uncertainty	0.201 \pm 0.098	0.537 \pm 0.099	0.628	0.023 \pm 0.305	-0.118	0.384
Probability	0.201 \pm 0.098	0.474 \pm 0.027	0.760	0.650 \pm 0.152	0.394	0.074
Random	1.112 \pm 1.486	0.492 \pm 0.457	-0.650	0.656 \pm 0.102	-1.051	0.387
Strategy	Cardiomegaly	Lung Lesion	Lung Opacity	Pneumonia	Pneumothorax	Mean
<i>Upper Bounds (for reference)</i>						
Oracle	6.604 \pm 1.266	2.091 \pm 0.714	16.140 \pm 11.342	32.694 \pm 13.014	14.683	14.888
True KL-Div.	0.800 \pm 0.103	1.316 \pm 0.077	1.403 \pm 0.913	-1.552 \pm 1.821	0.425	0.405
True Rank	0.202 \pm 0.192	0.974 \pm 0.041	2.298 \pm 1.714	-0.790 \pm 0.663	-0.083	0.308
True Uncert.	0.121 \pm 0.119	-0.012 \pm 0.256	1.245 \pm 0.700	0.285 \pm 0.133	-0.292	0.399
<i>Imputation-based (proposed)</i>						
KL-Div	2.764 \pm 0.736	0.746 \pm 0.429	0.277 \pm 0.403	4.973 \pm 2.248	2.409	2.649
Probability	-2.784 \pm 0.997	0.475 \pm 0.982	0.657 \pm 0.299	-10.662 \pm 5.205	2.079	-1.990
Rank	0.337 \pm 0.091	0.246 \pm 0.433	1.594 \pm 1.021	-3.591 \pm 1.582	0.040	-0.312
Uncertainty	-1.728 \pm 0.662	0.190 \pm 0.470	1.224 \pm 0.536	-0.974 \pm 2.384	-1.706	0.335
<i>Baselines (no imputation)</i>						
Uncertainty	0.397 \pm 0.031	0.312 \pm 0.090	1.060 \pm 0.408	0.287 \pm 0.093	0.512	0.384
Probability	-0.015 \pm 0.186	0.989 \pm 0.490	0.043 \pm 0.189	-3.264 \pm 2.220	0.513	0.074
Random	-0.048 \pm 0.167	0.671 \pm 0.542	1.329 \pm 0.512	2.189 \pm 1.764	-0.832	0.387

2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496

2497 Table 36: Acquisition performance on MIMIC Symile for AUPRC (ECG imputed by Lab), showing
 2498 G_{full} . Strategies are grouped by category. Best strategy among proposed and baseline methods in
 2499 bold for each column.

2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537

Strategy	Fracture	Enl. Card.	Consolidation	Atelectasis	Edema	Mean
<i>Upper Bounds (for reference)</i>						
Oracle	7.894 ± 1.207	7.935 ± 0.606	7.801 ± 1.620	3.681	13.663 ± 0.667	9.827
True KL-Div.	−0.038 ± 1.091	0.843 ± 0.368	−0.530 ± 0.679	0.175	0.815 ± 0.157	0.501
True Rank	0.172 ± 0.009	0.532 ± 0.379	1.309 ± 0.247	0.635	−0.719 ± 0.197	0.354
True Uncert.	0.480 ± 0.166	0.645 ± 0.089	0.762 ± 0.322	0.205	0.039 ± 0.013	0.240
<i>Imputation-based (proposed)</i>						
KL-Div	−1.014 ± 0.482	1.979 ± 1.044	0.596 ± 0.626	0.331	3.890 ± 0.009	1.408
Probability	−0.291 ± 0.867	2.492 ± 0.270	1.173 ± 0.256	1.229	−3.963 ± 0.175	−0.348
Rank	−3.557 ± 1.533	0.231 ± 0.154	−0.653 ± 0.806	0.206	0.003 ± 0.267	−0.331
Uncertainty	0.079 ± 0.427	2.413 ± 0.318	1.197 ± 0.340	0.817	−0.565 ± 0.214	0.324
<i>Baselines (no imputation)</i>						
Uncertainty	0.398 ± 0.120	0.641 ± 0.487	0.114 ± 0.434	−0.013	0.097 ± 0.015	0.265
Probability	0.398 ± 0.120	0.796 ± 0.109	0.747 ± 0.126	0.861	0.424 ± 0.202	0.581
Random	0.667 ± 1.260	0.750 ± 0.531	0.520 ± 0.275	0.946	0.091 ± 0.283	0.585
Strategy	Cardiomegaly	Lung Lesion	Lung Opacity	Pneumonia	Pneumothorax	Mean
<i>Upper Bounds (for reference)</i>						
Oracle	5.680 ± 1.134	3.483 ± 1.480	7.752	29.069 ± 4.831	11.309	9.827
True KL-Div.	0.840 ± 0.151	1.316 ± 0.130	0.423	0.558 ± 0.955	0.607	0.501
True Rank	0.341 ± 0.150	1.125 ± 0.278	0.399	−0.106 ± 0.270	−0.148	0.354
True Uncert.	0.037 ± 0.123	−0.790 ± 0.744	0.221	0.157 ± 0.074	0.648	0.240
<i>Imputation-based (proposed)</i>						
KL-Div	2.195 ± 0.603	0.565 ± 0.242	0.762	4.430 ± 1.624	0.343	1.408
Probability	−2.197 ± 0.763	0.887 ± 0.999	0.932	−4.773 ± 1.949	1.029	−0.348
Rank	0.218 ± 0.086	1.061 ± 1.227	0.155	−1.583 ± 0.600	0.613	−0.331
Uncertainty	−1.266 ± 0.476	0.223 ± 0.360	0.606	−0.563 ± 1.118	0.304	0.324
<i>Baselines (no imputation)</i>						
Uncertainty	0.267 ± 0.041	0.055 ± 0.237	−0.024	0.178 ± 0.051	0.936	0.265
Probability	0.038 ± 0.225	1.274 ± 0.637	0.945	−0.603 ± 1.027	0.936	0.581
Random	−0.098 ± 0.129	1.243 ± 0.713	0.239	1.417 ± 0.819	0.076	0.585

2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550

2551 Table 37: Acquisition performance on MIMIC Symile for AUROC (ECG imputed by Image and
 2552 Lab), showing G_{full} . Strategies are grouped by category. Best strategy among proposed and baseline
 2553 methods in bold for each column.

2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591

Strategy	Fracture	Enl. Card.	Consolidation	Atelectasis	Edema	Mean
<i>Upper Bounds (for reference)</i>						
Oracle	2.634 \pm 0.819	4.500 \pm 1.001	3.062 \pm 0.288	4.806 \pm 0.645	2.415 \pm 0.090	4.486
True KL-Div.	1.145 \pm 0.450	1.172 \pm 0.141	0.774 \pm 0.037	0.821 \pm 0.061	0.897 \pm 0.006	0.839
True Rank	1.120 \pm 0.318	1.107 \pm 0.131	0.858 \pm 0.021	0.776 \pm 0.057	0.916 \pm 0.007	0.836
True Uncert.	1.047 \pm 0.381	0.787 \pm 0.136	0.632 \pm 0.069	0.338 \pm 0.071	0.675 \pm 0.013	0.537
<i>Imputation-based (proposed)</i>						
KL-Div	1.120 \pm 0.452	1.200 \pm 0.150	0.771 \pm 0.037	0.812 \pm 0.065	0.894 \pm 0.006	0.838
Probability	0.933 \pm 0.302	0.676 \pm 0.106	0.508 \pm 0.038	0.111 \pm 0.120	0.349 \pm 0.014	0.438
Rank	0.126 \pm 0.141	0.517 \pm 0.086	0.489 \pm 0.027	0.507 \pm 0.059	0.504 \pm 0.009	0.473
Uncertainty	1.063 \pm 0.392	0.820 \pm 0.140	0.638 \pm 0.072	0.358 \pm 0.070	0.673 \pm 0.013	0.551
<i>Baselines (no imputation)</i>						
Uncertainty	0.785 \pm 0.249	0.509 \pm 0.088	0.499 \pm 0.058	0.468 \pm 0.062	0.604 \pm 0.009	0.544
Probability	0.097 \pm 0.243	0.594 \pm 0.105	0.528 \pm 0.047	0.435 \pm 0.077	0.556 \pm 0.012	0.466
Random	0.487 \pm 0.212	0.363 \pm 0.126	0.463 \pm 0.043	0.118 \pm 0.177	0.458 \pm 0.013	0.427
Strategy	Cardiomegaly	Lung Lesion	Lung Opacity	Pneumonia	Pneumothorax	Mean
<i>Upper Bounds (for reference)</i>						
Oracle	2.675 \pm 0.236	3.710 \pm 0.511	7.949 \pm 2.090	4.600 \pm 0.301	8.512 \pm 1.512	4.486
True KL-Div.	0.897 \pm 0.010	0.549 \pm 0.239	0.504 \pm 0.303	0.902 \pm 0.021	0.724 \pm 0.092	0.839
True Rank	0.951 \pm 0.011	0.578 \pm 0.154	0.661 \pm 0.122	0.912 \pm 0.025	0.485 \pm 0.086	0.836
True Uncert.	0.214 \pm 0.031	0.460 \pm 0.273	0.414 \pm 0.121	0.696 \pm 0.035	0.107 \pm 0.073	0.537
<i>Imputation-based (proposed)</i>						
KL-Div	0.865 \pm 0.013	0.617 \pm 0.239	0.474 \pm 0.345	0.927 \pm 0.022	0.704 \pm 0.090	0.838
Probability	0.188 \pm 0.025	0.518 \pm 0.303	0.125 \pm 0.121	0.178 \pm 0.041	0.789 \pm 0.051	0.438
Rank	0.469 \pm 0.018	0.458 \pm 0.105	0.886 \pm 0.236	0.483 \pm 0.030	0.287 \pm 0.206	0.473
Uncertainty	0.205 \pm 0.029	0.496 \pm 0.283	0.436 \pm 0.127	0.701 \pm 0.034	0.121 \pm 0.074	0.551
<i>Baselines (no imputation)</i>						
Uncertainty	0.324 \pm 0.015	0.517 \pm 0.183	0.569 \pm 0.102	0.575 \pm 0.036	0.592 \pm 0.127	0.544
Probability	0.654 \pm 0.014	0.348 \pm 0.250	0.256 \pm 0.120	0.604 \pm 0.017	0.591 \pm 0.127	0.466
Random	0.486 \pm 0.023	0.736 \pm 0.238	0.351 \pm 0.077	0.420 \pm 0.038	0.392 \pm 0.071	0.427

2592

2593

2594

2595

2596

2597

2598

2599

2600

2601

2602

2603

2604

2605 Table 38: Acquisition performance on MIMIC Symile for AUPRC (ECG imputed by Image and
 2606 Lab), showing G_{full} . Strategies are grouped by category. Best strategy among proposed and baseline
 2607 methods in bold for each column.

2608

2609

Strategy	Fracture	Enl. Card.	Consolidation	Atelectasis	Edema	Mean
<i>Upper Bounds (for reference)</i>						
Oracle	1.578 \pm 0.119	3.454 \pm 0.465	3.604 \pm 0.479	3.295 \pm 0.414	2.989 \pm 0.181	3.703
True KL-Div.	0.634 \pm 0.094	1.070 \pm 0.078	0.807 \pm 0.038	0.702 \pm 0.052	0.904 \pm 0.017	0.814
True Rank	0.782 \pm 0.060	1.014 \pm 0.057	0.873 \pm 0.054	0.707 \pm 0.076	0.923 \pm 0.019	0.800
True Uncert.	0.565 \pm 0.081	0.826 \pm 0.085	0.531 \pm 0.060	0.175 \pm 0.056	0.601 \pm 0.018	0.431
<i>Imputation-based (proposed)</i>						
KL-Div	0.621 \pm 0.092	1.087 \pm 0.082	0.815 \pm 0.041	0.702 \pm 0.061	0.903 \pm 0.017	0.812
Probability	0.577 \pm 0.055	0.687 \pm 0.059	0.484 \pm 0.052	-0.037 \pm 0.152	0.382 \pm 0.026	0.336
Rank	0.182 \pm 0.091	0.481 \pm 0.066	0.422 \pm 0.074	0.514 \pm 0.052	0.469 \pm 0.015	0.430
Uncertainty	0.572 \pm 0.081	0.851 \pm 0.087	0.533 \pm 0.061	0.188 \pm 0.056	0.602 \pm 0.018	0.441
<i>Baselines (no imputation)</i>						
Uncertainty	0.456 \pm 0.053	0.596 \pm 0.072	0.377 \pm 0.054	0.287 \pm 0.026	0.521 \pm 0.017	0.444
Probability	0.435 \pm 0.052	0.502 \pm 0.063	0.684 \pm 0.050	0.499 \pm 0.081	0.660 \pm 0.015	0.585
Random	0.374 \pm 0.078	0.367 \pm 0.062	0.432 \pm 0.083	-0.072 \pm 0.281	0.430 \pm 0.021	0.347
Strategy	Cardiomegaly	Lung Lesion	Lung Opacity	Pneumonia	Pneumothorax	Mean
<i>Upper Bounds (for reference)</i>						
Oracle	2.445 \pm 0.148	2.303 \pm 0.239	4.150 \pm 0.421	5.900 \pm 0.609	7.316 \pm 0.974	3.703
True KL-Div.	0.856 \pm 0.016	0.749 \pm 0.133	0.746 \pm 0.062	0.952 \pm 0.058	0.714 \pm 0.062	0.814
True Rank	0.938 \pm 0.014	0.690 \pm 0.094	0.702 \pm 0.072	0.914 \pm 0.049	0.461 \pm 0.074	0.800
True Uncert.	0.161 \pm 0.031	0.098 \pm 0.098	0.321 \pm 0.066	0.598 \pm 0.057	0.438 \pm 0.061	0.431
<i>Imputation-based (proposed)</i>						
KL-Div	0.832 \pm 0.018	0.772 \pm 0.124	0.707 \pm 0.056	0.978 \pm 0.061	0.707 \pm 0.067	0.812
Probability	0.137 \pm 0.036	-0.030 \pm 0.151	0.176 \pm 0.123	0.112 \pm 0.108	0.877 \pm 0.029	0.336
Rank	0.426 \pm 0.015	0.559 \pm 0.123	0.463 \pm 0.081	0.378 \pm 0.055	0.401 \pm 0.059	0.430
Uncertainty	0.154 \pm 0.029	0.123 \pm 0.086	0.334 \pm 0.062	0.603 \pm 0.059	0.445 \pm 0.061	0.441
<i>Baselines (no imputation)</i>						
Uncertainty	0.279 \pm 0.017	0.272 \pm 0.065	0.400 \pm 0.050	0.436 \pm 0.036	0.820 \pm 0.050	0.444
Probability	0.674 \pm 0.014	0.517 \pm 0.139	0.403 \pm 0.072	0.655 \pm 0.032	0.821 \pm 0.050	0.585
Random	0.435 \pm 0.016	0.368 \pm 0.178	0.362 \pm 0.119	0.325 \pm 0.048	0.447 \pm 0.078	0.347

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646 I RESULTS FOR MIMIC HAIM

2648 Table 39: Acquisition performance on MIMIC HAIM for AUROC, showing G_{full} . Strategies are
 2649 grouped by category. Best strategy among proposed ones and baselines in bold for each column.
 2650

2651 Strategy	2652 Fracture	2653 Enl. Card.	2654 Consolidation	2655 Atelectasis	2656 Edema	2657 Mean
<i>Upper Bounds (for reference)</i>						
Oracle	5.121 \pm 1.873	6.802 \pm 2.953	4.228 \pm 1.374	5.862 \pm 0.933	3.435 \pm 0.792	4.602
True KL-Div.	0.842 \pm 0.154	0.558 \pm 0.187	0.673 \pm 0.054	0.518 \pm 0.093	0.708 \pm 0.025	0.608
True Rank	0.853 \pm 0.107	0.684 \pm 0.056	0.706 \pm 0.034	0.676 \pm 0.087	0.714 \pm 0.041	0.723
True Uncert.	0.429 \pm 0.264	0.647 \pm 0.107	0.729 \pm 0.099	0.332 \pm 0.116	0.555 \pm 0.057	0.538
<i>Imputation-based (proposed)</i>						
KL-Div	0.827 \pm 0.213	0.561 \pm 0.142	0.488 \pm 0.053	0.505 \pm 0.109	0.459 \pm 0.074	0.465
Probability	0.318 \pm 0.280	0.657 \pm 0.105	0.761 \pm 0.133	0.620 \pm 0.082	0.578 \pm 0.051	0.494
Rank	0.530 \pm 0.685	-0.048 \pm 0.305	0.311 \pm 0.079	0.429 \pm 0.150	0.485 \pm 0.032	0.391
Uncertainty	0.022 \pm 0.463	0.647 \pm 0.108	0.880 \pm 0.241	0.503 \pm 0.123	0.493 \pm 0.056	0.554
<i>Baselines (no imputation)</i>						
Uncertainty	0.492 \pm 0.209	0.598 \pm 0.038	0.486 \pm 0.061	0.244 \pm 0.163	0.525 \pm 0.032	0.452
Probability	0.244 \pm 0.302	0.615 \pm 0.116	0.550 \pm 0.045	0.641 \pm 0.065	0.580 \pm 0.042	0.457
Random	1.005 \pm 0.367	0.143 \pm 0.289	0.470 \pm 0.045	0.546 \pm 0.096	0.510 \pm 0.025	0.526
2664 Strategy	2665 Cardiomegaly	2666 Lung Lesion	2667 Lung Opacity	2668 Pneumonia	2669 Pneumothorax	2670 Mean
<i>Upper Bounds (for reference)</i>						
Oracle	4.246 \pm 0.416	1.912 \pm 0.205	5.429 \pm 1.539	2.864 \pm 0.716	6.119 \pm 2.055	4.602
True KL-Div.	0.609 \pm 0.059	0.674 \pm 0.148	0.801 \pm 0.086	0.775 \pm 0.019	-0.083 \pm 0.370	0.608
True Rank	0.756 \pm 0.027	0.751 \pm 0.166	0.898 \pm 0.051	0.738 \pm 0.022	0.455 \pm 0.155	0.723
True Uncert.	0.554 \pm 0.047	0.638 \pm 0.131	0.330 \pm 0.127	0.720 \pm 0.019	0.446 \pm 0.110	0.538
<i>Imputation-based (proposed)</i>						
KL-Div	0.385 \pm 0.058	0.362 \pm 0.161	0.418 \pm 0.109	0.499 \pm 0.046	0.140 \pm 0.290	0.465
Probability	0.618 \pm 0.041	0.601 \pm 0.048	0.636 \pm 0.066	0.591 \pm 0.023	-0.435 \pm 0.322	0.494
Rank	0.305 \pm 0.061	0.422 \pm 0.157	0.306 \pm 0.194	0.519 \pm 0.044	0.653 \pm 0.050	0.391
Uncertainty	0.561 \pm 0.042	0.744 \pm 0.146	0.541 \pm 0.050	0.587 \pm 0.013	0.558 \pm 0.102	0.554
<i>Baselines (no imputation)</i>						
Uncertainty	0.460 \pm 0.038	0.511 \pm 0.063	0.396 \pm 0.095	0.539 \pm 0.023	0.272 \pm 0.185	0.452
Probability	0.619 \pm 0.043	0.508 \pm 0.086	0.754 \pm 0.050	0.575 \pm 0.025	-0.513 \pm 0.421	0.457
Random	0.482 \pm 0.022	0.703 \pm 0.129	0.534 \pm 0.038	0.553 \pm 0.009	0.319 \pm 0.136	0.526

2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699

2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712

2713 Table 40: Acquisition performance on MIMIC HAIM for AUPRC, showing G_{full} . Strategies are
 2714 grouped by category. Best strategy among proposed ones and baselines in bold for each column.
 2715

Strategy	Fracture	Enl. Card.	Consolidation	Atelectasis	Edema	Mean
<i>Upper Bounds (for reference)</i>						
Oracle	1.490 \pm 0.249	3.181 \pm 0.283	3.084 \pm 0.331	2.738 \pm 0.363	2.782 \pm 0.349	3.087
True KL-Div.	0.967 \pm 0.098	0.652 \pm 0.076	0.435 \pm 0.167	0.847 \pm 0.065	0.717 \pm 0.030	0.662
True Rank	1.014 \pm 0.085	0.721 \pm 0.068	0.541 \pm 0.112	0.958 \pm 0.097	0.769 \pm 0.031	0.754
True Uncert.	0.842 \pm 0.068	0.592 \pm 0.081	0.605 \pm 0.047	0.425 \pm 0.084	0.611 \pm 0.057	0.587
<i>Imputation-based (proposed)</i>						
KL-Div	0.889 \pm 0.097	0.578 \pm 0.054	0.301 \pm 0.163	0.655 \pm 0.110	0.518 \pm 0.030	0.516
Probability	0.584 \pm 0.111	0.672 \pm 0.041	0.807 \pm 0.075	0.480 \pm 0.018	0.754 \pm 0.017	0.686
Rank	0.890 \pm 0.120	0.337 \pm 0.081	0.247 \pm 0.115	0.706 \pm 0.052	0.474 \pm 0.023	0.456
Uncertainty	0.799 \pm 0.056	0.540 \pm 0.082	0.680 \pm 0.071	0.353 \pm 0.047	0.584 \pm 0.030	0.570
<i>Baselines (no imputation)</i>						
Uncertainty	0.920 \pm 0.131	0.556 \pm 0.082	0.409 \pm 0.085	0.365 \pm 0.011	0.487 \pm 0.053	0.479
Probability	0.480 \pm 0.112	0.713 \pm 0.046	0.755 \pm 0.054	0.589 \pm 0.053	0.752 \pm 0.017	0.701
Random	0.941 \pm 0.107	0.404 \pm 0.060	0.455 \pm 0.057	0.452 \pm 0.180	0.546 \pm 0.024	0.561
Strategy	Cardiomegaly	Lung Lesion	Lung Opacity	Pneumonia	Pneumothorax	Mean
<i>Upper Bounds (for reference)</i>						
Oracle	4.751 \pm 0.276	1.878 \pm 0.237	2.730 \pm 0.219	3.910 \pm 0.892	4.329 \pm 0.483	3.087
True KL-Div.	0.374 \pm 0.137	0.688 \pm 0.130	0.660 \pm 0.196	0.699 \pm 0.035	0.575 \pm 0.039	0.662
True Rank	0.636 \pm 0.071	0.725 \pm 0.153	0.861 \pm 0.144	0.683 \pm 0.035	0.630 \pm 0.042	0.754
True Uncert.	0.599 \pm 0.059	0.430 \pm 0.127	0.505 \pm 0.173	0.732 \pm 0.031	0.530 \pm 0.043	0.587
<i>Imputation-based (proposed)</i>						
KL-Div	0.248 \pm 0.124	0.573 \pm 0.133	0.413 \pm 0.218	0.399 \pm 0.089	0.588 \pm 0.043	0.516
Probability	0.808 \pm 0.057	0.764 \pm 0.115	0.737 \pm 0.030	0.736 \pm 0.025	0.518 \pm 0.040	0.686
Rank	0.167 \pm 0.117	0.216 \pm 0.119	0.494 \pm 0.147	0.490 \pm 0.079	0.538 \pm 0.024	0.456
Uncertainty	0.641 \pm 0.052	0.450 \pm 0.120	0.561 \pm 0.092	0.621 \pm 0.030	0.468 \pm 0.030	0.570
<i>Baselines (no imputation)</i>						
Uncertainty	0.372 \pm 0.063	0.274 \pm 0.111	0.359 \pm 0.220	0.496 \pm 0.042	0.550 \pm 0.036	0.479
Probability	0.795 \pm 0.076	0.806 \pm 0.109	0.855 \pm 0.043	0.725 \pm 0.021	0.536 \pm 0.033	0.701
Random	0.504 \pm 0.042	0.606 \pm 0.151	0.572 \pm 0.086	0.569 \pm 0.022	0.556 \pm 0.022	0.561

2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753

2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766

2767 Table 41: Acquisition performance on MIMIC HAIM for AUROC (Image imputed by Lab), showing
 2768 G_{full} . Strategies are grouped by category. Best strategy among proposed and baseline methods in
 2769 bold for each column.

2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807

Strategy	Fracture	Enl. Card.	Consolidation	Atelectasis	Edema	Mean
<i>Upper Bounds (for reference)</i>						
Oracle	4.447 \pm 3.050	3.381 \pm 1.055	2.055 \pm 0.185	6.068 \pm 1.280	1.710 \pm 0.036	3.810
True KL-Div.	1.002 \pm 0.142	0.425 \pm 0.184	0.623 \pm 0.061	0.299 \pm 0.113	0.687 \pm 0.022	0.476
True Rank	0.902 \pm 0.059	0.704 \pm 0.044	0.667 \pm 0.035	0.575 \pm 0.139	0.698 \pm 0.010	0.671
True Uncert.	0.908 \pm 0.185	0.768 \pm 0.035	0.641 \pm 0.022	0.301 \pm 0.207	0.709 \pm 0.008	0.610
<i>Imputation-based (proposed)</i>						
KL-Div	0.686 \pm 0.060	0.579 \pm 0.031	0.463 \pm 0.054	0.412 \pm 0.085	0.539 \pm 0.022	0.416
Probability	0.514 \pm 0.051	0.773 \pm 0.153	0.560 \pm 0.026	0.768 \pm 0.113	0.590 \pm 0.010	0.445
Rank	1.530 \pm 0.782	0.045 \pm 0.280	0.418 \pm 0.037	0.203 \pm 0.164	0.450 \pm 0.021	0.497
Uncertainty	0.710 \pm 0.087	0.730 \pm 0.091	0.548 \pm 0.029	0.597 \pm 0.215	0.587 \pm 0.012	0.625
<i>Baselines (no imputation)</i>						
Uncertainty	0.512 \pm 0.247	0.635 \pm 0.040	0.491 \pm 0.032	0.086 \pm 0.287	0.587 \pm 0.015	0.438
Probability	0.109 \pm 0.371	0.759 \pm 0.146	0.533 \pm 0.026	0.739 \pm 0.095	0.592 \pm 0.010	0.392
Random	1.112 \pm 0.371	0.483 \pm 0.041	0.509 \pm 0.015	0.556 \pm 0.138	0.542 \pm 0.008	0.582
Strategy	Cardiomegaly	Lung Lesion	Lung Opacity	Pneumonia	Pneumothorax	Mean
<i>Upper Bounds (for reference)</i>						
Oracle	3.257 \pm 0.286	2.139 \pm 0.317	3.951 \pm 0.558	1.968 \pm 0.068	9.124 \pm 3.961	3.810
True KL-Div.	0.440 \pm 0.063	0.714 \pm 0.312	0.734 \pm 0.096	0.775 \pm 0.021	-0.936 \pm 0.646	0.476
True Rank	0.671 \pm 0.017	0.808 \pm 0.318	0.898 \pm 0.066	0.711 \pm 0.015	0.081 \pm 0.265	0.671
True Uncert.	0.558 \pm 0.042	0.625 \pm 0.057	0.456 \pm 0.097	0.734 \pm 0.020	0.400 \pm 0.221	0.610
<i>Imputation-based (proposed)</i>						
KL-Div	0.321 \pm 0.083	0.458 \pm 0.273	0.342 \pm 0.129	0.552 \pm 0.027	-0.187 \pm 0.576	0.416
Probability	0.698 \pm 0.059	0.544 \pm 0.099	0.693 \pm 0.063	0.600 \pm 0.020	-1.295 \pm 0.522	0.445
Rank	0.233 \pm 0.093	0.339 \pm 0.349	0.468 \pm 0.090	0.498 \pm 0.017	0.783 \pm 0.075	0.497
Uncertainty	0.620 \pm 0.047	0.668 \pm 0.165	0.581 \pm 0.057	0.591 \pm 0.015	0.613 \pm 0.206	0.625
<i>Baselines (no imputation)</i>						
Uncertainty	0.434 \pm 0.052	0.568 \pm 0.074	0.394 \pm 0.109	0.557 \pm 0.023	0.114 \pm 0.373	0.438
Probability	0.693 \pm 0.057	0.541 \pm 0.162	0.790 \pm 0.054	0.589 \pm 0.018	-1.427 \pm 0.750	0.392
Random	0.482 \pm 0.030	0.941 \pm 0.176	0.518 \pm 0.049	0.558 \pm 0.010	0.119 \pm 0.262	0.582

2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820

2821 Table 42: Acquisition performance on MIMIC HAIM for AUPRC (Image imputed by Lab), showing
 2822 G_{full} . Strategies are grouped by category. Best strategy among proposed and baseline methods in
 2823 bold for each column.

2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861

Strategy	Fracture	Enl. Card.	Consolidation	Atelectasis	Edema	Mean
<i>Upper Bounds (for reference)</i>						
Oracle	1.490 \pm 0.249	3.177 \pm 0.420	3.038 \pm 0.399	2.586	1.812 \pm 0.037	2.790
True KL-Div.	0.967 \pm 0.098	0.523 \pm 0.091	0.372 \pm 0.195	0.717	0.664 \pm 0.033	0.579
True Rank	1.014 \pm 0.085	0.632 \pm 0.084	0.498 \pm 0.128	0.773	0.685 \pm 0.019	0.706
True Uncert.	0.842 \pm 0.068	0.790 \pm 0.040	0.624 \pm 0.054	0.575	0.776 \pm 0.014	0.660
<i>Imputation-based (proposed)</i>						
KL-Div	0.889 \pm 0.097	0.540 \pm 0.066	0.260 \pm 0.194	0.456	0.586 \pm 0.031	0.478
Probability	0.584 \pm 0.111	0.674 \pm 0.058	0.796 \pm 0.087	0.455	0.710 \pm 0.011	0.662
Rank	0.890 \pm 0.120	0.288 \pm 0.118	0.229 \pm 0.139	0.650	0.459 \pm 0.026	0.416
Uncertainty	0.799 \pm 0.056	0.683 \pm 0.085	0.700 \pm 0.081	0.263	0.665 \pm 0.022	0.615
<i>Baselines (no imputation)</i>						
Uncertainty	0.920 \pm 0.131	0.700 \pm 0.096	0.448 \pm 0.096	0.387	0.651 \pm 0.025	0.553
Probability	0.480 \pm 0.112	0.714 \pm 0.071	0.749 \pm 0.063	0.483	0.715 \pm 0.011	0.686
Random	0.941 \pm 0.107	0.429 \pm 0.088	0.464 \pm 0.067	0.590	0.595 \pm 0.012	0.615
Strategy	Cardiomegaly	Lung Lesion	Lung Opacity	Pneumonia	Pneumothorax	Mean
<i>Upper Bounds (for reference)</i>						
Oracle	4.700 \pm 0.289	1.725 \pm 0.306	2.830 \pm 0.264	2.510 \pm 0.170	4.037 \pm 0.525	2.790
True KL-Div.	0.054 \pm 0.147	0.651 \pm 0.392	0.621 \pm 0.266	0.731 \pm 0.039	0.493 \pm 0.045	0.579
True Rank	0.463 \pm 0.068	0.834 \pm 0.425	0.903 \pm 0.193	0.661 \pm 0.030	0.601 \pm 0.047	0.706
True Uncert.	0.490 \pm 0.057	0.666 \pm 0.066	0.495 \pm 0.235	0.726 \pm 0.038	0.615 \pm 0.050	0.660
<i>Imputation-based (proposed)</i>						
KL-Div	0.064 \pm 0.176	0.384 \pm 0.277	0.385 \pm 0.295	0.540 \pm 0.044	0.680 \pm 0.038	0.478
Probability	0.920 \pm 0.072	0.556 \pm 0.160	0.718 \pm 0.033	0.725 \pm 0.030	0.485 \pm 0.043	0.662
Rank	-0.025 \pm 0.160	0.216 \pm 0.282	0.456 \pm 0.198	0.478 \pm 0.034	0.518 \pm 0.025	0.416
Uncertainty	0.655 \pm 0.077	0.656 \pm 0.200	0.574 \pm 0.124	0.638 \pm 0.037	0.519 \pm 0.034	0.615
<i>Baselines (no imputation)</i>						
Uncertainty	0.293 \pm 0.089	0.529 \pm 0.084	0.416 \pm 0.296	0.544 \pm 0.042	0.643 \pm 0.024	0.553
Probability	0.944 \pm 0.092	0.671 \pm 0.071	0.850 \pm 0.058	0.732 \pm 0.022	0.523 \pm 0.031	0.686
Random	0.462 \pm 0.059	0.958 \pm 0.269	0.576 \pm 0.117	0.580 \pm 0.019	0.553 \pm 0.031	0.615

2862
 2863
 2864
 2865
 2866
 2867
 2868
 2869
 2870
 2871
 2872
 2873
 2874

2875 Table 43: Acquisition performance on MIMIC HAIM for AUROC (Lab imputed by Image), showing
 2876 G_{full} . Strategies are grouped by category. Best strategy among proposed and baseline methods in
 2877 bold for each column.

Strategy	Fracture	Enl. Card.	Consolidation	Atelectasis	Edema	Mean
<i>Upper Bounds (for reference)</i>						
Oracle	6.244 ± 0.851	12.503 ± 7.484	11.469 ± 3.810	5.604 ± 1.451	5.899 ± 1.530	6.851
True KL-Div.	0.575 ± 0.311	0.780 ± 0.402	0.842 ± 0.049	0.792 ± 0.088	0.737 ± 0.054	0.770
True Rank	0.773 ± 0.299	0.649 ± 0.136	0.836 ± 0.030	0.802 ± 0.076	0.736 ± 0.102	0.796
True Uncert.	-0.370 ± 0.158	0.445 ± 0.274	1.020 ± 0.440	0.371 ± 0.065	0.334 ± 0.084	0.416
<i>Imputation-based (proposed)</i>						
KL-Div	1.063 ± 0.606	0.531 ± 0.397	0.572 ± 0.156	0.622 ± 0.223	0.345 ± 0.175	0.519
Probability	-0.010 ± 0.798	0.463 ± 0.079	1.433 ± 0.393	0.435 ± 0.086	0.560 ± 0.129	0.551
Rank	-1.136 ± 0.350	-0.202 ± 0.707	-0.044 ± 0.241	0.712 ± 0.244	0.535 ± 0.072	0.180
Uncertainty	-1.124 ± 0.961	0.508 ± 0.248	1.986 ± 0.840	0.385 ± 0.063	0.359 ± 0.123	0.492
<i>Baselines (no imputation)</i>						
Uncertainty	0.460 ± 0.449	0.535 ± 0.076	0.467 ± 0.283	0.441 ± 0.053	0.438 ± 0.063	0.458
Probability	0.470 ± 0.594	0.375 ± 0.158	0.608 ± 0.200	0.519 ± 0.069	0.563 ± 0.105	0.511
Random	0.826 ± 0.879	-0.425 ± 0.748	0.337 ± 0.193	0.534 ± 0.143	0.464 ± 0.056	0.435
Strategy	Cardiomegaly	Lung Lesion	Lung Opacity	Pneumonia	Pneumothorax	Mean
<i>Upper Bounds (for reference)</i>						
Oracle	5.483 ± 0.647	1.730 ± 0.268	9.123 ± 5.217	7.345 ± 3.084	3.113 ± 0.375	6.851
True KL-Div.	0.821 ± 0.038	0.641 ± 0.142	0.969 ± 0.173	0.774 ± 0.071	0.771 ± 0.016	0.770
True Rank	0.861 ± 0.023	0.706 ± 0.194	0.896 ± 0.088	0.873 ± 0.035	0.830 ± 0.017	0.796
True Uncert.	0.550 ± 0.096	0.648 ± 0.244	0.017 ± 0.360	0.652 ± 0.013	0.492 ± 0.038	0.416
<i>Imputation-based (proposed)</i>						
KL-Div	0.465 ± 0.074	0.286 ± 0.213	0.608 ± 0.194	0.233 ± 0.147	0.467 ± 0.028	0.519
Probability	0.518 ± 0.032	0.646 ± 0.037	0.492 ± 0.164	0.543 ± 0.113	0.425 ± 0.017	0.551
Rank	0.395 ± 0.065	0.489 ± 0.114	-0.098 ± 0.659	0.626 ± 0.318	0.522 ± 0.033	0.180
Uncertainty	0.487 ± 0.070	0.805 ± 0.241	0.441 ± 0.090	0.570 ± 0.037	0.503 ± 0.028	0.492
<i>Baselines (no imputation)</i>						
Uncertainty	0.492 ± 0.057	0.466 ± 0.100	0.401 ± 0.220	0.454 ± 0.058	0.430 ± 0.020	0.458
Probability	0.526 ± 0.049	0.482 ± 0.103	0.664 ± 0.114	0.508 ± 0.151	0.400 ± 0.018	0.511
Random	0.482 ± 0.033	0.512 ± 0.145	0.575 ± 0.056	0.530 ± 0.018	0.519 ± 0.024	0.435

2903
 2904
 2905
 2906
 2907
 2908
 2909
 2910
 2911
 2912
 2913
 2914
 2915

2916
 2917
 2918
 2919
 2920
 2921
 2922
 2923
 2924
 2925
 2926
 2927
 2928

2929 Table 44: Acquisition performance on MIMIC HAIM for AUPRC (Lab imputed by Image), showing
 2930 G_{full} . Strategies are grouped by category. Best strategy among proposed and baseline methods in
 2931 bold for each column.

2932
 2933
 2934
 2935
 2936
 2937
 2938
 2939
 2940
 2941
 2942
 2943
 2944
 2945
 2946
 2947
 2948
 2949
 2950
 2951
 2952
 2953
 2954
 2955
 2956
 2957
 2958
 2959
 2960
 2961
 2962
 2963
 2964
 2965
 2966
 2967
 2968
 2969

Strategy	Fracture	Enl. Card.	Consolidation	Atelectasis	Edema	Mean
<i>Upper Bounds (for reference)</i>						
Oracle	—	3.188 \pm 0.307	3.312 \pm 0.007	2.814 \pm 0.615	4.169 \pm 0.490	4.011
True KL-Div.	—	0.884 \pm 0.047	0.749 \pm 0.053	0.912 \pm 0.012	0.792 \pm 0.043	0.776
True Rank	—	0.881 \pm 0.081	0.758 \pm 0.195	1.051 \pm 0.050	0.889 \pm 0.035	0.811
True Uncert.	—	0.237 \pm 0.075	0.508 \pm 0.005	0.350 \pm 0.067	0.376 \pm 0.071	0.467
<i>Imputation-based (proposed)</i>						
KL-Div	—	0.647 \pm 0.098	0.508 \pm 0.078	0.755 \pm 0.079	0.419 \pm 0.032	0.489
Probability	—	0.668 \pm 0.054	0.858 \pm 0.163	0.492 \pm 0.022	0.816 \pm 0.022	0.723
Rank	—	0.424 \pm 0.082	0.335 \pm 0.044	0.734 \pm 0.076	0.495 \pm 0.042	0.485
Uncertainty	—	0.282 \pm 0.094	0.580 \pm 0.160	0.398 \pm 0.022	0.469 \pm 0.034	0.461
<i>Baselines (no imputation)</i>						
Uncertainty	—	0.298 \pm 0.039	0.214 \pm 0.113	0.354 \pm 0.001	0.254 \pm 0.039	0.294
Probability	—	0.712 \pm 0.031	0.782 \pm 0.104	0.642 \pm 0.002	0.806 \pm 0.028	0.726
Random	—	0.361 \pm 0.069	0.406 \pm 0.089	0.383 \pm 0.287	0.478 \pm 0.045	0.472
Strategy	Cardiomegaly	Lung Lesion	Lung Opacity	Pneumonia	Pneumothorax	Mean
<i>Upper Bounds (for reference)</i>						
Oracle	4.828 \pm 0.574	1.969 \pm 0.352	2.430 \pm 0.426	8.578 \pm 2.467	4.816 \pm 0.981	4.011
True KL-Div.	0.854 \pm 0.056	0.711 \pm 0.032	0.776 \pm 0.034	0.595 \pm 0.055	0.712 \pm 0.014	0.776
True Rank	0.895 \pm 0.034	0.660 \pm 0.093	0.735 \pm 0.039	0.756 \pm 0.125	0.678 \pm 0.081	0.811
True Uncert.	0.762 \pm 0.089	0.289 \pm 0.175	0.537 \pm 0.099	0.752 \pm 0.052	0.389 \pm 0.036	0.467
<i>Imputation-based (proposed)</i>						
KL-Div	0.524 \pm 0.084	0.687 \pm 0.135	0.495 \pm 0.131	-0.069 \pm 0.185	0.434 \pm 0.051	0.489
Probability	0.640 \pm 0.029	0.889 \pm 0.138	0.794 \pm 0.073	0.773 \pm 0.051	0.574 \pm 0.078	0.723
Rank	0.455 \pm 0.084	0.216 \pm 0.127	0.607 \pm 0.038	0.533 \pm 0.382	0.570 \pm 0.049	0.485
Uncertainty	0.621 \pm 0.069	0.326 \pm 0.134	0.523 \pm 0.042	0.566 \pm 0.018	0.381 \pm 0.036	0.461
<i>Baselines (no imputation)</i>						
Uncertainty	0.489 \pm 0.062	0.121 \pm 0.130	0.187 \pm 0.017	0.333 \pm 0.042	0.396 \pm 0.034	0.294
Probability	0.571 \pm 0.058	0.887 \pm 0.166	0.870 \pm 0.029	0.703 \pm 0.060	0.559 \pm 0.076	0.726
Random	0.568 \pm 0.050	0.395 \pm 0.110	0.561 \pm 0.044	0.535 \pm 0.077	0.560 \pm 0.029	0.472