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Abstract
Despite significant progress in model developments, evaluating
eXplainable Artificial Intelligence (XAI) remains elusive and chal-
lenging in Alzheimer’s Disease (AD) detection using modalities
from low-cost or wearable devices. This paper introduces a fine-
grained validation framework named ‘FairAD-XAI’, which provides
a comprehensive assessment through twelve properties of expla-
nations, forming a detailed Likert questionnaire. This framework
ensures a thorough evaluation of XAI methods, capturing their
fairness aspects and supporting the improvement of how humans
assess the reliability and transparency of these methods. More-
over, fairness in XAI evaluation is critical, as users from diverse
demographic backgrounds may have different perspectives and per-
ceptions towards the system. These variations can lead to biases in
human-grounded evaluations and, subsequently, biased decisions
from the AI system when deploying. To mitigate this risk, we in-
stalled two fairness metrics tailored to assess and ensure fairness in
XAI evaluations, promoting more equitable outcomes. In summary,
the proposed ‘FairAD-XAI’ framework provides a comprehensive
tool for evaluating XAI methods and assessing the essential aspect
of fairness. This makes it a multifactoral tool for developing unbi-
ased XAI methods for AI-based AD detection tools, ensuring these
technologies are both effective and equitable.

CCS Concepts
• Computing methodologies → Artificial intelligence; • Gen-
eral and reference → Evaluation; • Human-centered comput-
ing → Mobile computing.
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1 Introduction
Alzheimer’s Disease (AD) is a degenerative brain condition that
progressively leads to dementia, mainly impacting people over the
age of 65 [1]. AD detection can be challenging due to its complex
signs [2]. However, the advancements in Clinical Decision Support
Systems (CDSS) using Artificial Intelligence (AI) (AI-based CDSS)
pave a promising path for both healthcare professionals and indi-
viduals to early detect and slow down the progression properly,
improving Quality of Life (QoL) [2, 3]. There are many modalities
to detect or screen AD using AI [4, 5], such as Magnetic resonance
imaging (MRI), Cerebrospinal Fluid (CSF), and Positron Emission
Tomography (PET). However, the techniques above are limited to
the masses due to their high cost.

Therefore, cost-effective techniques can be alternatives to deliver
screening access to support healthcare for more individuals, such as
Electroencephalogram (EEG) [6, 7] or handwriting/drawing [8, 9].
Moreover, in recent years, digital biomarkers [3] utilising mobile
and wearable technologies [10], like smartphones, smartwatches,
and smart suits, have offered a noticing option to screen AD effi-
ciently. This is due to their widespread use, instant information
access, and advanced onboard sensors leveraging their capability
to monitor physical and cognitive status. However, AI-based CDSS

https://orcid.org/1234-5678-9012
https://doi.org/10.1145/3675094.3678998
https://doi.org/10.1145/3675094.3678998
https://doi.org/10.1145/3675094.3678998


UbiComp Companion ’24: , October 5–9, 2024, Melbourne, VIC, Australia Quoc-Toan Nguyen, Linh Le, Xuan-The Tran, Thomas Do*, and Chin-Teng Lin*

for AD detection in general, or the ones using mobile or wear-
able modalities, are not yet widely adopted clinically due to their
black-box nature. The outcomes from AI-based CDSS should be
explained understandably by eXplainable AI (XAI) methods for
various stakeholders, such as developers, medical professionals,
and lay users.

In particular, there is a research gap in the evaluation of current
XAI methods applied in early AD detection using these techniques
[11]. Firstly, XAI researchers often rely on self-intuition without
consulting medical professionals [12]. The derived AI explanations
are data-driven and lack domain experts’ input. Secondly, expla-
nations vary with domain expertise, causing confusion and doubt
when explanations contradict intuition. Thereby, objective valida-
tion with ground truth data is needed [13]. Importantly, deploying
inefficient and biased XAI methods in clinical settings for AD detec-
tion can lead stakeholders to make inaccurate and biased decisions.
This, in turn, may unfairly penalise minority groups, as these inac-
curate decisions disproportionately affect them.

Thus, evaluating to ensure fairness in XAI method evaluation for
AD plays a vital role in the reliability of AI-based CSDDs because
these evaluations are mainly accorded to the human-grounded view
of the users. Fairness in XAI means providing explanations that
are equitable and unbiased, ensuring that all user groups receive
accurate and just information. Each demographic group may have
different perceptions, and explainability is a non-binary character-
istic [14]. Hence, assessing XAI methods based on ‘formal fairness’
[15] and multiple explanation quality properties [14] is crucial from
the users’ point of view to have a final general good mental model
[16] (trusting the AI system and performing well when using it),
mitigate biases and promote equitable outcomes in the detection
of AD, addressing potential disparities in AI-based CSDDs. There-
fore, this study proposes a ‘FairAD-XAI’ (fairness-in-the-loop XAI
evaluation for AD) framework with the following contributions:

• Develop the ‘FairAD-XAI’ framework, including a Likert
questionnaire to evaluate XAI methods in AD detection. This
framework assesses explanation quality and fairness across
demographic groups to mitigate bias and ensure reliable,
equitable AI-based CSDDs for early AD detection.

• To demonstrate the practical application of the FairAD-XAI
framework, an AI model for AD detection was developed.

2 Methodologies
As described in Figure 1, the proposed FairAD-XAI is placed after
the XAI method being applicable to multiple explanation types [14].
In particular, it explains results from the AD detection model using
low-cost/mobile/wearable modalities, acting as an evaluation phase
in the process. Characteristics of each modality can be found from
the research by Kourtis et al.[3]. The methodologies are described
in the following Sections 2.1, 2.2, and 2.3.

2.1 The Likert Questionnaire
To begin with, regarding XAI methods’ evaluation for AD detection,
addressing the question of ‘What to evaluate?’ and ‘Is the XAI
method good?’ sets the tone for the questionnaire. In this section,
twenty-four Likert questionnaire questions have been developed
leveraging the notion of ‘co-twelve’, twelve explanation quality
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Figure 1: Illustration of Proposed FairAD-XAI AD Detection
AI Model using Low-cost/Mobile/Wearable Modalities. PPG
(Photoplethysmography), IMU (Inertia Measurement Unit).

properties proposed by Nauta et al. [14]. Co-twelve is grouped by 3
dimensions, including ‘Content’, ‘Presentation’ and ‘User’. Table
1 details all proposed questions, with the Likert scale from 0 to 5
applied for all questions, obtaining the final scores to range from 0
to 120 with six overall evaluating ranges. The total score is described
as 𝐿𝑄𝑋𝐴𝐼 . The higher 𝐿𝑄𝑋𝐴𝐼 is, the better the XAI method. These
are descriptions of the overall score range:

• Poor (0-20): The XAI method is highly inadequate and fails
to meet basic requirements.

• Subpar (21-40): The XAI method is below standard and
lacks important elements.

• Average (41-60): The XAI method is fair but needs improve-
ment.

• Good (61-80): The XAI method is solid and meets most
expectations.

• Very Good (81-100): The XAI method is highly satisfactory
and covers most aspects well.

• Excellent (101-120): The XAI method is outstanding and
comprehensively addresses all criteria.

To be deployed in a real-life setting for AD detection, the sug-
gested average overall range for the XAI method should be ‘Good’
or higher, with an overall score of at least 61 from all demographic
groups.

The following are the descriptions of each dimension with ac-
cording properties:

Dimension 1: Content
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This dimension addresses the question of ‘How accurately does
the explanation reflect the model’s behaviour, and is it comprehen-
sive, consistent, smooth, differentiable, and simple enough to be
easily understood?’

Correctness: Refers to how accurately an explanation reflects the
behaviour of the predictive model (𝑓 ). It measures the fidelity of the
explanation. This property is about the explanation’s descriptive
accuracy, not the model’s predictive accuracy.

Completeness: Measures how comprehensively the explanation
covers the behaviour of 𝑓 . The explanation should encompass ‘the
whole truth’ in an ideal scenario.

Consistency: Ensures that identical inputs yield identical expla-
nations. This property evaluates the determinism of the explana-
tion method. Consistency involves ‘implementation invariance’
for methods that only consider input and output, meaning models
producing the same outputs should generate the same explanations.

Continuity: Assesses the smoothness of the explanation func-
tion produced by the explanation method. A continuous function
ensures that minor changes in the input, which result in almost
identical model responses, do not cause significant differences in
the explanation.

Contrastivity: Evaluates how effectively an explanation can dif-
ferentiate between various events or outcomes. It aims to explain
why a particular event occurred by contrasting it with an alternative
event that did not happen.

Covariate Complexity: Refers to how complicated the features in
an explanation are and how they relate to the outcome. The features
should be simple and easy to understand. This means they might
differ from the original input features to make the explanation
clearer and more understandable.

Dimension 2: Presentation
This dimension addresses the question, ‘Is the explanation con-

cise, clear, and well-organised, and does it effectively convey the
certainty or probability of the model’s predictions?’

Compactness: Addresses the brevity and conciseness of the ex-
planation, considering human cognitive limitations.

Composition: Involves the explanation’s format, organisation,
and structure to enhance its clarity. It focuses on how the explana-
tion is presented rather than the content itself.

Confidence: Relates to whether the explanation measures cer-
tainty or probability. This can involve two aspects: i) the confidence
level of the black box model’s prediction or ii) the reliability or
likelihood of the explanation itself.

Dimension 3: User
This dimension addresses ‘How well the explanation is tailored

to the user’s needs and expertise. Does it align with their existing
knowledge and allow for interactive engagement and control?’

Context: Considers how well the explanation is tailored to the
user’s needs and level of expertise.

Coherence: Evaluates how well the explanation aligns with exist-
ing background knowledge and rational evidence. It addresses the
reasonableness, plausibility, and agreement with human rationales.

Controllability: Measures howmuch a user canmanage, adjust, or
engagewith an explanation. It is based on the idea that ‘explanations
are interactive’ and should allow users to influence the model itself
[17] and refine them.

2.2 Fairness-in-the-loop XAI Evaluation Metrics
The installed metrics for assessing fairness in evaluating XAI meth-
ods for AD detection are employed by tailoring two of the most
important metrics in algorithm fairness evaluation [18], including
Disparate Impact (𝐷𝐼 ) and Demographic Parity (𝐷𝑃 ). DI measures
the ratio of favourable outcomes between different demographic
groups. DP assesses whether different demographic groups receive
favourable outcomes at similar rates. To evaluate the fairness of XAI
methods’ evaluation in AD detection, in our proposed framework,
the 2 metrics are named DI XAI evaluation (𝐷𝐼𝑋𝐴𝐼 ) and DP XAI
evaluation (𝐷𝑃𝑋𝐴𝐼 ). Their equations are described below:

𝐷𝐼𝑋𝐴𝐼 =
E[𝐿𝑄𝑋𝐴𝐼 | 𝑆 ≠ 1]
E[𝐿𝑄𝑋𝐴𝐼 | 𝑆 = 1] ≥ 𝜏𝐷𝐼 (0.8, 1.2), (1)

𝐷𝑃𝑋𝐴𝐼 = |E[𝐿𝑄𝑋𝐴𝐼 | 𝑆 = 1] − E[𝐿𝑄𝑋𝐴𝐼 | 𝑆 ≠ 1] | ≤ 𝜏𝐷𝑃 (0, 24) .
(2)

Notations:
• 𝐷𝐼𝑋𝐴𝐼 : Disparate Impact of the XAI evaluation metric.
• 𝐷𝑃𝑋𝐴𝐼 : Disparate Parity of the XAI evaluation metric.
• E[𝐿𝑄𝑋𝐴𝐼 | 𝑆 = 1]: Expected (average) scores (𝐿𝑄𝑋𝐴𝐼 ) from
users in the reference group (𝑆 = 1).

• E[𝐿𝑄𝑋𝐴𝐼 | 𝑆 ≠ 1]: Expected (average) scores (𝐿𝑄𝑋𝐴𝐼 ) from
users in groups other than the reference group (𝑆 ≠ 1).

• 𝑆 : Sensitive attribute (e.g., sex, ethnicity, race, marital status,
occupation, age).

• 𝑆 = 1: Reference group for the sensitive attribute.
• 𝑆 ≠ 1: Other group for the sensitive attribute.
• 𝜏𝐷𝐼 : Threshold for 𝐷𝐼𝑋𝐴𝐼 , typically in the acceptable range
of 0.8 to 1.2.

• 𝜏𝐷𝑃 : Threshold for 𝐷𝑃𝑋𝐴𝐼 , typically in the acceptable range
of 0 to 24.

To illustrate, 𝐷𝐼𝑋𝐴𝐼 is calculated by taking the ratio of the av-
erage 𝐿𝑄𝑋𝐴𝐼 between the reference group (𝑆 ≠ 1) and the other
group(s) (𝑆 = 1), ensuring that the expected 𝐿𝑄𝑋𝐴𝐼 is proportionate
across different demographic groups. Whereas, 𝐷𝑃𝑋𝐴𝐼 is calculated
by taking the absolute difference between the average 𝐿𝑄𝑋𝐴𝐼 of the
reference and other group(s), ensuring that different demographic
groups have an equal chance of receiving a 𝐿𝑄𝑋𝐴𝐼 . Acceptable
thresholds, 𝜏𝐷𝐼 and 𝜏𝐷𝑃 follow the ‘80% rule’ [18], requiring any
group’s acceptance rate to be at least 80% of the highest rate. These
metrics ensure that the evaluations of XAI methods are both fair
and unbiased, enhancing the reliability and transparency of these
methods across various user demographics. The development team
can decide which of these metrics to use in their projects. Impor-
tantly, the evaluation process can be conducted with one or multiple
sensitive attributes, depending on the project’s resources and ob-
jectives.

2.3 Implementing Algorithm
Algorithm 1 is used to detail the workflow of implementing the
proposed ‘FairAD-XAI’ framework. It begins with defining stake-
holder(s) 𝑍 , described in [19] and sensitive attributes such as sex,
ethnicity, race, marital status, occupation, and age to have different
groups 𝐺 of 𝑍 . The total number of evaluating samples (𝑁 ) is set,
along with the number of evaluation loops (𝑘). Next, 𝑛 is calculated
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Table 1: FairAD-XAI Framework, Likert Questionnaire for Evaluating XAI Methods in AD Detection. The rating assesses each
property on a 0 to 5 scale, while the overall score is a comprehensive average, ranging from Poor to Excellent.

Dimension Property Question Scale

Content

Correctness How well does the explanation reflect the model’s behaviour?

Rating
0: Not at all
1: Very Little
2: Little
3: Moderate
4: Much
5: Very much

Overall Score
0 - 20: Poor
21 - 40: Subpar
41 - 60: Average
61 - 80: Good
81 - 100: Very Good
101 - 120: Excellent

How accurately does the explanation represent the model’s decisions?

Completeness How well does the explanation cover the model’s behavior?
How thorough is the explanation in providing necessary information?

Consistency How consistently do similar inputs yield identical explanations?
How reliable is the explanation method across similar cases?

Continuity How smoothly does the explanation respond to minor input changes?
How proportional are minor input changes in the explanation?

Contrastivity How well does the explanation differentiate between outcomes?
How clearly does the explanation contrast different diagnoses?

Covariate Complexity How understandable are the features in the explanation?
How well do the features relate to the diagnosis?

Presentation

Compactness How concise is the explanation?
How well does the explanation avoid unnecessary complexity?

Composition How well-organized is the explanation?
How effectively does the format aid understanding?

Confidence How well does the explanation measure certainty?
How clearly does the explanation convey confidence?

User

Context How well is the explanation tailored to the user’s expertise?
How sufficient is the context provided by the explanation?

Coherence How well does the explanation align with AD domain knowledge?
How plausible is the explanation?

Controllability How much control does the user have over the explanation?
How interactive is the explanation?

as 𝑁
𝑠 𝑘 . The development team then decides which metric to use.

Thresholds are established for the two installed evaluation metrics
in acceptable ranges: 𝜏𝐷𝐼 (0.8,1.2) or 𝜏𝐷𝑃 (0,24). Additionally, data
of 𝐿𝑄𝑋𝐴𝐼 is collected from every user 𝑔 in each group 𝐺). During
each of the 𝑘 evaluation loops, the 𝐿𝑄𝑋𝐴𝐼 is calculated based on
all samples for the current loop is calculated. Depending on the
chosen metric, either 𝐷𝐼𝑋𝐴𝐼 or 𝐷𝑃𝑋𝐴𝐼 is calculated for the current
loop, and the result is saved. The 𝑓 𝑖𝑛𝑎𝑙_𝑎𝑣𝑒𝑟𝑎𝑔𝑒 of all folds is cal-
culated after all 𝑘 loops. If the final average meets its respective
threshold, the XAI method is labelled by 𝑍 as fair or unfair if not.
This structured approach ensures a thorough and fair assessment of
XAI methods in the context of AD detection, addressing the stated
problems.

2.4 Material
Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset [20]
was used for the model’s development. The selected features are
five cognitive and functional tests: Clinical Dementia Rating-Sum of
Boxes (CDRSB), Alzheimer’s Disease Assessment Scale 11 (ADAS11),
Alzheimer’s Disease Assessment Scale 13 (ADAS13), Alzheimer’s
Disease Assessment Scale Q4 (ADASQ4), and Mini-Mental State
Examination (MMSE). These tests can be done by mobile devices via
touch screen, camera, and microphone with medical professionals
via telemedicine, in which individuals are supported and interact
with medical professionals remotely [21], assessing cognitive and
functional functions, effectively aiding in AD detection [22], includ-
ing memory, attention, and language skills. There are a total of 1094

subjects included in this study, 699 males and 395 females. There
are 699 and 395 subjects, with 3577 and 1098 records (4657 in total)
used for𝑚𝑜𝑑𝑒𝑙𝐴𝐷 development for NC and AD, respectively. The
training sets contain 80% of the total records; the rest is a test set.

2.5 ML Methods
To support in illustrating the proposed FairAD-XAI framework,
a binary AI model for AD detection (𝑚𝑜𝑑𝑒𝑙𝐴𝐷 ) with two classes
consisting of normal control (NC) and AD was developed. Because
the model only utilises five features, there is no need for complex
models. Five methods were included in this research due to their
high performance and widely applied with effectiveness in the do-
main of AD detection [23]. They are Decision Tree (DT), Random
Forest (RF), Support Vector Machines (SVM), K-nearest Neighbours
(KNN), and eXtreme Gradient Boosting (XGBoost). Evaluation met-
rics consist of accuracy (Acc), true positive rate (TPR), false positive
rate (FPR), and F1score. More information on these metrics can be
referred to in this paper [24]

3 Results
3.1 ML Model
Table 2 details the results of these four methods for𝑚𝑜𝑑𝑒𝑙𝐴𝐷 . As
we can see, RF outperformed other methods in three out of four
metrics, being the best-performing method for𝑚𝑜𝑑𝑒𝑙𝐴𝐷 . Therefore,
the results from this model will be explained using the XAI method
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Algorithm 1 Implementation of FairAD-XAI Framework for XAI
Methods’ Evaluations in AD Detection

Develop the AI model for AD detection (𝑚𝑜𝑑𝑒𝑙𝐴𝐷 ).
Evaluate𝑚𝑜𝑑𝑒𝑙𝐴𝐷 and obtain the output results.
Decide stakeholder(s), 𝑍 , being accountable for the decision.
Define sensitive attributes: sex, ethnicity, race, marital status,
occupation, and age to have groups of users, 𝐺 .
Set𝑁 as the total number of evaluating samples (explained results
from outputs of𝑚𝑜𝑑𝑒𝑙𝐴𝐷 ) (e.g., 𝑁 = 50).
Set 𝑘 as the number of evaluation loops for separation (e.g., 𝑘 = 5)
Calculate 𝑛 = 𝑁

𝑘
(e.g., 𝑛 = 10)

Choose 𝐷𝐼𝑋𝐴𝐼 or 𝐷𝑃𝑋𝐴𝐼 to use
Set thresholds 𝜏𝐷𝐼 in range (0.8,1.2) or 𝜏𝐷𝑃 in range (0,24) de-
pending on the chosen metric
Collect 𝐿𝑄𝑋𝐴𝐼 data from 𝑔 ∈ 𝐺

Initialise an empty list fold_averages
for each of the 𝑘 evaluation loops do

Collect 𝑛 samples for the current loop
Calculate the 𝐿𝑄𝑋𝐴𝐼 for the current loop based on 𝑛

if using 𝐷𝐼𝑋𝐴𝐼 then
Calculate 𝐷𝐼𝑋𝐴𝐼 for the current loop
Add the 𝐷𝐼𝑋𝐴𝐼 result to fold_averages

else if using 𝐷𝑃𝑋𝐴𝐼 then
Calculate 𝐷𝑃𝑋𝐴𝐼 for the current loop
Add the 𝐷𝑃𝑋𝐴𝐼 result to fold_averages

end if
end for
Calculate the final average of all folds final_average =∑

fold_averages
𝑘

if using 𝐷𝐼𝑋𝐴𝐼 then
if final_average ≥ 1 − 𝜏𝐷𝐼 then

𝑍 label the XAI method as fair
else

𝑍 label the XAI method as unfair
end if

else if using 𝐷𝑃𝑋𝐴𝐼 then
if final_average ≤ 𝜏𝐷𝑃 then

𝑍 label the XAI method as fair
else

𝑍 label the XAI method as unfair
end if

end if

Table 2: Results of Methods Developed for 𝑚𝑜𝑑𝑒𝑙𝐴𝐷 . Bold
Value Represents the Best Value in The Metric.

Method Acc TPR FPR F1score
DT 98.71 98.21 1.78 98.21
RF 98.39 98.67 1.32 98.51
SVM 98.82 98.44 1.57 98.36
KNN 98.50 97.29 2.70 97.89
XGBoost 98.60 98.30 1.69 98.07

and then evaluated by the FairAD-XAI framework. Figure 2 is the
confusion matrix of𝑚𝑜𝑑𝑒𝑙𝐴𝐷 (RF) performed on the test set.

NC AD
Predicted

NC
AD

Ac
tu

al

709 6

4 216

Confusion Matrix

0

100

200

300

400

500

600

700

800

Figure 2: Confusion Matrix of 𝑚𝑜𝑑𝑒𝑙𝐴𝐷 Performed on The
Test Set.

3.2 XAI Evaluation using FairAD-XAI
Using the developed𝑚𝑜𝑑𝑒𝑙𝐴𝐷 (RF) with classes NC and AD, we
evaluate the XAI method using the OmniXAI library [25]. This
utilizes Local Interpretable Model-Agnostic Explanations (LIME) as
detailed by Ribeiro et al. [26]. Figures 3 and 4 show LIME results
for NC and AD predictions, respectively. Features are the model’s
input features, with importance scores calculated by perturbing
feature values and observing prediction changes. Higher scores
indicate greater influence, with positive scores supporting the pre-
dicted class and negative scores opposing it, pushing the prediction
away from the predicted class [26]; ‘Positive’ on the right means
supporting the prediction of the label class. For more details, refer
to the OmniXAI framework [25].

Figure 3: Example of XAI Result of Output from 𝑚𝑜𝑑𝑒𝑙𝐴𝐷
with NC.

The following contents are for the demonstration of how to use
FairAD-XAI to assess the XAI results, illustrated in Algorithm 1,
assuming that the results like Figure 3 and 4 are samples in 𝑁 . It
is important to emphasise that all stakeholders, users, and data in
the example below are hypothetical and are provided solely for
illustrative purposes to demonstrate the practical implementation
of FairAD-XAI. Stakeholders 𝑍 include two team leaders: one from
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Figure 4: Example of XAI Result of Output from 𝑚𝑜𝑑𝑒𝑙𝐴𝐷
with AD.

the AI development team and one from the medical professional
team. Groups 𝐺 contain individuals (𝑔) grouped by sex (Male, Fe-
male), race (White, Asian, Black, Others), and marital status (Never
married, Widowed, Divorced, Separated, Married). These example
subsets of 𝐺 are selected as prior research in fairness literature has
identified bias related to these characteristics [27, 28].

(1) Develop and evaluate𝑚𝑜𝑑𝑒𝑙𝐴𝐷 .
(2) Identify stakeholders (𝑍 ): AI team leader and medical team

leader.
(3) Define sensitive attributes: sex, race, marital status.
(4) Set total samples 𝑁 = 50 and evaluation loops 𝑘 = 5.
(5) Calculate samples per loop 𝑛 = 10.
(6) Choose metric: Disparate Impact (𝐷𝐼𝑋𝐴𝐼 ).
(7) Set threshold 𝜏𝐷𝐼 (0.8, 1.2).
(8) Set fold_averages storing the values of each 𝐺 each fold
(9) Collect 𝐿𝑄𝑋𝐴𝐼 data from groups 𝐺 .

Loop Calculations
Collect data from subsets of 𝐺 (sensitive attributes) with 𝑔

Loop 1: - Collect 𝐿𝑄𝑋𝐴𝐼 for each group using 10 samples:
Sex:
• Male: 𝐿𝑄𝑋𝐴𝐼 = {100, 98, 102, 96, 101} (5 users)
• Female: 𝐿𝑄𝑋𝐴𝐼 = {104, 106, 102, 110, 105} (5 users)

Race:
• White: 𝐿𝑄𝑋𝐴𝐼 = {100, 101, 99, 98, 104} (5 users)
• Asian: 𝐿𝑄𝑋𝐴𝐼 = {104, 105, 103, 100, 99} (5 users)
• Black: 𝐿𝑄𝑋𝐴𝐼 = {100, 102, 98, 104, 104} (5 users)
• Others: 𝐿𝑄𝑋𝐴𝐼 = {102, 103, 101, 99, 108} (5 users)

Marital Status:
• Never married: 𝐿𝑄𝑋𝐴𝐼 = {102, 103, 101, 95, 99} (5 users)
• Widowed: 𝐿𝑄𝑋𝐴𝐼 = {100, 99, 101, 112, 97} (5 users)
• Divorced: 𝐿𝑄𝑋𝐴𝐼 = {104, 105, 103, 110, 98} (5 users)
• Separated: 𝐿𝑄𝑋𝐴𝐼 = {102, 101, 103, 115, 100} (5 users)
• Married: 𝐿𝑄𝑋𝐴𝐼 = {100, 99, 101, 98, 112} (5 users)

𝐿𝑄𝑋𝐴𝐼 is averaged from users 𝑔. For sex, there are only two 𝐺 ,
so we calculate the 𝐷𝐼𝑋𝐴𝐼 by taking the ratio of the 𝐿𝑄𝑋𝐴𝐼 . For
the sensitive attribute of race, we have multiple groups: White,
Asian, Black, and Others. We calculate the pairwise 𝐷𝐼𝑋𝐴𝐼 for each

combination of these groups and compute the 𝐷𝐼𝑋𝐴𝐼 for race as
the average of these pairwise values. Similarly, for the sensitive
attribute of marital status, we have multiple groups: Never married,
Widowed, Divorced, Separated, and Married. We calculate the pair-
wise 𝐷𝐼𝑋𝐴𝐼 for each combination of these groups and compute the
𝐷𝐼𝑋𝐴𝐼 for marital status as the average of these pairwise values.

These 𝐷𝐼𝑋𝐴𝐼 values are added to fold_averages for each subset
of 𝐺 with sensitive attributes (sex, race, marital status) and move
to the next loop with other samples in 𝑛.

Repeat for Loops 2-5. Finally, the overall average 𝐷𝐼𝑋𝐴𝐼 for
each subset of G (sensitive attributes) is calculated by averaging
the fold_averages across all loops.

Final Calculation
Calculate the final average of each 𝐺 all folds (loops). Assuming
that the final average 𝐷𝐼𝑋𝐴𝐼 is 1.02 for sex, 0.9 for race, and 1.12
for marital status.

Decision
Since all the final averages are within the threshold (0.8, 1.2), the
XAI method is labelled as fair by 𝑍 .

Overall Score: Additionally, this can be calculated by storing
the average 𝐿𝑄𝑋𝐴𝐼 from subsets of 𝐺 in fold_averages instead of
𝐷𝐼𝑋𝐴𝐼 , then quality is concluded based on the range in Section 2.1.

4 Conclusion and Discussion
In conclusion, the proposed ‘FairAD-XAI’ framework is a vital el-
ement in tackling the current problems of XAI methods for early
AD detection [11]. It can be a reference for multiple ML tasks, not
limited to classification in the example. Moreover, it can be also
a versatile, comprehensive and quantitative method for evaluat-
ing the effectiveness of XAI techniques using various explanation
types [14]. Furthermore, this adaptable framework makes it possi-
bly applicable beyond AD detection. Projects in other domains can
adopt and tailor the ‘FairAD-XAI’ framework to fit their specific
needs, leveraging its emphasis on explanation quality to assess the
reliability and fairness of their XAI implementations.
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