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Abstract

Ensuring Artificial General Intelligence (AGI) reliably avoids harmful behaviors is
a critical challenge, especially for systems with high autonomy or in safety-critical
domains. Despite various safety assurance proposals and extreme risk warnings,
comprehensive guidelines balancing AI safety and capability remain lacking. In
this position paper, we propose the AI-45◦ Law as a guiding principle for a balanced
roadmap toward trustworthy AGI, and introduce the Causal Ladder of Trustworthy
AGI as a practical framework. This framework provides a systematic taxonomy
and hierarchical structure for current AI capability and safety research, inspired by
Judea Pearl’s “Ladder of Causation”. The Causal Ladder comprises three core lay-
ers: the Approximate Alignment Layer, the Intervenable Layer, and the Reflectable
Layer. These layers address the key challenges of safety and trustworthiness in
AGI and contemporary AI systems. Building upon this framework, we define
five levels of trustworthy AGI: perception, reasoning, decision-making, autonomy,
and collaboration trustworthiness. These levels represent distinct yet progressive
aspects of trustworthy AGI. Finally, we present a series of potential governance
measures to support the development of trustworthy AGI.1

Keywords: AI-45◦ Law, Crippled AI, Causal Ladder of Trustworthy AGI, Matrix of Trustworthy
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1 Crippled AI: The Imbalance Between AI Capability and Safety

1.1 Rapid Development of AI Capabilities

Artificial intelligence (AI) is experiencing a period of rapid advancement, driven by innovations in
scaling laws [81], as well as breakthroughs in model architecture and computational resources [44].
These developments have led to AI systems like ChatGPT [13] and GPT-4 [64], which demonstrate
remarkable abilities in understanding and generating human-like language [77]. These systems push
the boundaries of AI’s potential, approaching or surpassing human-level performance across various
domains, including natural language processing [77] and creative problem-solving [79]. However,
this rapid progress also presents significant risks [31], as the development and deployment of these
advanced systems often outpace the implementation of safety measures. The rapid growth in AI
capabilities, coupled with the slow evolution of corresponding safety protocols [61], highlights a
critical imbalance that may hinder the responsible and reliable use of these technologies.

1In this paper, trustworthiness is generally considered a broad form of safety, and no explicit distinction is
made between the two. However, in some contexts, safety and trustworthiness are treated as distinct: safety
involves assurance of correct behavior, while trustworthiness refers to user confidence in the system’s decision-
making. In such cases, different terms or both may be used depending on the context.
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Figure 1: Left: Illustration of the AI-45◦ Law, which posits that advancements in AI capability and
safety should ideally progress in parallel, represented by a 45◦ line in the capability-safety coordinate
system. The diagram also highlights existential risks (Red Line) and early warning indicators (Yellow
Line). Right: Key milestone models in current AI capability development.

1.2 Limitations of Current AI Safety Measures

The current landscape of AI safety is predominantly characterized by a “reactive approach” approach,
where safety measures are implemented only after models are developed and vulnerabilities are
identified [5]. These measures are often domain-specific, tailored to particular applications, and lack
the flexibility to be applied across diverse AI systems. For example, adversarial defense techniques
[48] designed to secure image recognition models are not easily adaptable to tasks such as speech
recognition or natural language processing. Furthermore, the absence of a unified framework or
standardized guidelines for AI safety exacerbates this issue, resulting in fragmented efforts that fail
to comprehensively address the broad spectrum of potential risks. Various threats [14, 60], including
adversarial attacks [73, 39], data poisoning [17], and model theft [98], each require unique defensive
strategies. Yet these strategies frequently operate in isolation, lacking the coordination and integration
needed to tackle the increasingly complex and interconnected challenges posed by advanced AI
systems [41, 40, 46, 18].

1.3 The Crippled State of AI Development

The reactive and fragmented nature of AI safety practices has left the field in a state that can be
described as “crippled AI”. While tools like red teaming [11, 70], watermarking [53, 47], and safety
guardrails [63] provide some protection, their effectiveness is limited. Red teaming, for example,
can uncover specific vulnerabilities through simulated attack scenarios, but it cannot address the
full spectrum of potential threats. Similarly, watermarking techniques to identify AI-generated
content can be tampered with or circumvented, rendering them unreliable at scale. Post-hoc safety
measures such as guardrails [35, 55, 56, 27, 54, 51] often reduce system flexibility and usability, while
evaluation frameworks lack the theoretical grounding needed for comprehensive assessments. These
shortcomings reflect a broader issue: the rapid development of AI capabilities is outpacing efforts
to ensure their safety, resulting in powerful but fragile systems. This imbalance risks undermining
public trust, limiting the practical adoption of AI, and creating systems that could inadvertently cause
harm or operate in ways misaligned with human values. To bridge this gap, a proactive, unified,
and scalable approach to AI safety is essential to ensure that the promise of AI is realized without
compromising ethical and security considerations.

2 AI-45◦ Law

2.1 AI-45◦ Law: Balancing Capability and Safety

Recent advancements in AI have highlighted a significant gap between the rapid growth of AI
capabilities and the slower progress in AI safety. In response to this imbalance, we introduce the AI-
45◦ law as a guiding principle for the development of AI systems. This law posits that advancements
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in both AI capabilities and safety should ideally progress in parallel, with each dimension improving
at the same rate—represented by a 45◦ line in a capability-safety coordinate system, as shown in
Figure 1. Although strict adherence to the 45◦ line is not mandatory, some flexibility is allowed
within a defined range. However, the current development trajectory deviates significantly from this
ideal, with progress in AI safety lagging far behind the rapid acceleration of AI capabilities.

2.2 Red Line: Existential Risks and Catastrophic Consequences

The unsafe development, deployment, or use of AI systems poses potential catastrophic risks [9],
which could even become existential threats to humanity. As mentioned in the International Dialogues
on AI Safety (IDAIS) [2], they propose “Red Lines” of AI development in the following five aspects:
autonomous replication or improvement; power-seeking; assisting weapon development; cyberattacks;
deception. At the same time, they also raise the need, including governance regimes and technical
safety methods, to ensure these “Red Lines” are not crossed. Following the AI-45◦ law, the “Red
Lines” can be more clearly illustrated as occupying the lower right region relative to the 45◦ line, as
shown in Figure 1. These “Red Lines” - defined as those with the potential to lead to irreversible
and catastrophic outcomes - are likely to increase as AI systems approach or surpass human-level
intelligence.

2.3 Yellow Line: Early Warning Indicators and Proactive Mitigation

Considering the potential for extreme “Red Line” risks, it is critical to establish a framework for
early-warning thresholds, called the “Yellow Line”, as shown in Figure 1, which can signal when the
capabilities of an AI system approach a dangerous level. These thresholds would serve as indicators
that a system may be on the verge of crossing into the “Red Line” territory. To achieve this, it is
essential to build a scientific consensus on both the nature of AI risks and the appropriate boundaries
that define these thresholds [23].

The concept of the “Yellow Line” is intended to complement and extend the existing safeguard
assessment frameworks, such as responsible scaling policies [1, 4] from Anthropic. Models whose
capabilities remain below these early-warning thresholds would require only basic testing and
evaluation. However, for more advanced AI systems that exceed these thresholds, more rigorous
assurance mechanisms and safety protocols would be necessary to mitigate potential risks [3]. By
establishing these thresholds, we can take a proactive approach to ensuring AI systems are developed,
tested, and deployed with appropriate safeguards.

3 The Causal Ladder of Trustworthy AGI

To explore a practical approach to the AI-45◦ law, we propose a three-layer technical framework
based on the “Ladder of Causation” [72], as illustrated in Figure 2. This framework aims to address
the critical safety and trustworthiness requirements on the path towards AGI [49, 57, 90, 42]. Its core
objective is to facilitate the progressive development of AGI systems, evolving from approximate
alignment and intervention capabilities to self-reflection, thereby ensuring a high level of safety and
trustworthiness. This approach not only overcomes the limitations of current AI models but also lays
a technological foundation for future AGI development.

Within this framework, we define two key dimensions of AGI trustworthiness: Endogenous Trustwor-
thiness and Exogenous Trustworthiness, as shown in Figure 2. Endogenous Trustworthiness refers to
intrinsic safety technologies embedded within AGI systems, ensuring that safety mechanisms are
inherent to the system’s design and operation. In contrast, Exogenous Trustworthiness encompasses
external mechanisms and assurance technologies that provide safety and reliability guarantees from
an outside perspective.

3.1 Layer 1: Approximate Alignment Layer

The first-layer technical approach focuses on the approximate alignment of AI models with human
values. Currently, AI models exhibit limited generalization capabilities, where failing to accurately
reflect human value systems, which may lead to biases and inconsistencies in real-world applications
[94]. Therefore, achieving broad alignment between models and human values is a crucial step
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Figure 2: Illustration of the Causal Ladder of Trustworthy AGI: The framework consists of three
core layers: Approximate Alignment, Intervenable, and Reflectable. It integrates Endogenous
Trustworthiness and Exogenous Trustworthiness to provide a comprehensive approach to ensuring
AGI safety and trustworthiness.

in ensuring the safety and trustworthiness of AGI. This requires technical breakthroughs in areas
such as value representation and alignment at the level of both conceptualization and encoding [45].
By developing more nuanced and precise mechanisms for value representation, models can better
comprehend and adhere to human values. Approximate alignment not only involves the model’s
ability to understand human instructions, but its capacity to make decisions that align with human
ethics and morals in complex scenarios, thereby reducing the occurrence of biased behaviors. This
serves as the foundational groundwork for the safe and trustworthy deployment of AGI, preventing
actions that may conflict with human intentions during its operation.

This layer corresponds to the “association” level of the ladder of causation. At this level, correlation-
based techniques are applied to observational data, enabling AI models to answer the question “What
is it”. In the context of developing trustworthy AGI, this corresponds to the Approximate Alignment
Layer, which involves data-driven approaches to extract and fit human values within a broad space.
Key methods include, but are not limited to, supervised fine-tuning and machine unlearning.

Supervised Fine-Tuning [25]: This method involves providing AI with high-quality, value-consistent
question-and-answer data, facilitating the alignment of generative AI models, particularly those based
on large language models, with human values through supervised learning techniques.

Machine Unlearning [28, 95, 30]: This technique aims to remove the influence of specific data from
machine learning models, such as personal privacy data or erroneous information. By eliminating
irrelevant patterns without compromising overall model performance, machine-unlearning effectively
addresses issues related to data privacy and data leakage.

3.2 Layer 2: Intervenable Layer

The second-layer technological approach emphasizes addressing the need for safety verification
and intervention during the model inference process. Most existing AI models, particularly deep
learning-based black-box models, often lack transparency and interpretability in their inference
mechanisms. This opacity makes external intervention and safety verification extremely challenging.
To overcome this limitation, technological innovations must aim to decouple the inference process and
fundamentally rethinking the reasoning mechanisms at the model architecture level. This approach

4



ensures that each step of the inference process is traceable and verifiable. Consequently, future
AGI models should be designed to inherently interpretable and amenable to intervention, enabling
human operators to monitor and modify the reasoning process in real time when necessary. These
advancements would not only improve the safety of the model but also enhance understanding and
optimization of their decision-making processes, providing a robust safety framework for deployment
in complex environments.

This layer corresponds to the “intervention” level of the ladder of causation, focusing on understanding
and predicting the outcomes of interventions made on AI models. At this level, AI models address
the question “What will happen if X is intervened on?”. Technologies relevant to this layer include
intervention-based [50] and reinforcement learning-based methods [83, 67], where interventions are
simulated to study their effects or trial-and-error methods are used to influence the environment and
optimize strategies through reinforcement learning [84].

In the context of reliable AGI, the corresponding methodologies include, but are not limited to,
feedback-based value alignment [33] and scalable oversight [12, 15], mechanistic interpretability
[10], and adversarial training [73, 39]. We refer to this as the Interventable Layer. At this level,
external models or human participants provide feedback or interventions to guide and supervise the
value alignment of large models during learning.

Learning from X Feedback: This involves providing correct value feedback from humans or AI-
assisted humans based on the model’s outputs and results, enabling human-in-the-loop reinforcement
learning methods, such as reinforcement learning from human feedback (RLHF) [76, 83, 67, 99] and
reinforcement learning from AI feedback (RLAIF) [8].

Controllable Generation [52]: Explicit control generation involves clearly defined instructions
through human-computer interaction (e.g., input prompts), directing the model to generate text in
a specific style, such as in a Shakespearean or humorous tone [85]. Implicit control generation
[100, 58], on the other hand, refers to ensuring that the generated text meets certain standards even
when such requirements, such as producing non-toxic, inoffensive, and nondiscriminatory content,
are not explicitly stated.

Mechanistic Interpretability [10, 21, 78, 74, 97, 75]: This approach involves intervening in the
internal features or neuron weights of large models to observe the impact on model behavior or
outcomes, thereby analyzing the model’s safety performance, with a particular focus on feature factor
analysis.

3.3 Layer 3: Reflectable Layer

The core of the third-layer technological pathway lies in overcoming the limitations of existing
reasoning paradigms by introducing a novel reflective reasoning framework. Current models primarily
depend on a “chain of reasoning”, deriving conclusions based on existing inputs and experiences.
However, these models often lack the capacity for genuine self-reflection [80, 82] and self-correction
[69]. While this approach may be adequate for simpler tasks, it often falls to ensure safety and
reliability in complex and dynamic real-world scenarios. Consequently, advancing AGI requires
integrating self-reflective capabilities, enabling systems to evaluate their decisions throughout the
reasoning process and adapt to environmental changes. This “reflective reasoning” should operate not
only within individual models but also extend to collaborative mechanisms among multiple models,
allowing for mutual reflection and validation to enhance the credibility and safety of collective
decision-making. By incorporating this reflective mechanism, systems can significantly improve
robustness, mitigating critical errors arising from the accumulation of mistakes during continuous
reasoning, and ultimately ensuring greater trustworthiness and reliability.

This layer corresponds to the “counterfactual” level of the ladder of causation, enabling the AI to
infer counterfactual scenarios by contemplating hypothetical conditions and evaluating outcomes
under varying circumstances [71, 72]. At this level, AI models address the question, “What would
have happened if a different choice had been made?” In the development of trustworthy AGI,
corresponding methods include, but are not limited to, world models [36], value reflection [69, 82, 80],
and counterfactual interpretability [59, 89, 88, 19, 20], collectively referred to as the reflectable layer.

Value Reflection [69, 82, 80]: This process involves AI engaging in a deep deliberation about its
actions and choices. Through this reflective process, AI systems can determine which values are
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Figure 3: Matrix of trustworthy AGI: Based on the causal ladder of AGI and the levels of trustworthi-
ness, we illustrate the positions of several representative models within the matrix. Reliance on the
Reflectable Layer increases as we progress through the levels of trustworthiness.

important and worth pursuing. By continuously reflecting on and optimizing its understanding
of human values and preferences, the AI system can better align with and embody these values,
improving its safety, reliability, and societal acceptance.

Mental Models [32, 34, 21], or called world models [36]: World models offer a mathematical
representation of how an AI system interacts with and influences the external environment. These
models enable AI systems to predict the downstream effects of their decisions and comprehend the
broader implications of their actions, fostering more informed and responsible decision-making.
Unlike data correlation analysis, world models empower AI systems to engage in counterfactual
reasoning and explore "what if " scenarios—capabilities that are natural for humans but challenging
for current AI technologies. Advancements in this area would substantially enhance AI’s decision-
making capabilities.

Counterfactual Interpretability [59, 89, 88, 19, 20]: This aspect focuses on causal attribution,
mediation analysis, and related techniques, aiming to provide a clear understanding of the underlying
causal mechanisms and their implications for the decision-making processes.

3.4 Implications

These technological innovations will not only provide critical support for AGI development but
will also address its potential social impacts and security risks. In future applications, AGI will
progressively achieve safety and trustworthiness, ensuring balanced development of capabilities under
the premise of safety and trust. This series of breakthroughs will guide AGI toward a more mature
stage, becoming a key driver of societal progress while safeguarding against uncontrolled risks to
humanity during its development.

4 The Matrix of Trustworthy AGI

Based on the causal ladder of trustworthy AGI, we prospectively define five levels of AGI trustwor-
thiness: Perception Trustworthiness, Reasoning Trustworthiness, Decision-making Trustworthiness,
Autonomy Trustworthiness, and Collaboration Trustworthiness. These levels collectively form a
comprehensive framework for a trustworthy AI system, supporting the balanced development of
trustworthiness and capabilities in AGI. The rationale behind this taxonomy is to systematically
address the different facets of trustworthiness in AGI systems, ensuring that each foundational layer
contributes to the overall reliability and ethical alignment of the AI. Each level builds upon the
previous one, creating a hierarchical structure that enhances the AGI’s ability to operate effectively
and ethically in complex environments.

As illustrated in Figure 3, the dependence on each layer of the causal ladder for ensuring trustworthy
AGI varies across levels. As we progress through the levels of AGI trustworthiness, reliance on the
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Reflectable Layer increases. For example, achieving Perception Trustworthiness does not necessitate
the techniques from the Reflectable Layer, whereas Reasoning Trustworthiness does, albeit to a
limited extent.

As reported by current large language model techniques, a series of foundation models—such as
Llama2/3 [86, 29], Qwen [6, 96], and InternLM [16] – utilize autoregressive methods to pre-train
on vast amounts of safety-filtered text data. These models are then fine-tuned on specific tasks
through supervised learning, representing techniques within the Approximate Alignment Layer. This
approach has yielded impressive results in text generation. Furthermore, through human-in-the-
loop methods, such as reinforcement learning [76, 83, 67] can be applied across various tasks to
align with human values, placing these methods within the Intervenable Layer and achieving even
better performance. These techniques can also be extended to multimodal tasks, such as image
understanding [7, 91, 22, 26], image generation [92], and video generation [66]. However, at their
core, they still focused on the Perception Trustworthiness level.

As one of the most advanced reasoning models, OpenAI-o1 (preview) [65] is classified as a more
basic form of the Reflectable Layer. Due to its incorporation of preliminary policy review and
safety verification in the reasoning process, we also consider it to fall within the level of Reasoning
Trustworthiness.

Level 1: Perception Trustworthiness. Perception trustworthiness refers to the reliability and
accuracy of the AI system in gathering, processing, and interpreting sensory data from its environment.
This level ensures that AI can make consistent and accurate observations about the world, free from
perceptual biases or inaccuracies. By providing trustworthy inputs, it enables downstream reasoning
and decision-making processes to be based on valid and reliable data.

Level 2: Reasoning Trustworthiness. Reasoning trustworthiness involves the AI system’s ability
to perform logical, causal, or probabilistic reasoning in a manner that is transparent, consistent, and
verifiable. This level guarantees that the AI’s reasoning steps are understandable, traceable, and
aligned with predefined ethical standards or domain-specific principles. It includes mechanisms
for verifying intermediate results and ensuring robustness against errors during inference, thereby
enhancing confidence in the AI’s cognitive processes.

Level 3: Decision-making Trustworthiness. Decision-making trustworthiness pertains to the
transparency, consistency, and value alignment of the AI’s decision-making process, particularly
within embodied AI systems that interact with the physical world. At this level, decision-making
must be timely and context-aware, ensuring that actions in response to environmental stimuli align
with human values and ethical standards. Trustworthiness here guarantees that the AI’s decisions
adhere to clearly defined ethical frameworks and are accompanied by explanations that render the
decision process understandable to humans. Additionally, it incorporates mechanisms for monitoring,
intervention, and adjustment to ensure that decisions are goal-directed, safe, and ethically aligned,
thereby enabling effective operation in real-world, dynamic settings while earning human trust.

Level 4: Autonomy Trustworthiness. Autonomy trustworthiness refers to the AI’s ability to
self-regulate during autonomous operations while maintaining alignment with ethical principles and
specified goals. This level includes mechanisms for reflection, self-improvement, and self-constraint
to ensure that the AI’s autonomous actions do not deviate from ethical boundaries. It ensures that the
AI can independently adapt and plan actions in dynamic environments without compromising its core
values and alignment, thereby sustaining trust during independent operations.

Level 5: Collaboration Trustworthiness. Collaboration trustworthiness focuses on the AI’s
capacity to work effectively and transparently in multi-agent environments, including interactions
with both humans and other AI systems. It encompasses the establishment of clear interaction
rules, threat models to prevent conflicts of interest, and mechanisms for reaching consensus in value
negotiations. This level ensures that the AI collaborates in a stable, ethical, and goal-aligned manner,
maintaining reliability even in complex, highly dynamic environments.

Overall, achieving trustworthy AGI necessitates a comprehensive approach that addresses all five
levels. Perception Trustworthiness ensures accurate and reliable sensory data collection, forming
the foundation for all subsequent processes. Reasoning Trustworthiness demands transparent and
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explainable reasoning processes, maintaining logical consistency and causal reasoning abilities to
provide reliable results in complex tasks. Decision-making Trustworthiness requires that the AI’s
decisions align with human values, effectively handle uncertainty, and exhibit dynamic adaptability
to ensure rationality and stability. Autonomy Trustworthiness involves the AGI’s capacity for self-
reflection and self-correction, continuously optimizing its decision-making processes through ongoing
learning to ensure safety and reliability in independent tasks. Finally, Collaboration Trustworthiness
emphasizes transparency and reliability in both human-machine and multi-agent collaborations,
ensuring effective information sharing and cross-verification between systems to minimize risks.

By systematically developing and integrating trustworthiness at each of these levels, AGI systems
can achieve a balanced integration of capability and trustworthiness, ultimately fostering human trust
and facilitating beneficial human-AI collaboration.

5 Governance measures

Lifecycle management [43, 62, 38, 41]: Ensuring effective AI governance throughout the entire
lifecycle—from development to deployment and eventual decommissioning—poses challenges in
maintaining accountability, transparency, and adaptability in rapidly evolving technologies.

Multi-stakeholders [24, 87]: AI governance must navigate the complexities of balancing diverse
stakeholder interests, including governments, corporations, academia, and civil society, while ensuring
fair representation, collaboration, and accountability in decision-making processes.

Governance for good [68, 41]: Achieving ethical AI governance that promotes societal well-being
requires overcoming challenges related to aligning AI systems with human rights, mitigating biases,
and preventing misuse, while also fostering innovation and public trust.

AI safety as a global public good [37, 93]: AI safety is increasingly recognized as a global public
good due to the rapid advancement of AI systems that may soon surpass human intelligence. While
these systems promise great potential, they also pose catastrophic risks if misused or uncontrollable.
Given the global nature of these threats, it is crucial to establish effective governance and safeguard
mechanisms to mitigate these risks and ensure humanity’s security.

6 Conclusion

In this paper, we have introduced the AI-45◦ Law aimed at balancing the development of AI safety
and capability. Central to our contribution is the Causal Ladder of Trustworthy AGI, a practical
framework that offers a technical taxonomy for existing research methodologies. Our framework
consists of three core layers: the Approximate Alignment Layer, the Intervenable Layer, and the
Reflectable Layer. Each layer addresses specific aspects of safety and trustworthiness in AGI systems.

We have also defined five progressive levels of AGI trustworthiness: Perception Trustworthiness,
Reasoning Trustworthiness, Decision-making Trustworthiness, Autonomy Trustworthiness, and
Collaboration Trustworthiness. These levels collectively form a comprehensive framework for
developing AGI systems that are not only highly capable but also aligned with human values and
ethical standards. By systematically categorizing and addressing the challenges at each level, our
framework facilitates a balanced approach to advancing both the capability and the safety of AGI.

Despite these advancements, several challenges and open problems persist. Refining the method-
ologies within each layer of the causal ladder, integrating ethical considerations more deeply into
the framework, and ensuring adaptability in dynamic real-world environments are areas that require
further research. Moreover, fostering collaboration among researchers, policymakers, and industry
stakeholders is essential for addressing the multifaceted issues surrounding trustworthy AGI.

Future work will empirically validate the proposed framework and explore its applicability across
domains and AI architectures. By continuing to develop and refine this framework, we aim to
contribute to the creation of AGI systems that are not only powerful and efficient but also safe and
trustworthy. This balanced approach is imperative for harnessing the full potential of AGI while
mitigating risks, ultimately leading to technological advancements that benefit society as a whole.
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