
An Optimal and Scalable Matrix Mechanism for Noisy
Marginals under Convex Loss Functions

Yingtai Xiao
Penn State University
yxx5224@psu.edu

Guanlin He
Penn State University
gbh5146@psu.edu

Danfeng Zhang
Penn State University
dbz5017@psu.edu

Daniel Kifer
Penn State University
duk17@psu.edu

Abstract

Noisy marginals are a common form of confidentiality-protecting data release and
are useful for many downstream tasks such as contingency table analysis, construc-
tion of Bayesian networks, and even synthetic data generation. Privacy mechanisms
that provide unbiased noisy answers to linear queries (such as marginals) are known
as matrix mechanisms.
We propose ResidualPlanner, a matrix mechanism for marginals with Gaussian
noise that is both optimal and scalable. ResidualPlanner can optimize for many
loss functions that can be written as a convex function of marginal variances (prior
work was restricted to just one predefined objective function). ResidualPlanner can
optimize the accuracy of marginals in large scale settings in seconds, even when the
previous state of the art (HDMM) runs out of memory. It even runs on datasets with
100 attributes in a couple of minutes. Furthermore ResidualPlanner can efficiently
compute variance/covariance values for each marginal (prior methods quickly run
out of memory, even for relatively small datasets).

1 Introduction

Marginals are tables of counts on a set of attributes (e.g., how many people there are for each
combination of race and gender). They are one of the most common formats for the dissemination of
statistical data [8, 2], studying correlations between attributes, and are sufficient statistics for loglinear
models, including Bayesian networks and Markov random fields. For this reason, a lot of work in
the differential privacy literature has considered how to produce a set of noisy marginals that is both
privacy-preserving and accurate.

One line of work, called the matrix mechanism [32, 52, 30, 53, 37, 51, 46, 18, 42] designs algorithms
for answering linear queries (such as marginals) so that the privacy-preserving noisy answers are
accurate, unbiased, and have a simple distribution (e.g., multivariate normal). These crucial properties
allow statisticians to work with the data, model error due to data collection (sampling error) and
error due to privacy protections. It enables valid confidence intervals and hypothesis tests and
other methods for quantifying the uncertainty of a statistical analysis (e.g,. [20, 29, 50, 25, 26]).
Incidentally, sets of noisy marginals are also used to generate differentially private synthetic data
(e.g., [54, 4, 41, 10]).

For the case of marginals, significant effort has been spent in designing optimal or nearly optimal
matrix mechanisms for just a single objective function (total variance of all the desired marginals)
[32, 49, 13, 52, 53, 31, 51] and each new objective function requires significant additional effort
[6, 18, 42, 46]. However, existing optimal solutions do not scale and additional effort is needed to
design scalable, but suboptimal, matrix mechanisms for marginals [37, 38]. This is because prior
work used mathematical properties specific to their chosen objective function in order to improve
runtime. Furthermore, computing the individual variances of the desired noisy marginals is a slow
process and more difficult is computing the covariance between cells in the same marginal.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Contributions. Our paper addresses these problems with a novel matrix mechanisms called Resid-
ualPlanner. It can optimize for a wide variety of convex objective functions and return solutions
that are guaranteed to be optimal under Gaussian noise. It is highly scalable – running in seconds
even when other scalable algorithms run out of memory. It also efficiently returns the variance and
covariances of each cell of the desired marginals. It leverages the following insights. Since a dataset
can be represented as a vector x of counts, and since a marginal query on a set A of attributes can be
represented as a matrix QA (with QAx being the true answer to the marginal query), we find a new
linearly independent basis that can parsimoniously represent both a marginal QA and the “difference”
between two marginals QA and QA′ (subspace spanned by the rows of QA that is orthogonal to the
rows of QA′). Using parsimonious linear bases, instead of overparametrized mechanisms, accounts
for the scalability. Optimality results from a deep analysis of the symmetry that marginals impose on
the optimal solution – the same linear basis is optimal for a wide variety of loss functions. Our code
is available at https://github.com/dkifer/ResidualPlanner.

2 Preliminaries

The Kronecker product between a k1 × k2 matrix V =

[v1,1 ··· v1,k2

... ···
...

vk1,1 ··· vk1,k2

]
and an ℓ1 × ℓ2 matrix

W, denoted by V⊗W, is the k1ℓ1 × k2ℓ2 matrix that can be represented in block matrix form as:[v1,1W ··· v1,k2
W

... ···
...

vk1,1W ··· vk1,k2
W

]
. A dataset D = {r1, . . . , rn} is a collection of records (there is exactly one

record for each individual in the dataset). Every record ri contains na attributes Att1, . . . , Attna and
each attribute Attj can take values a(j)1 , . . . , a

(j)
|Attj |. An attribute value a

(j)
i for attribute Attj can be

represented as a vector using one-hot encoding. Specifically, let e(j)i be a row vector of size |Attj |
with a 1 in component i and 0 everywhere else. In this way e

(j)
i represents the attribute value a

(j)
i .

A record r with attributes Att1 = a
(1)
i1

, Att2 = a
(2)
i2

, . . . , Attna
= a

(na)
ina

can thus be represented

as the Kronecker product e(1)i1
⊗e(2)i2

⊗ · · ·⊗e(na)
ina

. This vector has a 1 in exactly one position and 0s
everywhere else. The position of the 1 is the index of record r. With this notation, a dataset D can be
represented as a vector x of integers. The value at index i is the number of times the record associated
with index i appears in D. The number of components in this vector is denoted as d =

∏na

i=1 |Atti|.
Given a subset A of attributes, a marginal query on A is a table of counts: for each combination of
values for the attributes in A, it provides the number of records in D having those attribute value
combinations. The marginal query can be represented as a Kronecker product QA = V1⊗ · · ·⊗Vna

where Vi is the row vector of all ones (i.e, 1T
|Atti|) if Atti /∈ A and Vi is the identity matrix I |Atti|

if Atti ∈ A. The answer to the marginal query is obtained by evaluating the matrix-vector product
QAx. For convenience, the notation introduced in this paper is summarized as a table in Section A
in the supplementary material.

EXAMPLE 2.1. As a running example, consider a dataset in which there are two attributes: Att1
with values “yes” and “no”, and Att2 with values “low”, “med”, “high”. The record (no, med)
is represented by the kron product [0 1]⊗ [0 1 0] and the marginal query on the set A = {Att1} is
represented as Q{Att1} = [1 0

0 1]⊗ [1 1 1]. Similarly, the marginal on attribute Att2 is represented as

Q{Att2} = [11]⊗
[
1 0 0
0 1 0
0 0 1

]
. The query representing all one-way marginals is obtained by stacking

them: Q1-way =
[
Q{Att1}
Q{Att2}

]
and Q1-wayx consists of the five query answers (number of records with

Att1 = yes, number with Att1 = no, number with Att2 =low, etc.).

2.1 Differential Privacy

A mechanismM is an algorithm whose input is a dataset and whose output provides privacy protec-
tions. Differential privacy is a family of privacy definitions that guide the behavior of mechanisms so
that they can inject enough noise to mask the effects of any individual. There are many versions of
differential privacy that support Gaussian noise, including approximate DP, zCDP, and Gaussian DP.

2

https://github.com/dkifer/ResidualPlanner

DEFINITION 2.2 (Differential Privacy). LetM be a mechanism. For every pair of datasets D1,D2

that differ on the presence/absence of a single record and for all (measurable) sets S ⊆ range(M),

• If P (M(D1) ∈ S) ≤ eϵP (M(D2) ∈ S) + δ then M satisfies (ϵ, δ)-approximate differential
privacy [17];

• If Φ−1(P (M(D1) ∈ S)) ≤ Φ−1(P (M(D2) ∈ S)) + µ, where Φ is the cdf of the standard
Gaussian distribution, thenM satisfies µ-Gaussian DP [15].

• If the Rényi divergence Dα(M(D1)||M(D2)) between the output distributions ofM(D1) and
M(D2) satisfies Dα(M(D1)||M(D2)) ≤ ρα for all α > 1, thenM satisfies ρ-zCDP [7].

Queries that are linear functions of the data vector x can be answered privately using the linear
Gaussian mechanism, which adds correlated Gaussian noise to a linear function of x, as follows.

DEFINITION 2.3 (Linear Gaussian Mechanism [46]). Given a m×d matrix B and m×m covariance
matrix Σ, the (correlated) linear Gaussian mechanismM is defined asM(x) = Bx +N(0,Σ).
The privacy cost matrix of M is defined as BTΣ−1B. The privacy cost of M, denoted by
pcost(M), is the largest diagonal of the privacy cost matrix and is used to compute the privacy
parameters:M satisfies ρ-zCDP with ρ = pcost(M)/2 [46], satisfies (ϵ, δ)-approximate DP with
δ = Φ(

√
pcost(M)/2 − ϵ/

√
pcost(M)) − eϵΦ(−

√
pcost(M)/2 − ϵ/

√
pcost(M)) (this is an

increasing function of pcost(M) [5]), and satisfies µ-Gaussian DP with µ =
√

pcost(M) [15, 46].

The use of a non-diagonal covariance matrix is crucial because it will help simplify the description of
the optimal choices of B and Σ. In particular, using non-diagonal covariance allows us to provide
explicit formulas for the entries of the B matrices. We note that an algorithmM∗ that releases the
outputs of multiple linear Gaussian mechanismsM1, . . . ,Mk (withMi(x) = Bix+N(0,Σi)) is
again a linear Gaussian mechanism. It is represented asM∗(x) = B∗x+N(0,Σ∗) with the matrix
B∗ obtained by vertically stacking the Bi and with covariance Σ∗ being a block-diagonal matrix
where the blocks are the Σi. Its privacy cost pcost(M∗) = pcost(M1, . . . ,Mk) is the largest
diagonal entry of

∑k
i=1 B

T
i Σ
−1
i Bi.

2.2 Matrix Mechanism

The Matrix Mechanism [32, 52, 30, 53, 37, 38, 51, 46, 18, 42] is a framework for providing unbiased
privacy-preserving answers to a workload of linear queries, represented by a matrix W (so that the
true non-private answer to the workload queries is Wx). The matrix mechanism framework consists
of 3 steps: select, measure, and reconstruct. The purpose of the select phase is to determine what we
add noise to and how much noise to use. More formally, when a user’s preferred noise distribution is
Gaussian, the select phase chooses a Gaussian linear mechanismM(x) ≡ Bx +N(0,Σ) whose
noisy output can be used to estimate the true query answer Wx. Ideally,M uses the least amount
of noise subject to privacy constraints (specified by a privacy definition and settings of its privacy
parameters). The measure phase runs the mechanism on the data to produce (noisy) privacy-preserving
outputs ω = M(x). The reconstruct step uses ω to compute an unbiased estimate of Wx. The
unbiased estimate is typically W(BTΣ−1B)†BTΣ−1ω, where † represents the Moore-Penrose
pseudo-inverse. This is the best linear unbiased estimate of Wx that can be obtained from ω
[32]. This means that the goal of the select step is to optimize the choice of B and Σ so that the
reconstructed answer is as accurate as possible, subject to privacy constraints. Ideally, a user would
specify their accuracy requirements using a loss function, but existing matrix mechanisms do not allow
this flexibility – they hard-code the loss function. In fact, adding support for new loss function used to
require significant research and new optimization algorithms [53, 46, 18] because each new algorithm
was customized to specific properties of a chosen loss function. On top of this, existing optimal
matrix mechanism algorithms do not scale, while scalable matrix mechanisms are not guaranteed
to produce optimal solutions [37]. Additionally, the reconstruction phase should also compute the
variance of each workload answer. The variances are the diagonals of W(BTΣ−1B)†WT and
making this computation scale is also challenging.

3

3 Additional Related Work

The marginal release mechanism by Barak et al. [6] predates the matrix mechanism [32, 52, 30, 53,
13, 43, 37, 51, 46, 18, 42, 38] and adds noise to the Fourier decomposition of marginals. We add
noise to a different basis, resulting in the scalability and optimality properties. The SVD bound [31]
is a lower bound on total matrix mechanism error when the loss function is the sum of variances. This
lower bound is tight for marginals and we use it as a sanity check for our results and implementation
(note ResidualPlanner provides optimal solutions even when the SVD bound is infeasible to compute).

Alternative approaches to the matrix mechanism can produce privacy preserving marginal query
answers that reduce variance by adding bias. This is often done by generating differentially private
synthetic data or other such data synopses from which marginals can be computed. State-of-the art
approaches iteratively ask queries and fit synthetic data to the resulting answers [22, 34, 4, 19, 39, 35,
44, 56]. For such mechanisms, it is difficult to estimate error of a query answer but recently AIM
[39] has made progress in upper bounding the error. PGM [41] provides a connection between the
matrix mechanism and this line of work, as it can postprocess noisy marginals into synthetic data. It
is a better alternative to sampling a synthetic dataset from models fit to carefully chosen marginals
[54, 11, 55, 10]. Synthetic data for answering marginal queries can also be created from random
projections [48], copulas [33, 3], and deep generative models [23, 1, 35].

With respect to the matrix mechanism, the reconstruction step is often one of the bottlenecks to
scalability. While PGM [41] provides one solution, another proposal by McKenna et al. [40] is to
further improve scalability by sacrificing some consistency (the answers to two different marginals
may provide conflicting answers to submarginals they have in common). Work on differential privacy
marginals has also seen extensions to hierarchical datasets, in which records form meaningful groups
that need to be queried. That is, in addition to marginals on characteristics of people, marginals can
be computed in different hierarchies such as geographic level (state, county, etc.) and marginals on
household composition (or other groupings of people) [2, 28, 36].

4 ResidualPlanner

ResidualPlanner is our proposed matrix mechanism for optimizing the accuracy of marginal queries
with Gaussian noise. It is optimal and more scalable than existing approaches. It supports opti-
mizing the accuracy of marginals under a wide variety of loss functions and provides exact vari-
ances/covariances of the noisy marginals in closed-form. In this section, we first explain the loss
functions it supports. We then describe the base mechanisms it uses to answer marginal queries.
We next show how to reconstruct the marginal queries from the outputs of the base mechanisms
and how to compute their variances in closed form. We then explain how to optimize these base
mechanisms for different loss functions. The reason this selection step is presented last is because it
depends on the closed form variance calculations. Then we analyze computational complexity. To
aid in understanding, we added a complete numerical run-through of the steps in Section B of the
supplementary material. All of our proofs also appear in the supplementary material.

4.1 Loss Functions Supported by ResidualPlanner

The loss functions we consider are generalizations of the sum of variances and max of variances
used in prior work. Our more general class of loss functions is based on the following principle:
different marginals can have different relative importance but within a marginal, its cells are equally
important. That is, a loss function can express that the two-way marginal on the attribute set
{Race, Marital Status} is more important (i.e., requires more accuracy) than the 1-way marginal
on {EducationLevel}, but all cells within the {Race, MaritalStatus} marginal are equally important.
This is a commonly accepted principle for answering differentially private marginal queries (e.g.,
[32, 52, 30, 53, 37, 51, 46, 18, 42, 39, 4, 34]) and is certainly true for the 2020 Census redistricting
data [2].

Let Wkload = {A1, . . . ,Ak} be a workload of marginals, where each Ai is a subset of attributes
and represents a marginal. E.g., Wkload = {{Race, MaritalStatus}, {EducationLevel}} consists of
2 marginals, a two-way marginal on Race/MaritalStatus, and a one-way marginal on Education. Let
M be a Gaussian linear mechanism whose output can be used to reconstruct unbiased answers to
the marginals in Wkload. For each Ai ∈Wkload, let V ar(Ai;M) be the function that returns the

4

variances of the reconstructed answers to the marginal on Ai; the output of V ar(Ai;M) is a vector
vi with one component for each cell of the marginal on Ai. A loss function L aggregates all of these
vectors together: L(v1, . . . , vk). We have the following regularity conditions on the loss function.

DEFINITION 4.1 (Regular Loss Function). We say the loss function L is regular if: (1) L is convex
and continuous; (2) L(v1, . . . , vk) is minimized when all the vi are the 0 vectors; and (3) for any i,
permuting just the components of vi does not affect the value of L(v1, . . . , vk). This latter condition
just says that cells within the same marginal are equally important.

Loss functions used on prior work are all regular. For example, weighted sum of variances
[32, 52, 30, 53, 37, 51] can be expressed as L(v1, . . . , vk) =

∑
i ci1

T vi, where the ci are the
nonnegative weights that indicate the relative importance of the different marginals. Another pop-
ular loss function is maximum (weighted) variance [46, 18, 42], expressed as L(v1, . . . , vk) =

max
{

max(v1)
c1

, . . . , max(vk)
ck

}
. Thus, the optimization problem that the selection step needs to solve

is either privacy constrained: minimize loss while keeping privacy cost (defined at the end of Section
2.1) below a threshold γ; or utility constrained: minimize privacy cost such that the loss is at most γ.

Privacy constrained: argmin
M
L(V ar(A1;M), . . . , V ar(Ak;M)) s.t. pcost(M) ≤ γ (1)

Utility constrained: argmin
M

pcost(M) s.t. L(V ar(A1;M), . . . , V ar(Ak;M)) ≤ γ (2)

We note that regular loss functions cover other interesting cases. For instance, suppose Alicia, Bob,
and Carol wish to minimize the sum of variances on their own separate workloads. Taking the max
over these three sum-of-variances as the loss function allows the data curator to minimize the largest
unhappiness among the three data stakeholders.

4.2 Base Mechanisms used by ResidualPlanner

In the most common application setting, the user picks a privacy budget, a workload of marginals and
a loss function L. Based on these choices, a matrix mechanism must decide what linear queries to add
noise to and how much noise to add to them. Then it uses those noisy measurements to reconstruct
answers to the workload queries. In the case of ResidualPlanner, the linear queries that need noise
are represented by base mechanisms that are described in this section. Each base mechanism has a
scalar noise parameter that determines how much noise it uses (so optimizing the loss function L is
equivalent to finding a good value for the noise parameter of each base mechanism). As long as the
loss function L is regular, we prove that an optimal mechanism can be constructed from the set of
base mechanisms that we describe here.

To begin, we define a subtraction matrix Subm to be an (m − 1) × m matrix where the first
column is filled with 1, entries of the form (i, i+ 1) are -1, and all other entries are 0. For example,
Sub3 =

[
1 −1 0
1 0 −1

]
and Sub2 = [1 −1]. We use these subtraction matrices to define special matrices

called residual matrices that are important for our algorithm.

For any subset A ⊆ {Att1, . . . , Attna
} of attributes, we define the residual matrix RA as the

Kronecker product RA = V1⊗ · · ·⊗Vna
, where Vi = 1T

|Atti| if Atti /∈ A and Vi = Sub|Atti| if
Atti ∈ A. Continuing Example 2.1, we have R∅ = [1 1]⊗ [1 1 1], and R{Att1} = [1 −1]⊗ [1 1 1],
and R{Att2} = [1 1]⊗

[
1 −1 0
1 0 −1

]
, and R{Att1,Att2} = [1 −1]⊗

[
1 −1 0
1 0 −1

]
.

Using subtraction matrices, we also define the matrix ΣA as the Kronecker product⊗
Atti∈A

(Sub|Atti|Sub
T
|Atti|) and we note that it is proportional to RART

A. Σ∅ is defined as 1.

Each subset A of attributes can be associated with a “base” mechanismMA that takes as input the
data vector x and a scalar parameter σ2

A for controlling how noisy the answer is.MA is defined as:

MA(x;σ2
A) ≡ RAx+N(0, σ2

AΣA) (3)

The residual matrices RA used by base mechanisms form a linearly independent basis that compactly
represent marginals, as the next result shows.

THEOREM 4.2. Let A be a set of attributes and let QA be the matrix representation of the marginal
on A. Then the rows of the matrices RA′ , for all A′ ⊆ A, form a linearly independent basis of the
row space of QA. Furthermore, if A′ ̸= A′′ then RA′RT

A′′ = 0 (they are mutually orthogonal).

5

REMARK 4.3. To build an intuitive understanding of residual matrices, consider again Example
2.1. Both R∅ and Q∅ are the sum query (marginal on no attributes). The rows of R{Att1} span the
subspace of Q{Att1} that is orthogonal to Q∅ (and similarly for R{Att2}). The rows of R{Att1,Att2}
span the subspace of Q{Att1,Att2} that is orthogonal to both Q{Att1} and Q{Att2}. Hence a residual
matrix spans the subspace of a marginal that is orthogonal to its sub-marginals.

Theorem 4.2 has several important implications. If we define the downward closure of a marginal
workload Wkload = {A1, . . . ,Ak} as the collection of all subsets of the sets in Wkload (i.e.,
closure(Wkload) = {A′ : A′ ⊆ A for some A ∈Wkload}) then the theorem implies that the
combined rows from {RA′ : A′ ∈ closure(Wkload)} forms a linearly independent basis for the
marginals in the workload. In other words, it is a linearly independent bases for the space spanned by
the rows of the marginal query matrices QA for A ∈ Wkload. Thus, in order to provide privacy-
preserving answers to all of the marginals represented in Wkload, we need all the mechanismsMA′

for A′ ∈ closure(Wkload) – any other matrix mechanism that provides fewer noisy outputs cannot
reconstruct unbiased answers to the workload marginals. This is proved in Theorem 4.4, which also
states that optimality is achieved by carefully setting the σA noise parameter for eachMA.

THEOREM 4.4. Given a marginal workload Wkload and a regular loss function L, suppose the
optimization problem (either Equation 1 or 2) is feasible. Then there exist nonnegative constants
σ2
A for each A ∈ closure(Wkload) (the constants do not depend on the data), such that the

optimal linear Gaussian mechanismMopt for loss function L releasesMA(x;σ2
A) for all A ∈

closure(Wkload). Furthermore, any matrix mechanism for this workload must produce at least this
many noise measurements during its selection phase.

Algorithm 1: Efficient implementation ofMA(x;σ2
A) ≡ RAx+N(0, σ2

AΣA)

1 v← QAx// Evaluate the true marginal
2 m←

∏
Atti∈A |Atti|

3 H←
⊗

Atti∈A
Sub|Atti|// Use implicit representation, don’t expand

4 z← N(0, Im)// independent noise
5 return Hv + σAHz// use kron-product/vector multiplication from [37]

MA can be evaluated efficiently, directly from the marginal of x on attribute set A, as shown in
Algorithm 1. It uses the technique from [37] to perform fast multiplication between a Kronecker
product and a vector (so that the Kronecker product does not need to be expanded). It also generates
correlated noise from independent Gaussians. The privacy cost pcost(MA) of each base mechanism
MA is also easy to compute and is given by the following theorem.

THEOREM 4.5. The privacy cost of MA with noise parameter σ2
A is 1

σ2
A

∏
Atti∈A

|Atti|−1
|Atti| and

the evaluation of MA given in Algorithm 1 is correct – i.e., the output has the distribution
N(RAx, σ2

AΣA).

4.3 Reconstruction

Next we explain how to reconstruct unbiased answers to marginal queries from the outputs of the base
mechanisms and how to compute (co)variances of the reconstructed marginals efficiently, without any
heavy matrix operations (inversion, pseudo-inverses, etc.). Then, given the closed form expressions
for marginals and privacy cost (Theorem 4.5), we will be able to explain in Section 4.4 how to
optimize the σ2

A parameters of the base mechanismsMA to optimize regular loss functions L.

Since the base mechanisms were built using a linearly independent basis, reconstruction is unique
– just efficiently invert the basis. Hence, unlike PGM and its extensions [41, 40], our reconstruc-
tion algorithm does not need to solve an optimization problem and can reconstruct each marginal
independently, thus allowing marginals to be reconstructed in parallel, or as needed by users. The
reconstructed marginals are consistent with each other (any two reconstructed marginals agree on
their sub-marginals). Just as the subtraction matrices Subk were useful in constructing the base
mechanismsMA, their pseudo-inverses Sub†k are useful for reconstructing noisy marginals from the

6

noisy answers ofMA. The pseudo-inverses have a closed form. For example Sub4 =
[
1 −1 0 0
1 0 −1 0
1 0 0 −1

]
and Sub†4 = 1

4

[1 1 1
−3 1 1
1 −3 1
1 1 −3

]
. More generally, they are expressed as follows:

LEMMA 4.6. For any Atti, let ℓ = |Atti|. The matrix Subℓ has the following block matrix, with

dimensions ℓ× (ℓ− 1), as its pseudo-inverse (and right inverse): Sub†ℓ =
1
ℓ

[
1T
ℓ−1

1ℓ−11
T
ℓ−1−ℓIℓ−1

]
.

Each mechanismMA, for A ∈ closure(Wkload), has a noise scale parameter σ2
A and a noisy output

that we denote by ωA. After we have obtained the noisy outputs ωA for all A ∈ closure(Wkload),
we can proceed with the reconstruction phase. The reconstruction of an unbiased noisy answer for
any marginal on an attribute set A ∈ closure(Wkload) is obtained using Algorithm 2. We note
that to reconstruct a marginal on attribute set A, one only needs to use the noisy answers ωA′ for
A′ ∈ closure(A). In other words, if we want to reconstruct a marginal on attribute set {Att1, Att2},
we only need the outputs ofM∅,M{Att1},M{Att2}, andM{Att1,Att2} no matter how many other
attributes are in the data and no matter what other marginals are in the Wkload. We emphasize again,
the reconstruction phase does not run the base mechanisms anymore, it is purely post-processing.

Algorithm 2: Reconstruct Unbiased Answers to the Marginal on A

Input: Noise scale parameters σ2
A′ and noisy answer vector ωA′ of mechanismMA′ for

every A′ ∈ closure(A).
Output: q is output as an unbiased noisy estimate of QAx.

1 q← 0

2 for each A′ ∈ closure(A) do

3 U←V1⊗ · · ·⊗Vna
, where Vi =


Sub†|Atti| if Atti ∈ A′

1
|Atti|1|Atti| if Atti ∈ A/A′

[1] if Atti /∈ A

4 q← q+UωA′// use kron-product/vector multiplication from [37]
5 return q

THEOREM 4.7. Given a marginal workload Wkload and positive numbers σ2
A for each A ∈

closure(Wkload), letM be the mechanism that outputs {MA(x;σ2
A) : A ∈ closure(Wkload)}

and let {ωA : A ∈ closure(Wkload)} denote the privacy-preserving noisy answers (e.g.,
ωA = MA(x, σ2)). Then for any marginal on an attribute set A ∈ closure(Wkload), Algo-
rithm 2 returns the unique linear unbiased estimate of QAx (i.e., answers to the marginal query)
that can be computed from the noisy differentially private answers.

The variances V ar(A;M) of all the noisy cell counts of the marginal on A is the vector

whose components are all equal to
∑

A′⊆A

(
σ2
A′
∏

Atti∈A′
|Atti|−1
|Atti| ∗

∏
Attj∈(A/A′)

1
|Attj |2

)
.

The covariance between any two noisy answers of the marginal on A is∑
A′⊆A

(
σ2
A′
∏

Atti∈A′
−1
|Atti| ∗

∏
Attj∈(A/A′)

1
|Attj |2

)
.

To see an example of how the choices of the σ2
A affect the variance of different marginals, see Section

C in the supplementary material.

4.4 Optimizing the Base Mechanism Selection

We now consider how to find the optimal Gaussian linear mechanismM∗ that solves the optimization
problems in Equations 1 or 2. Given a workload on marginals Wkload, the optimization involves
V ar(A;M∗) for A ∈Wkload (the variance of the marginal answers reconstructed from the output
ofM∗) and pcost(M∗), from which the privacy parameters of different flavors of differential privacy
can be computed.

Theorem 4.4 says that M∗ works by releasing MA(x;σ2
A) for each A ∈ closure(Wkload) for

appropriately chosen values of σ2
A. The privacy cost pcost(M∗) is the sum of the privacy costs of

7

theMA. Theorem 4.5 therefore shows that pcost(M∗) is a positive linear combination of the values
1/σ2

A for A ∈ closure(Wkload) and is therefore convex in the σ2
A values. Meanwhile, Theorem 4.7

shows how to represent, for each A ∈ closure(Wkload), the quantity V ar(A;M∗) as a positive
linear combination of σ2

A′ for A′ ∈ closure(A) ⊆ closure(Wkload). Therefore, the loss function L
is also convex in the σ2

A values.

Thus the optimization problems in Equations 1 and 2 can be written as minimizing a convex function
of the σ2

A subject to convex constraints. In fact, in Equation 2, the constraints are linear when
the optimization variables represent the σ2

A and in Equation 1 the constraints are linear when the
optimization variables represent the 1/σ2

A. Furthermore, when the loss function is the weighted sum
of variances of the marginal cells, the solution can be obtained in closed form (see supplementary
material). Otherwise, we use CVXPY/ECOS [12, 14] for solving these convex optimization problems.

4.5 Computational Complexity

Although the universe size |Att1| × · · · × |Attna
| grows exponentially with the number of attributes,

the following theorem shows that the time complexity of ResidualPlanner depends directly on
quantities that typically grow polynomially, such as the number of desired marginals and total number
of cells in those marginals.

THEOREM 4.8. Let na be the total number of attributes. Let #cells(A) denote the number of cells in
the marginal on attribute set A. Then:

1. Expressing the privacy cost of the optimal mechanismM∗ as a linear combination of the 1/σ2
A

values takes O(
∑

A∈Wkload #cells(A)) total time.

2. Expressing all of the V ar(A;M∗), for A ∈Wkload, as a linear combinations of the σ2
A values

can be done in O(
∑

A∈Wkload #cells(A)) total time.

3. Computing all the noisy outputs of the optimal mechanism (i.e., MA(x;σ2
A) for A ∈

closure(Wkload)) takes O
(
na

∑
A∈Wkload

∏
Atti∈A(|Atti|+ 1)

)
total time after the true an-

swers have been precomputed (Line 1 in Algorithm 1). Note that the total number of cells on
marginals in Wkload is O

(∑
A∈Wkload

∏
Atti∈A |Atti|

)
.

4. Reconstructing marginals for all A ∈Wkload takes O(
∑

A∈Wkload |A|#cells(A)2) total time.
5. Computing the variance of the cells for all of the marginals for A ∈ Wkload can be done in

O(
∑

A∈Wkload #cells(A)) total time.

To get a sense of these numbers, consider a dataset with 20 attributes, each having 3 possible values.
If the workload consists of all 3-way marginals, there are 1,140 marginals each with 27 cells so
ncells = 30, 780. The quantity inside the big-O for the selection step is 1, 459, 200 (roughly the
number of scalar multiplications needed). These are all easily manageable on modern computers
even without GPUs. Our experiments, under more challenging conditions, run in seconds.

5 Experiments

We next compare the accuracy and scalability of ResidualPlanner against HDMM [38], including
variations of HDMM with faster reconstruction phases [41]. The hardware used was an Ubuntu
22.04.2 server with 12 Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz processors and 32GB of
DDR4 RAM. We use 3 real datasets to evaluate accuracy and 1 synthetic dataset to evaluate scal-
ability. The real datasets are (1) the Adult dataset [16] with 14 attributes, each having domain
sizes 100, 100, 100, 99, 85, 42, 16, 15, 9, 7, 6, 5, 2, 2, respectively, resulting in a record domain size
of 6.41 ∗ 1017; (2) the CPS dataset [9] with 5 attributes, each having domain size 100, 50, 7, 4, 2,
respectively, resulting in a record domain size of 2.8 ∗ 105; (3) the Loans dataset [24] with 12
attributes, each having domain size 101, 101, 101, 101, 3, 8, 36, 6, 51, 4, 5, 15, respectively, resulting
in a record domain size of 8.25 ∗ 1015. The synthetic dataset is called Synth-nd. Here d refers to
the number of attributes (we experiment from d = 2 to d = 100) and n is the domain size of each
attribute. The running times of the algorithms only depend on n and d and not on the records in
the synthetic data. For all experiments, we set the privacy cost pcost to 1, so all mechanisms being
compared satisfy 0.5-zCDP and 1-Gaussian DP.

8

5.1 Scalability of the Selection Phase

We first consider how long each method takes to perform the selection phase (i.e., determine what
needs noisy answers and how much noise to use). HDMM can only optimize total variance, which
is equivalent to root mean squared error. For ResidualPlanner we consider both RMSE and max
variance as objectives (the latter is a harder to solve problem). Each algorithm is run 5 times and the
average is taken. Table 1 shows running time results; accuracy results will be presented later.

Table 1: Time for Selection Step in seconds on Synth−nd dataset. n = 10 and the number of
attributes d varies. The workload consists of all marginals on ≤ 3 attributes each. Times for HDMM
are reported with ±2 standard deviations.

d HDMM
RMSE Objective

ResidualPlanner
RMSE Objective

ResidualPlanner
Max Variance Objective

2 0.013± 0.003 sec 0.001± 0.0008 sec 0.007± 0.001 sec
6 0.065± 0.012 sec 0.002± 0.0008 sec 0.009± 0.001 sec

10 0.639± 0.059 sec 0.009± 0.001 sec 0.018± 0.001 sec
12 4.702± 0.315 sec 0.015± 0.001 sec 0.028± 0.001 sec
14 46.054± 12.735 sec 0.025± 0.002 sec 0.041± 0.001 sec
15 201.485± 13.697 sec 0.030± 0.017 sec 0.050± 0.001 sec
20 Out of memory 0.079± 0.017 sec 0.123± 0.023 sec
30 Out of memory 0.247± 0.019 sec 0.461± 0.024 sec
50 Out of memory 1.207± 0.047 sec 4.011± 0.112 sec
100 Out of memory 9.913± 0.246 sec 121.224± 3.008 sec

As we can see, optimizing for max variance is more difficult than for RMSE, but ResidualPlanner
does it quickly even for data settings too big for HDMM. The runtime of HDMM increases rapidly,
while even for the extreme end of our experiments, ResidualPlanner needs just a few minutes.

5.2 Scalability of the Reconstruction Phase

We next evaluate the scalability of the reconstruction phase under the same settings. The reconstruc-
tion speed for ResidualPlanner does not depend on the objective of the selection phase. Here we
compare against HDMM [38] and a version of HDMM with improved reconstruction scalability
called HDMM+PGM [38, 41] (the PGM settings used 50 iterations of its Local-Inference estimator,
as the default 1000 was too slow). Since HDMM cannot perform the selection phase after a certain
point, reconstruction results also become unavailable. Table 2 shows ResidualPlanner is clearly faster.

Table 2: Time for Reconstruction Step in seconds on Synth−nd dataset. n = 10 and the number of
attributes d varies. The workload consists of all marginals on ≤ 3 attributes each. Times are reported
with ±2 standard deviations. Reconstruction can only be performed if the select step completed.

d HDMM HDMM + PGM ResidualPlanner
2 0.003± 0.0006 sec 0.155± 0.011 sec 0.005± 0.003 sec
6 0.173± 0.011 sec 4.088± 0.233 sec 0.023± 0.004 sec

10 Out of memory in reconstruction 20.340± 2.264 sec 0.125± 0.032 sec
12 Out of memory in reconstruction 39.162± 1.739 sec 0.207± 0.004 sec
14 Out of memory in reconstruction 69.975± 4.037 sec 0.330± 0.006 sec
15 Out of memory in reconstruction 91.101± 7.621 sec 0.413± 0.006 sec
20 N/A (select step failed) N/A (select step failed) 1.021± 0.011 sec
30 N/A (select step failed) N/A (select step failed) 3.587± 0.053 sec
50 N/A (select step failed) N/A (select step failed) 17.029± 0.212 sec

100 N/A (select step failed) N/A (select step failed) 154.538± 15.045 sec

5.3 Accuracy Comparisons

Since ResidualPlanner is optimal, the purpose of the accuracy comparisons is a sanity check. For
RMSE, comparisons of the quality of ResidualPlanner to the theoretically optimal lower bound, known
as the SVD bound [31], can be found in the supplementary material in Section I (ResidualPlanner

9

matches the lower bound). We note ResidualPlanner can provide solutions even when the SVD bound
is infeasible to compute.

We also compare ResidualPlanner to HDMM when the user is interested in the maximum variance
objective. This just shows that it is important to optimize for the user’s objective function and that the
optimal solution for RMSE (the only objective HDMM can optimize) is not a good general-purpose
approximation for other objectives (as shown in Table 3). Additional comparisons are provided in the
supplementary material.

Table 3: Max Variance Comparisons with ResidualPlanner and HDMM (showing that being restricted
to optimizing only RMSE is not a good approximation of Max Variance optimization).

Adult Dataset CPS Dataset Loans Dataset
Workload ResPlan HDMM ResPlan HDMM ResPlan HDMM

1-way Marginals 12.047 41.772 4.346 13.672 10.640 33.256
2-way Marginals 67.802 599.843 7.897 47.741 52.217 437.478
3-way Marginals 236.843 5675.238 7.706 71.549 156.638 3095.997
≤ 3-way Marginals 253.605 6677.253 13.216 415.073 180.817 4317.709

6 Limitations, Conclusion, and Future Work.

In this paper, we introduced ResidualPlanner, a matrix mechanism that is scalable and optimal for
marginals under Gaussian noise, for a large class of convex objective functions. While these are
important improvements to the state of the art, there are limitations.

First, for some attributes, a user might not want marginals. For example, they might want range
queries or queries with hierarchies (e.g., how many people drive sedans vs. vans; out of the sedans,
how many are red vs. green, etc) [2, 28, 36]. In some cases, an attribute might have an infinite domain
(e.g., a URL) and need to be handled differently [27, 45]. In other cases, the user may want other
noise distributions, like the Laplace. These types of queries do not have the same type of symmetry
as marginals that was crucial to proving the optimality of ResidualPlanner. For these situations, one
of the key ideas of ResidualPlanner can be used – find a linear basis that compactly represents both
the queries and “residual” (information provided by a query that is not contained in the other queries).
Such a feature would result in scalability. It is future work to determine how to extend both scalability
and optimality to such situations. Another limitation is that this work considers the setting where an
individual can contribute exactly one (rather than arbitrarily many) records to the dataset.

7 Acknowledgments

This work was supported by NSF grant CNS-1931686 and a gift from Facebook.

10

References

[1] Nazmiye Ceren Abay, Yan Zhou, Murat Kantarcioglu, Bhavani Thuraisingham, and Latanya
Sweeney. Privacy preserving synthetic data release using deep learning. In Machine Learning
and Knowledge Discovery in Databases: European Conference, ECML PKDD 2018, Dublin,
Ireland, September 10–14, 2018, Proceedings, Part I 18, pages 510–526. Springer, 2019.

[2] John M. Abowd, Robert Ashmead, Ryan Cumings-Menon, Simson Garfinkel, Micah Hei-
neck, Christine Heiss, Robert Johns, Daniel Kifer, Philip Leclerc, Ashwin Machanava-
jjhala, Brett Moran, William Sexton, Matthew Spence, and Pavel Zhuravlev. The 2020
census disclosure avoidance system topdown algorithm. Harvard Data Science Re-
view, forthcoming. Preprint https://www.census.gov/library/working-papers/2022/
adrm/CED-WP-2022-002.html.

[3] Hassan Jameel Asghar, Ming Ding, Thierry Rakotoarivelo, Sirine Mrabet, and Mohamed Ali
Kaafar. Differentially private release of high-dimensional datasets using the gaussian copula.
arXiv preprint arXiv:1902.01499, 2019.

[4] Sergul Aydore, William Brown, Michael Kearns, Krishnaram Kenthapadi, Luca Melis, Aaron
Roth, and Ankit A Siva. Differentially private query release through adaptive projection. In
International Conference on Machine Learning, pages 457–467. PMLR, 2021.

[5] Borja Balle and Yu-Xiang Wang. Improving the gaussian mechanism for differential privacy:
Analytical calibration and optimal denoising. In International Conference on Machine Learning,
ICML, 2018.

[6] Boaz Barak, Kamalika Chaudhuri, Cynthia Dwork, Satyen Kale, Frank McSherry, and Kunal
Talwar. Privacy, accuracy, and consistency too: a holistic solution to contingency table release.
In Proceedings of the twenty-sixth ACM SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, pages 273–282, 2007.

[7] Mark Bun and Thomas Steinke. Concentrated differential privacy: Simplifications, extensions,
and lower bounds. In Proceedings, Part I, of the 14th International Conference on Theory of
Cryptography - Volume 9985, 2016.

[8] U.S. Census Bureau. Decennial census: 2010 summary files. https://www.census.gov/
mp/www/cat/decennial_census_2010/.

[9] U.S. Census Bureau. The current population survey (cps). https://www.census.gov/
programs-surveys/cps.html, 2023.

[10] Kuntai Cai, Xiaoyu Lei, Jianxin Wei, and Xiaokui Xiao. Data synthesis via differentially private
markov random fields. Proceedings of the VLDB Endowment, 14(11):2190–2202, 2021.

[11] Rui Chen, Qian Xiao, Yu Zhang, and Jianliang Xu. Differentially private high-dimensional
data publication via sampling-based inference. In Proceedings of the 21th ACM SIGKDD
international conference on knowledge discovery and data mining, pages 129–138, 2015.

[12] Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded modeling language for
convex optimization. Journal of Machine Learning Research, 17(83):1–5, 2016.

[13] Bolin Ding, Marianne Winslett, Jiawei Han, and Zhenhui Li. Differentially private data
cubes: Optimizing noise sources and consistency. In Proceedings of the 2011 ACM SIGMOD
International Conference on Management of Data, 2011.

[14] Alexander Domahidi, Eric Chu, and Stephen Boyd. Ecos: An socp solver for embedded systems.
In 2013 European control conference (ECC), pages 3071–3076. IEEE, 2013.

[15] Jinshuo Dong, Aaron Roth, and Weijie J. Su. Gaussian differential privacy. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 84(1):3–37, 2022.

[16] Dheeru Dua and Casey Graff. UCI machine learning repository, 2019.

[17] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor. Our
data, ourselves: Privacy via distributed noise generation. In EUROCRYPT, pages 486–503,
2006.

[18] Alexander Edmonds, Aleksandar Nikolov, and Jonathan Ullman. The power of factorization
mechanisms in local and central differential privacy. In Proceedings of the 52nd Annual ACM
SIGACT Symposium on Theory of Computing, pages 425–438, 2020.

11

https://www.census.gov/library/working-papers/2022/adrm/CED-WP-2022-002.html
https://www.census.gov/library/working-papers/2022/adrm/CED-WP-2022-002.html
https://www.census.gov/mp/www/cat/decennial_census_2010/
https://www.census.gov/mp/www/cat/decennial_census_2010/
https://www.census.gov/programs-surveys/cps.html
https://www.census.gov/programs-surveys/cps.html

[19] Marco Gaboardi, Emilio Jesús Gallego Arias, Justin Hsu, Aaron Roth, and Zhiwei Steven
Wu. Dual query: Practical private query release for high dimensional data. In International
Conference on Machine Learning, pages 1170–1178. PMLR, 2014.

[20] Marco Gaboardi, Hyun Lim, Ryan Rogers, and Salil Vadhan. Differentially private chi-squared
hypothesis testing: Goodness of fit and independence testing. In International conference on
machine learning, pages 2111–2120. PMLR, 2016.

[21] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023.

[22] Moritz Hardt, Katrina Ligett, and Frank McSherry. A simple and practical algorithm for
differentially private data release. Advances in neural information processing systems, 25, 2012.

[23] James Jordon, Jinsung Yoon, and Mihaela Van Der Schaar. Pate-gan: Generating synthetic data
with differential privacy guarantees. In International conference on learning representations,
2019.

[24] Kaggle. Loan prediction problem dataset. https://www.kaggle.com/
altruistdelhite04/loan-prediction-problem-dataset, 2021. Accessed: May
8th, 2023.

[25] Kazuya Kakizaki, Kazuto Fukuchi, and Jun Sakuma. Differentially private chi-squared test by
unit circle mechanism. In International Conference on Machine Learning, pages 1761–1770.
PMLR, 2017.

[26] Daniel Kifer and Ryan Rogers. A new class of private chi-square tests. In Proceedings of the
20th International Conference on Artificial Intelligence and Statistics, AISTATS, volume 17,
pages 991–1000, 2016.

[27] Aleksandra Korolova, Krishnaram Kenthapadi, Nina Mishra, and Alexandros Ntoulas. Releasing
search queries and clicks privately. In Proceedings of the 18th international conference on
World wide web, pages 171–180, 2009.

[28] Yu-Hsuan Kuo, Cho-Chun Chiu, Daniel Kifer, Michael Hay, and Ashwin Machanavajjhala.
Differentially private hierarchical count-of-counts histograms. arXiv preprint arXiv:1804.00370,
2018.

[29] Jing Lei. Differentially private m-estimators. Advances in Neural Information Processing
Systems, 24, 2011.

[30] Chao Li and Gerome Miklau. An adaptive mechanism for accurate query answering under
differential privacy. Proceedings of the VLDB Endowment, 5(6), 2012.

[31] Chao Li and Gerome Miklau. Optimal error of query sets under the differentially-private matrix
mechanism. In Proceedings of the 16th International Conference on Database Theory, pages
272–283, 2013.

[32] Chao Li, Gerome Miklau, Michael Hay, Andrew Mcgregor, and Vibhor Rastogi. The matrix
mechanism: Optimizing linear counting queries under differential privacy. The VLDB Journal,
24(6):757–781, December 2015.

[33] Haoran Li, Li Xiong, and Xiaoqian Jiang. Differentially private synthesization of multi-
dimensional data using copula functions. In Advances in database technology: proceedings.
International conference on extending database technology, volume 2014, page 475. NIH Public
Access, 2014.

[34] Terrance Liu, Giuseppe Vietri, Thomas Steinke, Jonathan Ullman, and Steven Wu. Leveraging
public data for practical private query release. In International Conference on Machine Learning,
pages 6968–6977. PMLR, 2021.

[35] Terrance Liu, Giuseppe Vietri, and Steven Z Wu. Iterative methods for private synthetic data:
Unifying framework and new methods. Advances in Neural Information Processing Systems,
34, 2021.

[36] Terrance Liu and Zhiwei Steven Wu. Private synthetic data with hierarchical structure. arXiv
preprint arXiv:2206.05942, 2022.

[37] Ryan McKenna, Gerome Miklau, Michael Hay, and Ashwin Machanavajjhala. Optimizing error
of high-dimensional statistical queries under differential privacy. Proceedings of the VLDB
Endowment, 11(10), 2018.

12

https://www.kaggle.com/altruistdelhite04/loan-prediction-problem-dataset
https://www.kaggle.com/altruistdelhite04/loan-prediction-problem-dataset

[38] Ryan McKenna, Gerome Miklau, Michael Hay, and Ashwin Machanavajjhala. Hdmm: Opti-
mizing error of high-dimensional statistical queries under differential privacy. arXiv preprint
arXiv:2106.12118, 2021.

[39] Ryan McKenna, Brett Mullins, Daniel Sheldon, and Gerome Miklau. Aim: An adaptive and
iterative mechanism for differentially private synthetic data. arXiv preprint arXiv:2201.12677,
2022.

[40] Ryan McKenna, Siddhant Pradhan, Daniel R Sheldon, and Gerome Miklau. Relaxed marginal
consistency for differentially private query answering. Advances in Neural Information Pro-
cessing Systems, 34:20696–20707, 2021.

[41] Ryan McKenna, Daniel Sheldon, and Gerome Miklau. Graphical-model based estimation and
inference for differential privacy. In International Conference on Machine Learning, pages
4435–4444. PMLR, 2019.

[42] Aleksandar Nikolov. New computational aspects of discrepancy theory. PhD thesis, Rutgers
University-Graduate School-New Brunswick, 2014.

[43] Wahbeh Qardaji, Weining Yang, and Ninghui Li. Priview: practical differentially private release
of marginal contingency tables. In Proceedings of the 2014 ACM SIGMOD international
conference on Management of data, pages 1435–1446, 2014.

[44] Giuseppe Vietri, Grace Tian, Mark Bun, Thomas Steinke, and Steven Wu. New oracle-efficient
algorithms for private synthetic data release. In International Conference on Machine Learning,
pages 9765–9774. PMLR, 2020.

[45] Royce Wilson, Celia Yuxin Zhang, William Lam, Damien Desfontaines, Daniel Simmons-
Marengo, and Bryant Gipson. Differentially private sql with bounded user contribution. In
Proceedings on Privacy Enhancing Technologies Symposium, 2020.

[46] Yingtai Xiao, Zeyu Ding, Yuxin Wang, Danfeng Zhang, and Daniel Kifer. Optimizing fitness-
for-use of differentially private linear queries. In VLDB, 2021.

[47] Yingtai Xiao, Guanhong Wang, Danfeng Zhang, and Daniel Kifer. Answering private linear
queries adaptively using the common mechanism. https://arxiv.org/abs/2212.00135,
2022.

[48] Chugui Xu, Ju Ren, Yaoxue Zhang, Zhan Qin, and Kui Ren. Dppro: Differentially private high-
dimensional data release via random projection. IEEE Transactions on Information Forensics
and Security, 12(12):3081–3093, 2017.

[49] Grigory Yaroslavtsev, Graham Cormode, Cecilia M Procopiuc, and Divesh Srivastava. Ac-
curate and efficient private release of datacubes and contingency tables. In 2013 IEEE 29th
International Conference on Data Engineering (ICDE), pages 745–756. IEEE, 2013.

[50] Fei Yu, Stephen E Fienberg, Aleksandra B Slavković, and Caroline Uhler. Scalable privacy-
preserving data sharing methodology for genome-wide association studies. Journal of biomedi-
cal informatics, 50:133–141, 2014.

[51] Ganzhao Yuan, Yin Yang, Zhenjie Zhang, and Zhifeng Hao. Convex optimization for linear
query processing under approximate differential privacy. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016.

[52] Ganzhao Yuan, Zhenjie Zhang, Marianne Winslett, Xiaokui Xiao, Yin Yang, and Zhifeng Hao.
Low-rank mechanism: Optimizing batch queries under differential privacy. Proc. VLDB Endow.,
5(11):1352–1363, July 2012.

[53] Ganzhao Yuan, Zhenjie Zhang, Marianne Winslett, Xiaokui Xiao, Yin Yang, and Zhifeng
Hao. Optimizing batch linear queries under exact and approximate differential privacy. ACM
Transactions on Database Systems (TODS), 40(2):1–47, 2015.

[54] Jun Zhang, Graham Cormode, Cecilia M. Procopiuc, Divesh Srivastava, and Xiaokui Xiao.
Privbayes: Private data release via bayesian networks. ACM Trans. Database Syst., 42(4), oct
2017.

[55] Wei Zhang, Jingwen Zhao, Fengqiong Wei, and Yunfang Chen. Differentially private high-
dimensional data publication via markov network. EAI Endorsed Transactions on Security and
Safety, 6(19), 2019.

[56] Zhikun Zhang, Tianhao Wang, Jean Honorio, Ninghui Li, Michael Backes, Shibo He, Jiming
Chen, and Yang Zhang. Privsyn: Differentially private data synthesis. 2021.

13

https://arxiv.org/abs/2212.00135

Contents

1 Introduction 1

2 Preliminaries 2

2.1 Differential Privacy . 2

2.2 Matrix Mechanism . 3

3 Additional Related Work 4

4 ResidualPlanner 4

4.1 Loss Functions Supported by ResidualPlanner . 4

4.2 Base Mechanisms used by ResidualPlanner . 5

4.3 Reconstruction . 6

4.4 Optimizing the Base Mechanism Selection . 7

4.5 Computational Complexity . 8

5 Experiments 8

5.1 Scalability of the Selection Phase . 9

5.2 Scalability of the Reconstruction Phase . 9

5.3 Accuracy Comparisons . 9

6 Limitations, Conclusion, and Future Work. 10

7 Acknowledgments 10

A Table of Notation 15

B A Run-through of Residual Planner 15

B.1 A Small Dataset and its Vectorized Representation 15

B.2 The Marginal Workload and its Representation as a Query Matrix. 15

B.3 The Base Mechanisms . 18

B.4 Reconstruction . 19

B.5 Privacy Cost and Marginal Variances . 20

B.6 The Sum-of-Variances Loss Function . 21

C Example Variance Calculations 22

D Optimality Proof of ResidualPlanner 23

D.1 Notation Review . 24

D.2 Permutations . 24

D.3 From permutations to interpretations . 26

E The other proofs about base mechanisms 32

14

F Proofs related to the reconstruction step 34

G Computational Complexity Proofs 38

H Closed Form Solution to the Weighted Sum of Variances Loss 39

I Additional Experiments 40

I.1 Scalability . 40

I.2 Comparison on Real Datasets. 43

A Table of Notation

B A Run-through of Residual Planner

In this section, we provide a complete runthrough of ResidualPlanner using a small toy dataset.

B.1 A Small Dataset and its Vectorized Representation

In our example, we have a dataset with 3 attributes, so na = 3. Att1 takes values ‘a’ or ‘b’; Att2
takes values ‘y’ or ‘n’; Att3 takes values 1 or 2 or 3.

In this dataset, there are 5 people, and the tabular representation is shown in Table 5. For each
attribute, we can one-hot encode its attribute values as row vectors. So, for Att1, the attribute value
’a’ is encoded as [1, 0] and ’b’ is encoded as [0, 1]. For Att2, the attribute value ’y’ is encoded as
[1, 0] and ’n’ is encoded as [0, 1]. For attribute Att3, the attribute value ’1’ is encoded as [1, 0, 0], the
value ’2’ is encoded as [0, 1, 0] and ’3’ is encoded as [0, 0, 1].

The kronecker product representation of a record is the kronecker product of the one-hot encod-
ing of each attributes. So, for example, the record ’an2’ is encoded as the kronecker product
[1, 0]⊗[0, 1]⊗[0, 1, 0]. When this kronecker product is expanded, it has 12 components. One of the
contains a 1 and the rest contain a 0. Thus the expanded kronecker product can be thought of as a
one-hot encoding of the entire record.

Indeed, in the expanded kronecker product, each dimension of the resulting vector is associated with
a record. In table 6, we show the kronecker product representation of each record from Table 5. The
left column of Table 6 shows the record and its kronecker representation. The next 12 columns show
the resulting expansion. Each record becomes as 12-dimensional vector and the column labels in
Table 6 show which record is associated with which index in the 12-dimensional vector.

The sum of the kron representations of all the records is the data vector x. It is again a 12-dimensional
vector. At each index i, x[i] is the number of people whose record is associated index i. For example,
the 5th component is associated with the record ’an2’ and there are 2 people with that record. For
mathematical convenience, x is treated as a column vector, but for display purposes, in Table 6 it is
written as a row vector.

B.2 The Marginal Workload and its Representation as a Query Matrix.

For this example, we set the marginal workload to consist of 3 marginals Wkload =
{{Att1}, {Att1, Att2}, {Att2, Att3}}.
The marginal on attribute set A = {Att1} has only two cells, which correspond to the number of
people with Att1 = a (i.e., 3) and the number with Att1 = b (i.e., 3). This is called a one-way
marginal. The other marginals are two-way marginals because they involve two attributes. For
example, the marginal on A = {Att2, Att3} has 6 cells. It represents the number of people for
each combination of values for Att2 and Att3. For example, there are 2 people with Att2 = y and
Att3 = 3.

For each set A, the marginal on those attributes can be represented as a matrix QA such that
calculating the marginal is equivalent to the matrix-vector multiplication QAx. The construction of

15

Table 4: Table of Notation

D: Dataset
ri: ith record in D
na : number of attributes each record has
Attj : jth attribute.
|Attj |: size of the domain of attribute Attj .

a
(j)
1 , . . . , a

(j)
|Attj |: possible values (domain) of Attj .

d: Number of possible records: d =
na∏
j=1

|Attj |

x: Representation of D as a d-dimensional vector of counts (e.g., histogram)
A: (Sub)set of attributes
QA: Matrix representation of the marginal on A. The counts in the marginal are the result of

matrix-vector product QAx.
#cells(A): Number of cells in the marginal on A. Equals

∏
Atti∈A |Atti|

ei: one-hot encoding vector with entry i being 1 and the rest 0
ei,j : equal to ei − ej
1k: the k-dimensional vector whose entries are all 1.
Ik: the k × k identity matrix
M: A privacy mechanism.
ω: Output of a mechanism.
B: Query matrix of a Gaussian linear query mechanism:M(x) ≡ Bx+N(0,Σ)
Σ: Covariance matrix.

pcost(M): Privacy cost of a Gaussian linear mechanismM(x) ≡ Bx + N(0,Σ). It is defined as
the largest diagonal of BTΣ−1B. Differential privacy parameters can be computed from
pcost(M).

Wkload: A workload of marginals. Each element of Wkload is a set of attributes (representing the
marginal on those attributes).

ncells: Total number of cells in the marginals in the marginal workload (i.e., the output size).
closure(Wkload): The set of all subsets of Wkload. Formally defined as {A′ : A′ ⊆ A for some A ∈

Wkload}.
V ar(A,M): When the output ofM is used to reconstruct answers to the marginal on A, then V ar

returns the vector of variances of the marginal cells.
L: The loss function
†: The operator that gives the pseudo-inverse of a matrix

Subm: An (m− 1)×m subtraction matrix. The first column is filled with 1, entries of the form
(i, i+ 1) are -1, and all other entries are 0.

RA: Residual matrix. Given a set A ⊂ {Att1, . . . , Attna
} of attributes, RA = V1⊗ · · ·⊗Vna

,
where Vi = 1|Atti| if Atti /∈ A and Vi = Sub|Atti| if Atti ∈ A.

ΣA: The covariance matrix used by the base mechanisms, formed as the kronecker product⊗
Atti∈A

(Sub|Atti|Sub
T
|Atti|). Also Σ∅ = 1.

σA: Data-independent noise scale parameter
MA: The base mechanism defined as MA(x) ≡ RAx + N(0, σ2

AΣA). It uses a data-
independent noise parameter σ2

A
ωA: noisy output of mechanismMA

the matrix QA is straightforward. It is a kronecker product of 3 matrices. Each matrix corresponds to
an attribute. If the attribute is in A then the corresponding term is the identity matrix, otherwise is is
the row vector full of ones. For example, Q{Att1} is a kron product of 3 matrices: the first matrix
corresponds to Att1 and is the 2× 2 identity matrix. The second matrix is actually the vector full
of ones because Att2 is not part of the marginal. This vector has 2 components because Att2 has 2
possible values. Similarly, the third matrix is the vector full of ones with 3 components.

16

Att1 Att2 Att3
a n 2
b n 3
b y 3
a n 2
b y 3

Table 5: A Toy Dataset D

ay1 ay2 ay3 an1 an2 an3 by1 by2 by3 bn1 bn2 bn3

an2:[1, 0]⊗[0, 1]⊗[0, 1, 0] 0 0 0 0 1 0 0 0 0 0 0 0
bn3: [0, 1]⊗[0, 1]⊗[0, 0, 1] 0 0 0 0 0 0 0 0 0 0 0 1
by3: [0, 1]⊗[1, 0]⊗[0, 0, 3] 0 0 0 0 0 0 0 0 1 0 0 0
an2: [1, 0]⊗[0, 1]⊗[0, 1, 0] 0 0 0 0 1 0 0 0 0 0 0 0
by3: [0, 1]⊗[1, 0]⊗[0, 0, 3] 0 0 0 0 0 0 0 0 1 0 0 0

Vector of counts x: 0 0 0 0 2 0 0 0 2 0 0 1
Table 6: Kron product representations or each record and the whole dataset x. Nonzero components
are shown in bold red.

For the marginals in Wkload, these are the the corresponding matrices:

Q{Att1} =

[
1 0
0 1

]
⊗ [1 1]⊗ [1 1 1]

=

[
1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1

]
Q{Att1,Att2} =

[
1 0
0 1

]
⊗
[

1 0
0 1

]
⊗ [1 1 1]

=

 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1


Q{Att2,Att3} = [1 1]⊗

[
1 0
0 1

]
⊗

[
1 0 0
0 1 0
0 0 1

]

=


1 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 1



If we multiply Q{attr2,Att3} by the data vector x from Table 6, we get:

Q{attr2,Att3}x =


0
0
2
0
2
1


Comparing it to the marginals shown in Table 7 we see that it is the flattened version of the marginal.
That is, we take the first column of the {Att2, Att3}marginal of Table 7, then we put the next column
below it, and the third column is placed at the bottom.

17

A = {Att1}

a 2
b 3

A = {Att1, Att2}
y n

a 0 2
b 2 1

A = {Att2, Att3}
1 2 3

y 0 0 2
n 0 2 1

Table 7: True answers to the marginal queries in the marginal workload Wkload =
{{Att1}, {Att1, Att2}, {Att2, Att3}}.

B.3 The Base Mechanisms

Recall that our workload, the marginals we want privacy-preserving answers to, is Wkload =
{{Att1}, {Att1, Att2}, {Att2, Att3}}. Its closure, denoted by closure(Wkload) is all of its subsets.
So,

closure(Wkload) = { ∅, {Att1}, {Att2}, {Att3}, {Att1, Att2}, {Att2, Att3} }

For each A ∈ closure(Wkload) we need to form a base mechanismMA. EachMA has a free
parameter σ2

A that we are free to choose. Each mechanism MA has the form MA(x;σ2
A) =

RAx+N(0,ΣA). That is, on input x, the mechanism multiplies it by a special “residual” matrix
RA and then adds correlated Gaussian noise, with zero mean and with covariance matrix σ2

AΣA.
The residual and covariance matrices for each base mechanism are shown below.

M∅ : R∅ = [1 1]⊗ [1 1]⊗ [1 1 1]

Σ∅ = [1]

M{Att1} : R{Att1} = [1 −1]⊗ [1 1]⊗ [1 1 1]

Σ{Att1} = [1 −1] ([1 −1])
T
= [2]

M{Att2} : R{Att2} = [1 1]⊗ [1 −1]⊗ [1 1 1]

Σ{Att2} = [1 −1] ([1 −1])
T
= [2]

M{Att3} : R{Att3} = [1 1]⊗ [1 1]⊗
[

1 −1 0
1 0 −1

]
Σ{Att3} =

[
1 −1 0
1 0 −1

]([
1 −1 0
1 0 −1

])T

=

[
2 1
1 2

]

M{Att1,Att2} : R{Att1,Att2} = [1 −1]⊗ [1 −1]⊗ [1 1 1]

Σ{Att1,Att2} =
(
[1 −1]⊗ [1 −1]

)(
[1 −1]⊗ [1 −1]

)T
= [4]

M{Att2,Att3} : R{Att2,Att3} = [1 1]⊗ [1 −1]⊗
[

1 −1 0
1 0 −1

]
Σ{Att2,Att3} =

(
[1 −1]⊗

[
1 −1 0
1 0 −1

])(
[1 −1]⊗

[
1 −1 0
1 0 −1

])T

=

[
4 2
2 4

]
Note that for any A, the residual matrix RA has a similar structure to QA except that where QA

has an identity matrix in its kron product, RA has a subtraction matrix (e.g. [1 −1] or
[
1 −1 0
1 0 −1

]
).

Meanwhile the covariance matrix ΣA looks like RART
A except that the vectors full of 1s have been

first removed.

18

How do we interpret the residual matrices? Well, R∅ is the sum query. In fact the matrix vector
multiplication R∅x gives us the total number of people in the data.

Next, R{Att1} tells us the information contained in the marginal on {Att1} that is not contained in
the sum query. If we know the total number of people in the data, then the only new information the
marginal gives us is the difference between the number of people with Att1 = a and the number of
people with Att1 = b. In other words, R{Att1}x is this difference. Given this difference, and the
total, once can recover the marginal on attribute Att1.

Similarly, R{Att2} contains the information in the marginal on {Att2} that is not provided by the
sum query. Finally R{Att3} contains the information in the marginal on {Att3} not provided in the
sum query, which is the number of people with Att3 = 1 minus the number with Att3 = 2, and
also the number of people with Att3 = 1 minus the number with Att3 = 3. The product R{Att3}x
returns those two differences as a vector with two components.

Now, R{Att1,Att2} and R{Att2,Att3} are more complicated, but have the same idea. For example,
R{Att1,Att2} represents new information that the marginal on {Att1, Att2} provides that is not
captures by the sub-marginals (the marginal on {Att1} and the marginal on {Att2}.
In general, the matrix RA represents the new information on that the marginal on A provides, which
is not captured by the marginals on A′, for A′ ⊂ A (strict subsets).

Now, Theorem 4.2 tells us that if we take all of the rows of all of the residual matrices, they will be
linearly independent. Furthermore, given an attribute set A, the total number of rows of RA′ for all
A′ ⊆ A is the number of rows in QA. Furthermore, the space spanned by those rows is the same as
the space spanned by the rows of QA.

This also means that if we know RA′x for all A′ ⊆ A then we can figure out QAx (and vice versa).

Now, we want to get privacy-preserving (noisy) answers to the marginal queries in Wkload =
{{Att1}, {Att1, Att2}, {Att2, Att3}} that are as accurate as possible subject to privacy constraints.
We quantify accuracy using a regular (Definition 4.1) loss function (e.g., sum of the variances of
the answers to the marginals) and we quantify privacy by setting privacy parameters for either
(ϵ, δ)-differential privacy, ρ-zCDP, or µ-Gaussian differential privacy.

Theorem 4.4 says that to maximize the accuracy subject to privacy con-
straints, we need to take the closure of the workload, closure(Wkload) =
{ ∅, {Att1}, {Att2}, {Att3}, {Att1, Att2}, {Att2, Att3} } and carefully choose positive
numbers σ2

A for each A ∈ closure(Wkload) – so that is 6 numbers total. These numbers are chosen
without looking at the data (we explain how in Section B.6). Once we have these numbers, we run
the mechanismsMA(x;σ2

A) and return their outputs. In other words, we must release the outputs of:

• M∅(x;σ2
∅) – produces 1 number (a vector with just one component)

• M{Att1}(x;σ
2
{Att2}) – produces 1 number (a vector with just one component)

• M{Att2}(x;σ
2
{Att2}) – produces 1 number (a vector with just one component)

• M{Att3}(x;σ
2
{Att3}) – produces 2 numbers (a vector with 2 components)

• M{Att1,Att2}(x;σ
2
{Att1,Att2}) – produces 1 number (a vector with 1 component)

• M{Att2,Att3}(x;σ
2
{Att2,Att3}) – produces 2 numbers (a vector with 2 components)

Which gives us 8 total (noisy) numbers. In fact, any matrix mechanism for this workload must return
at least 8 noisy numbers, by Theorem 4.4.

From these outputs, one can reconstruct noisy answers to the marginals in Wkload (actually one can
reconstruct noisy answers to any marginal in closure(Wkload)). We show how to do this in Section
B.4. Then we show how to compute the privacy cost and variances of the algorithm in Section B.5.

B.4 Reconstruction

Let ωA denote the output ofMA. Thus, after running

• M∅(x;σ2
∅)

19

• M{Att1}(x;σ
2
{Att1})

• M{Att2}(x;σ
2
{Att2})

• M{Att3}(x;σ
2
{Att3})

• M{Att1,Att2}(x;σ
2
{Att1,Att2})

• andM{Att2,Att3}(x;σ
2
{Att2,Att3})

we have the noisy answers

ω∅, ω{Att1}, ω{Att2}, ω{Att3}, ω{Att1,Att2}, ω{Att2,Att3}

From these noisy answers we can produce noisy answers for any marginal in Wkload or even
closure(Wkload). To reconstruct a marginal on A, we need ωA′ for all A′ ⊆ A – this is not a lot as
these vectors represent as many noisy numbers as there are cells in the desired histogram. So, for
example, if we want to get noisy answers for the marginal on {Att2, Att3} (which has 6 cells), we
need to use ω∅, ω{Att2}, ω{Att3}, and ω{Att2,Att3} (together these ω vectors represent a total of 6
noisy numbers).

In order to reconstruct the marginal on A, Algorithm 2 multiplies each ωA′ by a matrix that depends
on both A and A′. The algorithm calls this matrix U, but to make the notation precise for this
runthrough, we will call it UA←A′ (the U matrix that multiplies ωA′ when reconstructing A). It
turns out that:

QAx =
∑

A′⊆A

UA←A′RA′x

which means that the marginal on A could be recreated if we know the quantities RA′x (recall RA′

are the matrices used to define our base mechanisms). Now, since ωA′ is a noisy version of RA′x,
we can get noisy marginal answers by substituting in these noisy values into the above equation.

For example, to reconstruct a noisy answer to the marginal on {Att2, Att3}, we do the following:

Noisy Marginal on {Att2, Att3} = (U{Att2,Att3}←∅)ω∅

+ (U{Att2,Att3}←{Att2})ω{Att2}

+ (U{Att2,Att3}←{Att3})ω{Att3}

+ (U{Att2,Att3}←{Att2,Att3})ω{Att2,Att3}

where

U{Att2,Att3}←∅ =

(
1

2
12

)
⊗
(
1

3
13

)
=

[
1/2
1/2

]
⊗

[
1/3
1/3
1/3

]

U{Att2,Att3}←{Att2} =
(
Sub†2

)
⊗
(
1

3
13

)
=

[
1/2
−1/2

]
⊗

[
1/3
1/3
1/3

]

U{Att2,Att3}←{Att3} =

(
1

2
12

)
⊗
(
Sub†3

)
=

[
1/2
1/2

]
⊗

[
1/3 1/3
−2/3 1/3
1/3 −2/3

]

U{Att2,Att3}←{Att2,Att3})ω{Att2,Att3} =
(
Sub†2

)
⊗
(
Sub†3

)
=

[
1/2
−1/2

]
⊗

[
1/3 1/3
−2/3 1/3
1/3 −2/3

]

Note Sub†2 and Sub†3 are defined in Lemma 4.6.

B.5 Privacy Cost and Marginal Variances

Recall that for a marginal workload Wkload, we need to run a mechanism MA for each A ∈
closure(Wkload). Theorem 4.5 shows how to compute the privacy cost pcost of each. In our
running example, this means:

• pcost(M∅(x;σ2
∅)) =

1
σ2
∅

20

• pcost(M{Att1}(x;σ
2
{Att1})) =

1
σ2
{Att1}

∗ 1
2

• pcost(M{Att2}(x;σ
2
{Att2})) =

1
σ2
{Att2}

∗ 1
2

• pcost(M{Att3}(x;σ
2
{Att3})) =

1
σ2
{Att3}

∗ 2
3

• pcost(M{Att1,Att2}(x;σ
2
{Att1,Att2})) =

1
σ2
{Att1,Att2}

∗ 1
2 ∗

1
2

• and pcost(M{Att2,Att3}(x;σ
2
{Att2,Att3})) =

1
σ2
{Att2,Att3}

∗ 1
2 ∗

2
3

The total privacy cost is,

1

σ2
∅
+

1

2

1

σ2
{Att1}

+
1

2

1

σ2
{Att2}

+
2

3

1

σ2
{Att3}

+
1

4

1

σ2
{Att1,Att2}

+
1

3

1

σ2
{Att2,Att3}

Thus this is a symbolic expression in terms of the (currently unknown) noise scale parameters σ2
A.

According to Definition 2.3, we can convert the privacy cost to the ρ in ρ-zCDP by dividing by 2 and
we can convert it to the µ from µ-Gaussian DP by taking the square root.

For our running example, Wkload = {{Att1}, {Att1, Att2}, {Att2, Att3}} and we can express the
variance of these marginals (after reconstruction from the noisy ωA answers) also in terms of the
noise scale parameters. We do this with the help of Theorem 4.7.

• Marginal on {Att1}. This marginal is reconstructed from the noisy answers ω∅ and ω{Att1}
and so the variance of its cells depends only on σ2

∅ and σ2
{Att1}. Applying Theorem 4.7, get

that the variance in each cell of this marginal is the same and equals.(
σ2
∅ ∗

1

22

)
+

(
σ2
{Att1} ∗

1

2

)
• Marginal on {Att1, Att2}. This marginal is reconstructed from ω∅, ω{Att1}, ω{Att2}, and
ω{Att1,Att2} and hence the variance of the cells in the marginal depend on the corresponding
4 noise scale parameters. The cell variance is(
σ2
∅ ∗

1

22
∗ 1

22

)
+

(
σ2
{Att1} ∗

1

2
∗ 1

22

)
+

(
σ2
{Att2} ∗

1

2
∗ 1

22

)
+

(
σ2
{Att1,Att2} ∗

1

2
∗ 1
2

)
• Marginal on {Att2, Att3}. Similarly, this marginal also depends on 4 noise scale parameters

as follows:(
σ2
∅ ∗

1

22
∗ 1

32

)
+

(
σ2
{Att2} ∗

1

2
∗ 1

32

)
+

(
σ2
{Att3} ∗

2

3
∗ 1

22

)
+

(
σ2
{Att2,Att3} ∗

1

2
∗ 2
3

)
B.6 The Sum-of-Variances Loss Function

Now we can express the overall privacy cost symbolically in terms of the noise scale parameters.
We can also express the variance of each marginal cell symbolically. We can use these symbolic
expressions to set up any regular loss function and then run it through a convex optimizer to solve it.

In this section, we give an example for the weighted sum of variances, which is one of the most
popular loss functions for the matrix mechanism in research settings (mostly because this loss function
is easiest to work with).

Each marginal has a weight, which we set to be 1 to avoid introducing more symbols, and the
objective function is computed by adding up the cell variances in a marginal, multiplying by the
weight, and adding up over the workload marginals. The marginal on {Att1} has two cells (so we
multiply the cell variance for this marginal, computed in the previous section, by 2). The marginal on
{Att1, Att2} has 4 cells, and the marginal on {Att2, Att3} has 6 cells. Thus, after the dust clears,
the sum of the cell variances across the workload marginals is:

=
11

12
σ2
∅ +

3

2
σ2
{Att1} +

5

6
σ2
{Att2} + σ2

{Att3} + σ2
{Att1,Att2} + 2σ2

{Att2,Att3}

21

Thus, we can set up the optimization problem: minimize the sum of variances subject to the privacy
cost (computed in Section B.5) being less than some constant c:

arg min
σ2
∅, σ

2
{Att1}

σ2
{Att2}, σ

2
{Att3}

σ2
{Att1,Att2}, σ

2
{Att2,Att3}

11

12
σ2
∅ +

3

2
σ2
{Att1} +

5

6
σ2
{Att2} + σ2

{Att3} + σ2
{Att1,Att2} + 2σ2

{Att2,Att3}

such that
1

σ2
∅
+

1

2

1

σ2
{Att1}

+
1

2

1

σ2
{Att2}

+
2

3

1

σ2
{Att3}

+
1

4

1

σ2
{Att1,Att2}

+
1

3

1

σ2
{Att2,Att3}

≤ c

If we let the coefficient of σA be denoted by vA and the coefficient of 1/σ2
A be denoted by pA, then

this optimization problem can be written as:
argmin

σ2
A: A∈closure(Wkload)

∑
A∈closure(Wkload)

vAσ2
A

s.t.
∑

A∈closure(Wkload)

pA
σ2
A

≤ c

Lemma H.1 in Section H shows that the optimal solution is obtained by computing:

T =

(∑
A

√
vApA

)2

/c =

(√
11

12
∗ 1 +

√
3

2
∗ 1
2
+

√
5

6
∗ 1
2
+
√
2/3 +

√
1/4 +

√
2/3

)2

/c

≈ 21.18/c

σ2
A =

√
TpA/(cvA) ≈

√
21.18pA/vA/c

σ2
∅ ≈

√
21.18 ∗ 12/11/c ≈ 4.8/c

etc.

C Example Variance Calculations

We next illustrate how the σ2
A parameters affect the variance of different marginals based on Theorem

4.7. We illustrate it with a toy dataset that has 5 attributes, each with 3 possible values. In this
discussion, the variance of a marginal is the largest variance of its cells (all cells within the same
marginal have the same variance, so the variance of a marginal is basically the variance of any cell).

EXAMPLE C.1. The objective function is to minimize the max variance among all marginals while
satisfying µ-Gaussian DP with µ=1. In this case all marginals end up with the same variance of
7.594 and the σ2

A parameters are:

• σ2
∅ = 7.594

• σ2
A = 10.125 when A contains 1 attribute.

• σ2
A = 13.5 when A contains 2 attributes.

• σ2
A = 18 when A contains 3 attributes.

• σ2
A = 24 when A contains 4 attributes.

• σ2
A = 32 when A contains all of the attributes.

EXAMPLE C.2. The objective function is to minimize the weighted max variance among all marginals
(i.e., minimize maxm weightm ∗ var(m)). We set the weight of a marginal to be 3 if it is the 5-way
marginal and 1 otherwise. This objective function basically says we want more accuracy on the
5-way marginal (it has higher weight). Again the privacy constraint is 1-Gaussian DP. In the optimal
solution, each cell in the 5-way marginal has variance 2.718, the 4-way marginals have variance
5.528, and the other marginals have variance 8.154. The σ2

A parameters are:

22

• σ2
∅ = 8.154

• σ2
A = 10.871 when A contains 1 attribute.

• σ2
A = 14.495 when A contains 2 attributes.

• σ2
A = 19.327 when A contains 2 attributes.

• σ2
A = 12.477 when A contains 2 attributes.

• σ2
A = 4.159 when A contains all of the attributes.

For the variance calculation, we show this for Example C.2.

We start with the variance of a one-way marginal, say the marginal on attribute 1 (i.e., A = {1}).
The calculation involves σ2

{1} and σ2
∅ (because ∅ ⊆ {1}) and the summation has two terms. The term

involving σ2
∅ is multiplied by 1 (the first product in the variance expression for Theorem 4.7, since

an empty product is 1) and that is multiplied by 1/9 (the second product, since each attribute has
3 possible values). Meanwhile, the term involving σ2

{1} would be multiplied by 2/3 (first product)
and 1 (since the second product is empty). Thus the variance for the marginal on attribute 1 is:
8.154 ∗ 1 ∗ 1/9 + 10.871 ∗ 2/3 ∗ 1 ≈ 8.154.

For the variance on the 5-way marginal, it consists of 1 term for A′ = ∅, 5 terms for when A′ has
1 attribute since there are 5 such A′ (but all the terms have the same value), 10 terms for when A′

has 2 attributes (all have the same value), 10 terms for when A′ has 3 attributes (again these terms
all are equal), 5 terms when A′ has 4 attributes, and 1 term for when A′ = {1, 2, 3, 4, 5}. First, we
note that the total number of terms is 32, which is not bad because the number of cells in the 5-way
marginal is 35 (i.e., much larger). The expression for the variance is:

1 ∗ (8.154 ∗ (2/3)0 ∗ (1/9)5) (the term involving σ2
∅)

+ 5 ∗ (10.871 ∗ (2/3)1 ∗ (1/9)4) (the sum of the 5 terms having A′ with 1 attribute)

+ 10 ∗ (14.495 ∗ (2/3)2 ∗ (1/9)3) (the sum of the 10 terms having A′ with 2 attributes, etc.)

+ 10 ∗ (19.327 ∗ (2/3)3 ∗ (1/9)2)
+ 5 ∗ (12.477 ∗ (2/3)4 ∗ (1/9)1)
+ 1 ∗ (4.159 ∗ (2/3)5 ∗ (1/9)0)
≈ 2.718

So the main takeaway here is that when evaluating the variance of the 5-way marginal, the 1/9 terms
in the products reduce the influence of any σ2

A′ for which A′ has a small number of attributes. Hence
the most important value is σ2

{1,2,3,4,5} followed by the σ2
A′ for the 5 sets A′ that contain 4 attributes,

etc.

D Optimality Proof of ResidualPlanner

In this section, we prove the optimality of ResidualPlanner. It takes advantage of the symmetry
inherent in marginals and regular loss functions.

The proof sketch is the following. Given one optimal mechanismM, we can create a variation M̃ of
that does the following. (1) M̃ modifies each input record by applying some invertible function fi to
each attribute Atti (for example, if Atti is a tertiary attribute, we can modify the value of Atti for
each record using a function fi where fi(1) = 3, fi(2) = 1, fi(3) = 2). This step can be viewed as
simply renaming the attribute values within an attribute. (2) Then M̃ runsM on the resulting dataset.
Note that marginals can be reconstructed from the output of M̃ by first running the reconstruction
one would do forM and then inverting the fi functions on the resulting marginals (i.e., rearranging
the cells in each marginal to undo the within-attribute renaming caused by the fi). This variation M̃
has the same privacy properties asM and the same loss (due to the regularity condition on the loss).

23

Hence M̃ is also optimal. Then we create yet another optimal privacy mechanismM∗ that splits
the privacy budget across all variations ofM and returns their outputs. It turns out that the privacy
cost matrix ofM∗ has eigenvectors that are equal to the rows of the residual matrices RA used by
ResidualPlanner. Rewriting the privacy cost matrix ofM∗ using this eigendecomposition, we create
another mechanism (the mechanism that runs the base mechanisms of ResidualPlanner) that has the
same privacy cost matrix and the same value for the loss and hence is optimal.

The rest of this section explains these steps in details with formal proofs and running commentary
that helps to better understand the notation and constructs in the proof.

D.1 Notation Review

We first start with a review of key notation. Recall that a dataset D = {r1, . . . , rn} is a collection of
records. Each record ri contains attributes Att1, . . . , Attna and each attribute Attj can take values
a
(j)
1 , . . . , a

(j)
|Attj |.

An attribute value a
(j)
i for attribute Attj can be represented as a vector using one-hot encoding.

Specifically, let e(j)i be a row vector of size |Attj | with a one in component i and 0 everywhere else.
In this way, e(j)i is a representation of a(j)i .

A record r with attributes Att1 = a
(1)
i1

, Att2 = a
(2)
i2

, . . . , Attna = a
(na)
ina

can thus be represented as

the kron product e(1)i1
⊗e(2)i2

⊗ · · ·⊗e(na)
ina

. This vector has a 1 in exactly one position and 0s everywhere
else. The position of the 1 is the index of record r.

Thus, a data vector x is a vector of integers. The value at index i is the number of times the record
associated with index i appears in D.

D.2 Permutations

For each attribute Atti, let Π(i) be the set of permutations on the numbers 1, . . . , |Atti|, so that each
π ∈ Π(i) can be interpreted as a permutation (or renaming) of the attributes values of Atti. We can
also view π as a function on vectors of size |Atti| that permutes their coordinates. That is, the ith

coordinate of a vector y is the π(i)th coordinate of π(y).

One can select a permutation for each attribute π(1) ∈ Π(1), . . . , π(na) ∈ Π(na) and use it to de-
fine a permutation over records. This permutation maps a record represented by the kron product
e
(1)
i1
⊗e(2)i2

⊗ · · ·⊗e(na)
ina

into π(1)(e
(1)
i1

)⊗π(2)(e
(2)
i2

)⊗ · · ·⊗π(na)(e
(na)
ina

). We can think of this permu-
tation π = (π(1), . . . , π(na)) as a function that independently renames each attribute value in a record.
Thus this permutation can be extended to datavectors x. The value of x at the index associated with
record r is the value of π(x) at the index associated with record π(r). Another way to look at it is
that π(x) is the histogram associated with the dataset {π(r1), π(r2), . . . , π(rn)}. This permutation
can be represented as a permutation matrix Wπ such that Wπx = π(x).

We let Π = Π(1)×· · ·×Π(na) be the set of all such permutations. We call this the space of renaming
permutations since each π ∈ Π renames the values of each attribute separately.

Our first result is that permutation does not affect the privacy parameters of a mechanism.

LEMMA D.1. LetM(x) ≡ Bx+N(0,Σ) be a mechanism that satisfies ρ-zCDP, (ϵ, δ)-approximate
DP, and µ-Gaussian DP. Let π be a permutation of the indices of x and Wπ the corresponding
permutation matrix. ThenMπ(x) ≡ BWπx+N(0,Σ) satisfies ρ-zCDP, (ϵ, δ)-approximate DP,
and µ-Gaussian DP (i.e., with the same privacy parameters).

Proof. The privacy cost pcost(M) of M is the largest diagonal of BTΣ−1B. The privacy cost
pcost(Mπ) ofMπ is the largest diagonal of WT

πB
TΣ−1BWπ . The effect of Wπ on both sides is

to permute the rows and columns of BTΣ−1B in the same way. Thus the diagonals of BTΣ−1B
and WT

πB
TΣ−1BWπ are the same up to permutation and henceM andMπ have the same privacy

cost and therefore the same privacy parameters.

24

The next result is that a renaming permutation preserves the accuracy of a marginal derived from the
answer to a mechanism.

LEMMA D.2. Let Wkload = {A1, . . . ,Ak} be a workload on marginals. Let M(x) ≡ Bx +
N(0,Σ) be a mechanism whose output can be used to provide unbiased estimates of those marginals.
Let π ∈ Π be a renaming permutation and Wπ the corresponding permutation matrix. Define
Mπ(x) ≡ BWπx+N(0,Σ). Then unbiased answers to Wkload can be obtained from the output
ofMπ and for any regular loss function L (Definition 4.1), L(V ar(A1;M), . . . , V ar(Ak;M)) =
L(V ar(A1;Mπ), . . . , V ar(Ak;Mπ))

Proof. For each set of attributes Ai ∈ Wkload, let QAi
be the query matrix of the marginal

(i.e., the true marginal is computed as QAi
x). Then the best linear unbiased estimate of

the marginal on Ai from the output ω of M is QAi
(BTΣ−1B)†BTΣ−1ω and V ar(Ai;M)

is the diagonal of the covariance matrix of this estimate, which is QAi
(BTΣ−1B)†QT

Ai
.

Meanwhile, the best linear unbiased estimate of the marginal on Ai from the output ω′

of Mπ is is QAi
(WT

πB
TΣ−1BWπ)

†WT
πB

TΣ−1ω′ and V ar(Ai;M) is the diagonal of
QAi

(WT
πB

TΣ−1BWπ)
†QT

Ai
= QAi

WT
π (B

TΣ−1B)†WπQ
T
Ai

.

We note that QAi
WT

π is a permutation of the rows of QAi
(computing a marginal on a dataset in

which attribute values within the same attribute are renamed is the same as computing the marginal
on the original dataset and then renaming the marginal cells, which is permutation of the output of
the marginal computation).

Therefore the diagonals of QAi
(BTΣ−1B)†QT

Ai
and QAi

(WT
πB

TΣ−1BWπ)
†QT

Ai
are the same

up to permutation. Hence the vector V ar(Ai;M) is the same as the vector V ar(Ai;Mπ) up to
permutation of the components, and hence does not affect a regular loss function L.

Finally, we show that there exists an optimal mechanism whose privacy cost matrix exhibits symme-
tries defined by the set of permutaitons Π.

LEMMA D.3. Let Wkload = {A1 . . . ,Ak} be a workload of marginal queries. Let L be a regular
loss function. Let U be the set of all Gaussian linear mechanisms that can provide unbiased answers
to the marginals in the Wkload. Let γ be a real number. Then whenever either of the following
optimization problems are feasible,

min
M∈U

pcost(M) s.t. L(V ar(A1;M), . . . , V ar(Ak;M)) ≤ γ

min
M∈U

L(V ar(A1;M), . . . , V ar(Ak;M)) s.t. pcost(M) ≤ γ

the feasible optimization problem is minimized by some mechanism of the form M(x) ≡ Bx +

N(0,Σ) whose privacy cost matrix Γ ≡ B
T
Σ
−1

B has the following symmetries: for all renaming
permutations π ∈ Π (with Wπ being the associated permutation matrix), we have Γ = WT

πΓWπ

(in other words, permuting the rows has no effect as long as the columns are permuted in the same
way).

Proof. LetMopt(x) ≡ Boptx+N(0,Σopt) be an optimal mechanism to one of these problems. It
may not have the required symmetries, but from it we will construct an optimal mechanism that does.

For a permutation π (and corresponding permutation matrix Wπ) and a positive number λ, consider
the mechanism Mπ,λ(x) ≡ BoptWπx + N(0, λΣopt). By Lemma D.2, this mechanism also
answers the marginals in Wkload.

Now consider the mechanismM which, on input x outputs the result ofMπ,|Π| for all π ∈ Π.

The query matrix ofM is B =

 BoptWπ1

...
BoptWπ|Π|

 and the covariance matrix Σ is a block diagonal matrix

with the scaled matrix |Π|Σopt in each block. Clearly, by Lemma D.2, it also provides unbiased
answers to the marginals in Wkload.

25

First, we claim that the pcost(M) ≤ pcost(Mopt) so that the privacy parameters are at least as good.
Recall pcost(M) is the largest diagonal entry of:

B
T
Σ
−1

B =
1

|Π|
∑
π∈Π

WT
πB

T
optΣ

−1
optBoptWπ, (4)

Since the privacy cost pcost(Mπ,1) is the largest diagonal of WT
πB

T
optΣ

−1
optBoptWπ and equals

pcost(Mopt), Equation 4 (and convexity of the max function) shows that the pcost(M) ≤
pcost(Mopt).

Next we consider the loss function. Let Ai ∈ Wkload be a set of attributes and let QAi
be the

corresponding query matrix for the marginal on Ai. Then the reconstructed variances of the answers
to this marginal, based on the output ofM is:

V ar(Ai;M) = diag
(
QAi

(B
T
Σ
−1

B)†QT
Ai

)
= diag

(
1

|Π|
∑
π∈Π

QAi

(
WT

πB
T
optΣ

−1BoptWπ

)†
QT

Ai

)

=
1

|Π|
∑
π∈Π

V ar(Ai;Mπ,1)

For any π ∈ Π, Lemma D.2 tells us that L(V ar(A1;Mopt), . . . , V ar(Ak;Mopt)) =
L(V ar(A1;Mπ,1), . . . , V ar(Ak;Mπ,1)) and so regularity of L (which includes convexity), means
that L(V ar(A1;M), . . . , V ar(Ak;M)) ≤ L(V ar(A1;Mopt), . . . , V ar(Ak;Mopt)).

ThusM is no worse in privacy or utility thanMopt and hence is optimal.

Thus we consider the symmetries of the privacy cost matrix ofM, which is given in Equation 4.
Clearly it has the desired symmetry property that Γ = WT

πΓWπ for any π ∈ Π as the permutation
space Π is an algebraic group.

D.3 From permutations to interpretations

LetMopt(x) ≡ Boptx+N(0,Σopt) be an optimal mechanism that has the symmetries guaranteed
by Lemma D.3. Our goal is to use the symmetries in the privacy cost matrix Γopt ≡ BT

optΣ
−1
optBopt

to examine the structure of Γopt.

If γi,j is the (i, j)th entry of Γopt and if there is a renaming permutation that maps ri (the record
associated with index i) to some ri′ (at index i′) and maps rj to some rj′ then γi,j = γi′,j′ . Note
that if ri and rj have the same values for attributes Att1 and Att2 then ri′ and rj′ must match on the
same attributes because renaming permutations just change the names of values within each attribute.
Thus we introduce notation for the set of attributes on which two records match:

DEFINITION D.4 (Common Attributes). Define ζ to be the function that takes two records and outputs
the set of attributes on which they match We emphasize that ζ(ri, rj) is a set of attributes, not attribute
values.

This discussion leads to the following result which characterizes the privacy cost matrix of an optimal
mechanism.

LEMMA D.5. Under the same conditions as Lemma D.3, there exists an optimal mechanism with a
privacy cost matrix Γopt for which the following holds. In addition to the symmetry guaranteed by
Lemma D.3, for every subset of attributes S ⊆ {Att1, . . . , Attna

}, there exists a number cS such
that γi,j , the (i, j)th entry of Γopt, is equal to cζ(ri,rj). In other words, the (i, j)th entry is completely
determined by the set ζ(ri, rj) (recall ri the record value associated with index i and rj is the record
value associated with index j).

26

Proof. By Lemma D.3, there exists an optimal mechanism with privacy cost matrix Γopt that is
invariant under renaming permutations of its rows as long as the columns are permuted in the same
way. Thus if ri is the record value corresponding to position i and rj is the record value corresponding
to position j, there exists a renaming permutation that maps ri to some ri′ and rj to some r′j if
and only if the attributes on which ri and rj match are the same as the attributes on which ri′
and rj′ match each other (in symbols: ζ(ri, rj) = ζ(ri′ , rj′)). When there exists such a renaming
permutation then γi,j = γi′,j′ . Thus the value of γi,j is completely determined by ζ(ri, rj) and the
result follows.

From Theorem 4.2, we know that the rows of the matrices of RA, for all A ⊆ {Att1, . . . , Attna
} are

a linearly independent basis for Rd, where d =
∏na

i=1 |Atti|. Thus we call the rows a residual basis.

DEFINITION D.6. A row vector v is a residual basis vector if it is a row in RA for some A ⊆
{Att1, . . . , Attna

}.

We now provide an interpretation of the residual bases. First, for an attribute Attℓ, define the vector
e
(ℓ)
i,j to be a vector of length |Attℓ| such that the element at position i is 1, the element at position j

is -1 and everywhere else is 0. In other words, e(ℓ)i,j = e
(ℓ)
i − e

(ℓ)
j (recall e(ℓ)i is 1 in position i and 0

everywhere else and is a one-hot encoding of the attribute a
(ℓ)
i). Now, each element of the residual

basis has the form v(1)⊗ · · ·⊗v(na) where, for each ℓ, v(ℓ) is either the vector 1T
|Attℓ| or a vector

e
(ℓ)
1,iℓ

. When the vector for attribute Attℓ is the vector 1T
|Attℓ|, we say that all attribute values of Attℓ

are selected. When the vector for Attℓ is e(ℓ)1,iℓ
, then we say attribute value a

(ℓ)
1 is positively selected

and a
(ℓ)
iℓ

is negatively selected (the other attribute values of Attℓ are not selected at all). The attributes
for which the kron term is not 1T

|Attℓ| are called the discriminative attributes.

As an example of this notation and terminology, consider Table 8. Suppose we have three attributes:
Att1 takes values ‘a’ or ‘b’; Att2 takes values ‘y’ or ‘n’; Att3 takes values 1 or 2 or 3.

ay1 ay2 ay3 an1 an2 an3 by1 by2 by3 bn1 bn2 bn3
bn1: [0, 1]⊗[0, 1]⊗[1, 0, 0] 0 0 0 0 0 0 0 0 0 1 0 0
[1, 1]⊗[1,−1]⊗[1,−1, 0] 1 -1 0 -1 1 0 1 -1 0 -1 1 0
[1,−1]⊗[1, 1]⊗[1, 0,−1] 1 0 -1 1 0 -1 -1 0 1 -1 0 1

Table 8: Kron product representations.

In this case, the data vector x would have 12 components. The first component corresponds to the
number of appearances of record “a,y,1” in the dataset, the second component corresponds to record
“a,y,2” and so on. The records corresponding to each index of x are listed in order as the column
headings in Table 8. The first row shows the representation of record “b,n,1” which is composed of
the second value (b) for Att1, the second value (n) for Att2 and the first value (1) for Att3. Hence
its kron representation is [0, 1]⊗[0, 1]⊗[1, 0, 0] and when the kron product is evaluated, the resulting
vector has a 1 in the index corresponding to “bn1” (10th column) and 0 everywhere else.

The second and third rows show the expansions of two residual basis vectors [1, 1]⊗[1,−1]⊗[1,−1, 0]
(its discriminative attributes are Att2 and Att3) and [1,−1]⊗[1, 1]⊗[1, 0,−1] (its discriminative
attributes are Att1 and Att3). Consider again the kron product [1, 1]⊗[1,−1]⊗[1,−1, 0]. Note that
the first part of the kron product, [1, 1] refers to the first attribute and selects both of its values (sets
them to 1). The second part of the kron product [1,−1] refers to the Att2 and positively selects the
first attribute value ’y’ (sets it to 1) and negatively selected the second attribute value ’n’ (sets it to
-1). The third part is [1,−1, 0] and it positively selects the first attribute value, negatively selects the
second, but the third attribute value is not selected at all (i.e., the 3rd position is 0). These attribute
selections can help us determine what the kron product looks like when it is expanded as follows. For
the residual basis vector v(1)⊗ · · ·⊗v(na) the value at the index associated with a record r is

• 0 if r has an attribute whose value is not selected by the residual basis vector’s kron product.
In this case we say the residual basis vector assigns a 0 to record r. For example, in the
residual basis vector corresponding to kron product [1, 1]⊗[1,−1]⊗[1,−1, 0], the third
value of the third attribute is not selected. For any record that assigns the attribute value 3 to
Att3, this residual basis vector assigns a 0 to such a record.

27

• 1 if for every attribute, the value assigned to it by r is selected (posititvely or negatively), and
the number of negatively selected attribute values is even. In this case we say the residual
basis vector assigns a 1 to record r.

• -1 if the attribute value for each attribute is selected, and the number of negatively selected
attribute values is odd. In this case we say the residual basis vector assigns a −1 to record r.

For example, for the residual basis vector [1, 1]⊗[1,−1]⊗[1,−1, 0], the attribute value 3 for Att3 is
not selected. Hence the value at indices corresponding to records an3,bn3,ay3,by3 are all 0 (see Table
8). Next, consider the record an2. The value “a” is positively selected, “n” is negatively selected,
and “2” is negatively selected. Hence all attributes are selected and an even number of attributes are
negatively selected. Therefore the value at the index associated with an2 is 1. Now for the record by2.
The “b” is positively selected, “y” is positively selected, and “2” is negatively selected. Hence there
are an odd number of negative selections and so the value at the index associated with by2 is -1.

With this discussion and associated notation, we can now show that each residual basis vector is an
eigenvector of the optimal privacy cost matrix, and the eigenvalue only depends on which attributes
are discriminative.

THEOREM D.7. Under the same conditions as Lemma D.3, there exists an optimal mechanism such
that the eigenvectors of its privacy cost matrix Γ are the residual basis vectors (Definition D.6).
Furthermore, if two residual basis vectors v(1)⊗ · · ·⊗v(na) and w(1)⊗ · · ·⊗w(na) have the same
discriminative attributes (i.e., for all i, w(i) ̸= 1T

|Atti| if and only v(i) ̸= 1T
|Atti|) then the two residual

basis vectors have the same eigenvalues (in other words, all rows of the same residual matrix have
the same eigenvalues).

Proof. Recall from Definition D.4 that ζ(ri, rj) is the set of attributes on which ri and rj are equal.

Let Γ be the privacy cost matrix guaranteed by Lemma D.5 with the properties guaranteed by Lemma
D.5, namely that for every subset of attributes S ⊆ {Att1, . . . , Attna

}, there exists a number cS such
that γi,j , the (i, j)th entry of Γ, is equal to cζ(ri,rj) – the constant associated with the set ζ(ri, rj),
where ri the record value associated with index i and rj is the record value associated with index j.

Let rℓ be a record associated with index ℓ. We consider the dot product between a residual basis vector
v = v(1)⊗ · · ·⊗v(na) and the ℓth row of Γ. Since the entries of the ℓth row are cζ(rℓ,r1), . . . , cζ(rℓ,rd)
and the entries of v are 0,1,-1, this dot product can be expressed as:∑

r assigned
value 1 by v

cζ(rℓ,r) −
∑

r assigned
value -1 by v

cζ(rℓ,r) (5)

We analyze this in three cases.

Case 1: v assigns a 0 to rℓ. In this case, there is an attribute for which rℓ has a value that is not
selected. Without loss of generality, we may assume this is the first attribute Att1 so that v(1) = e1,i
(the vector with a 1 at the first index and -1 at the ith index for some i and 0 everywhere else) and
the value of Att1 for rℓ is therefore not a(1)1 or a(1)i (because rℓ got assigned 0 by v due to attribute
Att1). Now, if a record r appears in the left summation of Equation 5 then its value for Att1 is either
a
(1)
1 or a(1)i and it does not match rℓ on the first attribute. But this means that we can transform

r into a record r′ by replacing a
(1)
1 and a

(1)
i with each other. This r′ would be on the right hand

side of the summation (because we are flipping the sign of the selection by v of attribute Att1 in
r′). Furthermore r′ also does not match rℓ on Att1 and therefore r matches rℓ on exactly the same
attributes as r′ matches rℓ. Thus ζ(rℓ, r) = ζ(rℓ, r

′). Thus the summation term from record r is
cancelled out by r′ in Equation 5. Using the same argument, we see that every term in the left
summation is canceled out by a unique term in the right summation, and vice versa. Hence, if v
assigns a 0 to record rℓ (i.e., has a 0 in index ℓ when its kron product representation is expanded)
then the dot product between v and the ℓth row of Γ is 0.

Case 2: v assigns a 1 to rℓ. In this case, every attribute of rℓ has a value that is (either positively or
negatively) selected by v and an even number are negatively selected. Our goal is to show that if

28

some other record rt is also assigned a 1 by v, then the dot product between v and ℓth row of Γ is the
same as the dot product between v and the tth row of Γ. That is, we want to show:

∑
r assigned

value 1 by v

cζ(rℓ,r) −
∑

r assigned
value -1 by v

cζ(rℓ,r) =
∑

r assigned
value 1 by v

cζ(rt,r) −
∑

r assigned
value -1 by v

cζ(rt,r) (6)

Let S be the set of attributes on which rℓ and rt disagree. Now define a mapping ϕ between records
such that ϕ only modifies attributes in S. For each attribute Att in S, it maps the value that record
rℓ has into the value that rt has an vice versa. (For example, suppose S = {Att1, Att2} and rℓ
has values a(1)2 and a

(2)
3 for those attributes, respectively, and suppose that rt has values a(1)4 and

a
(2)
5 for those attributes. Then ϕ changes a(1)2 in Att1 to a

(1)
4 and changes a(1)4 into a

(1)
2 ; for Att2

it changes a(2)3 into a
(2)
5 and changes a(2)5 into a

(2)
3 . Thus ϕ(rℓ) = rt and ϕ(rt) = rℓ and ϕ is its

own inverse. Furthermore, for any record r, ζ(rℓ, r) = ζ(ϕ(rℓ), ϕ(r)) = ζ(rt, ϕ(r)) since renaming
attribute values the same way in two records does not affect the set of attributes on which they match
(and the last equality is because ϕ(rℓ) = rt).

We next note that since rt and rℓ are both assigned 1 by v, then they must differ on an even number
of discriminative attributes of v (if they differ on a discriminative attribute, one must have a value
that is positively selected and the other must have a value that is negatively selected – there cannot be
a 0 because rℓ and rt are not assigned a 0 by v). Therefore, due to its definition, ϕ modifies an even
number of discriminative attributes and therefore for any record r, both r and ϕ(r) get assigned the
same value by v.

Putting these facts together, we get:∑
r assigned

value 1 by v

cζ(rℓ,r) −
∑

r assigned
value -1 by v

cζ(rℓ,r)

=
∑

ϕ(r) assigned
value 1 by v

cζ(rℓ,r) −
∑

ϕ(r) assigned
value -1 by v

cζ(rℓ,r) since ϕ doesn’t change the summation set

=
∑

ϕ(r) assigned
value 1 by v

cζ(ϕ(rℓ),ϕ(r)) −
∑

ϕ(r) assigned
value -1 by v

cζ(ϕ(rℓ),ϕ(r)) since ϕ preserves the outcome of ζ

=
∑

ϕ(r) assigned
value 1 by v

cζ(rt,ϕ(r)) −
∑

ϕ(r) assigned
value -1 by v

cζ(rt,ϕ(r)) since ϕ(rℓ) = rt

=
∑

r′ assigned
value 1 by v

cζ(rt,r′) −
∑

r′ assigned
value -1 by v

cζ(rt,r′) renaming the summation variable from ϕ(r) to r′

and that proves Equation 6

Case 3: v assigns a −1 to rℓ. In this case, every attribute of rℓ has a value that is (either positively
or negatively) selected by v and an odd number are negatively selected. Our goal is to show that if
some other record rt is assigned a 1 by v, then the dot product between v and ℓth row of Γ is the
negative of the dot product between v and the tth row of Γ. That is, we want to show:

∑
r assigned

value 1 by v

cζ(rℓ,r) −
∑

r assigned
value -1 by v

cζ(rℓ,r) = −
∑

r assigned
value 1 by v

cζ(rt,r) +
∑

r assigned
value -1 by v

cζ(rt,r) (7)

As in the previous case, we define ϕ in the same way and reasoning as before we see that for any
record r, ζ(rℓ, r) = ζ(ϕ(rℓ), ϕ(r)) = ζ(rt, ϕ(r)) and since now ϕ must change an odd number of

29

discriminative attributes (since rℓ and rt are assigned -1 and 1 by v) then for any record r, the value
assigned to r by v is the negative of the value assigned to ϕ(r) by v. Thus we have:

∑
r assigned

value 1 by v

cζ(rℓ,r) −
∑

r assigned
value -1 by v

cζ(rℓ,r)

=
∑

ϕ(r) assigned
value -1 by v

cζ(rℓ,r) −
∑

ϕ(r) assigned
value +1 by v

cζ(rℓ,r) since ϕ flips the summation sets

=
∑

ϕ(r) assigned
value -1 by v

cζ(ϕ(rℓ),ϕ(r)) −
∑

ϕ(r) assigned
value +1 by v

cζ(ϕ(rℓ),ϕ(r)) since ϕ preserves the outcome of ζ

=
∑

ϕ(r) assigned
value -1 by v

cζ(rt,ϕ(r)) −
∑

ϕ(r) assigned
value +1 by v

cζ(rt,ϕ(r)) since ϕ(rℓ) = rt

=
∑

r′ assigned
value -1 by v

cζ(rt,r′) −
∑

r assigned
value +1 by v

cζ(rt,r′) renaming the summation variable from ϕ(r′) to r′

and that proves Equation 7.

Thus what these 3 cases show us are that there exists some constant β such that:

• If the ith position of the expansion of v is 0 (i.e., ri is assigned 0 by v), then the ith position
of Γv is also 0 (the dot product between the ith row and v is 0).

• If the ith position of the expansion of v is 1 (i.e., ri is assigned 1 by v), then the ith position
of Γv is β (the dot product between the ith row and v is β).

• If the ith position of the expansion of v is -1 (i.e., ri is assigned -1 by v), then the ith position
of Γv is −β (the dot product between the ith row and v is −β).

Thus v is an eigenvector of Γ with eigenvalue β. That proves the first part of the theorem.

The next part of the theorem is to show that if two residual basis vectors have the same dis-
criminative attributes, then they have the same eigenvalue. So let v = v(1)⊗ · · ·⊗v(na) and
w = w(1)⊗ · · ·⊗w(na) be two residual basis vectors that have the same discriminative attributes.
Define a renaming permutation π as follows:

• For an attribute Attℓ that is not discriminative for v (and hence also not for w), π does not
rename its values (i.e., it acts as the identity for those attribute values).

• For a discriminative attribute Attℓ, let e1,iℓ be the kron component for v (i.e., v(ℓ) = e1,iℓ)
and let e1,jℓ be the kron component for w. Note the indices iℓ and jℓ are not equal to 1. In
this case, we make π do the following renamings:

– aiℓ → ajℓ
– ajℓ → aiℓ
– The remaining attribute values are unchanged.

By considering which records are assigned 1,-1 and 0 by v and w, it is clear that π converts v into
w (and vice versa). Let W be the matrix representation of the renaming permutation π, so that
Wv = w and WTw = v (a permutation matrix is orthogonal, so its inverse is its transpose). Thus,
letting β denote the eigenvalue of v with respect to Γ, we have:

βv = Γv

= ΓWTw

30

= WTΓWWTw due to the symmetry from Lemma D.3

= WTΓw,

since WT is the inverse of W and so

βw = βWv = WWTΓw = Γw

and thus w has the same eigenvalue as v.

Thus each residual basis matrix RA has a useful property: its rows are linearly independent and are
part of the same eigenspace (linear space of vectors with the same eigenvalue) of the privacy cost
matrix Γ of an optimal mechanism. This allows us to prove the main result:

THEOREM 4.4. Given a marginal workload Wkload and a regular loss function L, suppose the
optimization problem (either Equation 1 or 2) is feasible. Then there exist nonnegative constants
σ2
A for each A ∈ closure(Wkload) (the constants do not depend on the data), such that the

optimal linear Gaussian mechanismMopt for loss function L releasesMA(x;σ2
A) for all A ∈

closure(Wkload). Furthermore, any matrix mechanism for this workload must produce at least this
many noise measurements during its selection phase.

Proof of Theorem 4.4. Let ALL represent closure({Att1, . . . , Attna}) – all possible subsets of at-
tributes. Theorem D.7 guarantees that there is an optimal mechanism whose privacy cost matrix Γ
has eigenvectors equal to the rows of the residual matrices. Rows within the same residual matrix
have the same eigenvalues. Since privacy cost matrices are symmetric positive semidefinite, this
means that for every A ∈ ALL, there exists a nonnegative number βA such that:

ΓRT
A = βART

A

By Theorem 3.5 of [47], if two Gaussian linear mechanisms have the same privacy cost matrix then
each can be obtained by linearly processing the other. Thus they have the same privacy properties
(under any postprocessing invariant privacy definition) and can be used to answer the same queries
with the same exact accuracies (under any measure of accuracy). Thus we just need to construct the
appropriate mechanism having privacy cost matrix Γ.

For each A, let ZA be a matrix with orthonormal rows that span the row space of RA. Thus the rows
of ZA are also eigenvectors of Γ (having common eigenvalue βA) and the rows of ZA are orthogonal
to the rows of ZA′ for A ̸= A′ (a consequence of Theorem 4.2). Thus the set of rows of the ZA for
all A ∈ ALL are a complete list of the eigenvecotrs of Γ (the are linearly independent and span Rd).
Thus the (symmetric positive semidefinite) privacy cost matrix Γ can be expressed as:

Γ =
∑

A∈ALL

βAZT
AZA

and one mechanism that achieves this privacy cost matrix is the one that releases ZAx+N(0, 1
βA
I)

for each A ∈ ALL for which βA ̸= 0 (i.e., we can drop the eigenvectors with eigenvalue equal to 0
as they make no difference to the privacy cost matrix).

Now, since the rows of RA and ZA are independent linear bases of the same subspace, then there
exists an invertible matrix YA such that RA = YAZA. Furthermore, RART

A is invertible and
ZAZT

A = I by orthonormality of its rows. Therefore

RT
A(RART

A)−1RA = ZT
AYT

A(YAZAZT
AYT)−1YAZA

= ZT
AYT

AY−TA (ZAZT
A)−1Y−1A YAZA

= ZT
A(ZAZT

A)−1ZA

= ZT
AZA by orthonormality of the rows of ZA

Thus we have

Γ =
∑

A∈ALL

βART
A(RART

A)−1RA

31

and a mechanism that achieves this privacy cost matrix is the one that releases RAx +
N(0, 1

βA
RART

A) for each A for which βA ̸= 0.

We next note that each covariance matrices we propose to use, ΣA, is proportional to RART
A (they

are equal up to positive rescaling). If we define the positive constants κA such that RART
A = κAΣA

then we note that the σ2
A in the theorem statement are equal to κA/βA.

Next, we show that the eigenvalues βA > 0 for A ∈ closure(Wkload) and 0 otherwise, so that the
optimal mechanism would not make use of any submechanismMA for A /∈ closure(Wkload).

First, by Theorem 4.2, the rows of RA, for A ∈ closure(Wkload) form an independent linear
basis for the space spanned by the rows of the marginals QA for A ∈ Wkload. If a noisy RAx
is not released for some A ∈ closure(Wkload), then an unbiased noisy answer to at least one
of the workload marginals could not be computed. Hence, they must all be part of the optimal
mechanism (and thus, because of linear independence, any mechanism needs to get at least as many
scalar noisy answers as this). This shows that βA > 0 for all A ∈ closure(Wkload). On the
other hand since the rows of RA are orthogonal to the rows of RA′ for A ̸= A′, getting answers
to RA′x, for A′ /∈ closure(Wkload), cannot help estimate the answers to the marginals QA for
A ∈ Wkload (by Theorem 4.2, RA′ are orthogonal to the matrices representing these marginals
when A′ /∈ closure(Wkload)). Hence an optimal privacy mechanism cannot waste privacy budget
on these irrelevant queries. This shows that βA′ = 0for A′ /∈ closure(Wkload) and concludes the
proof.

E The other proofs about base mechanisms

THEOREM 4.2. Let A be a set of attributes and let QA be the matrix representation of the marginal
on A. Then the rows of the matrices RA′ , for all A′ ⊆ A, form a linearly independent basis of the
row space of QA. Furthermore, if A′ ̸= A′′ then RA′RT

A′′ = 0 (they are mutually orthogonal).

Proof of Theorem 4.2. Consider two sets A′ ̸= A′′ and represent there respective residual matrices
as:

RA′ = V′1⊗ · · ·⊗V′na

RA′′ = V′′1⊗ · · ·⊗V′′na

RA′RT
A′′ = (V′1(V

′′
1)

T)⊗ · · ·⊗(V′na
(V′′na

)T)

Since A′ ̸= A′′ then one of them contains an attribute, say Atti, that the other doesn’t have. Therefore
either V′i or V′′i is the vector 1T

|Atti| and the other is Sub|Atti|. However, 1T
|Atti|Sub

T
|Atti| = 0 and

Sub|Atti|1|Atti| = 0 and hence RA′RT
A′′ = 0.

Next, for any set A′, it is clear that the row space of RA′ is contained in the row space of the
marginal matrix QA′ . It is also clear that if A′ ⊆ A then the row space of the marginal matrix QA′

is contained in the row space of QA (because QA′ represents a sub-marginal of QA). Thus the rows
of the matrices RA′ , for all A′ ⊆ A, are contained in the rowspace of QA. Thus we just need to
show that the combined rows of RA′ , for all A′ ⊆ A, are linearly independent and that the number
of rows is the same as the number of rows of QA.

First, each RA′ is a kronecker product of matrices with full row rank, and so RA′ has full row rank
(therefore its rows are linearly independent). Furthermore, since RA′RT

A′′ = 0 whenever A′ ̸= A′′

this means that the row space of RA′ is orthogonal to the row space of RA′′ . Hence the combined
rows of the RA′ , for all A′ ⊆ A, are linearly independent.

Next, the number of rows in R∅ is 1 and the number of rows in RA′ is equal to
∏

Atti∈A′
(|Atti| − 1)

for A′ ̸= ∅ and so the total number of rows in the residual matrices is 1 +
∑

A′⊆A
A′ ̸=∅

∏
Atti∈A′

(|Atti| − 1).

By the distributive property of multiplication, this is exactly the same as the product:∏
Atti∈A

((|Atti| − 1) + 1) =
∏

Atti∈A

|Atti|

32

which is the number of rows in QA and that proves that the combined rows of RA′ , for all A′ ⊆ A,
form a linearly independent basis for the row span of QA.

LEMMA E.1. For any i, SubT
|Atti|(Sub|Atti|Sub

T
|Atti|)

−1Sub|Atti| = I |Atti|− 1
|Atti|1|Atti|1

T
|Atti|

Proof of Lemma E.1. For the moment, let Y denote SubT
|Atti|(Sub|Atti|Sub

T
|Atti|)

−1Sub|Atti|.
Then we know:

• Y is symmetric.

• Y is an |Atti| × |Atti| matrix and its rank is |Atti| − 1 since the rank of Sub|Atti| is
|Atti| − 1.

• Sub|Atti|YSubT
|Atti| = Sub|Atti|Sub

T
|Atti|.

Now, one symmetric solution to the equation Sub|Atti|XSubT
|Atti| = Sub|Atti|Sub

T
|Atti| is X =

I |AttI | and if X1 is another symmetric solution then Sub|Atti|(I |Atti| −X1)Sub
T
|Atti| = 0.

This means that Sub|Atti|v = 0 for each eigenvector v of the symmetric matrix I |Atti| − X1

that has a nonzero eigenvalue. Since the rank of Sub|Atti| is |Atti| − 1, the only vectors v for
which Sub|Atti|v = 0 are proportional to 1|Atti| (the null space has rank 1) and so I |Atti| −X1 =

−c1|Atti|1
T
|Atti| for some constant c.

This means that Y (and any other symmetric solution) has the form I |Atti| + c1|Atti|1
T
|Atti|. To find

c, we note that Y is not full rank.

By the Sherman-Morrison-Woodbury inversion formula, if I |Atti| + c1|Atti|1
T
|Atti| is invertible, then

its inverse is I |Atti| − c1|Atti|

(
1 + c1T

|Atti|1|Atti|

)−1
1T
|Atti| = I |Atti| − c

1|Atti|1
T
|Atti|

1+c|Atti| . Thus, to
prevent invertibility, we must have c = −1/|Atti|.

Therefore Y = I |Atti| − 1
|Atti|1|Atti|1

T
|Atti|.

THEOREM 4.5. The privacy cost of MA with noise parameter σ2
A is 1

σ2
A

∏
Atti∈A

|Atti|−1
|Atti| and

the evaluation of MA given in Algorithm 1 is correct – i.e., the output has the distribution
N(RAx, σ2

AΣA).

Proof of Theorem 4.5. Without loss of generality (and to simplify notation), assume A =
{Att1, . . . , Attℓ} consists of the first ℓ attributes.

By definition, pcost(MA(·;σ2
A)) is the largest diagonal of 1

σ2R
T
AΣ−1A RA. Thus we can write:

RA =

(
ℓ⊗

i=1

Sub|Atti|

)
⊗

 na⊗
j=ℓ+1

1T
|Attj |


RT

A =

(
ℓ⊗

i=1

SubT
|Atti|

)
⊗

 na⊗
j=ℓ+1

1|Attj |


H =

(
ℓ⊗

i=1

Sub|Atti|

)
⊗

 na⊗
j=ℓ+1

[1]

 (rightmost krons use 1× 1 matrices)

ΣA = HHT =

(
ℓ⊗

i=1

(Sub|Atti|Sub
T
|Atti|)

)
⊗

 na⊗
j=ℓ+1

[1]


33

Σ−1A =

(
ℓ⊗

i=1

(Sub|Atti|Sub
T
|Atti|)

−1

)
⊗

 na⊗
j=ℓ+1

[1]


RT

AΣ−1A RA =

(
ℓ⊗

i=1

SubT
|Atti|(Sub|Atti|Sub

T
|Atti|)

−1Sub|Atti|

)
⊗

 na⊗
j=ℓ+1

1|Attj | [1]1
T
|Attj |


(8)

Now, by Lemma E.1,

SubT
|Atti|(Sub|Atti|Sub

T
|Atti|)

−1Sub|Atti| = I |Atti| −
1

|Atti|
1|Atti|1

T
|Atti| (9)

Since its diagonals are |Atti|−1
|Atti| , then combined with Equation 8 it proves the result for

pcost(MA(·, σ2
A)).

We next consider the correctness of Algorithm 1. First, we need to show that for the matrix H defined
in Line 3 in Algorithm 1, HQAx = RAx. Then we can write:

RA =

(
ℓ⊗

i=1

Sub|Atti|

)
⊗

 na⊗
j=ℓ+1

1T
|Attj |


QA =

(
ℓ⊗

i=1

I |Atti|

)
⊗

 na⊗
j=ℓ+1

1T
|Attj |

 rightmost product is a matrix with 1 row

H =

(
ℓ⊗

i=1

Sub|Atti|

)
⊗ [1] (rightmost term is a 1× 1 matrix)

HQA =

(
ℓ⊗

i=1

(
Sub|Atti|I |Atti|

))
⊗

[1]

 na⊗
j=ℓ+1

1T
|Attj |


= RA

Next, we note that if z is distributed as N(0, Im) (Line 4 in Algorithm 1) then σAHz has the
distribution N(0, σ2HHT) = ΣA and hence the algorithm is correct.

F Proofs related to the reconstruction step

LEMMA 4.6. For any Atti, let ℓ = |Atti|. The matrix Subℓ has the following block matrix, with

dimensions ℓ× (ℓ− 1), as its pseudo-inverse (and right inverse): Sub†ℓ =
1
ℓ

[
1T
ℓ−1

1ℓ−11
T
ℓ−1−ℓIℓ−1

]
.

Proof of Lemma 4.6. First, if a matrix has a right inverse then that is the pseudo-inverse. Hence we
just need to show that SubℓSub

†
ℓ = Iℓ−1.

Note that the jth row of Subℓ has a 1 in position 1, -1 in position j + 1, and is 0 everywhere else.

Meanwhile, the ith column of our claimed representation of Sub†ℓ has a −(ℓ− 1)/ℓ in position i+ 1
and 1/ℓ everywhere else.

Hence if j ̸= i then the dot product between row j of Subℓ and column i of Sub†ℓ is 0 since the
nonzero elements of the row from Subℓ are being multiplied by 1/ℓ and 1/ℓ.

If i = j then the corresponding first elements that are multiplied are 1 and 1/ℓ while the elements at
position i+ 1 being multiplied are −1 and −(ℓ− 1)/ℓ. Furthermore, 1(1/ℓ) + (−1)(−(ℓ− 1)/ℓ) =
1.

LEMMA F.1. For any attribute Atti, let ℓ = |Atti|. Then Sub†ℓ(SubℓSub
T
ℓ)Sub

†T
ℓ = Iℓ − 1

ℓ1ℓ1
T
ℓ

34

Proof of Lemma F.1. Because Subℓ has linearly independent rows, the pseudo-inverse of it can be
expressed as,

Sub†ℓ = SubT
ℓ (SubℓSub

T
ℓ)
−1

From lemma E.1 we get,

Sub†ℓSubℓ = SubT
ℓ (SubℓSub

T
ℓ)
−1Subℓ

= Iℓ −
1

ℓ
1ℓ1

T
ℓ

Therefore,

Sub†ℓ(SubℓSub
T
ℓ)Sub

†T
ℓ =(Sub†ℓSubℓ)(Sub

†
ℓSubℓ)

T

=(Iℓ −
1

ℓ
1ℓ1

T
ℓ)(Iℓ −

1

ℓ
1ℓ1

T
ℓ)

=Iℓ −
1

ℓ
1ℓ1

T
ℓ −

1

ℓ
1ℓ1

T
ℓ +

1

ℓ2
1ℓ(ℓ)1

T
ℓ

=Iℓ −
1

ℓ
1ℓ1

T
ℓ

THEOREM F.2. Let A be a set of attributes and let QA be the matrix representation of the marginal
on A. Given the matrices RA′ , for all A′ ∈ closure(A), we have QA =

∑
A′∈closure(A)

QAR†A′RA′ .

Proof of Theorem F.2.

QA =

na⊗
i=1

Ki where, for each i, Ki =

{
I |Atti| if Atti ∈ A

1T
|Atti| if Atti /∈ A

RA′ =

na⊗
i=1

Vi where, for each i, Vi =

{
Sub|Atti| ifAtti ∈ A′

1T
|Atti| ifAtti /∈ A′

It is straightforward to verify that the following is a right inverse (and hence pseudo-inverse) of RA′

R†A′ =

na⊗
i=1

V†i where, for each i, V†i =

{
Sub†|Atti| ifAtti ∈ A′

1
|Atti|1|Atti| ifAtti /∈ A′

QAR†A′RA′ =

na⊗
i=1

KiV
†
iVi where, for each i, KiV

†
iVi =


Sub†|Atti|Sub|Atti| ifAtti ∈ A′

1
|Atti|1|Atti|1

T
|Atti| ifAtti ∈ A/A′

1T
|Atti| ifAtti /∈ A

Because Sub|Atti| has linearly independent rows, the pseudo-inverse of it can be expressed as,

Sub†|Atti| = SubT
|Atti|(Sub|Atti|Sub

T
|Atti|)

−1

From lemma E.1 we get,

Sub†|Atti|Sub|Atti| = SubT
|Atti|(Sub|Atti|Sub

T
|Atti|)

−1Sub|Atti|

= I |Atti| −
1

|Atti|
1|Atti|1

T
|Atti|

Therefore,

QAR†A′RA′ =

na⊗
i=1

Ti where, for each i, Ti =


I |Atti| − 1

|Atti|1|Atti|1
T
|Atti| ifAtti ∈ A′

1
|Atti|1|Atti|1

T
|Atti| ifAtti ∈ A/A′

1T
|Atti| ifAtti /∈ A

35

Without loss of generality (and to simplify notation), assume A = {Att1, . . . , Attℓ} consists of the
first ℓ attributes,

QA =

(
ℓ⊗

i=1

I |Atti|

)
⊗

(
na⊗

i=ℓ+1

1T
|Atti|

)
∑

A′∈closure(A)

QAR†A′RA′ =
∑

A′∈closure(A)

(
na⊗
i=1

Ti

)

=
∑

A′∈closure(A)

((
ℓ⊗

i=1

Ti

)
⊗

(
na⊗

i=ℓ+1

1T
|Atti|

))

=

 ∑
A′∈closure(A)

(
ℓ⊗

i=1

Ti

)⊗(na⊗
i=ℓ+1

1T
|Atti|

)

where, for each i ≤ ℓ, Ti =

{
I |Atti| − 1

|Atti|1|Atti|1
T
|Atti| ifAtti ∈ A′

1
|Atti|1|Atti|1

T
|Atti| ifAtti ∈ A/A′

Because of the distributive property of the Kronecker product,

ℓ⊗
i=1

I |Atti| =

ℓ⊗
i=1

((
I |Atti| −

1

|Atti|
1|Atti|1

T
|Atti|

)
+

1

|Atti|
1|Atti|1

T
|Atti|

)

=
∑

A′∈closure(A)

(
ℓ⊗

i=1

Ti

)

Therefore, combining everything together,

∑
A′∈closure(A)

QAR†A′RA′ =

 ∑
A′∈closure(A)

(
ℓ⊗

i=1

Ti

)⊗(na⊗
i=ℓ+1

1T
|Atti|

)

=

(
ℓ⊗

i=1

I |Atti|

)
⊗

(
na⊗

i=ℓ+1

1T
|Atti|

)
= QA

THEOREM 4.7. Given a marginal workload Wkload and positive numbers σ2
A for each A ∈

closure(Wkload), letM be the mechanism that outputs {MA(x;σ2
A) : A ∈ closure(Wkload)}

and let {ωA : A ∈ closure(Wkload)} denote the privacy-preserving noisy answers (e.g.,
ωA = MA(x, σ2)). Then for any marginal on an attribute set A ∈ closure(Wkload), Algo-
rithm 2 returns the unique linear unbiased estimate of QAx (i.e., answers to the marginal query)
that can be computed from the noisy differentially private answers.

The variances V ar(A;M) of all the noisy cell counts of the marginal on A is the vector

whose components are all equal to
∑

A′⊆A

(
σ2
A′
∏

Atti∈A′
|Atti|−1
|Atti| ∗

∏
Attj∈(A/A′)

1
|Attj |2

)
.

The covariance between any two noisy answers of the marginal on A is∑
A′⊆A

(
σ2
A′
∏

Atti∈A′
−1
|Atti| ∗

∏
Attj∈(A/A′)

1
|Attj |2

)
.

Proof of Theorem 4.7. We first verify the correctness and uniqueness of the reconstruction in
Algorithm 2. Uniqueness follows from the fact that the rows from all the matrices RA (for
A ∈ closure(Wkload)) are linearly independent.

36

Consider Line 3 from Algorithm 2. It uses a U matrix that depends on both the attributes A
of the marginal one wants to compute and a subset A′ of it. So, for notational dependence, we
write it as UA←A′ . It is straightforward to verify that UA←A′ = QAR†A′ . From Theorem F.2,
QAx =

∑
A′⊆A QAR†A′RA′x =

∑
A′⊆A UA←A′RA′x, and so Algorithm 2 is correct because

each ωA′ is an unbiased noisy version of RA′x.

Having established that the q returned by Line 5 in Algorithm 2 is an unbiased estimate of the
marginal query answer QAx, the next step is to compute the covariance matrix E[qqT].

E[qqT] = E

 ∑
A′⊆A

UA←A′
(
ωA′ωT

A′
)
UT

A←A′


=
∑

A′⊆A

UA←A′
(
σ2
A′ΣA′

)
UT

A←A′

Without loss of generality (and to simplify notation), assume A = {Att1, . . . , Attℓ} consists of
the first ℓ attributes, A′ = {Att1, . . . , Attt} consists of the first t ≤ ℓ attributes, then A/A′ =
{Attt+1, . . . , Attℓ}.
By definition, V ar(A;M) is the diagonal of E[qqT] =

∑
A′∈closure(A) σ

2
A′UA←A′ΣA′UT

A←A′ .
Thus we can write:

QA =

(
t⊗

i=1

I |Atti|

)
⊗

 ℓ⊗
j=t+1

I |Attj |

⊗(na⊗
k=ℓ+1

1T
|Attk|

)

RA′ =

(
t⊗

i=1

Sub|Atti|

)
⊗

 ℓ⊗
j=t+1

1T
|Attj |

⊗(na⊗
k=ℓ+1

1T
|Attk|

)

R†A′ =

(
t⊗

i=1

Sub†|Atti|

)
⊗

 ℓ⊗
j=t+1

1

|Attj |
1|Attj |

⊗(na⊗
k=ℓ+1

1

Attk
1|Attk|

)

UA←A′ = QAR†A′ =

(
t⊗

i=1

Sub†|Atti|

)
⊗

 ℓ⊗
j=t+1

1

|Attj |
1|Attj |

⊗(na⊗
k=ℓ+1

[1]

)

UT
A←A′ =

(
t⊗

i=1

Sub†T|Atti|

)
⊗

 ℓ⊗
j=t+1

1

|Attj |
1T
|Attj |

⊗(na⊗
k=ℓ+1

[1]

)

ΣA′ =

(
t⊗

i=1

Sub|Atti|Sub
T
|Atti|

)
⊗

 ℓ⊗
j=t+1

[1]

⊗(na⊗
k=ℓ+1

[1]

)

UA←A′ΣA′UT
A←A′ =

(
t⊗

i=1

Sub†|Atti|Sub|Atti|Sub
T
|Atti|Sub

†T
|Atti|

)

⊗

 ℓ⊗
j=t+1

1

|Attj |2
1|Attj | [1]1

T
|Attj |

⊗(na⊗
k=ℓ+1

[1]

)
(10)

Now, by Lemma F.1,

Sub†|Atti|Sub|Atti|Sub
T
|Atti|Sub

†T
|Atti| = I |Atti| −

1

|Atti|
1|Atti|1

T
|Atti| (11)

So the diagonals of UA←A′ΣA′UT
A←A′ can be computed by multiplying |Atti|−1

|Atti| for each Atti ∈
A′ and 1/|Attj | for each Attj ∈ A \A′. Meanwhile, the off diagonals are all the same and can be
computed by multiplying −1

|Atti| for each Atti ∈ A′ and 1
|Attj |2 for each Attj ∈ A \A′.

37

Computing the variance and covariance of the marginal query answer is therefore the summation of
these quantities for all A′ ⊆ A and is what the theorem states.

G Computational Complexity Proofs

THEOREM 4.8. Let na be the total number of attributes. Let #cells(A) denote the number of cells in
the marginal on attribute set A. Then:

1. Expressing the privacy cost of the optimal mechanismM∗ as a linear combination of the 1/σ2
A

values takes O(
∑

A∈Wkload #cells(A)) total time.
2. Expressing all of the V ar(A;M∗), for A ∈Wkload, as a linear combinations of the σ2

A values
can be done in O(

∑
A∈Wkload #cells(A)) total time.

3. Computing all the noisy outputs of the optimal mechanism (i.e., MA(x;σ2
A) for A ∈

closure(Wkload)) takes O
(
na

∑
A∈Wkload

∏
Atti∈A(|Atti|+ 1)

)
total time after the true an-

swers have been precomputed (Line 1 in Algorithm 1). Note that the total number of cells on
marginals in Wkload is O

(∑
A∈Wkload

∏
Atti∈A |Atti|

)
.

4. Reconstructing marginals for all A ∈Wkload takes O(
∑

A∈Wkload |A|#cells(A)2) total time.
5. Computing the variance of the cells for all of the marginals for A ∈ Wkload can be done in

O(
∑

A∈Wkload #cells(A)) total time.

Proof of Theorem 4.8. First we establish that |closure(Wkload)| ≤
∑

A∈Wkload #cells(A). Given
an set A ∈ Wkload, we note that it has 2|A| subsets, so that |closure(A)| = 2|A|. However,
#cells(A) is at least 2|A| (because each attribute has at least 2 attribute values). We also note that
closure(Wkload) =

⋃
A∈Wkload

closure(A). Hence

|closure(Wkload)| ≤
∑

A∈Wkload

|closure(A)| =
∑

A∈Wkload

#cells(A)

To analyze the time complexity of symbolically representing the privacy cost, as a linear combi-
nation of the 1/σ2

A values (for all A ∈ closure(Wkload)) we note that the coefficient of 1/σ2
A

is
∏

Atti∈A

|Atti|−1
|Atti| . Thus computing the coefficient 1/σ2

∅ takes O(1) time. Then, computing the

coefficient of 1/σ2
{Atti} can be computed from the coefficient of 1/σ2

∅ in O(1) additional time. Thus,
we if go level by level, first computing the coefficients of 1/σ2

A with |A| = 1 then for |A| = 2, etc.
then computing the coefficient for each new A takes incremental O(1) time. Thus the overall time is
O(|closure(Wkload)|) and therefore is O(

∑
A∈Wkload #cells(A)).

Let ncells =
∑

A∈Wkload #cells(A) To express the variance symbolically as a linear function of
the σ2

A values via Theorem 4.7, we note from the previous part that computing
∏

Atti∈A′

|Atti|−1
|Atti| for

all A′ ∈ closure(Wkload) can be done in total O(ncells) time. Similarly, computing
∏

Atti∈A′

1
|Atti|2

for all A′ ∈ closure(Wkload) also take total O(ncells) time. Once this is pre-computed, then
for any A′ ⊆ A ∈ closure(Wkload), the product

∏
Atti∈A′

|Atti|−1
|Atti| ∗

∏
Attj∈(A/A′)

1
|Attj |2

can be computed in O(1) time since A \ A′ ∈ closure(Wkload). Now, V ar(A;M∗) =∑
A′⊆A

σ2
A′
∏

Atti∈A′
|Atti|−1
|Atti| ∗

∏
Attj∈(A/A′)

1
|Attj |2 . This is a linear combination of 2|A| terms

(one term for each variable σ2
A′ for A′ ⊆ A). Each term is computed in O(1) time after the pre-

computation phase. Thus the symbolic representation of V ar(A;M∗) takes O(2|A|) time (which
is at most the number of cells in the marginal on A) time after precomputation. Thus computing
V ar(A;M∗) for all A ∈ Wkload can be done in total O(ncells) time after precomputation, but
precomputation also takes O(ncells) time. Thus the overall total time is O(ncells).

38

We next analyze the time it takes to generate noisy answers once the true answers have been
precomputed (Line 1 in Algorithm 1). This involves (1) computing the product Hv in the algorithm,
(2) generating one Gaussian random variable for each column of H and (3) computingHz. Now, the
first and third steps take the same amount of time. The second step generates one Gaussian for each
row of H and hence, for eachMA takes time ΠAtti∈A(|Atti| − 1).

For the first step, the fast kronecker-product multiplication algorithm (Algorithm 1 of [38]) has the
following complexity. Given a kronecker product of ℓ matrices of sizes (m1−1)×m1, . . . , (mℓ−1)×
mℓ and a vector with m1×· · ·×mℓ components, their algorithm has ℓ iterations. In iteration i, the ith

matrix (with size mi−1×mi) is multiplied by a matrix with shape (mi,
∏i−1

j=1 mj ∗
∏ℓ

j=i+1(mj−1)).
In our case, each mi is a subtraction matrix with two nonzero elements in each row. Thus, in each
iteration, the product makes 2

∏i−1
j=1 mj ∗

∏ℓ
j=i(mj − 1) scalar multiplication operations. There are

ℓ iterations, so the multiplication algorithm uses O(ℓ
∏ℓ

i=1 mi) multiplications.

Now, to run algorithmMA, the number of kron products ℓ is |A| and each mi is |Atti| for Atti ∈ A.
Hence the running time ofMA is O(|A|

∏
Atti∈A |Atti|) which is at most |A| times the number

of cells in the marginal on A. Note that the constant in the big-O notation is bounded across all A.
Next, when adding up the complexity across all A′ ∈ closure(A), we can replace |A′| with |A|, and
then the summation looks like the product

∏
Atti∈A

(|Atti|+ 1) when this product is expanded. Hence

the time to run all QA′ for all A′ ∈ closure(A) is O(|A|
∏

Atti∈A
(|Atti| + 1)). Adding up over all

A ∈Wkload gets the results.

Next we consider the reconstruction phase. Using the same analysis of the fast kron-product
vector multiplication, we see that in each iteration of Algorithm 2, there is a kron product vector
multiplication. Using similar reasoning as for the previous item, each such multiplication takes
O(|A|

∏
Atti∈A)|Atti| = O(|A|#cells(A)) time. The number of iterations in the algorithm is

2|A| ≤ #cells(A). Thus the overall runtime is O(
∑

A∈Wkload |A|#cells(A)2).

Finally, the variance computation is no harder than expressing the V ar(A;M∗) as linear combina-
tions of the optimization variables and we have shown this to be O(ncells).

H Closed Form Solution to the Weighted Sum of Variances Loss

By Theorem 4.5, the privacy cost is a linear combination of the 1/σ2
A values. By Theorem 4.7, each

reconstructed marginal’s cell variances are a linear combination of the σ2
A values. Thus, minimizing

the weighted sum of reconstructed marginal variances subject to the privacy cost being ≤ c can be
formulated as a problem of the following type:

argmin
σ2
A: A∈closure(Wkload)

∑
A∈closure(Wkload)

vAσ2
A (12)

s.t.
∑

A∈closure(Wkload)

pA
σ2
A

≤ c

where the vA are the linear coefficients of the σ2
A and the pA are the linear coefficients of the 1/σ2

A
in the privacy cost. The closed form solution is given by hte following lemma.

LEMMA H.1. Given the optimization problem in Equation 12 The optimal objective function value is
T =

(∑
A

√
vApA

)2
/c, the optimal value of each noise scale parameter is σ2

A =
√
TpA/(cvA).

Proof. Clearly, for the optimal solution, the inequality constraint must be tight (i.e., = c) because if
it is not tight, we can lower variance while increasing privacy cost by dividing each σ2

A by a number
> 1. Thus we just need to solve the problem subject to

∑
A pA/σ2

A = c.

39

From Cauchy-Schwarz inequality,

∑
A

vAσ2
A =

(∑
A

vAσ2
A

)(∑
A

pA
σ2
A

)
/c ≥

(∑
A

√
vApA

)2

/c = T

Equality holds when vA
pA

σ4
A = t for all A (for some constant t). Since c =

∑
A

pA

σ2
A

=∑
A

√
vApA/t, then we must have t = T/c. Plugging this into the definition of t, we get

σ2
A =

√
TpA/(cvA).

Thus, if the loss function is the weighted sum of variances, ResidualPlanner does not need any
optimization steps. The selection of the noise scales and the reconstruction phase are direct algorithms.

I Additional Experiments

In this section, we present additional experiments. Following [37], the experiments use the following
type of workloads:

• All k-way marginals.

• All ≤ 3-way marginals. This includes all 0-way marginal (the total sum), all 1-way
marginals, all 2-way marginals, and all 3-way marginals.

• Small marginals. This includes any k-way marginal that has at most 5000 cells.

We also use these metrics:

• RMSE: The total variance is the sum of the variances of the reconstructed cells in each
marginal in the workload. Root Mean Squared Error is obtained by taking the total variance,
dividing by the total number of cells in the workload marginals, then taking the square root.
The SVD Bound (SVDB for short) [31] provides a theoretical lower bound on RMSE for any
matrix mechanism. For marginals, the SVDB is tight, but its computation is not scalable.

• MaxVar: compute the variance of each reconstructed cell for each marginal in the workload,
then take the maximum of these.

• Running time (in seconds) of the different stages of the algorithms (select and reconstruct).

Unless otherwise stated, ResidualPlanner uses the open-source ECOS optimizer [14] for solving the
optimization problem it generates for the select step.

For all experiments, we require all mechanisms to have privacy cost pcost(M) = 1. By definition
2.3,M satisfies ρ-zCDP with ρ = 1/2 [46] and satisfies µ-Gaussian DP with µ = 1 [15, 46].

Each experiment is repeated 5 times, we report the mean value of these 5 results and a confidence
interval consisting of ±2 standard deviations. This is most useful for running time, as the variance
loss metrics have negligible variance across all algorithms.

I.1 Scalability

In this section, we study the scalability of ResidualPlanner. This is done using the Synth−nd dataset,
where d is the number of attributes and n is the domain size of each attribute. We use all ≤ 3-
way marginals as a fixed workload and vary n or d to get the computation time for HDMM and
ResidualPlanner.

I.1.1 Varying Attribute Domain Size n in the Selection Step.

This experiment considers what happens when the attribute domain size n get larger. We fix the
number of attributes d = 5 and vary the domain size n for each attribute, where n ranges from 2 to
1024. We evaluate the running time and accuracy of the selection step

Table 9 shows the running time for the selection step of HDMM and ResidualPlanner. The RMSE on
the workload that the selection step guarantees is also measured. Both HDMM and ResidualPlanner

40

have no trouble here. HDMM is nearly optimal in RMSE and ResidualPlanner is optimal, as shown
by agreement with the SVD Bound. ResidualPlanner is faster, but both methods are fast in this
experiment setting.

Table 9: Selection step on Synth−nd dataset where d = 5 and n varies. The workload is all ≤ 3-way
marginals. Metrics are running time and RMSE.

n TimeHDMM TimeResPlan RMSEHDMM RMSEResPlan SVDB
2 0.069± 0.018 0.001± 0.000 1.903 1.890 1.890
4 0.064± 0.006 0.001± 0.000 2.685 2.681 2.681
8 0.070± 0.021 0.001± 0.000 3.156 3.156 3.156
16 0.076± 0.020 0.001± 0.000 3.367 3.366 3.366
32 0.105± 0.020 0.001± 0.000 3.422 3.423 3.423
64 0.114± 0.033 0.001± 0.000 3.408 3.407 3.407

128 0.137± 0.048 0.001± 0.000 3.371 3.367 3.367
256 0.187± 0.050 0.001± 0.000 3.331 3.322 3.322
512 0.183± 0.020 0.001± 0.000 3.294 3.283 3.283

1024 0.353± 0.058 0.001± 0.000 3.328 3.251 3.251

Table 10 shows the running time and Max Variance comparison for the selection step. HDMM can
only optimize for RMSE, not max variance, so this table shows that RMSE is not a good substitute
when one needs to optimize for Max Variance.

Table 10: Selection step on Synth−nd dataset where d = 5 and n varies. The workload is all ≤
3-way marginals. Metrics are running time and Max Variance.

n TimeHDMM TimeResPlan MaxV arHDMM MaxV arResPlan

2 0.069± 0.018 0.008± 0.001 8.091 4.148
4 0.064± 0.006 0.008± 0.001 44.693 9.760
8 0.070± 0.021 0.008± 0.001 180.343 15.643

16 0.076± 0.020 0.008± 0.001 588.115 20.067
32 0.105± 0.020 0.008± 0.001 1649.341 22.811
64 0.114± 0.033 0.008± 0.001 5560.807 24.345
128 0.137± 0.048 0.008± 0.001 12229.480 25.157
256 0.187± 0.050 0.008± 0.001 8168.716 25.574
512 0.183± 0.020 0.008± 0.001 32159.958 25.786

1024 0.353± 0.058 0.008± 0.001 277825.955 25.893

I.1.2 Impact of varying the number of attributes in the Selection Step.

Next, we fix the domain size of each attribute to be n = 10 and vary the number of attributes d,
where d ranges from 2 to 200. This experiment can test some of the limits of ResidualPlanner. While
HDMM cannot perform selection when the number of attributes is 20 or larger, ResidualPlanner has
no trouble optimizing RMSE even for 200 attributes. However, optimizing for Max Variance is much
more difficult. ResidualPlanner can do this for d = 100 but the underlying optimization took more
than 1 hour for d = 200 and we killed the process.

Table 11 shows the running time and RMSE comparison for the selection step. The running time of
HDMM increases sharply and it quickly runs out of memory. At the same point, the SVD Bound can
no longer be computed. Meanwhile, ResidualPlanner continues to run efficiently.

Table 12 shows the running time and Max Variance comparison on the Selection step. Optimizing
for Max Variance is much harder for ResidualPlanner compared to RMSE and we killed the process
for d = 200. Meanwhile, HDMM is not able to run at d = 20 (we emphasize again, it optimizes for
RMSE even if one cares about Max Variance). There is an interesting phenomenon with HDMM that
takes place for d between 8 and 15. In this case, HDMM always produces a max variance of 1000.
This maximum is always achieved for the sum query (a zero-dimensional marginal) for the following
reason. For d beween 8 and 15, HDMM decides to add noise to all 3-way marginals and nothing else
(even though the workload is all ≤ 3 marginals). The privacy loss budget is split equally among them.
Thus, each of the

(
d
3

)
marginals it measures gets N(0,

(
d
3

)
) noise. The sum query gets reconstructed

41

Table 11: Selection step on Synth−nd dataset where n = 10 and d varies. The workload is all ≤
3-way marginals. Metrics are running time and RMSE.

d T imeHDMM TimeResPlan RMSEHDMM RMSEResPlan SVDB
2 0.013± 0.003 0.001± 0.0008 1.379 1.379 1.379
4 0.028± 0.007 0.002± 0.001 2.346 2.345 2.345
6 0.065± 0.012 0.002± 0.0008 4.278 4.275 4.275
8 0.167± 0.019 0.004± 0.001 6.726 6.638 6.638
10 0.639± 0.059 0.009± 0.001 9.629 9.348 9.348
12 4.702± 0.315 0.015± 0.001 12.904 12.359 12.359
14 46.054± 12.735 0.025± 0.002 16.506 15.642 15.642
15 201.485± 13.697 0.030± 0.017 18.421 17.378 17.378
20 Out of memory 0.079± 0.017 Out of memory 26.916 Out of memory
30 Out of memory 0.247± 0.019 Out of memory 49.713 Out of memory
50 Out of memory 1.207± 0.047 Out of memory 107.258 Out of memory

100 Out of memory 9.913± 0.246 Out of memory 303.216 Out of memory
200 Out of memory 80.120± 1.502 Out of memory 855.330 Out of memory

as follows. For any single noisy 3-way marginal, one can estimate the sum by adding up the cells in
the marginal. Since each cell has variance

(
d
3

)
and there are n3 = 1, 000 cells, the sum estimate from

a single 3-way marginal has a variance of 1000
(
d
3

)
. But one can obtain an independent estimate to

the sum query from each of the
(
d
3

)
noisy 3-way marginals. By averaging these noisy estimates, one

can obtain an estimate of the sum query with variance 1, 000.

Table 12: Selection step on Synth−nd dataset where n = 10 and d varies. The workload is all ≤
3-way marginals. Metrics are running time and Max Variance.

d T imeHDMM TimeResPlan MaxV arHDMM MaxV arResPlan

2 0.013± 0.003 0.007± 0.001 13.745 3.306
4 0.028± 0.007 0.010± 0.005 132.620 10.480
6 0.065± 0.012 0.009± 0.001 461.132 26.904
8 0.167± 0.019 0.015± 0.003 1000.000 56.961

10 0.639± 0.059 0.018± 0.001 1000.000 105.031
12 4.702± 0.315 0.028± 0.001 1000.000 175.496
14 46.054± 12.735 0.041± 0.001 1000.000 272.738
15 201.485± 13.697 0.050± 0.001 1000.000 332.769
20 Out of memory 0.123± 0.023 Out of memory 768.941
30 Out of memory 0.461± 0.024 Out of memory 2540.440
50 Out of memory 4.011± 0.112 Out of memory 11597.037

100 Out of memory 121.224± 3.008 Out of memory 91960.917

I.1.3 Scalability of the Reconstruction Step.

We conduct similar experiments, but now we measure the time in the reconstruction step. To com-
plement the reconstruction scalability experiments from the main paper on the Synth−nd synthetic
dataset, we first fix the number of attributes d = 5 and vary the domain size n for each attribute,
where n ranges from 2 to 512. The reconstruction time for ResidualPlanner does not depend on the
metric that the select step was optimized for. Again we compare with HDMM [38] and a version of
HDMM with improved reconstruction scalability called HDMM+PGM [38, 41] (the PGM settings
used 50 iterations of its Local-Inference estimator, as the default 1000 was too slow). Table 13 shows
the results. Again, at some point HDMM runs out of memory while ResidualPlanner runs efficiently.
HDMM runs of out memory because of choices it had made in the selection step. When n = 128 it
decided to measure a 5-way marginal, which is so large (requiring 1285 space) that it caused HDMM
and HDMM+PGM to have memory issues.

We next fix n = 3 and vary d. Table 14 shows ResidualPlanner is clearly faster. Furthermore, HDMM
and HDMM+PGM are hampered by the failure of the selection step (when selection fails, there is
nothing to reconstruct). It is interesting to compare HDMM+PGM behavior when n = 3 in Table

42

Table 13: Running time (in seconds) of the reconstruction step on Synth−nd dataset where d = 5
and n varies. The workload is all ≤ 3-way marginals.

n HDMM HDMM + PGM ResPlan
2 0.005± 0.002 2.466± 0.278 0.008± 0.002
4 0.005± 0.000 1.894± 0.146 0.011± 0.008
8 0.008± 0.000 1.871± 0.122 0.011± 0.008

16 0.064± 0.036 1.936± 0.131 0.016± 0.001
32 1.924± 0.060 3.211± 0.220 0.045± 0.007
64 56.736± 1.460 12.574± 0.512 0.217± 0.021
128 Out of memory Out of memory 1.244± 0.059
256 Out of memory Out of memory 12.090± 0.504
512 Out of memory Out of memory 166.045± 13.803

14 with n = 10 in Table 2 from the main paper. Clearly HDMM+PGM is faster for n = 10 than
n = 3. This counterintuitive result can be explained by the complex workings of HDMM as follows.
When n = 3, the selection step in HDMM returns some 4-way marginals. But when n = 10, HDMM
only returns ≤ 3-way marginals. The 4-way marginals make the reconstruction step harder for both
HDMM and HDMM + PGM.

Table 14: Time for Reconstruction Step in seconds on Synth−nd dataset. n = 3 and the number of
attributes d varies. The workload consists of all marginals on ≤ 3 attributes each. Times are reported
with ±2 standard deviations. Reconstruction can only be performed if the select step completed.

d HDMM HDMM + PGM ResidualPlanner
2 0.001± 0.0001 0.256± 0.030 0.005± 0.002
6 0.009± 0.001 3.293± 0.253 0.020± 0.004

10 0.334± 0.010 51.568± 3.391 0.086± 0.004
12 3.882± 0.101 180.708± 5.437 0.153± 0.002
14 55.856± 0.361 314.252± 3.991 0.280± 0.072
15 231.283± 0.554 713.526± 4.957 0.307± 0.005
20 Unavailable (select step failed) Unavailable (select step failed) 0.758± 0.023
30 Unavailable (select step failed) Unavailable (select step failed) 2.700± 0.200
50 Unavailable (select step failed) Unavailable (select step failed) 12.480± 0.208

100 Unavailable (select step failed) Unavailable (select step failed) 99.787± 2.113

I.2 Comparison on Real Datasets.

In this section, we compare RMSE and Max Variance on the real datasets: CPS, Adult, and Loans.
The different workloads are 1-way, 2-way, 3-way, 4-way, 5-way marginals, all ≤ 3-way marginals,
and Small Marginals.

I.2.1 RMSE Comparisons

We provide an expanded comparison of RMSE on the 3 real datasets from the main paper. Here we
add more workloads. Table 15, 16 and 17 show the comparison of RMSE on the CPS, Adult, and
Loans datasets respectively.

We notice that ResidualPlanner matches the theoretical SVD Bound while HDMM is slightly worse,
but still accurate. We conclude that when optimizing RMSE, the main advantage of ResidualPlanner
is superior scalability.

Since ResidualPlanner is optimal, the purpose of the accuracy comparisons is a sanity check. For
RMSE, we compare the quality of ResidualPlanner to the theoretically optimal lower bound known
as the SVD bound [31] (they match, as shown in Table 18).

43

Table 15: Comparison of RMSE on CPS(5D) dataset.

Workload HDMM ResPlan SVDB
1-way Marginals 1.756 1.744 1.744
2-way Marginals 2.103 2.035 2.035
3-way Marginals 2.089 2.048 2.048
4-way Marginals 1.648 1.627 1.627
5-way Marginals 1.000 1.000 1.000
≤ 3-way Marginals 2.301 2.276 2.276

Small Marginals 2.525 2.525 2.525

Table 16: Comparison of RMSE on Adult(14D) dataset.

Workload HDMM ResPlan SVDB
1-way Marginals 3.081 3.047 3.047
2-way Marginals 6.504 6.359 6.359
3-way Marginals 11.529 10.515 10.515
4-way Marginals 16.618 14.656 14.656
5-way Marginals 20.240 17.844 17.844
≤ 3-way Marginals 11.555 10.665 10.665

Small Marginals 10.006 9.945 9.945

I.2.2 Max Variance

The next comparison is on optimization for Max Variance. We repeat that HDMM only optimizes for
RMSE and this shows that optimizing for RMSE is highly suboptimal when one cares about max
variance.

In contrast to RMSE, where the optimization problem generated by ResidualPlanner’s selection step
can be solved in closed form, for Max Variance, the optimization needs a convex solver. Hence we in-
clude comparisons between the open source ECOS [14] optimizer to the commercial Gurobi optimizer
[21]. Thus, our results have columns labeled ResidualPlanner+ECOS and ResidualPlanner+Gurobi.

Tables 19, 20 and 21 show the results for the CPS, Adult, and Loans datasets, respectively. There is
one item to note about numerical stability. Although Gurobi is generally faster and more numerically
stable, the differences do not matter much. Situations where EOCS was worse are highlighted in red.
For example, in Table 19 for the CPS dataset, the dataset has only 5 attributes, so a 5-way marginal is
basically the entire dataset. The optimal mechanism for 5-way marginals simply adds N(0, 1) noise
to each cell and optimizing for RMSE is equal to optimizing Max Variance for this special case. As
we see, the Max Variance for ResidualPlanner+ECOS is 1.008 which is 0.8% worse than optimal.
The reason for this is the numerical precision with which ECOS can solve the optimization problem
that ResidualPlanner gives it. In general, however, it looks like open source optimizers should work
fairly reliably for them to be used in real applications of ResidualPlanner.

44

Table 17: Comparison of RMSE on Loans(12D) dataset.

Workload HDMM ResPlan SVDB
1-way Marginals 2.903 2.875 2.875
2-way Marginals 5.747 5.634 5.634
3-way Marginals 9.478 8.702 8.702
4-way Marginals 12.537 11.267 11.267
5-way Marginals 14.872 12.678 12.678
≤ 3-way Marginals 9.406 8.876 8.876

Small Marginals 8.262 8.206 8.206

Table 18: RMSE Comparisons to the theoretical lower bound SVD Bound [31]

Adult Dataset CPS Dataset Loans Dataset
Workload ResPlan SVDB ResPlan SVDB ResPlan SVDB

1-way Marginals 3.047 3.047 1.744 1.744 2.875 2.875
2-way Marginals 6.359 6.359 2.035 2.035 5.634 5.634
3-way Marginals 10.515 10.515 2.048 2.048 8.702 8.702
≤ 3-way Marginals 10.665 10.665 2.276 2.276 8.876 8.876

Table 19: Comparison of Max Variance on CPS(5D) dataset.

Workload HDMM ResPlan + ECOS ResPlan + Gurobi
1-way Marginals 13.672 4.346 4.346
2-way Marginals 47.741 7.897 7.897
3-way Marginals 71.549 7.706 7.706
4-way Marginals 15.538 4.142 4.141
5-way Marginals 1.000 1.008 1.000
≤ 3-way Marginals 415.073 13.216 13.216

Small Marginals 223.579 11.774 11.774

Table 20: Comparison of Max Variance on Adult(14D) dataset.

Workload HDMM ResPlan + ECOS ResPlan + Gurobi
1-way Marginals 41.772 12.047 12.047
2-way Marginals 599.843 67.802 67.802
3-way Marginals 5675.238 236.843 236.843
4-way Marginals 26959.322 575.213 575.213
5-way Marginals 79817.002 1030.948 1030.948
≤ 3-way Marginals 6677.253 253.605 253.605

Small Marginals 2586.980 126.902 126.902

Table 21: Comparison of Max Variance on Loans(12D) dataset.

Workload HDMM ResPlan + ECOS ResPlan + Gurobi
1-way Marginals 33.256 10.640 10.640
2-way Marginals 437.478 52.217 52.217
3-way Marginals 3095.997 156.638 156.638
4-way Marginals 13776.417 320.778 320.778
5-way Marginals 26056.289 474.244 474.243
≤ 3-way Marginals 4317.709 180.817 180.817

Small Marginals 2330.883 89.873 89.873

45

	Introduction
	Preliminaries
	Differential Privacy
	Matrix Mechanism

	Additional Related Work
	ResidualPlanner
	Loss Functions Supported by ResidualPlanner
	Base Mechanisms used by ResidualPlanner
	Reconstruction
	Optimizing the Base Mechanism Selection
	Computational Complexity

	Experiments
	Scalability of the Selection Phase
	Scalability of the Reconstruction Phase
	Accuracy Comparisons

	Limitations, Conclusion, and Future Work.
	Acknowledgments
	Table of Notation
	A Run-through of Residual Planner
	A Small Dataset and its Vectorized Representation
	The Marginal Workload and its Representation as a Query Matrix.
	The Base Mechanisms
	Reconstruction
	Privacy Cost and Marginal Variances
	The Sum-of-Variances Loss Function

	Example Variance Calculations
	Optimality Proof of ResidualPlanner
	Notation Review
	Permutations
	From permutations to interpretations

	The other proofs about base mechanisms
	Proofs related to the reconstruction step
	Computational Complexity Proofs
	Closed Form Solution to the Weighted Sum of Variances Loss
	Additional Experiments
	Scalability
	Comparison on Real Datasets.

