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ABSTRACT

Tool learning enables Large Language Models (LLMs) to interact with external
environments by invoking tools, serving as an effective strategy to mitigate the
limitations inherent in their pre-training data. In this process, tool documentation
plays a crucial role by providing usage instructions for LLMs, thereby facilitat-
ing effective tool utilization. This paper concentrates on the critical challenge
of bridging the comprehension gap between LLMs and external tools due to the
inadequacies and inaccuracies inherent in existing human-centric tool documenta-
tion. We propose a novel framework, DRAFT, aimed at Dynamically Refining
tool documentation through the Analysis of Feedback and Trials emanating from
LLMs’ interactions with external tools. This methodology pivots on an innovative
trial-and-error approach, consisting of three distinct learning phases: experience
gathering, learning from experience, and documentation rewriting, to iteratively
enhance the tool documentation. This process is further optimized by implementing
a diversity-promoting exploration strategy to ensure explorative diversity and a
tool-adaptive termination mechanism to prevent overfitting while enhancing effi-
ciency. Extensive experiments on multiple datasets demonstrate that DRAFT’s
iterative, feedback-based refinement significantly ameliorates documentation qual-
ity, fostering a deeper comprehension and more effective utilization of tools by
LLMs. Notably, our analysis reveals that the tool documentation refined via our
approach demonstrates robust cross-model generalization capabilities.

1 INTRODUCTION

Tool learning (Mialon et al., 2023; Qin et al., 2023b; Schick et al., 2024; Qu et al., 2024b), which
integrates external tools with large language models (LLMs), has significantly enhanced the capability
of LLMs to address complex real-world tasks (Nakano et al., 2021; Qin et al., 2023a; M. Bran et al.,
2024). By leveraging external tools, LLMs are able to mitigate the limitations of outdated pre-training
data and the text-in-text-out interface, enabling them to access up-to-date information, interact with
dynamic environments, and take actions beyond their original scope (Zhuang et al., 2024; Wang
et al., 2024a). To effectively utilize these external tools, LLMs are typically provided with tool
documentation as context (Shen et al., 2024; Song et al., 2023; Xu et al., 2023). This documentation
provides essential information on how tools function, their potential uses, and the ways in which
they can be leveraged to solve complex tasks. By incorporating tool documentation within the task
instructions, LLMs can leverage their in-context learning abilities to understand and utilize the tools
efficiently (Wei et al., 2022; Hsieh et al., 2023). Therefore, tool documentation is an indispensable
component driving the success of tool learning, serving as a bridge between LLMs and external tools.

However, existing tools primarily originate from pre-established, human-engineered code reposi-
tories and are not explicitly tailored for the utilization of LLMs from their inception, let alone the
corresponding tool documentation. In fact, orchestrating an ideal documentation for an external
tool that adapts to the specific requirements of LLMs remains a challenging endeavor. First, the
original human-crafted tool documentation is typically created with human intuition in mind, and
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"description": "A QR code generator API is 
a tool that enables developers to  …"

"name": "GetSearchImage",
"description": " "

Why does the result not 
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What is this tool used for ?
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"para_name": "imageId",
"description": "Image identifier."

Why did it go wrong?

Error: The resource could not be found.

Figure 1: (a): An illustration showcasing issues in current tool documentation, including incomplete,
redundant, and inaccurate information. (b): An illustration of how LLMs incrementally enhance their
understanding of tool usage through iterative exploration, transitioning from untested functionalities
(gray) to discovered capabilities (white) via a trial-and-error process. (c): The comparison between
the raw and improved tool documentation regarding its usefulness on three tool learning datasets,
highlighting that DRAFT is able to produce tool documentation that is more favored by LLMs.

is often fraught with inconsistency and ambiguities, as it primarily caters to human understanding
and usually lacks the precision required for machine interpretation (Chemero, 2023; Yuan et al.,
2024). As illustrated in Figure 1 (a), incomplete documentation makes it difficult for LLMs to clearly
understand the purpose of a tool and when it should be invoked, while redundant documentation,
containing excessive irrelevant information, obscures key details and increases token consumption in
prompts. Additionally, inaccurate documentation that does not reflect the tool’s actual capabilities can
lead to discrepancies between the tool’s outputs and its description, leading to the potential misuse of
the tool by LLMs. These issues obstruct the effective utilization of tools by LLMs. Second, manual
modification of these documentations, even with meticulous revisions, struggle to fully encompass
all aspects of tool usage, since discerning the specific scope a tool can manage and identifying its
edge use-cases often necessitates considerable hands-on experience. For example, as depicted in
Figure 1 (a), incomplete documentation also fails to mention certain constraints on the parameters,
and the LLM, being unaware of this undocumented constraint, generates an error when invoking the
tool with an invalid parameter value. Addressing these issues by manually correcting or enhancing
tool documentation is time-consuming and labor-intensive. Moreover, this may not scale to a sub-
stantial number of tools effectively. Furthermore, the dynamic nature of tool development further
exacerbates this issue, as functionalities of tools are frequently updated, deprecated, or extended.
Maintaining an up-to-date and accurate representation of such evolving functionalities within the tool
documentation becomes an arduous task. This misalignment between the tool documentation with
the current state of the tool hinders the efficient and correct utilization of tools by LLMs.

Humans, on the contrary, acquire tool proficiency through repeated interactions and hands-on ex-
periences, capable of maintaining an updated comprehension of these tools despite their evolving
functionalities. In light of this, this paper proposes DRAFT, conceptualized to automate the ad-
justment and optimization of tool documentation based on the feedback derived from the LLM’s
interaction with the tool, aiming to bridge the comprehension gap between LLMs and external tools.

More concretely, DRAFT implements a trial-and-error methodology to incrementally improve the
tool documentation. As shown in Figure 2, DRAFT orchestrates three dynamically interlinked phases,
which collectively facilitate the iterative process of documentation enhancement. It first undertakes
the simulation of potential tool application scenarios, crafting explorative instances and capturing
tool execution outcomes through a designed explorer. Subsequently, the analyzer dissects the
prevailing documentation, amalgamating insights from the explorer’s findings and feedback to moot
documentation modification propositions. Finally, the rewriter amalgamates these insights, refining
the tool documentation while simultaneously guiding further explorative pursuits by the explorer.
To optimize this process, we design a diversity-promoting exploration strategy to ensure diversity
in exploration, thus providing a wider range of samples for subsequent rewriting. Recognizing that
different tools vary in complexity for LLMs, we introduce a tool-adaptive termination mechanism to
improve efficiency during modifications by halting the iterative process once the documentation aligns
with the comprehension of LLMs, thereby saving time and resources while preventing overfitting.
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Figure 2: Schematic illustration of our proposed self-driven iterative improvement framework,
DRAFT. The left part illustrates the three distinct learning phases in our framework, where a trial
refers to a single iteration of the process. The middle part shows the two specialized mechanisms
designed to optimize the process. The right part depicts an example of using DRAFT to iteratively
modify the tool documentation (a complete revision trajectory is presented in Appendix E).

Through this collaborative, iterative framework, the documentation progressively morphs, aligning
more coherently with LLMs operational requisites, and thus empowering LLMs to leverage external
tools more effectively in their problem-solving endeavors.

In summary, our contributions are as follows: (1) We highlight that due to the inherent understanding
gap between LLMs and humans, inefficiencies and inaccuracies within existing tool documentation
hamper the effective utilization of tools by LLMs. (2) We introduce a novel framework, DRAFT,
designed to dynamically adjust and optimize tool documentation based on the interaction feedback
between LLMs and external tools, which significantly bridges the gap between them by enabling
the LLMs to better comprehend and utilize the tools at their disposal, thereby enhancing the overall
tool-using capabilities of LLMs. (3) Extensive experiments demonstrate that DRAFT significantly
improves the quality of tool documentation and enhances the ability of LLMs to utilize external tools.

2 METHODS

In this section, we will first introduce the overview of DRAFT, and then provide detailed explanations
of the three included learning stages. The learning algorithm is presented in Algorithm 1.

2.1 OVERVIEW OF DRAFT

To address the challenges of inadequate, ambiguous, and outdated tool documentation that hinder
LLMs from effectively utilizing external tools, we propose DRAFT, a framework that iteratively
refines tool documentation to bridge the comprehension gap between LLMs and tools. As illustrated
in Figure 2, DRAFT operates through three interconnected phases: experience gathering, learning
from experience, and documentation rewriting. In the experience gathering phase, an explorer
simulates diverse tool usage scenarios, collecting data on how the LLM interacts with the tool based
on the current documentation, thus uncovering misunderstandings and limitations. The learning
from experience phase involves an analyzer examining this data to identify discrepancies between
intended and actual tool usage, pinpoint ambiguities or inaccuracies in the documentation, and
propose targeted improvements. In the documentation rewriting phase, a rewriter integrates these
insights to update the documentation, enhancing clarity and alignment with the tool’s functionalities.
Through this trial-and-error framework, DRAFT is capable of simulating the process by which
humans acquire proficiency in tool usage through repeated interactions and hands-on experiences,
thereby automating the creation of tool documentation specifically designed for LLMs. Furthermore,
by employing the diversity-promoting exploration strategy and tool-adaptive termination mechanism,
DRAFT efficiently converges on optimized documentation, enabling LLMs to utilize external tools
more effectively despite the initial documentation shortcomings.
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Algorithm 1: The Learning Algorithm of DRAFT
Input: Raw tool documentation set D, iteration round I , similarity threshold ϕ, termination threshold τ .
Output: Revised tool documentation set D̃.

1 Initialize the revised tool documentation set D̃ ← ∅
2 for raw tool documentation t ∈ D do
3 for i = 1 to I do
4 // Experience Gathering (§ 2.2)
5 Instruct Explorer to generate an exploratory instance ei using Eq. (1)
6 while maxj<i sim(eq

i , e
q
j) > ϕ do

7 Instruct Explorer to generate a new exploratory instance ei
8 end
9 Instruct Explorer to capture the outcomes of tool execution ri

10 // Learning from Experience (§ 2.3)
11 Instruct Analyzer to learn from experience and provide suggestions si for modifications using Eq. (3)
12 // Documentation Rewriting (§ 2.4)
13 Instruct Rewriter to revise the documentation based on experience and suggestions to get

revised tool documentation ti and propose new exploration directions di using Eq. (4)
14 Calculate the similarities ∆ between ti−1 and ti using Eq. (5)
15 if ∆ > τ then
16 Break
17 end
18 end
19 Updating the revised tool documentation set D̃ ← D̃ ∪ ti
20 end
21 return D̃

2.2 EXPERIENCE GATHERING

## Task Prompt:
Your task is to answer the user's query as best you can. You have access 
to the following tools, which you can use via tool calling to help with 
your response:  {Tool Documentation}
Now you have the chance to explore the available tools. You can do this 
by ...
Here is an example:  {"User Query": " ", "Parameters"::{ }}
## Memory Mechanisms:
Below are queries you have already explored: {Explored queries}
Based on these, try to explore queries that ...
Here are some suggestions to explore the tool: {Suggestions} ...

Explorer
## Task Prompt:
You task is to provide suggestions for modifying the tool documentation 
based on the current tool documentation, the explored queries and 
parameters, and the results returned by the tool. You have access to the 
following tools: {Tool Documentation} ...
Below are explored queries, the required parameters and the outputs of the 
tool: {Explored_examples}
Here is an example: {"Suggestions": "XXX"}
## Memory Mechanisms:
The following is the history of you modifying the tool description: {History}
Based on the above information, provide more constructive suggestions.

Analyzer

## Task Prompt:
Your task is to refine the description of the tool based on the queries and 
parameters you've explored, the outputs provided by the tool, as well as the 
suggestions provided. You have access to the following tools: {Tool 
Documentation} ...
Below are explored queries, the required parameters and the outputs of the 
tool: {Explored_examples}
Additionally, here are some suggestions for updating the tool description: 
{Suggestions} ...
Here is an example:  { "Rewritten description": "", "Suggestions for 
exploring": ""}
## Memory Mechanisms:
The following is the history of you modifying the tool description: {History}
Based on the information above, rewrite the tool description and provide 
more constructive suggestions for exploration.

Rewriter

Figure 3: Prompt template for explorer.

In the experience gathering phase, we design an
Explorer ME to simulate plausible scenarios in
which the tool may be utilized. This approach paral-
lels the manner in which individuals investigate the
potential applications of a new tool when they are
unable to comprehend the accompanying manual.

Specifically, at the i-th iteration, the ExplorerME

generates an exploration instance ei based on the cur-
rent tool documentation ti−1, next-step exploration
direction di−1 from the RewriterMR, and the pre-
vious history Hi = {(ej , rj)|j < i}, which consists of prior exploration instances e<i and their
corresponding return results of the tool r<i. This process is formalized as follows:

ei = ME(ti−1, di−1,Hi), (1)
where ei consists of a user query eqi related to the tool and the necessary parameters epi . The initial
tool documentation is denoted as t0, representing the raw documentation provided in the dataset.
After generating ei, the Explorer invokes the tool to obtain the result ri returned by the tool.

Given that tool utilization often involves complex parameter ranges, combinations, and potential error
sources, it is crucial to ensure diversity in the exploration phase to cover a wide spectrum of possible
scenarios (Hong et al., 2018; Friedrich et al., 2009). To address this, besides maintaining a record of all
previously explored queries—which we provide to the Explorer to instruct it to generate instances
that differ from those already generated—we also implement a diversity-promoting exploration
strategy:

Similarity Constraint. When generating a new instance, the Explorer calculates the cosine
similarity between the new generated query eqi and all prior queries eqj for j < i, using embedding
vectors obtained from OpenAI’s text-embedding-ada-0021. The similarity is computed as:

max
j<i

sim(eqi , e
q
j) < ϕ, (2)

1https://openai.com/index/new-and-improved-embedding-model/
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where sim(·, ·) denotes the cosine similarity function, and ϕ is a predefined threshold controlling
the allowed similarity. This constraint ensures that the new query is sufficiently different from all
previous queries, promoting diversity in exploration.

Self-Reflection. If the similarity constraint is not satisfied (i.e., the new query is too similar to
previous ones), the Explorer engages in self-reflection (Shinn et al., 2024). It discards the current
instance and analyzes the reasons for the overlap, adjusting its approach to generate a new query
that explores different aspects of the tool. This iterative self-reflection process continues until the
Explorer produces an instance that meets the diversity criterion.

By incorporating this diversity-promoting exploration strategy, we enhance the exploration coverage
of the Explorer, allowing it to investigate a broader range of tool functionalities and edge cases.
This comprehensive set of exploration instances is crucial for identifying potential misunderstandings
and gaps in the tool documentation, thereby providing valuable experiential data for subsequent
analysis and documentation rewriting. Figure 3 illustrates our prompt template for Explorer.

2.3 LEARNING FROM EXPERIENCE

## Task Prompt:
Your task is to answer the user's query as best you can. You have access 
to the following tools, which you can use via tool calling to help with 
your response:  {Tool Documentation}
Now you have the chance to explore the available tools. You can do this 
by ...
Here is an example:  {"User Query": " ", "Parameters"::{ }}
## Memory Mechanisms:
Below are queries you have already explored: {Explored queries}
Based on these, try to explore queries that ...
Here are some suggestions to explore the tool: {Suggestions} ...

Explorer
## Task Prompt:
You task is to provide suggestions for modifying the tool documentation 
based on the current tool documentation, the explored queries and 
parameters, and the results returned by the tool. You have access to the 
following tools: {Tool Documentation} ...
Below are explored queries, the required parameters and the outputs of the 
tool: {Explored_examples}
Here is an example: {"Suggestions": " "}
## Memory Mechanisms:
The following is the history of you modifying the tool description: {History}
Based on the above information, provide more constructive suggestions.

Analyzer

## Task Prompt:
Your task is to refine the description of the tool based on the queries and 
parameters you've explored, the outputs provided by the tool, as well as the 
suggestions provided. You have access to the following tools: {Tool 
Documentation} ...
Below are explored queries, the required parameters and the outputs of the 
tool: {Explored_examples}
Additionally, here are some suggestions for updating the tool description: 
{Suggestions} ...
Here is an example:  { "Rewritten description": "", "Suggestions for 
exploring": ""}
## Memory Mechanisms:
The following is the history of you modifying the tool description: {History}
Based on the information above, rewrite the tool description and provide 
more constructive suggestions for exploration.

Rewriter

Figure 4: Prompt template for analyzer.

Analogous to how humans learn—acquiring familiar-
ity with new tools through practical experiences and
then consulting manuals to deepen understanding—the
insights gained during the experience gathering phase
provide a foundation for informed and targeted enhance-
ments to the documentation. Thus, building upon the
experience gathered in the first phase, the second phase
focuses on analyzing this data to refine the tool docu-
mentation. In this phase, we introduce an Analyzer
MA designed to identify and address issues within the
current tool documentation, thereby guiding the Rewriter in making effective revisions.

Formally, at the i-th iteration, the Analyzer MA takes the following inputs: current tool docu-
mentation ti−1, exploration instance ei, tool feedback ri provided by the ExplorerME , and the
history of documentation revisions Ti = {tj | j < i}. Then the Analyzer MA analyzes these
inputs to identify issues and generate revision suggestions si:

si = MA(ti−1, ei, ri, Ti). (3)

To ensure that the Analyzer can provide high-quality and relevant revision suggestions, we establish
several evaluation criteria, including consistency with tool outputs, comprehensiveness, and concise-
ness without irrelevant information (as detailed in Appendix C). These criteria enable Analyzer
to identify and assess issues present within the existing tool documentation. By considering the
historical evolution of the documentation through the revision history Ti, the Analyzer gains
valuable insights into past updates, helping it avoid redundant or repetitive suggestions and focus on
areas that still require improvement. The prompt template for Analyzer is illustrated in Figure 4.

Furthermore, the Analyzer delivers its feedback in natural language, offering detailed and nuanced
guidance to the Rewriter for subsequent updates. This approach contrasts with providing mere
scalar feedback, as it ensures the Rewriter receives comprehensive insights that facilitate accurate
and effective revisions, ultimately enhancing the clarity and usability of the tool documentation.

2.4 DOCUMENTATION REWRITING

Building upon the experiences gathered and the revision suggestions obtained from the previous two
phases, the final phase focuses on refining the tool documentation to enhance its clarity, accuracy, and
usability, ensuring it aligns with the comprehension capabilities of LLMs. This phase also provides
suggestions for future exploration directions in the next iteration of the experience gathering phase.

Specifically, we design a RewriterMR to synthesize information from the exploration instances ei
and the corresponding tool return results ri provided by the ExplorerME , as well as the revision
suggestions si from the AnalyzerMA. It is important to note that the RewriterMR also takes
into account the rewrite history Ti, which includes all previous versions of the tool documentation up
to iteration i. By integrating these inputs, the RewriterMR produces an updated version of the
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tool documentation ti and provides suggestions for the next round of exploration directions di. This
process is formalized as:

di, ti = MR(ti−1, ei, ri, si, Ti). (4)
By incorporating the revision history into its process, the Rewriter ensures that each version of
the documentation builds upon its predecessors, resulting in continuous improvements in clarity,
accuracy, and usability. The prompt template to get Rewriter is shown in Figure 5.

## Task Prompt:
Your task is to answer the user's query as best you can. You have access 
to the following tools, which you can use via tool calling to help with 
your response:  {Tool Documentation}
Now you have the chance to explore the available tools. You can do this 
by ...
Here is an example:  {"User Query": " ", "Parameters"::{ }}
## Memory Mechanisms:
Below are queries you have already explored: {Explored queries}
Based on these, try to explore queries that ...
Here are some suggestions to explore the tool: {Suggestions} ...

Explorer
## Task Prompt:
You task is to provide suggestions for modifying the tool documentation 
based on the current tool documentation, the explored queries and 
parameters, and the results returned by the tool. You have access to the 
following tools: {Tool Documentation} ...
Below are explored queries, the required parameters and the outputs of the 
tool: {Explored_examples}
Here is an example: {"Suggestions": "XXX"}
## Memory Mechanisms:
The following is the history of you modifying the tool description: {History}
Based on the above information, provide more constructive suggestions.

Analyzer

## Task Prompt:
Your task is to refine the description of the tool based on the queries and 
parameters you've explored, the outputs provided by the tool, as well as the 
suggestions provided. You have access to the following tools: {Tool 
Documentation} ...
Below are explored queries, the required parameters and the outputs of the 
tool: {Explored_examples}
Additionally, here are some suggestions for updating the tool description: 
{Suggestions} ...
Here is an example:  { "Rewritten description": "", "Suggestions for 
exploring": ""}
## Memory Mechanisms:
The following is the history of you modifying the tool description: {History}
Based on the information above, rewrite the tool description and provide 
more constructive suggestions for exploration.

Rewriter

Figure 5: Prompt template for rewriter.

Furthermore, recognizing that different tools vary
in their complexity and the ease with which LLMs
can comprehend them (Qin et al., 2023b; Osiurak &
Heinke, 2018), we implement a tool-adaptive ter-
mination mechanism to adaptively determine when
to cease modifications for each tool. Analogous to
recipes requiring different levels of expertise, some
tools may reach optimal documentation faster than
others. We consider the iterative process to have con-
verged when there is minimal change between two
consecutive versions of the documentation, indicat-
ing that the Rewriter has sufficiently aligned the
documentation with the LLM’s understanding.

Specifically, inspired by Wieting et al. (2019), we measure the degree of change ∆ between iterations
by calculating both the word-match metric (e.g., BLEU score (Papineni et al., 2002)) and the
semantic-match metric (e.g., cosine similarity of embeddings):

∆ =
sim(eti, e

t
i−1) + BLEU(ti, ti−1)

2
, (5)

where eti and eti−1 are the embedding vectors of ti and ti−1 obtained using OpenAI’s text-embedding-
ada-0022. The function sim(·, ·) calculates the cosine similarity between the semantic embedding
vectors of two documentation versions, and BLEU(·, ·) measures the n-gram overlap between them.
If ∆ exceeds a predefined termination threshold τ , we stop the iterative modifications.

This tool-adaptive termination mechanism offers several advantages: First, it enhances efficiency by
ceasing iterations when the documentation is adequately aligned with the LLM’s comprehension,
conserving computational resources and time. Second, it prevents unnecessary modifications that
could lead to overfitting, thus optimizing the quality of the documentation. By employing both
the BLEU score and cosine similarity, we ensure a balanced assessment of structural and semantic
alignment, ultimately yielding high-quality documentation tailored for effective LLM utilization.

2.5 DRAFT’S STRENGTHS

In this section, we outline the key strengths of the proposed DRAFT framework. First and foremost,
DRAFT operates in a fully automated manner, which significantly reduces resource consumption
in comparison to the time-consuming and labor-intensive manual modifications that are typically
required. Furthermore, by employing a trial-and-error methodology, DRAFT continuously updates
tool documentation based on feedback regarding tool usage obtained from LLMs, thereby enhancing
the alignment between tool documentation and the operational understanding of LLMs. Additionally,
DRAFT is capable of dynamically maintaining an accurate and up-to-date representation of evolving
features within the tool documentation as the tools develop. It also provides inherent explainability, as
the entire process is presented in natural language. Users can easily track the history of modifications
and seamlessly integrate expert insights into the updating process.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Datasets. To verify the effectiveness of DRAFT, we conduct experiments on two benchmarks:
ToolBench and RestBench. ToolBench (Qin et al., 2024) is a large-scale benchmark of real-world

2https://openai.com/index/new-and-improved-embedding-model/
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Table 1: Performance comparison of different methods on three datasets. Win% is calculated by
comparing each method with ReAct. The term “-” means that EasyTool has not been implemented
on the Spotify dataset. The best result for each LLM is in bold.

Model Method RestBench-TMDB RestBench-Spotify ToolBench
CP% Win% CP% Win% CP% Win%

GPT-4o-mini

ReAct 48.00 50.00 24.56 50.00 35.00 50.00
DFSDT 50.00 68.00 35.08 61.40 37.00 84.00
EasyTool 56.00 75.00 - - 42.00 85.00
DRAFT (Ours) 62.00 82.00 43.85 78.94 47.00 88.00

Llama-3-70B

ReAct 72.00 50.00 26.31 50.00 41.00 50.00
DFSDT 74.00 38.00 63.15 61.40 42.00 54.00
EasyTool 76.00 64.00 - - 46.00 60.00
DRAFT (Ours) 86.00 64.00 66.66 64.91 53.00 62.00

GPT-4o

ReAct 71.00 50.00 28.07 50.00 37.00 50.00
DFSDT 74.00 61.00 64.91 56.14 41.00 73.00
EasyTool 79.00 62.00 - - 45.00 77.00
DRAFT (Ours) 88.00 71.00 70.17 84.21 51.00 78.00

APIs collected from RapidAPI and BMTools, commonly used to evaluate the capability of LLMs
in tool usage. Due to budget constraints, we focus on the most challenging subset of ToolBench,
namely I3-Instruction, which contains complex user requests requiring multiple tools from different
categories. RestBench (Song et al., 2023) is a benchmark consisting of two real-world scenarios:
TMDB, which includes 54 movie-related APIs, and Spotify, which has 40 music-related APIs.

Evaluation Metrics. Following previous work (Song et al., 2023; Qin et al., 2024; Yuan et al., 2024),
we evaluate performance using two widely adopted metrics: (1) Correct Path Rate (CP%), which
measures the proportion of instances where the model-generated sequence of tool calls contains the
ground truth tool path as a subsequence, allowing for straightforward accuracy assessment. (2) Win
Rate (Win%), which evaluates effectiveness through pairwise comparisons by a ChatGPT-based
evaluator, capturing nuanced performance differences not reflected by rule-based metrics.

Baselines. Following Qin et al. (2024) and Yuan et al. (2024), we compare our method with widely
adopted baselines, including: (1) ReAct (Yao et al., 2022), which integrates reasoning with action,
enabling LLMs not only to justify their actions but also to refine their reasoning processes based on
feedback from the environment. (2) DFSDT (Qin et al., 2024), which addresses the issue of error
propagation by incorporating a depth-first search strategy to enhance decision-making accuracy. (3)
EasyTool (Yuan et al., 2024), which achieves more concise tool descriptions by using ChatGPT to
directly rewrite the documentation and incorporate guidelines, thereby enhancing the comprehension
of LLMs regarding tool functions and parameter requirements.

Implementation Details. For the main experiments, we use the GPT-4o as the backbone model for
DRAFT, which means that we employ this model to refine the tool documentation by incorporating
its own tool usage feedback. We set the similarity threshold ϕ to 0.9, termination threshold τ
to 0.75, and maximum iteration count to 5. We select three of the latest LLMs to ensure our
evaluation reflects the current state of the field including the closed-source models GPT-4o 3 and
GPT-4o-mini 4, as well as the open-source model Llama-3-70B 5. Our code is available at https:
//github.com/quchangle1/DRAFT.

3.2 EXPERIMENTAL RESULTS

We present our experimental results in Table 1. Based on these results, we have the following
observations: While EasyTool can slightly improve experimental performance, it does not incorporate
the experience feedback from LLMs to iteratively revise the tool documentation. As a result, it cannot
fully align with the understanding of LLMs. In contrast, our method effectively addresses these issues
and achieves more significant improvements. We observe that all LLMs achieve better performance

3https://platform.openai.com/playground/chat?models=gpt-4o-2024-08-06
4https://platform.openai.com/playground/chat?models=gpt-4o-mini
5https://huggingface.co/meta-llama/Meta-Llama-3-70B
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(a) GPT-4o-mini
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Figure 6: A comparative analysis of performance based on varying numbers of iteration rounds.

when using the tool documentation modified by DRAFT. This indicates that although our tool
documentation was revised through utilizing tool usage feedback from a single model, it exhibits
robust cross-model generalization capabilities. Notably, on the ToolBench dataset, the GPT-4o-mini
enhanced with DRAFT even surpasses the performance of the GPT-4o without DRAFT. These
improvements demonstrate the effectiveness of DRAFT, which can be attributed to the fact that
DRAFT iteratively learns from the tool usage experiences of LLMs to refine the tool documentation.
In this way, DRAFT creates tool documentation specifically aligned with the understanding of LLMs.

3.3 FURTHER ANALYSIS

How does the number of iteration rounds affect the performance of tool learning? A key
feature of DRAFT is its iterative refinement of tool documentation with a tool-adaptive termination
mechanism. We examine the effectiveness of these designs by analyzing how the number of iteration
rounds influences the performance of downstream tool learning. The results presented in Figure 6
demonstrate a general trend where performance is enhanced with an increasing number of iterations,
followed by a subsequent decline. This suggests that iterative modifications are crucial for enhancing
tool documentation quality and the ability of LLMs to utilize tools effectively. Such modifications
facilitate the exploration of a wider array of examples and the incorporation of additional feedback
derived from the tool usage experiences of LLMs, ultimately refining the tool descriptions to achieve
superior performance. However, a decline in performance is observed after a certain number of
iterations. This decline may be attributed to the introduction of redundant information as the number
of iterations increases, potentially leading to overfitting. Therefore, we implement a tool-adaptive
termination mechanism to prevent performance degradation and ensure optimal results.
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Figure 7: An analysis of cross-model generalization.

Does using other models as back-
bones also ensure cross-model gen-
eralization? Our preliminary experi-
ments have demonstrated that employ-
ing GPT-4o as the backbone to re-
fine tool documentation by integrat-
ing its own usage feedback results in
revised documentation that exhibits
cross-model generalization, enhancing the performance of other models. This observation prompts
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an inquiry into whether using other models as a backbone would similarly yield cross-model general-
ization. To investigate this, we conduct experiments on RestBench-TMDB using Llama-3-70B as
a backbone, which led to the generation of a new set of tool documentation informed by its usage
feedback. As illustrated in Figure 7, our findings indicate that it also demonstrates cross-model
generalization, enhancing the tool usage capabilities across all LLMs. This may result from decoder-
only models sharing similar transformer structures and common pre-training corpora, allowing them
to achieve consensus on knowledge mastery and needs. Furthermore, we also find that employing
GPT-4o as a backbone yields superior performance compared to LLama-3-70B. This suggests that
our method can benefit from continuous improvements in foundational models.

Table 2: Ablation study of the pro-
posed DRAFT.

Mehtods TMDB

CP% Win%

DRAFT 88.00 71.00
w/o diversity 84.00 69.00
w/o adaptive 80.00 68.00

Are the two mechanisms we proposed truly effective for
DRAFT? We conduct ablation studies on RestBench-TMDB
using GPT-4o to assess the impact of the two mechanisms in-
corporated within DRAFT. The results presented in Table 2,
highlight the significance of each mechanism: w/o diversity
refers to a variant that the explorer generates exploration in-
stances without applying similarity constraint, meaning that
all generated instances are considered. The absence of the
diversity-promoting exploration strategy leads to a notable per-
formance drop, underscoring the need for its implementation to enhance exploration diversity. w/o
adaptive refers to a variant that does not terminate prematurely based on the iteration conditions;
rather, it guarantees that each iteration of the tool documentation completes the designated maximum
number of iteration rounds before ceasing operations. The significant decline in performance ob-
served in this variant further emphasizes the benefits of introducing the tool-adaptive termination
mechanism, which serves to prevent overfitting while improving efficiency. The results with other
LLMs and datasets demonstrate similar trends and are provided in Appendix B.

Table 3: Comparison of tool retrieval performance between
raw documentation and our method. We report NDCG@1
and NDCG@10.

Retriever Documentation TMDB Spotify

@1 @10 @1 @10

BM25 Raw 24.0 35.0 43.9 53.9
DRAFT 29.0 39.4 43.9 54.2

Contriever Raw 29.0 40.4 45.6 49.6
DRAFT 31.0 44.1 47.4 49.2

Does the modified tool documenta-
tion improve the performance of
tool retrieval? In real-world scenar-
ios, there are often numerous tools,
making it impractical to input the de-
scriptions of all tools into LLMs (Qu
et al., 2024a). Therefore, effective
tool retrieval is crucial for down-
stream tool learning. In this analy-
sis, we evaluate whether the modified
tool documentation not only enhances
the ability of LLMs to use tools effec-
tively but also improves the effectiveness of tool retrieval. The results presented in Table 3 indicate
that the revised documentation enhances the performance of tool retrieval methods, including the
sparse retrieval method BM25 (Robertson et al., 2009) and the dense retrieval method Contriever (Izac-
ard et al., 2021). This demonstrates that the modifications not only improve the readability of the
documentation but also enhance its semantic quality, thereby improving the different stages of the
whole pipeline for tool learning.

Does the tool documentation modified by DRAFT also improve human comprehension? In
the previous experiments, we have demonstrated that tool documentation modified by DRAFT
can help LLMs better understand and utilize external tools. Next, we aim to verify whether this
improvement extends to human understanding of the tools as well. Specifically, we conduct a human
evaluation, inviting three well-educated doctor students to evaluate the raw tool documentation and
the documentation modified by DRAFT based on three criteria: completeness: which documentation
is more comprehensive, conciseness: which documentation is clearer and more concise, accuracy:
which documentation reflects the tool’s functionality more accurately (details are presented in
Appendix A). We randomly sampled 50 cases from RestBench and ToolBench for this evaluation.

The results, as shown in Table 4, indicate that the tool documentation modified by DRAFT demon-
strates significant improvements, particularly in terms of completeness and accuracy (some cases are
presented in Appendix D). This can be attributed to the fact that DRAFT incorporates feedback from
LLMs based on their tool usage experience, which provides execution results during the revision
process, ensuring better alignment between the documentation and the actual tool behavior. Moreover,
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Table 4: Human evaluation comparing the quality of the raw documentation with ours.

Dataset Completeness Conciseness Accuracy

RestBench Ours Raw Equal Ours Raw Equal Ours Raw Equal
40% 16% 44% 36% 20% 44% 30% 0% 70%

ToolBench Ours Raw Equal Ours Raw Equal Ours Raw Equal
68% 4% 28% 56% 4% 40% 56% 0% 44%

our design of a tool-adaptive termination mechanism effectively prevents unnecessary redundancy,
leading to more concise documentation. Additionally, the results suggest that ToolBench tools have
significantly lower documentation quality than those in the RestBench dataset, as the readability
of ToolBench tools exhibited a more substantial improvement after modification by DRAFT. This
further highlights the necessity of revising the existing tool documentation.

4 RELATED WORK

Tool Learning. Recent studies have highlighted the potential of LLMs to utilize external tools in
addressing complex problems (Qu et al., 2024b; Wang et al., 2024d). With the aid of external tools,
LLMs can obtain up-to-date information (Nakano et al., 2021; Gou et al., 2024a;b), enhance domain-
specific knowledge (M. Bran et al., 2024; Zhang et al., 2024a), process multi-modal information (Surís
et al., 2023; Gao et al., 2024c), and more. Existing tool learning approaches can be categorized into
two types: tuning-based and tuning-free methods (Gao et al., 2024b). Tuning-based methods enhance
the tool-using capabilities of LLMs by fine-tuning them on tool-related datasets (Patil et al., 2023;
Hao et al., 2024; Yang et al., 2024; Qin et al., 2024; Liu et al., 2024). However, this approach is
only applicable to open-source models and requires substantial computational resources. In contrast,
tuning-free methods provide LLMs with tool documentation and a few demonstrations (Wei et al.,
2022; Hsieh et al., 2023; Paranjape et al., 2023; Du et al., 2024; Shi et al., 2024), relying on the in-
context learning ability to understand how to use tools. This approach requires no additional training
and allows for the plug-and-play integration of external tools. However, this method necessitates
high-quality tool documentation that is aligned with the comprehension of LLMs (Yuan et al., 2024;
Chen et al., 2024). In this paper, we propose a method to align with LLMs understanding and improve
the quality of tool documentation to enhance the tool-using capabilities of LLMs.

Learning from Feedback. Recent studies show that LLMs can improve their initial responses through
self-correction, leading to improved performance (Shinn et al., 2024; Madaan et al., 2024; Pan et al.,
2024; Huang et al., 2024). However, some researchers observe that relying exclusively on self-
correction without external feedback may yield minimal improvements or worsen performance (Zhao
et al., 2024). In contrast, incorporating learning from feedback has been shown to improve various
tasks (Jin et al., 2023; Gao et al., 2024a; Wang et al., 2024c; Pan et al., 2024; Welleck et al., 2022;
Zhang et al., 2024b). The forms of feedback are categorized into scalar and natural language
types (Gou et al., 2024a). Scalar feedback provides coarse-grained information and typically serves
as a reward signal in reinforcement learning frameworks (Ziegler et al., 2019), while natural language
feedback provides detailed insights and is used in prompts for LLMs to enhance performance (Jin
et al., 2023). The sources of feedback are diverse, including humans (Ouyang et al., 2022), critic
models (Nathani et al.), external tools (Wang et al., 2024b; Qiao et al., 2024), and even the LLM itself.
To ensure that tool documentation genuinely reflects the purpose of the tool, we obtain feedback by
actually using the tool to get the returned results, thereby producing high quality tool documentation.

5 CONCLUSION

In this paper, we highlight that the misalignment between the existing, primarily human-centric tool
documentation and the interpretive requirements of LLMs acts as a pivotal barrier obstructing the
full potential of tool learning with LLMs. To remedy this, inspired by trial-and-error, we introduce
DRAFT, a dynamic and self-improving framework specifically designed to iteratively refine tool
documentation based on direct interactions and feedback loops between LLMs and external tools.
Through extensive experimentation, our findings substantiate the assertion that our proposed DRAFT
markedly enhances the alignment between tool documentation and the operational understanding of
LLMs, thereby fostering more effective tool usage.
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APPENDIX

A DETAILS OF HUMAN EVALUATION

We recruit three doctoral students familiar with the domain to evaluate the raw tool documentation
and its revised versions generated by DRAFT and pay accordingly. They are selected based on their
familiarity with the domain and their capability to assess the quality of tool documentation accurately.
They are asked to evaluate the documentation through pair-wise comparison based on the following
three criteria: 1. Completeness: Which documentation more thoroughly describes the tool’s potential
uses and key information, such as its usage and parameter descriptions, without missing critical
details. 2. Conciseness: Which documentation is clearer and more concise, avoiding irrelevant or
redundant information. 3. Accuracy: Which documentation describes the tool functionality more
accurately and is free from incorrect information. The Fleiss’ Kappa statistics for completeness,
conciseness, and accuracy are 0.76, 0.71, and 0.72 on RestBench, while 0.77, 0.69, and 0.71 on
ToolBench, indicating a high agreement among the three annotators.

B MORE EXPERIMENTS

We also conduct analysis experiments on three datasets using other LLMs. As illustrated in Table 5,
both GPT-4o-mini and LLama-3-70B display trends that are consistent with those observed in GPT-4o.
The absence of our proposed diversity-promoting exploration strategy and tool-adaptive termination
mechanism results in a decline in performance, thereby underscoring the importance of our design
innovations. An intuitive explanation posits that, in the absence of the diversity-promoting exploration
strategy, the examples generated during each round of exploration may exhibit significant similarity.
This similarity could render multiple iterations indistinguishable from a single iteration, thereby
undermining the advantages of repeated exploration. Likewise, the absence of the tool-adaptive
termination mechanism may result in excessive iterations, which could produce redundant information
and contribute to overfitting.

Table 5: An ablation study of the proposed model, DRAFT, was conducted across three LLMs
utilizing three distinct datasets.

Model Method RestBench-TMDB RestBench-Spotify ToolBench
CP% Win% CP% Win% CP% Win%

GPT-4o-mini
DRAFT (Ours) 62.00 82.00 43.85 78.94 47.00 88.00
w/o diversity 60.00 79.00 42.10 70.17 42.00 86.00
w/o adaptive 55.00 77.00 38.59 57.89 36.00 87.00

Llama-3-70B
DRAFT (Ours) 86.00 64.00 66.66 64.91 53.00 62.00
w/o diversity 84.00 62.00 63.15 63.15 48.00 61.00
w/o adaptive 79.00 55.00 59.64 57.89 44.00 56.00

GPT-4o
DRAFT (Ours) 88.00 71.00 70.17 84.21 51.00 78.00
w/o diversity 84.00 69.00 64.91 73.68 44.00 72.00
w/o adaptive 80.00 68.00 59.64 68.42 46.00 76.00

C DETAILED PROMPTS

Table 6 provides a comprehensive overview of the prompts utilized during the three learning stages
of DRAFT, which include experience gathering, learning from experience, and documentation
rewriting.

D CASE STUDY

D.1 TOOLBENCH

Table 7 displays the comparison of original tool documentation and modified versions using DRAFT
in some cases from the ToolBench dataset. Each case highlights a specific issue found in the raw
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documentation, including incompleteness, ambiguity, redundancy, and inaccuracy, all of which are
effectively addressed by our proposed method.

D.2 RESTBENCH

Table 8 displays the comparison of original tool documentation and modified versions using DRAFT
in some cases from the RestBench dataset. Although the overall quality of the tools in RestBench is
generally superior to that of ToolBench, there remain significant issues, including irrelevance, ambigu-
ity, and incomplete information. This further highlights the necessity of employing our method, which
iteratively refines the documentation through interactions with the tools. By systematically addressing
these issues, our approach guarantees that the documentation evolves in a way that enhances clarity,
relevance, and completeness. This, in turn, minimizes the likelihood of misunderstandings or misuse
of the APIs and enhances the ability of LLMs to utilize external tools.

E REVISION TRAJECTORY

Table 9 and Table 10 respectively present the revision trajectory of tool documentation through
the first, second, and third rounds of modifications using DRAFT. An analysis of these tables
reveals that the original tool documentation is characterized by the inclusion of irrelevant information
and a notable absence of guidance regarding the necessity of a valid ID, as well as procedures for
addressing errors associated with the provision of an invalid ID. These observations underscore
significant deficiencies in the original documentation that necessitate revision.

Through an analysis of the revision trajectory, it becomes evident that during the first round, the
experience of encountering an invalid ID is documented. The analyzer promptly identifies the issue
and provides suggestions for improvement. Subsequently, the rewriter utilizes this feedback to
make appropriate updates to the tool documentation, recommending that future exploration should
concentrate on retrieving results associated with a valid ID. By the third iteration, the exploration
successfully yields results with a valid ID, leading to further updates in the documentation. This
process underscores the necessity of conducting multiple iterations. Furthermore, in the absence of a
diversity-promoting exploration strategy designed to facilitate diverse exploration, the system may
repeatedly encounter similar scenarios, thereby hindering the discovery of valid IDs and obstructing
effective updates. This situation emphasizes the critical importance of implementing a diversity-
promoting exploration strategy.

Table 11 and Table 12 show the revision trajectories from the fourth and fifth rounds, respectively.
Upon analysis, it is evident that as the number of iterations increases, the documentation for the tool
becomes increasingly lengthy, leading to the inclusion of redundant information. This redundancy
may impede the effective utilization of the tool by LLMs, thereby underscoring the necessity of the
tool-adaptive termination mechanism that we have developed.
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Table 6: The full prompt for three learning stages of DRAFT.

I: Experience Gathering

/* Task prompt */
Your task is to answer the user’s query as best you can. You have access to the following tools, which you
can use via API call to help with your response: {Tool Documentation}
Now you have the chance to explore the available APIs. You can do this by 1) synthesizing some natural user
query that calling the API could help, 2) extracting the parameters needed to call these APIs from the gener-
ated query, and 3) Here, you can focus on queries that only require calling the API once.
Now, first input your synthesized user query. You should make the query natural - for example, try to avoid
using the provided API descriptions or API names in the query, as the user does not know what APIs you ha-
ve access to. However, please make sure that the user query you generate includes the parameters required to
call the API, for which you need to generate random information. For required parameters like IP address, l-
ocation, coordinates, etc., provide specific details. For example, instead of simply stating ‘an address’, provi-
de the exact road and district names. Please note that if the required parameters are ID or username, which y-
ou do not know what are valid, you should use the default parameters provided in the API documentation di-
rectly. Also try to make the query as specific as possible. Next you need to extract the parameters needed to
call the APIs from your generated user queries based on the provided API documentation descriptions.
Here is an example: {"User Query": " ", "Parameters"::{ }}
/* Memory Mechanisms */
Below are queries you have already explored: {Explored queries}
Based on these, try to explore queries that can help you understand the API further; Avoid synthesizing quer-
ies that are too close to the existing ones. Here are some suggestions to explore the API: {Suggestions}
Now you know a bit more about the API. You can synthesize another user query to explore the API a bit fur-
ther and consolidate your understanding of the API, based on things that you discovered about this API. You
should cherish the opportunity to explore, as each time is precious. Therefore, you should generate new exp-
lorations that are different from previous ones as much as possible.

II: Learning from Experience

/* Task prompt */
You task is to provide suggestions for modifying the tool documentation based on the current tool document-
ation, the explored query and parameters, and the results returned by the tool. You have access to the follow-
ing tools: {Tool Documentation}
Please note that the existing tool documentation may be incomplete or noisy. Previously, you generated some
user queries and required parameters to explore this API based on the API documentation. Now, you will be
provided with the output of this API under these parameters. You need to consider the following when provi-
ding suggestions: For instance, consider whether the current description is consistent with the actual results
returned by the tool, whether the description is comprehensive, and whether it is concise and free of irreleva-
nt information. Provide suggestions for modifications based on these aspects. Below are explored queries, the
required parameters and the outputs of the tool: {Explored examples}
Here is an example: {"Suggestions": " "}
/* Memory Mechanisms */
The following is the history of you modifying the tool description: {History}
Based on the above information, provide more constructive suggestions.

III: Documentation Rewriting

/* Task prompt */
Your task is to refine the description of the tool based on the queries and parameters you’ve explored, the ou-
tputs provided by the tool, as well as the suggestions provided. You have access to the following tools:
{Tool Documentation}
Please note that the existing tool documentation may be incomplete or noisy. The revised description should
focus solely on the functionalities of the API, omitting any irrelevant details. Below are explored queries, the
required parameters and the outputs of the tool: {Explored examples}
Based on the feedback provided, here are some guidelines for updating the tool description: {Suggestions}
Due to the limited number of explorations you can perform, you need to value each opportunity. What aspec-
ts of this API would you like to explore next? Please provide some suggestions for your next query generati-
on. Just give a direction of the next exploration, don’t give a full example of the exploration directly.
Here is an example:{ "Rewritten description": " ", "Suggestions for exploring": " "}
/* Memory Mechanisms */
The following is the history of you modifying the tool description: {History}
Based on the above information, provide more constructive suggestions.
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Table 7: Comparison of original tool documentation and modified versions using DRAFT in some
cases from the ToolBench Dataset.

Raw Tool Description (Incomplete)
{"Tool Name": "GetSearchImage", "description": " "}

Ours
{"Tool Name": "GetSearchImage", "description": "Retrieve an image using the specified image identifier and
search context ID, with optional parameters for folder and storage."}

Raw Tool Description (Ambiguous)
{"Tool Name": "il", "description": "Turkish plates. 1 to 81"}

Ours
{"Tool Name": "il", "description": "Provides location details for Turkish plate numbers based on the plate
number parameter, including city, district, neighborhood, and postal code."}

Raw Tool Description (Redundant)
{"Tool Name": "QR Code Image Generator", "description": "A QR code generator API is a tool that enables
developers to generate QR codes within their applications. QR codes are two-dimensional barcodes that
can be scanned using a smartphone camera and decoded using QR code reader software. The API allows
developers to easily integrate QR code generation functionality into their existing applications, such as
mobile apps, web apps, and software.This API can be used to generate QR codes for a variety of purposes,
such as:Contact information: Generate a QR code containing your contact information, such as your phone
number or email address.Links: Create a QR code that links to a website, YouTube video, or other online
content.Payments: Create a QR code for making payments through a mobile wallet or payment app.Events:
Generate a QR code for an event, such as a concert or conference, to provide attendees with all the necessary
information.Coupons: Create a QR code for a coupon or promo code to be redeemed at a physical store or
online.Overall, a QR code generator API is a versatile tool that can help businesses and individuals streamline
their processes and improve the user experience for their customers."}

Ours
{"Tool Name": "QR Code Image Generator", "description": "A QR code generator API is a versatile tool that
enables developers to generate QR codes for various purposes, such as contact information, links, payments,
events, and coupons. Users should be prepared for potential connectivity issues, including connection
timeouts, and are advised to contact the API provider for support in case of errors like ’Connection timed
out’. Implementing retry mechanisms and checking network connectivity can help handle such situations
effectively."}

Raw Tool Description (Inaccurate)
{"Tool Name": "SQUAKE", "description": "SQUAKE helps businesses to build sustainable products! With
the most performant API in the market, we help travel, mobility, and logistics companies calculate carbon
emissions and purchase certified climate contributions in real-time. Implemented within mins!", "Return
Results:" "I’m a teapot."}

Ours
{"Tool Name": "il", "description": "A tool that checks the health status of a specific system and provides
relevant information or error messages. It may occasionally return unexpected or humorous responses.",
"Return Results:" "I’m a teapot."}
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Table 8: Comparison of original tool documentation and modified versions using DRAFT in some
cases from the RestBench Dataset.

Raw Tool Description (Irrelevant)
{"Tool Name": "GET_trending_media_type_time_window", "description": "Get the daily or weekly trending
items. The daily trending list tracks items over the period of a day while items have a 24 hour half life. The
weekly list tracks items over a 7 day period, with a 7 day half life.#### Valid Media Types| **Media Type**
| **Description** || - | - || all | Include all movies, TV shows and people in the results as a global trending list.
|| movie | Show the trending movies in the results. || tv | Show the trending TV shows in the results. || person |
Show the trending people in the results. |#### Valid Time Windows| **Time Window** | **Description** || -
| - || day | View the trending list for the day. || week | View the trending list for the week. |"}

Ours
{"Tool Name": "GET_trending_media_type_time_window", "description": "This API provides access to
trending items on a daily or weekly basis, including movies, TV shows, or people. The ’media_type’
parameter is required and specifies the type of media: ’movie’ for movies, ’tv’ for TV shows, ’person’ for
people, or ’all’ to include all types. The ’time_window’ parameter is also required and can be set to ’day’ for
daily trends or ’week’ for weekly trends. The API response includes a list of trending items with fields such as
’id’, ’name’, ’original_name’, ’media_type’, ’popularity’, ’gender’, ’known_for_department’, ’profile_path’,
and ’known_for’. For each ’known_for’ item, details like ’title’, ’original_title’, ’overview’, ’poster_path’,
’media_type’, ’original_language’, ’genre_ids’, ’popularity’, ’release_date’, ’vote_average’, and ’vote_count’
are included. Pagination is supported, allowing navigation through results using the ’page’ parameter, with
’total_pages’ and ’total_results’ indicating the number of pages and total results available. The API can filter
content based on language preferences (’original_language’) and content restrictions (’adult’)."}

Raw Tool Description (Ambiguous)
{"Tool Name": "GET_person_person_id_tv_credits", "description": "Get the TV show cred-
its for a person. You can query for some extra details about the credit with the [credit
method](#endpoint:xPWdEBLkvCNZSicLN)."}

Ours
{"Tool Name": "GET_person_person_id_tv_credits", "description": "This API retrieves TV show credits for
a person using their unique ’person_id’. It returns two main categories of credits: ’cast’ and ’crew’. Each
credit includes details such as the TV show’s name, first air date, overview, popularity, and the person’s
role (e.g., Director). The ’crew’ category provides additional information like department, job, and episode
count. A valid ’person_id’ is required, and if an invalid or non-existent ’person_id’ is provided, the API will
return an error message. The tool does not require any additional parameters. Ensure that the ’person_id’ is
correctly formatted and exists in the database to avoid errors. Additional details about the TV show credits
can be queried using the credit method."}

Raw Tool Description (Error Message)
{"Tool Name": "GET_tv_latest", "description": "Get the most newly created TV show. This is a live response
and will continuously change."}

Ours
{"Tool Name": "GET_tv_latest", "description": "Retrieve live, comprehensive details about the most recently
created TV show, including its name, air dates, episodes, production status, genres, networks, production
companies, and countries. The tool also provides information on the latest and upcoming episodes, as well as
metadata like popularity and vote statistics. Note that some fields may be empty if the information is not
available at the time of the query."}

Raw Tool Description (Incomplete)
{"Tool Name": "GET_genre_tv_list", "description": "Get the list of official genres for TV shows."}

Ours
{"Tool Name": "GET_genre_tv_list", "description": "Retrieve the official list of TV show genres from The
Movie Database (TMDb). This tool provides a JSON object containing an array of genre objects, each
with an ’id’ and a ’name’. It is specifically designed for TV show genres and does not require any input
parameters."}
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Table 9: Revision trajectory of tool documentation through the first two iterations of modifications
using DRAFT.

Raw Tool Documentation

{"tool name": "GET_person_person_id_tv_credits", "tool description": "Get the TV show credits for a pers-
on. You can query for some extra details about the credit with the [credit method](#endpoint:xPWdEBLkvC-
NZSicLN)."}

First Iteration

/* Explorer */
{"User Query": "Can you tell me about the TV shows that actor John Doe has been a part of?", "url":
"http://api.themoviedb.org/3/person/{person_id}/tv_credits", "Parameters": {}, "API_Response": {"success":
false, "status_code": 6, "status_message": "Invalid id: The pre-requisite id is invalid or not found."}}
/* Analyzer */
The tool description should clarify that a valid ’person_id’ is required to retrieve TV show credits for a pers-
on. The current description does not mention the necessity of this parameter, which is crucial for the tool to
function correctly. Additionally, the description should specify that the tool will return an error message if
an invalid or non-existent ’person_id’ is provided. This will help users understand the importance of providi-
ng correct input and what to expect in case of an error.
/* Rewriter */
{ "Rewritten description": "Retrieve TV show credits for a person using their unique ’person_id’. A valid
’person_id’ is required to access this information. If an invalid or non-existent ’person_id’ is provided, the
tool will return an error message indicating the issue. Additional details about the TV show credits can be
queried using the credit method.",
"Suggestions for exploring": "To further explore this API, it would be beneficial to understand the structure
of the response when a valid ’person_id’ is used. This includes the types of information returned about each
TV show credit, such as the role played, the show’s title, and the dates of involvement. Additionally, explor-
ing how to obtain a valid ’person_id’ for a given actor or actress could be useful, as well as understanding
any rate limits or restrictions on the number of queries that can be made."}

Second Iteration

/* Explorer */
{"User Query": "What TV shows has actress Jane Smith been involved in throughout her career?", "url":
"http://api.themoviedb.org/3/person/{person_id}/tv_credits", "Parameters": {}, "API_Response": {"success":
false, "status_code": 6, "status_message": "Invalid id: The pre-requisite id is invalid or not found."}}
/* Analyzer */
The tool retrieves TV show credits for a person using their unique ’person_id’. It is essential to provide a
valid ’person_id’ to access this information. If an invalid or non-existent ’person_id’ is provided, the tool
will return an error message with a status code and a status message indicating the issue. The tool does
not require any additional parameters. Additional details about the TV show credits can be queried using the
credit method. Ensure that the ’person_id’ is correctly formatted and exists in the database to avoid errors.
/* Rewriter */
{ "Rewritten description": "This API retrieves TV show credits for a person using their unique ’person_id’.
A valid ’person_id’ is essential to access the information. If an invalid or non-existent ’person_id’ is provided,
the API will return an error message with a status code and a status message indicating the issue. The tool
does not require any additional parameters. Ensure that the ’person_id’ is correctly formatted and exists in the
database to avoid errors. Additional details about the TV show credits can be queried using the credit method.",
"Suggestions for exploring": "To further explore this API, consider testing with a known valid ’person_id’ to
observe the structure and details of a successful response. Additionally, explore how the API handles edge
cases, such as a ’person_id’ that exists but has no TV credits. Investigate the format and type of additional
details that can be retrieved using the credit method to understand the full capabilities of the API."}
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Table 10: Revision trajectory of tool documentation in the third round of modifications using DRAFT.

Third Iteration

/* Explorer */
{"User Query": "Can you provide the TV show credits for the person with ID 12345?", "url":
"http://api.themoviedb.org/3/person/12345/tv_credits", "Parameters": {}, "API_Response": {"cast": [],
"crew": [{ "adult": false, "backdrop_path": "/fmPo20ZTzxNketxL2jt6ZX6KSPi.jpg", genre_ids": [10759, 18,
10765,80], "id": 2384, "origin_country": [ "US" ], "original_language": "en", "original_name": "Knight
Rider", "overview": "Michael Long, an undercover police officer, is shot while investigating a case and left
for dead by his assailants. He is rescued by Wilton Knight, a wealthy, dying millionaire and inventor who
arranges life-saving surgery, including a new face and a new identity–that of Michael Knight. Michael is then
given a special computerized and indestructible car called the Knight Industries Two Thousand (nicknamed
KITT), and a mission: apprehend criminals who are beyond the reach of the law. The series depicts Michael’s
exploits as he and KITT battle the forces of evil on behalf of the Foundation for Law and Government.",
"popularity": 204.362, "poster_path": "/t57NXzTrwp5rnPXiaX4BThrDxt1.jpg", "first_air_date": "1982-09-26",
"name": "Knight Rider", "vote_average": 7.5, "vote_count": 1227, "credit_id": "55bb4faec3a3684fc0002cd4",
"department": "Directing", "episode_count": 1, "job": "Director"}}
/* Analyzer */
The API retrieves TV show credits for a person using their unique ’person_id’. It returns two main categories
of credits: ’cast’ and ’crew’, with details such as the TV show’s name, first air date, overview, popularity, and
the person’s role (e.g., Director). The ’crew’ category includes additional information like department, job,
and episode count. A valid ’person_id’ is required, and if an invalid or non-existent ’person_id’ is provided,
the API will return an error message. The tool does not require any additional parameters. Ensure that the
’person_id’ is correctly formatted and exists in the database to avoid errors. Additional details about the TV
show credits can be queried using the credit method.
/* Rewriter */
{"Rewritten description": "This API retrieves TV show credits for a person using their unique ’person_id’.
It returns two main categories of credits: ’cast’ and ’crew’. Each credit includes details such as the TV show’s
name, first air date, overview, popularity, and the person’s role (e.g., Director). The ’crew’ category provides
additional information like department, job, and episode count. A valid ’person_id’ is required, and if an
invalid or non-existent ’person_id’ is provided, the API will return an error message. The tool does not
require any additional parameters. Ensure that the ’person_id’ is correctly formatted and exists in the datab-
ase to avoid errors. Additional details about the TV show credits can be queried using the credit method.",
"Suggestions for exploring": "To further explore the API, consider querying for different ’person_id’ values
to see how the API handles various cases, such as when a person has only cast credits or only crew credits.
Additionally, explore how the API responds to edge cases, such as when a person has no TV credits at all.
Investigate the structure of the ’cast’ category to understand the type of information provided there, as the
current exploration focused on the ’crew’ category. Finally, test the API’s error handling by intentionally
using invalid ’person_id’ values to observe the error messages returned."}
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Table 11: Revision trajectory of tool documentation in the fourth round of modifications using
DRAFT.

Fourth Iteration

/* Explorer */
{"User Query": "Can you look up the TV show credits for the person with ID 99999 and let me know if
they have any crew roles?", "url": "http://api.themoviedb.org/3/person/99999/tv_credits", "Parameters": {},
"API_Response": {"success": false, "status_code": 34, "status_message": "The resource you requested could
not be found."}}
/* Analyzer */
The API retrieves TV show credits for a person using their unique ’person_id’. It categorizes credits into ’cast’
and ’crew’, providing details such as the TV show’s name, first air date, overview, popularity, and the person’s
role. For crew credits, it includes additional information like department, job, and episode count. A valid
’person_id’ is required to access this information. If an invalid or non-existent ’person_id’ is provided, the API
will return an error message with a status code and status message indicating the issue. The tool does not
require any additional parameters. Ensure that the ’person_id’ is correctly formatted and exists in the database.
Additional details about the TV show credits can be queried using the credit method. The API response will
include a ’success’ flag and, if unsuccessful, a ’status_code’ and ’status_message’ to indicate the problem.
/* Rewriter */
{"Rewritten description": "This API retrieves TV show credits for a person using their unique ’person_id’. It
categorizes credits into ’cast’ and ’crew’, providing details such as the TV show’s name, first air date, overv-
iew, popularity, and the person’s role. For crew credits, it includes additional information like department, job,
and episode count. A valid ’person_id’ is required to access this information. If an invalid or non-existent
’person_id’ is provided, the API will return an error message with a status code and status message indicating
the issue. The tool does not require any additional parameters. Ensure that the ’person_id’ is correctly
formatted and exists in the database. Additional details about the TV show credits can be queried using the
credit method. The API response will include a ’success’ flag and, if unsuccessful, a ’status_code’ and ’statu-
s_message’ to indicate the problem.",
"Suggestions for exploring": "To further explore this API, consider querying with a valid ’person_id’ to exa-
mine the structure and content of a successful response. This will help understand the data fields returned for
both ’cast’ and ’crew’ credits. Additionally, explore edge cases such as querying with a ’person_id’ that has
only cast credits or only crew credits to see how the API handles these scenarios. Investigating the response
for a ’person_id’ associated with a highly popular TV show could also provide insights into how popularity
metrics are represented."}
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Table 12: Revision trajectory of tool documentation in the fifth round of modifications using DRAFT.

Fifth Iteration

/* Explorer */
{"User Query": "Can you look up the TV show credits for the person with ID 24680 and let me know if they
have any credits in both cast and crew roles?", "url": "http://api.themoviedb.org/3/person/24680/tv_credits",
"Parameters": {}, "API_Response": {"cast": [], "crew": [{ "adult": false, "backdrop_path": "/d1wj4WQ87tj7
dLgXCKfPOe8AOz4.jpg","genre_ids": [18], "id": 19649, "origin_country": ["IT", "GB"], "original_langua-
ge": "en", "original_name": "Jesus of Nazareth", "overview": "Dramatizes the Birth, Life, Ministry, Crucifix-
ion, and Resurrection of Jesus Christ, largely according to the Holy Bible’s New Testament Gospels.", "popu-
larity": 38.929, "poster_path": "/dlGmVpZ2rpGRDZsSa64nzyu90xk.jpg", "first_air_date": "1977-03-27", "n-
ame": "Jesus of Nazareth", "vote_average": 7.727, "vote_count": 479, "credit_id": "59147af2c3a368423c00e-
100", "department": "Sound", "episode_count": 4, "job": "Sound Recordist"}], "id": 24680}
/* Analyzer */
The API retrieves TV show credits for a person using their unique ’person_id’. It categorizes credits into ’cast’
and ’crew’, providing details such as the TV show’s name, first air date, overview, popularity, and the person’s
role. For crew credits, it includes additional information like department, job, and episode count. A valid
’person_id’ is required to access this information. If an invalid or non-existent ’person_id’ is provided, the API
will return an error message with a status code and status message indicating the issue. The tool does not requi-
re any additional parameters. Ensure that the ’person_id’ is correctly formatted and exists in the database. Note
that the API response does not include a ’success’ flag; instead, it provides the ’cast’ and ’crew’ lists directly.
Additional details about the TV show credits can be queried using the credit method.
/* Rewriter */
{"Rewritten description": "This API retrieves TV show credits for a person using their unique ’person_id’. It
categorizes credits into ’cast’ and ’crew’, providing details such as the TV show’s name, first air date, overvi-
ew, popularity, and the person’s role. For crew credits, it includes additional information like department, job,
and episode count. A valid ’person_id’ is required to access this information. If an invalid or non-existent ’p-
erson_id’ is provided, the API will return an error message with a status code and status message indicating
the issue. The tool does not require any additional parameters. Ensure that the ’person_id’ is correctly format-
ted and exists in the database. The API response does not include a ’success’ flag; instead, it provides the ’cast’
and ’crew’ lists directly. Additional details about the TV show credits can be queried using the credit method.",
"Suggestions for exploring": "Consider exploring how the API handles edge cases, such as when a person has
no TV credits at all or when they have credits in both cast and crew roles. Additionally, investigate if the API
provides any sorting or filtering options for the credits, such as by date or popularity. Another area to explore
could be the level of detail provided in the ’overview’ field and whether it varies significantly between differ-
ent TV shows."}
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