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Abstract

Emotion Recognition in Conversation (ERC)001
involves detecting the underlying emotion be-002
hind each utterance within a conversation. Ef-003
fectively generating representations for utter-004
ances remains a significant challenge in this005
task. Recent works propose various models to006
address this issue, but they still struggle with007
differentiating similar emotions such as excite-008
ment and happiness. To alleviate this problem,009
We propose an Emotion-Anchored Contrastive010
Learning (EACL) framework that can generate011
more distinguishable utterance representations012
for similar emotions. To achieve this, we utilize013
label encodings as anchors to guide the learn-014
ing of utterance representations and design an015
auxiliary loss to ensure the effective separation016
of anchors for similar emotions. Moreover, an017
additional adaptation process is proposed to018
adapt anchors to serve as effective classifiers019
to improve classification performance. Across020
extensive experiments, our proposed EACL021
achieves state-of-the-art emotion recognition022
performance and exhibits superior performance023
on similar emotions.024

1 Introduction025

Emotion Recognition in Conversation (ERC) aims026

to identify the emotions of each utterance in a con-027

versation. It plays an important role in various sce-028

narios, such as chatbots, healthcare applications,029

and opinion mining on social media. However, the030

ERC task faces several challenges. Depending on031

the context, similar statements may exhibit entirely032

different emotional attributes. Simultaneously, dis-033

tinguishing conversation texts that contain similar034

emotional attributes is also extremely difficult (Ong035

et al., 2022; Zhang et al., 2023). Figure 1 is an036

example of a chat between a man and a woman.037

Differentiating between happy and excited can be038

challenging for machines due to their frequent oc-039

currence in similar contexts. Appendix A exhibits040

quantitative analysis for emotions. This requires041

Well you paint a romantic 
picture. [Excited]

Well I didn't want it to be like 
cheesy, you know. [Happy]

Did she cry? [Excited]

She didn't cry, but she was 
laughing a lot and it was very 

exciting, so... [Happy]
Oh, my god.  How long have 
you been planning on doing 

this? [Excited]

ManWoman

Figure 1: An example of a conversation in the IEMO-
CAP dataset.

the model to accurately distinguish different emo- 042

tions based on the context. 043

Therefore, abundant efforts have been made im- 044

plicitly to obtain distinguishable utterance repre- 045

sentations from two lines, model design and rep- 046

resentation learning. As the representative of the 047

former line, DialogueRNN (Majumder et al., 2019) 048

designs recurrent modules to track dialogue history 049

for classification. Representation learning methods 050

primarily exploit supervised contrastive learning 051

(SupCon) (Khosla et al., 2020) for learning utter- 052

ance representations. SPCL (Song et al., 2022) pro- 053

poses a prototypical contrastive learning method 054

to alleviate class imbalance problem and achieve 055

state-of-the-art performance. However, as shown in 056

Figure 2, our pilot fine-grained experimental results 057

indicate that SPCL still struggles with effectively 058

differentiating similar emotions. 059

To tackle the aforementioned issues, this paper 060

presents a novel Emotion-Anchored Contrastive 061

Learning framework (EACL). EACL utilizes tex- 062

tual emotion labels to generate anchors that are 063

emotionally semantic-rich representations. These 064

representations as anchors explicitly strengthen the 065

distinction between similar emotions in the rep- 066

resentation space. Specifically, we introduce a 067
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Figure 2: Normalized confusion matrix of a pilot study
for SPCL on the IEMOCAP dataset.

penalty loss that specifically targets emotions with068

the largest cosine similarity. This loss function069

encourages the corresponding emotion anchors to070

exhibit improved angular separation in the represen-071

tation space. By doing so, more separated emotion072

anchors guide utterance representations with simi-073

lar emotions to learn larger dissimilarities, leading074

to enhanced discriminability. After generating sep-075

arable utterance representations, we aim to com-076

pute the optimal positions of emotion anchors to077

which utterance representations can be assigned for078

classification purposes. To achieve better assign-079

ment, inspired by the two-stage frameworks (Kang080

et al., 2019; Menon et al., 2020; Nam et al., 2023),081

we propose the second stage to shift the decision082

boundaries of emotion anchors with fixed utterance083

representations and achieve better classification per-084

formance, which is simple yet effective.085

We conduct experiments on three widely used086

benchmark datasets, the results demonstrate that087

EACL achieves a new state-of-the-art performance.088

Moreover, EACL achieves a significantly higher089

separability in similar emotions, which validates090

the effectiveness of our method.091

The main contributions of this work are summa-092

rized as follows:093

• We propose a novel emotion-anchored con-094

trastive learning framework for ERC, that can095

generate more distinguishable representations096

for utterances.097

• To the best of our knowledge, our method is098

the first to explicitly alleviate the problem of099

emotion similarity by introducing label seman-100

tic information in modeling for ERC, which101

can effectively guide representation learning. 102

• Experimental results show that our proposed 103

EACL achieves a new state-of-the-art perfor- 104

mance on benchmark datasets. 105

2 Related Work 106

2.1 Emotion Recognition in Conversation 107

Most of the present works adopt graph-based and 108

sequence-based methods. DialogueGCN (Ghosal 109

et al., 2019) builds a graph treating utterances as 110

nodes, and models intra-speaker and inter-speaker 111

relationships by setting different edge types be- 112

tween two nodes. MMGCN (Hu et al., 2021b) 113

fuses multi-modal utterance representations into a 114

graph. Differently, DAG-ERC (Shen et al., 2021) 115

exploits directed acyclic graphs to naturally capture 116

the spatial and temporal structure of the dialogue. 117

COGMEN (Joshi et al., 2022) combines graph neu- 118

ral network and graph transformer to leverage both 119

local and global information respectively. 120

Another group of works exploits transform- 121

ers and recurrent models to learn the interac- 122

tions between utterances. DialogueRNN (Ma- 123

jumder et al., 2019) combines several RNNs to 124

model dialogue dynamics. DialogueCRN (Hu 125

et al., 2021a) introduces a cognitive reasoning mod- 126

ule. Commensense Knowledge is explored by 127

KET (Zhong et al., 2019) and COSMIC (Ghosal 128

et al., 2020). Cog-BART (Li et al., 2022a) em- 129

ploys BART (Lewis et al., 2019) to simultaneously 130

generate responses and detect emotions with the 131

auxiliary of contrastive learning. EmoCaps (Li 132

et al., 2022c) and DialogueEIN (Liu et al., 2022) 133

design several modules to explicitly model emo- 134

tional tendency and inertia, local and global infor- 135

mation in dialogue. The power of the language 136

models is utilized by CoMPM (Lee and Lee, 2021) 137

which learns and tracks contextual information by 138

the language model itself and SPCL (Song et al., 139

2022), a prototypical supervised contrastive learn- 140

ing method to alleviate the data imbalance problem. 141

SACL (Hu et al., 2023)introduces adversarial ex- 142

amples to learn robust representations. Our EACL 143

goes along this track. Unlike the above approaches, 144

HCL (Yang et al., 2022) comes up with a general 145

curriculum learning paradigm that can be applied 146

to all ERC models. 147

2.2 Supervised Contrastive Learning 148

Recent works (Chen et al., 2020; He et al., 2020a) 149

in unsupervised contrastive learning provide a 150
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similarity-based learning framework for represen-151

tation learning. These methods maximize the simi-152

larity between positive samples while minimizing153

the similarity between negative sample pairs. To154

make use of supervised information, supervised155

contrastive learning(SupCon) (Gunel et al., 2020)156

aims to make the data that have the same label157

to be closer in the representation space and push158

away those that have different labels. However,159

SupCon works poorly in data imbalance settings.160

To mitigate this problem, KCL (Kang et al., 2021)161

explicitly pursues a balanced representation space.162

TSC (Li et al., 2022b) uniformly set targets in the163

hypersphere and enforce data representations to164

close to the targets. BCL (Zhu et al., 2022) regards165

classifier weights as prototypes in the representa-166

tion space and incorporates them in the contrastive167

loss. LaCon (Zhang et al., 2022) incorporates label168

embedding for better language understanding. Our169

method is inspired by TSC, differently, we incorpo-170

rate emotion semantics in the representation space171

and dynamically adjust the emotion anchors for172

better classification.173

3 Methodology174

3.1 Problem Definition175

A conversation can be denoted as a sequence of176

utterances {u1, u2, u3, ..., un}, each utterance ut177

is uttered by one of the conversation speakers178

sj . There are m (m ≥ 2) speakers in the con-179

versation, denoted as {s1, s2, ..., sm}. Given the180

set of emotion labels E and conversation context181

{(u1, su1), (u2, su2), ..., (ut, sut)}, the ERC task182

aims to predict emotion et(et ∈ E) for current ut-183

terance ut. E is a set of emotions. For instance,184

in the IEMOCAP dataset, E = {excited, frustrated,185

sad, neutral, angry, happy}.186

3.2 Model Overview187

The overview of our model is shown in Figure188

3. The encoding strategy of our model adopts the189

paradigm of prompt learning (Section 3.3). Our190

training process is composed of two stages.191

The first stage (Section 3.4) is called representa-192

tion learning, which aims to learn more distinctive193

representations with emotion anchors. Concretely,194

we incorporate anchors containing semantic infor-195

mation into the contrastive learning framework and196

utilize them to guide the learning of utterance rep-197

resentations. Our objectives are (1) to bring utter-198

ances with the same emotion closer to their cor-199

responding anchors and push utterances with dif- 200

ferent emotions farther away, and (2) to achieve a 201

more uniform distribution of anchors in the hyper- 202

space for better classifying different emotions. 203

The second stage (Section 3.5) is called emotion 204

anchor adaptation, which aims to further improve 205

classification performance by slightly adjusting an- 206

chors. The anchors in the first stage can help the 207

model learn separable representations of utterances. 208

However, separated emotion anchors are not accu- 209

rately located in the optimal positions to serve as 210

nearest-neighbor classifiers for utterances. There- 211

fore, we design the second stage to slightly adjust 212

the positions of emotion anchors to shift the de- 213

cision boundaries for better classification perfor- 214

mance. In this stage, we freeze the parameters of 215

the language model and only fine-tune the emo- 216

tion anchors, as shown on the right side of Figure 217

3. Lastly, EACL matches the utterance represen- 218

tations with the most similar emotion anchors to 219

make predictions. 220

3.3 Prompt Context Encoding 221

Following previous work (Song et al., 2022), we 222

employ pre-trained language models and adopt 223

prompt tuning to transform the classification into 224

masked language modeling. An effective prompt 225

template aligns the downstream task with the large 226

semantic information learned by the language 227

model in the pre-training stage, which boosts the 228

model’s performance in downstream tasks. 229

To predict the emotion of utterance ut, we take 230

k utterances before timestamp t as the context to 231

predict et. Formally, the input for the language 232

model is composed as: 233

xt = [st−k, ut−k, . . . , st, ut, P rompt] (1) 234

where Prompt P = "For utterance ut, speaker st 235

feels [mask]" . We take the last hidden state of 236

[mask] as utterance representation. 237

3.4 Stage One: Representation Learning 238

In this section, we will introduce two main compo- 239

nents of EACL in stage one: utterance representa- 240

tion learning and emotion anchor learning. 241

3.4.1 Utterance Representation Learning 242

The objective in this section is to acquire dis- 243

cernible representations for each individual utter- 244

ance. To accomplish this, we employ label encod- 245

ings to generate emotion anchors and incorporate 246

them into a contrastive learning framework. By 247
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Language Model

Monica: Enough! Joey: Lean-lean-

lean! For utterance: Lean-lean-

lean, Speaker Joey feels <mask>

Contrastive Utterance 

Representation Learning

Emotion AnchorUtterance Repr

Language Model

1. Representation Learning 2. Emotion Anchor Adaptation

Emotion Anchor 

Learning

Language Model

Monica: Enough! Joey: Lean-lean-

lean! For utterance: Lean-lean-

lean, Speaker Joey feels <mask>

<mask> token

Before Adaptation After Adaptation

Trainable Freeze
Emotion token

Emotion Anchor

Classifier

Inherent from emotion 

anchor of the first stage

Emotion Anchor

Emotion Labels

Figure 3: Overview of our proposed framework. Left side introduces representation learning, which is composed of
utterance representation and emotion anchor learning. Right side describes the process of adapting emotion anchors
to the optimal positions for classification.

utilizing these anchors, we can proficiently steer248

the process of representation learning.249

Given a batch of samples X =250

{x1, x2, . . . , xb} ∈ Rb×ℓ, where b, ℓ are batch size251

and max length of input respectively. We feed X252

into the pre-trained language model and get the253

last hidden states Z = Encoder(X ). Then we254

use the hidden state of [mask] token at the end of255

the sentence as the representation of utterance ut.256

Finally, we obtain the representations of utterances257

with an MLP layer:258

R = MLPcl(Z[mask]) (2)259

where R = {r1, r2, . . . , rb} and R ∈ Rb×d, d is260

dimension of the encoder.261

Similarly, we take textual emotion labels as the262

input of language models to obtain emotion anchors263

for all emotions E = {e1, e2, . . . , es}:264

Za = Encoder(E)
A = MLPcl(Za)

(3)265

where A ∈ Rs×d, each row of which represents a266

emotion anchor. s represents the number of emo-267

tions. To ensure we get a stable anchor representa-268

tion, Za is frozen in our training process.269

We propose an emotion-anchored contrastive270

learning loss to utilize emotion label semantics for271

better representation learning. More specifically, in 272

each mini-batch, we let V = {v1, v2, . . . , vb+s} = 273

R ∪A and V+
i represents the set of utterances or 274

anchor representation that have the same label as 275

utterance ri except for itself. Finally, our emotion- 276

anchored contrastive loss is as follows: 277

cij = sim(vi, vj)/τ

Lsup =

s+b∑
i=1

− log

∑
vj∈V+

i
ecij

|V+
i |

∑
vj∈V ecij

(4) 278

where |V+
i | represents number of positive exam- 279

ples. τ is the temperature hyperparameter for the 280

contrastive loss. sim represents a similarity func- 281

tion, we adopt cosine similarity here. 282

In equation 4, interactions between repre- 283

sentations can be divided into three compo- 284

nents: utterances-utterances, anchors-utterances, 285

and anchors-anchors. Representations with the 286

same label are brought closer to each other, while 287

those with different labels are pushed farther apart. 288

The utterances-utterances interactions are similar to 289

traditional contrastive learning, while the anchors- 290

utterances interactions represent the process of 291

anchor-guided utterance representation learning. 292

The anchors-anchors interaction ensures a better 293

distinction between different emotions. 294
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Recent research (Gunel et al., 2020) has in-295

dicated that combining cross-entropy loss with296

contrastive learning facilitates language models297

with more discriminative ability. Therefore cross-298

entropy loss is added to help improve representa-299

tion learning. We additionally add a linear mapping300

for classification:301

Ŷ = softmax(MLPce(Z[mask])) (5)302

303

LCE = −1

b

b∑
i=1

s∑
j=1

yij log ŷij (6)304

where Ŷ ∈ Rb×s represents the possibility distribu-305

tion of b utterances over s emotions. yij represents306

the element in the i-th row and j-th column of Ŷ .307

MLPce is a linear layer for classification.308

3.4.2 Emotion Anchor Learning309

Nevertheless, despite the implementation of the in-310

teraction between representations, the three types311

of interactions mentioned in Section 3.4.1 alone are312

insufficient to explicitly disperse the distance be-313

tween the most similar emotion anchors. To further314

tackle the issue of similarity, we propose an an-315

chor angle loss. This loss is designed to incentivize316

emotion anchors to maximize the angle between317

themselves and their most similar emotion anchors318

within the contrastive space:319

LAg = −1

s

s∑
i=1

min
j,i̸=j

arccos
⟨ai, aj⟩
∥ai∥∥aj∥

(7)320

where ai represents i-th emotion anchor represen-321

tation in A.322

LAg aims to minimize the maximal pairwise co-323

sine similarity between all the emotion anchors. It324

is equivalent to maximizing the minimal pairwise325

angle. The more dispersed emotion anchors are, the326

better their capacity to recognize similar emotions.327

Combining all the components mentioned in328

stage one, the overall loss is a weighted average329

of cross-entropy loss, anchor angle loss, and con-330

trastive loss, as given in equation 8.331

L = λ1(Lsup + λ2LAg) + (1− λ1)LCE (8)332

where λ1 and λ2 are hyper-parameters to balance333

loss terms.334

3.5 Stage Two: Emotion Anchor Adaptation 335

In the first stage, we used emotion anchors gener- 336

ated from emotion labels to guide the convergence 337

of utterance representations toward different emo- 338

tion clusters. These emotion anchors serve as rep- 339

resentatives for each emotion, which are suitable 340

to function as effective nearest-neighbor classifiers 341

for utterance representations. However, separated 342

emotion anchors trained from stage one are not 343

accurately located in the optimal positions which 344

weakens the classification ability of emotion an- 345

chors. To ensure the alignment between utterance 346

representations and emotion anchors, we propose 347

the second stage to adapt the emotion anchors to 348

shift the decision boundaries by training them with 349

a small number of epochs. This approach aims to 350

enhance the ability of emotion anchors for classifi- 351

cation purposes. 352

To be more specific, we freeze the parameters of 353

the language model and make the emotion anchors 354

inherited from stage one ai(i = 1, ..., s) trainable 355

parameters, which corresponds to the right side in 356

figure 3. In order to be consistent with the repre- 357

sentation learning, we still use the same similarity 358

measure for adapting emotion anchors. 359

The loss function for emotion anchor adaptation: 360

cij = sim(ri, aj)/τ

Lada = −1

b

b∑
i=1

s∑
j=1

yij log ŷij

= −1

b

b∑
i=1

s∑
j=1

yij log
ecij∑s
k=1 e

cik

(9) 361

where cij means adjusted cosine similarity between 362

the i-th utterance representation ri and j-th emo- 363

tion anchors aj . τ is the same temperature hyper- 364

parameter in stage one. 365

3.6 Emotion Prediction 366

During the inference stage, we predict emotion 367

labels by matching each utterance representation 368

with the nearest emotion anchor: 369

ŷi = argmax
j

sim(ri, aj) (10) 370

Where ri is the representation of utterance xi and 371

aj is the emotion anchor of class j. 372
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Dataset
Dialogues Utterances

CLS
train dev test train dev test

IEMOCAP 100 20 31 4810 1000 1623 6
MELD 1038 114 280 9989 1109 2610 7

EmoryNLP 659 89 79 7551 954 984 7

Table 1: Statistics of the three datasets, where CLS is
the number of classes.

4 Experiments373

4.1 Experimental setup374

Without specification, the language model loads the375

initial parameter by SimCSE-Roberta-Large (Gao376

et al., 2021). All experiments are conducted on a377

single NVIDIA A100 GPU 80GB and we imple-378

ment models with PyTorch 2.0 framework. More379

experimental details are provided in Appendix B.380

4.2 Datasets381

In this section, we will introduce three adopted382

popular benchmark datasets: IEMOCAP (Busso383

et al., 2008), MELD (Poria et al., 2018) and384

EmoryNLP (Zahiri and Choi, 2017).385

(1) IEMOCAP: consists of 151 videos of two386

speakers’ dialogues with 7433 utterances. Each387

utterance is annotated by an emotion label from 6388

classes, including excited, frustrated, sad, neutral,389

angry, and happy.390

(2) MELD: is extracted from the TV show Friends.391

It contains about 13000 utterances from 1433 dia-392

logues. Each utterance is labeled by one of the fol-393

lowing 7 emotion labels: surprise, neutral, anger,394

sadness, disgusting, joy, and fear.395

(3) EmoryNLP: contains 97 episodes, 897 scenes,396

and 12606 utterances from TV show Friends. It397

differs from MELD in that the emotional tags con-398

tained are: joyful, sad, powerful, mad, neutral,399

scared, and peaceful.400

In our experiments, we only use textual modal-401

ity. The detailed statistics of the three datasets are402

shown in Table 1.403

4.3 Metrics404

Following previous works (Lee and Lee, 2021;405

Song et al., 2022), we choose the weighted-average406

F1 score as the evaluation metric.407

4.4 Baselines408

For a comprehensive evaluation, we compare our409

method with the following baselines:410

(1) Graph-based models: DialogueGCN (Ghosal411

et al., 2019) employs GCNs to gather context412

features for learning utterance representations, 413

Shen (Shen et al., 2021) shows the performance of 414

replacing the feature extractor with Roberta-Large. 415

RGAT (Ishiwatari et al., 2020) proposes relational 416

position encodings to model both speaker relation- 417

ship and sequential information. DAG-ERC (Shen 418

et al., 2021) utilizes an acyclic graph neural net- 419

work to intuitively model a conversation’s natural 420

structure without introducing any external informa- 421

tion. DAG-ERC+HCL (Yang et al., 2022) pro- 422

poses a curriculum learning paradigm combined 423

with DAG-ERC for learning from easy to hard. 424

(2) Sequence-based models: COSMIC (Ghosal 425

et al., 2020) incorporates different elements of com- 426

monsense and leverages them to learn self-speaker 427

dependency. Cog-BART (Li et al., 2022a) applies 428

BART with contrastive learning to take response 429

generation into consideration. DialogueEIN (Liu 430

et al., 2022) designs emotion interaction and ten- 431

dency blocks to explicitly simulate emotion iner- 432

tia and stimulus. CoMPM (Lee and Lee, 2021) 433

utilizes pretrained models directly learn contex- 434

tual information and track dialogue history. Emo- 435

caps (Li et al., 2022c) devises transformer to 436

a novel architecture, Emoformer, to extract the 437

emotional tendency of utterance. SACL (Hu 438

et al., 2023) proposes contrastive learning com- 439

bined with adversarial training for robust represen- 440

tations. SPCL+CL (Song et al., 2022) combines 441

prototypical contrastive learning and curriculum 442

learning to tackle the emotional class imbalance 443

issue. ChatGPT (Zhao et al., 2023) reports their 444

pilot results in the 3-shot performance. 445

5 Results and Analysis 446

5.1 Main Results 447

Table 2 reports the result of our method and the 448

baselines. Our model outperforms other baselines 449

and achieves a new state-of-the-art performance on 450

IEMOCAP, MELD, and EmoryNLP datasets. The 451

results exhibit the effectiveness of our emotion- 452

anchored contrastive learning framework. 453

Based on the results, we can observe that 454

sequence-based methods have overall better perfor- 455

mance than graph-based methods. Compared to the 456

graph-based models, EACL improves a large mar- 457

gin over the DAG-ERC (Shen et al., 2021) which 458

is the state-of-the-art graph-based method without 459

introducing extra knowledge by 2.38%, 3.57%, and 460

1.22% on three benchmark datasets. 461

Compared to sequence-based methods, EACL 462
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Methods IEMOCAP MELD EmoryNLP Average

Graph-based methods

DialogueGCN (Ghosal et al., 2019) 64.91 63.02 38.1 55.34
RGAT (Ishiwatari et al., 2020) 66.36 62.80 37.89 55.68
DAG-ERC (Shen et al., 2021) 68.03 63.65 39.02 56.9

DAG-ERC+HCL (Yang et al., 2022) 68.73 63.89 39.82 57.48

Sequence-based methods

COSMIC (Ghosal et al., 2020) 65.25 65.21 38.11 56.19
Cog-BART (Li et al., 2022a) 66.18 64.81 39.04 56.68

DialogueEIN (Liu et al., 2022) 68.93 65.37 38.92 57.74
CoMPM (Lee and Lee, 2021) 69.46 66.52 38.93 58.3

Emocaps (Li et al., 2022c) 69.49 63.51 - -
SACL (Hu et al., 2023) 69.22 66.45 39.65 58.44

SPCL+CL (Song et al., 2022) 67.19 65.74 39.52 57.48
ChatGPT 3-shot (Zhao et al., 2023) 48.58 58.35 35.92 47.62

EACL (ours) 70.41† 67.12† 40.24† 59.26†

Table 2: Weighted-average F1 score of different models on benchmark datasets. Bold font and underlining indicate
the best and second-best performance respectively. SPCL+CL is reproduced with the official code and uses SimCSE-
Roberta-Large that EACL uses. † represents statistical significantly over baselines with t-test (p<0.05)

outperforms two contrastive learning methods,463

SACL and SPCL+CL by a large margin. Specifi-464

cally, SPCL’s use of a queue for storing class rep-465

resentations and prototype generation from small466

batches results in unstable representation learning.467

Significant movement of prototypes that undergo468

during training and the asynchronous update of469

queue representations with the language model’s470

parameters lead to suboptimal utterance represen-471

tations. EACL outperforms the state-of-the-art472

results on the IEMOCAP dataset by 0.92%, the473

MELD dataset by 0.6%, and the EmoryNLP dataset474

by 0.59%. Besides, EACL has an overwhelming475

performance advantage over ChatGPT, one possi-476

ble reason is that the few-shot prompt setting may477

not be enough to achieve satisfactory performance.478

Table 3 reports the fine-grained performance on479

benchmark datasets. EACL outperforms SPCL+CL480

which is the most relevant method to us in most481

emotion categories on all benchmark datasets.482

Specifically, in the IEMOCAP dataset, We have483

observed a significant improvement in performance484

on two pairs of similar emotions, happy and excited485

with an increase of 7.33% and 4.55%, frustrated486

and angry with an increase of 3.80% and 2.72%487

respectively. Detailed performance analysis is pro-488

vided in Appendix C.489

5.2 Ablation Study490

We conduct a series of experiments to confirm the491

effectiveness of components in our method. The re-492

(a) IEMOCAP
Methods Exc Fru Sad Neu Ang Hap Avg W-f1

SPCL+CL 66.72 63.96 80.03 72.29 64.82 43.96 65.30 67.19
EACL 71.27 67.76 81.80 73.32 67.54 51.29 68.81 70.41
∆ +4.55 +3.80 +1.77 +1.03 +2.72 +7.33 +3.51 +3.22

(b) MELD
Methods Fear Neu Ang Sad Dis Surp Joy Avg W-f1

SPCL+CL 26.59 77.92 54.40 43.53 30.94 59.26 60.34 50.43 65.74
EACL 23.54 80.44 54.01 42.41 33.86 60.48 65.22 51.42 67.12
∆ -3.05 +2.52 -0.39 -1.12 +2.92 +1.22 +4.88 +0.99 +1.38

(c) EmoryNLP
Methods Joy Sad Pow Mad Neu Pea Sca Avg W-f1

SPCL+CL 53.52 31.61 10.28 44.21 51.40 16.83 39.51 35.34 39.52
EACL 52.73 30.77 15.27 41.97 49.76 23.48 41.18 36.45 40.24
∆ -0.79 -0.84 +4.99 -2.24 -1.64 +6.65 +1.67 +1.11 +0.72

Table 3: Fine-grained performance comparison between
SPCL+CL and EACL for all emotions on three bench-
mark datasets, the F1-score is used for each class. ∆ is
the difference between the two models.

sults are shown in Table 4. Removing any element 493

of EACL makes the overall performance worse. 494

To validate the effects of components in the first 495

stage, We remove the LAg which encourages the 496

angle of different emotion anchors to be uniform. 497

We can find that the lack of LAg results in a signifi- 498

cant decline in the performance of nearly 0.5%, as 499

reported in line 2 in Table 4, indicating that emo- 500

tion anchor learning helps for separating utterance 501

representations. Also, the removal of LCE drops 502

the performance by about 0.5% on average, the re- 503

sult demonstrates that supervised learning benefits 504

the fine-tuning of language models. 505
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Dataset IEMOCAP MELD EmoryNLP

Original 70.41 67.12 40.24
w/o Emotion Anchor Learning 69.78 (0.63 ↓) 66.63(0.49 ↓) 39.90(0.34 ↓)

w/o Classification Objective 69.98(0.43 ↓) 66.24(0.88 ↓) 39.73(0.51 ↓)
w/o Anchor Inheritance 69.79(0.62 ↓) 67.03(0.09 ↓) 38.46 (1.78 ↓)
w/o Anchor Adaptation 69.67(0.74 ↓) 64.43(2.89 ↓) 39.98 (0.26 ↓)

Table 4: Ablation results on benchmark datasets.

In the second stage, We explore whether adapt-506

ing emotion anchors and emotion semantics are507

necessary. Similar to classifier re-training (Kang508

et al., 2019; Nam et al., 2023), we randomly initial-509

ize emotion anchors that lie far from the data distri-510

bution after learning the utterance representations.511

Training from scratch is a cold start and cannot512

reach the optimal position. This result in Line 4513

verifies the importance of inheriting emotion an-514

chors and the result shows that the trained emotion515

anchors express a more powerful ability of recog-516

nition. When we remove the anchor adaptation,517

performance will degrade significantly, indicating518

the improper positions of emotion anchors weaken519

the classification performance and verifying the im-520

portance of stage two. Line 5 in Table 4 confirms521

our assumption. In summary, the components of522

our method contribute to the results substantially.523

5.3 Analysis of Contrastive Learning524

Equipped with emotion anchors, utterance repre-525

sentations move toward their own semantic posi-526

tion, whose cohesion ability is absent in vanilla-527

supervised contrastive learning. EACL achieves528

more separability for utterances that have similar529

emotions. In Figure 4(a), we can observe that the530

emotion anchors are distributed uniformly, excited531

and happy, frustrated and angry lie far. Meanwhile,532

utterance representations with other emotions also533

exhibit significant dispersion. Figure 4(b) shows534

that similar emotion representations obtained by535

SupCon lie closer than EACL and thus are harder536

to distinguish. The slight visual difference is due537

to the contrastive learning that had been employed538

in SimCSE, which helps learn distinct representa-539

tions. The ablation study shows the superior perfor-540

mance of EACL over removing emotion anchors.541

Quantitative comparison recorded in Appendix D542

indicates that EACL alleviates emotion similarity543

to a large extent.544

5.4 Performance on Different Language545

Models546

To evaluate the versatility of our learning frame-547

work, we conducted experiments using different548

Dataset IEMOCAP MELD EmoryNLP

SimCSE-Roberta-Large 70.41 67.12 40.24
Deberta-Large 69.09 67.80 41.09

Promcse-Roberta-Large 70.45 67.38 40.93

Table 5: Performance under different language models.
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(b) SupCon

Figure 4: The t-SNE visualization of representations
on the IEMOCAP test dataset. Triangles represent the
emotion anchors. Figures (a) and (b) depict the represen-
tation distribution of EACL and SupCon respectively.

pretrained language models. Specifically, we exam- 549

ined the performance of our framework on two ad- 550

ditional popular language models, namely Deberta- 551

Large (He et al., 2020b) and Promcse-Roberta- 552

Large (Jiang et al., 2022). The results, presented in 553

Table 5, demonstrate that all the pretrained models 554

deliver competitive performance. This observation 555

serves as evidence for the robustness and effective- 556

ness of our framework across various pre-trained 557

language models. It further emphasizes the general- 558

izability of our approach in conversational emotion 559

recognition tasks. We report fine-grained perfor- 560

mance in Appendix E. 561

6 Conclusion 562

This paper introduces a novel framework for con- 563

versational emotion recognition called emotion- 564

anchored contrastive learning. The proposed EACL 565

leverages emotion representations as anchors to en- 566

hance the learning process of distinctive utterance 567

representations. Building upon this foundation, 568

we further adapt the emotion anchors through fine- 569

tuning, bringing them the optimal positions and 570

more suitable for classification purposes. Through 571

extensive experiments and evaluations on three pop- 572

ular benchmark datasets, our approach achieves a 573

new state-of-the-art performance. Ablation studies 574

and evaluations confirm that the proposed EACL 575

framework significantly benefits dialogue modeling 576

and enhances the learning of utterance representa- 577

tions for more accurate emotion recognition. 578
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Limitations579

It is important to note that our current method580

has limitations in tracking distant dialogue his-581

tory. This constraint arises from the input length582

restriction of the language model we employ. How-583

ever, we acknowledge the significance of address-584

ing long-range dialogue modeling and consider it a585

promising avenue for future research.586

Additionally, our method focuses solely on tex-587

tual inputs and does not incorporate multi-modal588

settings. We recognize that complementing emo-589

tion recognition with facial expressions and tone590

can provide valuable information. Considering591

multi-modal inputs is an interesting direction for592

future enhancements, as it has the potential to im-593

prove the overall performance and richness of our594

emotion recognition framework.595

Ethics Statement596

The experiments conducted in this paper adopt597

open-source data for only research purposes. In598

this work, we try to facilitate machines with the599

ability to understand better human emotions which600

is beneficial for dialogue systems or robots. How-601

ever, it is far from exceeding the understanding of602

humanity.603
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Appendix779

A Emotion Similarity Anlaysis780

To better understand our motivation, we exhibit the781

emotion similarity in Figure 5. We split the emo-782

tions into 3 groups which are composed of positive783

emotions, negative emotions, and neutral, where784

positive emotions include excited and happy, neg-785

ative emotions contain frustrated, sad, angry, and786

neutral. It is observed that excited and happy have787

a cosine similarity of 0.77, and for frustrated and788

angry, they have 0.84 cosine similarity. The simi-789

larity of the positive emotions group is higher than790

that of the negative emotions group. For neutral, it791

is almost equally similar to other emotions.
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Figure 5: Cosine similarity between emotion word rep-
resentations extracted from Roberta-Large-SimCSE.

792

B Experimental Setup793

EACL loads the initial parameter by SimCSE-794

Roberta-Large (Gao et al., 2021) which is identical795

to the setting of SPCL. All the hyperparameters are796

reported in Table 6. We exploit grid-search for λ1797

in {0, 0.1, 0.3, 0.5, 0.7, 0.9}, λ2 in {0, 0.01, 0.1,798

1.0} and τ in { 0.05, 0.07, 0.1, 0.15, 0.2}.

Hyperparameters IEMOCAP MELD EmoryNLP

λ1 0.9 0.1 0.9
λ2 0.01 0.1 0.01

Temperature τ 0.1 0.1 0.15
Epochs 8 8 8

Maximum length 256 256 256
Learning rate 1e-5 1e-5 1e-5

Dropout 0.1 0.1 0.1

Table 6: Hyperparameters of EACL on three benchmark
datasets.
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Figure 6: The normalized confusion matrix of three
benchmark datasets, each row is the true classes and
column is predictions. The Coordinate i, j means the
percentage of emotion i predicted to be emotion j.

C Detailed Performance Analysis 800

In Figure 6, we provide the normalized confu- 801

sion matrices for our EACL and SPCL+CL mod- 802

els across various datasets. These matrices serve 803

as crucial tools for assessing the models’ perfor- 804

mance. Notably, when we examine the diagonal 805

elements of these matrices, it becomes evident that 806

EACL consistently outperforms the state-of-the-art 807

method SPCL+CL in terms of true positives for 808

most fine-grained emotion categories. This sug- 809

gests that EACL excels at learning features that 810

are more distinguishable. Particularly notewor- 811

thy is the performance of EACL in comparison 812

to SPCL+CL when considering specific emotion 813

pairs, such as excited and happy, as well as frus- 814

trated and angry on the IEMOCAP dataset. In 815

these cases, EACL demonstrates superior perfor- 816

mance. This underscores the effectiveness of the 817

EACL framework in effectively addressing the chal- 818

lenge of misclassification, especially when deal- 819
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Figure 7: The cosine similarity of pair-wise emotions.
Figure (a) depicts cosine similarity between emotion
anchors extracted from Roberta-Large-SimCSE. and (b)
depicts that similarity after training with EACL.

ing with emotions that share similar characteris-820

tics. When we focus on the MELD and EmoryNLP821

datasets, we observe that EACL significantly re-822

duces misclassifications between neutral emotions823

and other emotional states. This highlights EACL’s824

capability to effectively mitigate misclassification825

issues not only for similar emotions but for all emo-826

tion categories.827

D Emotion Similarity Comparison828

In this section, we conducted a comparison of the829

similarity between pairs of emotions generated by830

Roberta-Large-SimCSE in Figure 7a and after train-831

ing with EACL in Figure 7b. Figure 7 illustrates832

our findings, which reveal a significant decrease in833

similarity for emotions that are considered similar.834

For instance, the cosine similarity between excited835

and happy drops sharply from 0.77 to 0.08, while836

for frustrated and angry, it decreases from 0.84837

to -0.3. Meanwhile, naturally dissimilar emotions838

are now positioned further apart. For instance, the839

similarity between neutral and other emotions also840

experiences a notable decline. These observations841

suggest that EACL effectively increases the separa-842

tion between similar emotions, thereby enhancing843

the model’s ability to distinguish between them.844

E Fine-Grained Performance on845

Different Models846

In this section, we report the fine-grained perfor-847

mance when using Deberta-Large (He et al., 2020b)848

and Promcse-Roberta-Large (Jiang et al., 2022)849

in Table 7. The results indicate that our learning850

framework is robust to different language models.851

Similar to the result under Roberta-SimCSE, these852

models can also effectively separate similar emo-853

tions and achieve state-of-the-art performance on854

(a) IEMOCAP
Model Exc Fru Sad Neu Ang Hap Avg W-f1

Deberta 68.55 69.74 80.17 70.18 65.41 50.96 67.50 69.09
PromCSE 68.64 67.19 80.81 74.66 69.11 53.41 68.97 70.45

SPCL+CL 66.72 63.96 80.03 72.29 64.82 43.96 65.30 67.19

(b) MELD
Methods Fear Neu Ang Sad Dis Surp Joy Avg W-f1

Deberta 34.0 80.43 55.28 44.44 37.59 60.85 65.34 53.99 67.8
PromCSE 23.59 81.0 54.96 43.35 30.53 59.51 65.12 51.15 67.38

SPCL+CL 26.59 77.92 54.40 43.53 30.94 59.26 60.34 50.43 65.74

(c) EmoryNLP
Methods Joy Sad Pow Mad Neu Pea Sca Avg W-f1

Deberta 54.04 28.74 21.54 41.73 51.75 18.12 42.52 36.92 41.09
PromCSE 54.42 28.33 14.21 43.35 51.64 23.42 41.30 36.68 40.93

SPCL+CL 53.52 31.61 10.28 44.21 51.40 16.83 39.51 35.34 39.52

Table 7: Fine-grained performance record on different
language models for all emotions on three benchmark
datasets, the F1-score is used for each class.

the benchmark datasets. 855
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