

Fine-Grained Visual Understanding for Multimodal and Trustworthy AI

Abstract

Fine-Grained (FG) and Ultra-Fine-Grained (UFG) Visual Understanding has recently become an important problem in AI research, because of its considerable ability to distinguish objects visually very similar but semantically different. This paper aims to offer a viewpoint-based overview and taxonomy on the state of the art of the FGVC tasks, covering existing FGVC datasets as well as approaches, and identify possible pros and cons for FGVC datasets in terms of scalability, cost basis of annotating, domain coverage and generalization. We also review how recent trends, with transformer-based vision architecture, advanced data augmentation (in particular generative augmentation), and the multimodal integration of vision, language/metadata are pushing towards the practical need for FGVC and Ultra-Fine-Grained Visual Categorization (UFGVC) necessary in building multimodal and trustworthy AI systems. In our study, we detect a number of standing challenges: lack of public ultra-fine-grained datasets, high annotation complexity, non-trivial long-tail/rare class learning setting and inadequate exploitation on multimodal and semantic context. Finally, we present a prospective research roadmap on multimodal visual understanding covering robustness under long-tailed distributions, explainability, data efficient learning and deployment to real-world applications. Motivated by previous advances, as well as the remaining challenges in this field, we hope that this survey can shed light on the design of more generalizable, reliable and semantically-grounded visual intelligence.

ACM Reference Format:

.. Fine-Grained Visual Understanding for Multimodal and Trustworthy AI.
In *Proceedings of . ACM*, New York, NY, USA, 13 pages.

1 Introduction

This study will begin by elucidating the primary motive for interpreting the significance of Fine-Grained Visual Categorization (FGVC)/Ultra-Fine-Grained Visual Categorization (UFGVC) in relation to Multimodal and Trustworthy AI. Furthermore, it will provide definitions and delineate the scope, concluding with an introduction to the aims of this survey. Figure 1 summarizes our positioning of FG/UFG as evidence-centric primitives bridging multimodal alignment and trustworthy evaluation.

1.1 Motivation

This section examines one question: (I) Is FGVC / UFGVC considered an outdated question?

1.1.1 Is FGVC / UFGVC considered an outdated question? Recent developments suggest that FGVC and UFGVC are not out-of-favor, but are instead on an upswing within modern visual understanding, propelled by transformer-based architectures, improved learning

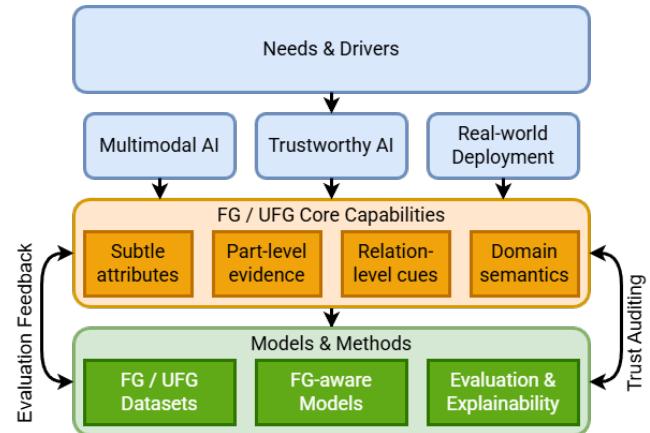


Figure 1: Positioning of fine-grained (FG) and ultra-fine-grained (UFG) visual understanding within multimodal and trustworthy AI.

Real-world deployment demands multimodal alignment, trustworthiness, and reliability, motivating FG/UFG capabilities such as subtle attribute recognition, part-level evidence localization, and relation-level reasoning, which in turn shape datasets, model architectures, and evaluation.

procedures, and broader real-world requirements. In FGVC, hierarchical attention and transformer-based methods continue to improve both performance and methodology [13, 25, 103]. UFGVC remains an open frontier and a significant challenge, especially when inter-class differences are extremely subtle or beyond human perceptual capability, with strong relevance to applications such as agriculture and biodiversity [109]. Transformer-style and contrastive learning techniques continue to rejuvenate representation learning in fine-grained and ultra-fine-grained settings [27, 106, 107], while attention-based and part-detection approaches still hold their ground across canonical benchmarks [9, 10]. The continued release of datasets and domain-specific deployments (e.g., plant cultivar or produce recognition) provide evidence of sustained community engagement and practical utility [88, 95, 109, 115]. Meanwhile, mask-based and self-supervised methods further enhance methodological diversity and sample efficiency [55, 56, 108].

1.2 Why FG / UFG Is Becoming More Important?

Fine-grained (FG) and ultra-fine-grained (UFG) perception is no longer just a "harder classification setting"; it is becoming a structural requirement for modern AI. This shift is driven by three converging trajectories—multimodal intelligence, trustworthy interpretability, and real-world deployment—where decisions increasingly hinge on subtle attributes, parts, and interactions. **Figure 2**

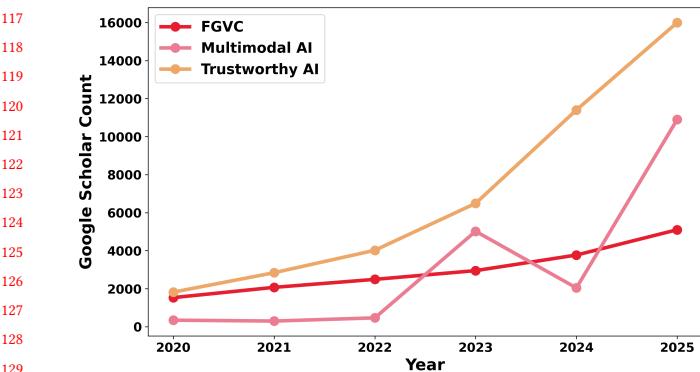


Figure 2: From 2020 to 2025, FGVC shows steady growth, while Multimodal AI and Trustworthy AI surge rapidly in recent years, indicating a shift toward multimodal integration and reliable AI research.

shows the publication-trend analysis under our exact query strings (Appendix A.4).

Multimodal AI. Contemporary multimodal systems depend on stable and interpretable fine-grained primitives to align representations across vision, language, and other modalities. Frameworks such as DIME and MultiSHAP suggest that disentangling *fine-grained* cross-modal interactions enables interpretable and robust reasoning, which is crucial for debugging and alignment in multimodal models [46, 90]. Moreover, FG analysis naturally supports semantic supervision in tasks where subtle attributes and relations determine performance—for example, emotion recognition and language–vision grounding [38]. As multimodal AI expands beyond vision–language into biosignals, speech, and robotics, fine-grained interpretability increasingly serves as the backbone for generalizable alignment across heterogeneous sensing and decision pipelines [44].

Trustworthy AI. As trustworthy and explainable AI becomes a central requirement, many fairness, bias, and reliability failures are found to originate at the fine-grained feature/attribute level rather than at coarse class labels. Accordingly, trust increasingly relies on interpretability methods that expose fine-grained causal and interactional structures, especially for black-box foundation models [75, 77]. In medical and social domains, human-centered trust is often achieved through explanations at the diagnostic-feature level—not merely through high-level confidence scores [21]. In addition, the rise of synthetic content makes fine-grained forensics (e.g., pixel-/token-level cues) essential for transparency and for countering deception, as exemplified by recent multimodal forensics models [39].

Real-world Deployment. FG/UFG capabilities have shifted from academic benchmarks to deployment necessities in safety-critical and high-precision settings. Deployment-centric multimodal AI highlights that fine-grained interpretability is required to ensure reliable operation across healthcare, environmental monitoring, and industrial applications [44]. For instance, multimodal ECG resources such as MEETI emphasize beat-level annotations to support trustworthy diagnosis and integration into clinical decision

support workflows [112]. Similarly, biodiversity and agriculture applications often require ultra-fine-grained recognition (e.g., subtype-level fungi identification), where such distinctions directly affect ecosystem management and agricultural health [58].

In summary, FG/UFG understanding is becoming indispensable because modern multimodal, trustworthy, and deployed AI systems increasingly depend on precise, interpretable, and ethically constrained handling of detailed semantic attributes. In high-stakes, human-centered settings, FG/UFG is where performance, reliability, and accountability ultimately converge.

1.3 Definitions & Scope

This survey adopts the position that *fine-grained* (FG) and *ultra-fine-grained* (UFG) problems should not be reduced to "a deeper taxonomy" or "more classes". While label granularity often correlates with difficulty, the defining challenge is the *kind of understanding* required to separate categories: correct recognition hinges on weak, localized, and compositional evidence that is easy to miss, easy to confuse with context, and often meaningful only under domain-specific semantics. Under this view, FG/UFG settings are best interpreted as instances of *fine-grained visual understanding*, where the model must ground decisions in subtle attributes, part-level structure, and relation-level cues rather than relying on coarse global appearance or dataset-specific shortcuts.

1.3.1 Clarifying FGVC, UFGVC, and Fine-Grained Understanding.

Fine-Grained Visual Categorization (FGVC). FGVC typically refers to distinguishing sub-categories within a shared super-class, such as species within birds or trims within a vehicle family. The difficulty arises from a characteristic imbalance: inter-class differences are small and often concentrated in limited regions, whereas intra-class variation induced by pose, illumination, viewpoint, occlusion, and background can be substantial. As a result, FGVC is not merely a matter of capacity or data scale; it is a matter of whether representations and training signals encourage attention to the truly discriminative evidence and suppress spurious correlations. In FG/UFG, such spurious cues often come from background or acquisition artifacts, so evaluations should include slice checks or simple perturbations that break non-causal context.

Ultra-Fine-Grained Visual Categorization (UFGVC). UFGVC narrows inter-class margins to the point where discriminative cues are faint, highly localized, and sensitive to imaging conditions. Consequently, reliable evaluation typically demands tighter protocols and high-fidelity annotations, since small labeling or acquisition ambiguities can dominate observed performance; the goal shifts from identifying the object to resolving its precise variant or condition under domain-specific semantics.

Fine-grained understanding is more than category granularity. FG/UFG refers to the level of visual understanding required rather than the number of labels. In practice, recognition depends on subtle visual attributes, localized part-level evidence, relational structure, and domain-specific semantics. Consequently, a task can be fine-grained even with few classes if such evidence is required, while a large label set does not necessarily imply fine-grained understanding when coarse cues suffice.

233 **1.3.2 Scope of this survey.** This survey covers datasets, methods,
 234 and evaluation protocols that operationalize FG/UFG recognition
 235 for multimodal trustworthy AI, focusing on how distinctions are
 236 defined, supervised, and assessed; how models attend to discrimin-
 237 ative attributes/parts/relations; how language/metadata/other
 238 modalities ground subtle visual differences; and how reliability
 239 (shift robustness, long-tail behavior, attribute-/part-level faith-
 240 fulness) is ensured. It is not leaderboard-centric; comparisons are
 241 used only to expose trade-offs (spurious cues, noise sensitivity, data
 242 efficiency, generalization, and evidential support).

244 **1.3.3 Working definition used throughout.** Throughout the remain-
 245 der of the paper, we use the following operational definition to
 246 guide our perspective-driven analysis. *Fine-/ultra-fine-grained vi-
 247 sual understanding* refers to a model’s ability to make correct, ro-
 248 bust, and explainable decisions when the decisive signal is subtle,
 249 localized, and compositional, and when the meaning of distinc-
 250 tions is grounded in domain semantics that may not be captured
 251 by generic object categories. This definition makes explicit why
 252 FG/UFG should be studied beyond label granularity, and it motivates
 253 the survey’s emphasis on multimodal grounding and trustworthi-
 254 ness rather than benchmark ranking alone.

256 **1.4 Survey Objectives and Contributions**

258 Fine-Grained and Ultra-Fine-Grained Visual Categorization (FG/UFG)
 259 constitute a stringent testbed for modern visual recognition, where
 260 decisions rely on subtle, localized, and compositional evidence such
 261 as object parts, attributes, and fine-grained relations. Beyond ac-
 262 curacy benchmarks, FG/UFG expose fundamental limitations in
 263 robustness, calibration, and interpretability, particularly under dis-
 264 tribution shifts and annotation ambiguity.

265 This survey has three objectives: (i) to organize recent FG/UFG
 266 advances from the perspectives of multimodal alignment and trust-
 267 worthy AI, (ii) to identify structural challenges in evaluation and
 268 deployment beyond data scarcity, and (iii) to outline future research
 269 directions.

270 Accordingly, we present three complementary perspectives: (i)
 271 FG/UFG as semantic primitives that support fine-grained ground-
 272 ing and multimodal alignment beyond global image–text match-
 273 ing; (ii) FG/UFG as reliability stress tests that reveal robustness
 274 and calibration failures under uncertainty and distributional shift;
 275 and (iii) FG/UFG as tools for auditing and transparency, enabling
 276 attribute- and part-level explanations for bias analysis and account-
 277 able decision-making.

278 **2 Background**

279 **2.1 Historical Evolution**

282 From the earliest handcrafted visual systems to modern Vision-
 283 Language Models (VLMs), the development of FG and UFG recog-
 284 nition reflects the changing way in which models extract and align
 285 evidence. Early methods explicitly defined primitives and relied
 286 on human-engineered descriptors, while deep learning gradually
 287 internalized these processes, embedding them into more complex
 288 and integrated architectures. Yet, despite this shift, the core demand
 289 for fine-grained discrimination – recognizing subtle, localized cues

– has never disappeared, only been increasingly hidden within
 291 larger representational and alignment frameworks.

292 **Handcrafted.** Initial FGVC methods were dominated by hand-
 293 engineered features like SIFT, HOG, and BoW that explicitly defined
 294 visual primitives. These models relied on manually selected key-
 295 points and descriptors to represent fine details in texture and shape
 296 [29]. While interpretable, such systems lacked adaptability and
 297 performed poorly on large-scale, complex datasets.

298 **CNN.** The emergence of Convolutional Neural Networks (CNNs)
 299 revolutionized FG recognition by learning localized discriminative
 300 features automatically. CNN-based architectures such as ResNet and
 301 attention-augmented models could extract hierarchical texture cues
 302 and region-specific signals, but they often over-relied on shortcuts
 303 and context biases rather than truly fine-grained evidence [26, 68].

304 **Transformer.** Transformers reframed FG recognition by making
 305 evidence selection itself the central task. Their self-attention
 306 mechanism enables global reasoning about which visual tokens
 307 matter, bridging local and contextual cues [27, 87]. This paradigm
 308 integrates both local and global dependencies but often turns dis-
 309 criminative “parts” into implicit attention maps rather than explicit
 310 primitives.

311 **Multimodal.** In the Multimodal era, tasks like FG and UFG recog-
 312 nition are no longer treated as standalone problems but as emergent
 313 capabilities of massive image–text alignment systems such as CLIP.
 314 Models like FGM-CLIP show that multimodal pretraining can cap-
 315 ture fine-grained cues through implicit cross-modal correlations,
 316 though this also makes errors appear more “human-like” [40, 97].

317 Across this evolution, FG/UFG recognition has transitioned from
 318 explicit manual design to implicit representational learning. The
 319 need for subtle, part-based reasoning persists, but it has been pro-
 320 gressively absorbed into broader architectures where “what counts
 321 as evidence” is learned, weighted, and sometimes obscured. This
 322 marks not the disappearance of fine-grained vision, but its deep
 323 embedding into multimodal intelligence.

327 **2.2 FG / UFG as Perceptual Bottlenecks**

328 Recent work on fine-grained and multimodal perception suggests
 329 an intermediate *representational bottleneck* in which compression
 330 attenuates subtle yet semantically decisive cues, especially when
 331 weak visual evidence must be aligned with high-level concepts
 332 [43, 96, 104]. In this view, FGVC/UFGVC function less as “finer clas-
 333 sification” and more as diagnostic probes: they test whether internal
 334 representations retain minimal discriminative evidence for seman-
 335 tic grounding under overlapping cues and annotation ambiguity.
 336 For MLLMs, such bottlenecks often manifest as encoder–reasoner
 337 misalignment, degrading reasoning under subtle distribution shifts
 338 [24, 54]. Across FG/UFG and multimodal studies, models near this
 339 bottleneck repeatedly exhibit evidence–concept misalignment, un-
 340 supported attribute hallucination, and shortcut reliance on spurious
 341 correlations rather than discriminative cues [2, 67, 80].

342 Importantly, these failure modes have been independently re-
 343 ported across different architectures and tasks, including CLIP-like
 344 models, concept bottleneck models, and recent MLLMs, suggesting
 345 that they reflect structural limitations rather than isolated imple-
 346 mentation issues.

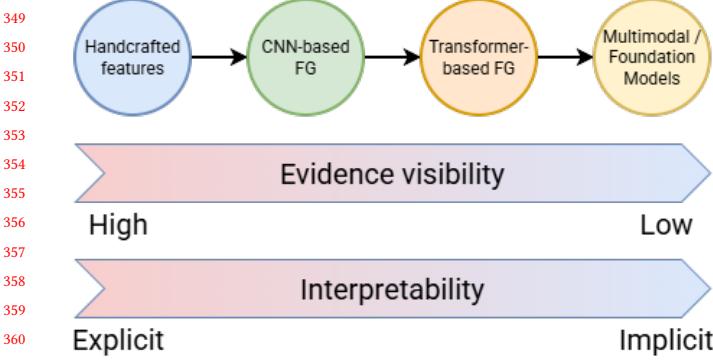


Figure 3: Historical evolution of FG and UFG visual recognition. The progression from handcrafted features to CNNs, transformers, and multimodal foundation models reflects a shift from explicit, human-defined evidence toward implicit, learned representations. While modern models achieve strong performance, the visibility and auditability of fine-grained evidence often decrease, motivating renewed emphasis on interpretable FG/UFG structures.

Ultimately, the FG/UFG perceptual bottleneck should be reframed as a design insight rather than a limitation: it highlights the need for models that can disentangle minimal sufficient representations, align semantics across modalities, and verify evidence reliability. Thus, FG/UFG benchmarks function not merely as finer recognition tasks, but as semantic atoms—essential testing grounds and alignment interfaces for trustworthy multimodal cognition and system design [11, 69].

This dataset-level trend supports the same interpretation. As shown in Figure 4, recent benchmarks increasingly target ultra-fine distinctions, implying that FG/UFG tasks are often used as diagnostic probes for representational bottlenecks rather than simply harder classification settings.

From a survey perspective, FG/UFG tasks therefore act as empirical probes of how perceptual evidence is selected, compressed, and aligned with semantics in modern vision and multimodal systems. This view consolidates evidence across datasets and models, clarifying why FG/UFG benchmarks are repeatedly adopted as stress tests for robustness, grounding, and trustworthiness.

3 Datasets and Methodologies

Survey protocol. We conducted a structured search over major scholarly indices (details in Appendix A), using predefined keyword sets and year filters, followed by title/abstract screening and full-text inclusion criteria to curate the reviewed papers. Exact search queries (used for Fig. 2) and the final paper list are provided in Appendix A for reproducibility. The dataset inventory in Table 1 (and Fig. 4 derived from it) is representative rather than exhaustive, hence temporal trends should be interpreted as indicative. We summarize commonly used evaluation metrics/protocols in Appendix B. Limitations include potential coverage bias from search

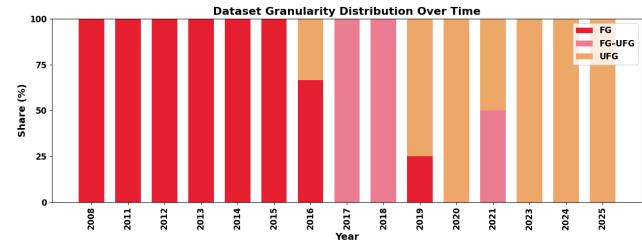


Figure 4: Dataset granularity has shifted over time: fine-grained (FG) visual recognition moved from early reliance on classical FG datasets toward increasingly ultra-fine-grained (UFG) settings. This reflects rising needs for subtle, expert-defined distinctions and a dataset-design evolution toward real-world semantics and deployment constraints, not just larger label sets. Based on Table 1; the dataset list is representative, so apparent trend changes should be interpreted cautiously.

sources/keywords and subjective boundaries between FGVC and UFGVC.

From the perspective of FG/UFG as a semantic bottleneck, datasets are not merely collections of labels, but mechanisms that decide which fine-grained evidence can be learned, audited, and aligned across modalities. The historical progression of dataset granularity shown in Figure 4 provides important context for understanding why contemporary FG/UFG benchmarks differ fundamentally from earlier fine-grained datasets.

3.1 FG Datasets

Classical FG datasets such as ImageNet[63] or CUB-200[85] have been instrumental in advancing visual recognition, but their apparent accuracy saturation does not mean the problem is solved. Studies show that high accuracy often reflects dataset-specific biases or limited variability, which artificially inflates performance metrics without true generalization [94]. For example, vehicle classification models achieve over 95% accuracy but fail under more diverse or realistic testing conditions due to inherent dataset homogeneity [73]. This accuracy saturation thus reflects overfitting to narrow domains rather than progress toward robust, trustworthy AI systems.

These limitations of classical FG datasets motivate a push toward UFG settings, where distinctions are more semantically precise but also far more demanding in terms of annotation fidelity, expert involvement, and ambiguity management.

3.2 UFG Datasets

UFG datasets push toward higher resolution and deeper semantic distinctions, yet they come with high annotation costs, subjectivity, and dependence on domain experts. For instance, the TomatoMAP dataset for plant phenotyping required extensive manual labeling by experts to ensure consistency across growth stages [113, 114]. Similarly, fine-grained legal datasets rely on human experts to label fact-article correspondences, revealing that fine distinctions

Table 1: Representative FG and UFG Visual Recognition Datasets, sorted chronologically by release year. Beyond cataloging datasets by domain and granularity, the table highlights a structural transition toward ultra-fine-grained, expert-driven, and long-tailed benchmarks, underscoring emerging challenges in annotation cost, generalization, and trust-related evaluation discussed in later sections.

Dataset	Year	Venue / Source	Domain	Granularity	Task Type
Oxford Flowers 102	2008	ICVGIP 2008[53]	Flowers	FG (category-level, 102 classes)	Classification
Caltech-UCSD Birds-200-2011 (CUB-200-2011)	2011	Dataset release[85]	Birds	FG (species-level, 200 classes)	Classification / Part localization
Stanford Dogs	2011	FGVC @ CVPR 2011[34]	Dogs	FG (breed-level, 120 classes)	Classification
Leafsnap	2012	ECCV 2012[37]	Plants / Trees	FG (species-level)	Classification
FGVC-Aircraft	2013	arXiv 2013[47]	Aircraft	FG (variant / model-level, hierarchical)	Classification
Stanford Cars (Cars196)	2013	FGVC @ CVPR 2013[36]	Cars	FG (make / model / year)	Classification
Birdsnap	2014	CVPR 2014[4]	Birds	FG (species-level, 500 classes)	Classification
Food-101	2014	ECCV 2014[7]	Food	FG (dish-level, 101 classes)	Classification
NABirds	2015	CVPR 2015[81]	Birds	FG (species-level with subspecies / gender)	Classification
CompCars	2015	CVPR 2015[102]	Cars	FG (model-level; web + surveillance)	Classification / Verification
LifeCLEF / PlantCLEF 2015	2015	LifeCLEF Challenge[20]	Plant Identification	FG (species-level, ~1000 classes)	Classification / Retrieval
PlantVillage	2015	arXiv 2015[31]	Agriculture (Plant disease)	FG (species x disease)	Classification
DeepFashion	2016	CVPR 2016[45]	Fashion	FG (categories / attributes)	Classification / Retrieval
Stanford Online Products (SOP)	2016	CVPR 2016[70]	E-commerce Products	UFG (instance-level)	Retrieval / Metric Learning
Urban Trees (Pasadena Urban Trees)	2016	CVPR 2016[91]	Urban forestry / Remote sensing	FG (species-level)	Detection + Classification
iNaturalist 2017 (iNat2017)	2017	CVPR 2018[83]	Biodiversity	FG-UFG continuum (taxony-aware)	Classification / Detection
HAM10000	2018	arXiv 2018 / ISIC Challenge[12, 78]	Medical (Dermatology)	FG-UFG continuum (lesion-type level)	Classification / Segmentation
DeepFashion2	2019	CVPR 2019[16]	Fashion	UFG (clothing identity with dense annotations)	Detection / Pose / Segmentation / Re-ID
Herbarium-2019	2019	CVPR 2019[74]	Herbarium Sheets / Botany	FG (species-level)	Classification
SKU-110K	2019	CVPR 2019[22]	Retail Shelves	UFG (dense instance-level detection)	Detection
IP102	2019	CVPR 2019[95]	Insect Pests / Agriculture	FG (species-level)	Classification
Plant-Pathology-2020	2020	arXiv 2020 / CVPR 2020 FGVC Workshop[76]	Apple Leaves / Plant Disease	UFG (fine-grained disease-level)	Classification
Products-10K	2020	arXiv 2020 / ICPR Challenge[3]	E-commerce Products	UFG (SKU-level)	Classification
Google Landmarks Dataset v2 (GLDv2)	2020	CVPR 2020[93]	Landmarks	UFG (instance-level)	Recognition / Retrieval
Danish-Fungi-2020 (DF20)	2020	WACV 2022[57]	Wild Fungi / Biodiversity Monitoring	UFG (species-level, long-tailed)	Classification
iNaturalist 2021 (iNat2021)	2021	CVPR 2021[82]	Biodiversity	FG-UFG continuum (taxony-aware)	Classification / Detection
UFGVC	2021	ICCV 2021[109]	Leaf	UFG (gene, order)	Classification
BIOSCAN	2023	NeurIPS 2023[18]	Insects	UFG (BIN, order, family)	Classification
AMI	2024	ECCV 2024[33]	Wild Insects / Camera Trap Monitoring	UFG (species-level, long-tailed, OOD)	Classification
AquaMonitor	2025	arXiv 2025[32]	Aquatic Invertebrates / Biodiversity Monitoring	UFG (species-level, ultra-fine-grained)	Classification
TomatoMAP	2025	arXiv 2025[113, 114]	Agriculture / Plant Phenotyping	UFG (phenotyping)	Classification / Detection / Segmentation

improve interpretability but increase annotation subjectivity and labor intensity [15]. These challenges highlight the trade-off between dataset granularity and scalability, especially in domains requiring expert validation.

3.3 Hidden Gap: Dataset Design vs Trustworthy AI

While increasing dataset granularity improves fine-grained recognition performance, it does not automatically translate into trustworthy behavior. A deeper gap remains between how datasets are constructed and how trust-related properties—such as bias, explanation faithfulness, and uncertainty—are evaluated. Despite progress, a hidden gap remains between current dataset design and the goals of trustworthy AI. Most datasets still lack mechanisms for systematic bias analysis or explanation evaluation [1]; they fail to capture how demographic, environmental, or stylistic biases propagate through models [19]. Recent works emphasize that dataset documentation and hybrid bias-tracing frameworks are essential to bridge this gap, enhancing explainability and fairness in AI pipelines [64]. Without such integration, even highly accurate systems risk being untrustworthy due to unexamined biases and opaque evaluation protocols.

In summary, although FG and UFG datasets improve benchmark performance, they fall short of supporting trustworthy AI, as limited data coverage often leads to benchmark-specific gains rather than real-world generalization.

4 FG / UFG for Multimodal AI

While datasets determine which fine-grained cues are learnable, effective reasoning ultimately depends on aligning these visual distinctions with other modalities, especially language.

4.1 Fine-grained Visual–Language Alignment

Recent works emphasize that fine-grained alignment between visual and textual modalities is essential for improving reasoning accuracy in multimodal systems. For instance, VideoGLaMM achieves pixel-level grounding between video frames and text, effectively connecting temporal and spatial elements for precise part–phrase correspondence [50]. Similarly, AlignCAT introduces category- and attribute-based matching to refine weakly supervised visual grounding, enabling more accurate attribute grounding and part–phrase alignment [89]. Failure analyses, such as those from LEGO Co-builder, reveal that even advanced models like GPT-4o fail at detailed spatial reasoning tasks, exposing persistent limitations in fine-grained visual understanding [30]. Likewise, ViGor demonstrates that large vision-language models (VLMs) still hallucinate nonexistent visual elements, but fine-grained reward modeling can mitigate such failures by reinforcing accurate grounding [100].

4.2 FG Knowledge as Multimodal Anchors

FG knowledge acts as symbolic hooks and reasoning anchors that connect perceptual inputs with conceptual structures. *M²ConceptBase* exemplifies this by introducing a concept-centric multimodal knowledge base that links visual and linguistic representations through

581 context-aware symbol grounding, improving reasoning and re-
582 trieval performance [111]. Similarly, Dr-LLaVA leverages symbolic
583 clinical grounding to constrain VLM reasoning with structured
584 medical knowledge, ensuring interpretability and domain reliability
585 [72]. Further, VaLiK demonstrates how aligning visual features to
586 language for multimodal knowledge graph construction enhances
587 reasoning depth in large models, making symbolic FG knowledge a
588 key anchor for multimodal understanding [42]. Collectively, these
589 advances show that FG knowledge structures can serve as cognitive
590 scaffolds—stabilizing multimodal reasoning and reducing
591 hallucination by tying perception to symbolic semantics.

592 However, improved multimodal alignment alone does not guarantee
593 reliability or accountability, motivating a dedicated discussion
594 on trustworthiness.

596 5 FG / UFG for Trustworthy AI

597 Trust failures in multimodal AI often occur when FG/UFG evidence
598 is absent, confounded, or unverifiable. Although Table 1 categorizes
599 datasets by granularity and domain, it does not capture trust-
600 related properties. To address this, Table 2 re-examines FG/UFG
601 datasets using *operational, reproducible* criteria: **Bias/Fairness** (sub-
602 group annotations + auditing protocol), **Long-tail** (imbalance +
603 rare-slice/OOD evaluation), **Annotation Quality** (expert vs. mixed
604 pipelines), **Ambiguity** (uncertainty/disagreement representation),
605 and **Explainability Signal** (strongest supervision such as parts/
606 hierarchy/lesions). We map each attribute to *High/Medium/Low* via
607 a simple rubric: High = explicit annotations & protocol, Medium
608 = partial/proxy support, Low = none. We further synthesize methods
609 under a unified taxonomy, highlighting shared design choices,
610 trade-offs, and failure modes across paradigms.

612 5.1 Bias and Fairness

613 Bias often hides in fine-grained attributes that coarse-grained labels
614 fail to expose. Recent research demonstrates that fine-grained semantic
615 computation allows AI systems to detect subtle biases across
616 demographic groups by analyzing claim-level meanings rather than
617 token-level features [99]. A practical limitation is that fairness can-
618 not be directly audited when subgroup annotations are missing,
619 so many FG/UFG studies rely on proxy slices as a minimum di-
620 agnostic rather than a complete fairness evaluation. Fine-grained
621 fairness auditing frameworks such as Predictive Representativity
622 further reveal outcome-level inequities, emphasizing the need to
623 evaluate model generalization across underrepresented populations
624 rather than merely balancing datasets [49]. Additionally, methods
625 like Fairness Regularizers improve performance across minority
626 subpopulations in long-tailed and noisy data scenarios, promoting
627 equitable learning without sacrificing accuracy [92].

629 5.2 Transparency and Explainability

630 Fine-grained representations naturally support part-based explanations
631 and attribute-level reasoning, enabling transparent and interpretable
632 AI behavior. Representation Engineering (RepE) enhances
633 AI transparency by analyzing high-level, population-based representations
634 to better interpret complex model cognition [116]. Similarly, prototypical and self-explainable classifiers, such as Pantypes,
635 capture diverse latent features to provide interpretable, part-level

639 justifications for model predictions [35]. Involving domain experts
640 in the representation debiasing process can further enhance interpretability
641 and fairness without reducing model accuracy [6].

642 5.3 Robustness and Long-tail Reliability

643 Long-tailed settings can further amplify spurious correlations, where
644 head-class context becomes a shortcut that fails under rare-slice or
645 shifted conditions. Long-tail scenarios represent ultra-fine distinctions
646 where foundation models often exhibit their greatest fragility.
647 Studies indicate that robust long-tail learning frameworks, such
648 as ViRN and Distributional Robustness Loss, improve model gen-
649 eralization and reduce overfitting to head classes by enhancing
650 representation quality for rare or fine-grained instances [14, 65].
651 Moreover, fine-grained evaluation frameworks like SALTED un-
652 cover rare but critical long-tail errors in generative and translation
653 models, providing diagnostic visibility into subtle reliability issues
654 [62]. These findings reinforce that ultra-fine granularity in rep-
655 resentation and monitoring is central to building AI systems that
656 remain fair, interpretable, and reliable under distributional stress.

656 6 Open Challenges and Research Gaps

657 Despite major advances in multimodal large language models (MLLMs),
658 several open challenges remain in achieving FG and UFG multi-
659 modal understanding.

660 6.1 Lack of FG-aware multimodal benchmarks

661 Current benchmarks often lack the resolution and annotation rich-
662 ness necessary for FG/UFG analysis. New datasets such as FG-BMK
663 and FineBadminton emphasize multi-level semantic hierarchies and
664 spatio-temporal reasoning but still face issues in defining precise
665 "evidence units" like parts, attributes, or relations [28, 105].

666 Emerging multimodal benchmarks increasingly recognize the
667 importance of fine-grained evidence but still expose critical inte-
668 gration gaps. Recent work such as VER-Bench and FAVOR-Bench
669 shows that models struggle to reason over subtle visual or temporal
670 cues [59, 79]. Multimodal datasets like MACSA and Fakeddit demon-
671 strate the value of linking textual, visual, and contextual elements
672 for fine-grained reasoning and annotation richness [51, 101]. More-
673 over, biosignal-based studies highlight new directions for modeling
674 embodied ambiguity and subjectivity in evidence interpretation
675 [52]. Together, these advances underscore the need for FG-aware
676 benchmarks that model multi-modal "evidence units" dynamically
677 across perception, context, and interpretation.

678 6.2 Evaluation beyond accuracy

679 Recent studies show that accuracy-based metrics are insufficient
680 for evaluating fine-grained reasoning and structural understanding
681 in multimodal models. Process-oriented benchmarks such as MM-
682 MATH assess intermediate reasoning steps and solution processes
683 to reveal procedural and diagram-level errors [71]. Human-Aligned
684 Bench incorporates human performance baselines to measure rea-
685 soning gaps between models and people [60]. This remains un-
686 solved because we still lack standardized, evidence-centric proto-
687 cols that separate genuine fine-grained reasoning from benchmark
688 shortcuts, and in UFG settings even slight annotation or acquisition
689 noise can dominate measured gains.

Table 2: Trustworthiness Dimensions in FG / UFG Datasets

Dataset	Bias / Fairness	Long-tail	Explainability Signal	Annotation Quality	Ambiguity
CUB-200-2011	Low	Low	Parts	Expert	Low
iNat2021	Medium	High	Taxonomy	Mixed	Medium
BIOSCAN	Medium	Ultra High	Hierarchy	Expert	High
HAM10000	High	Low	Lesion-level	Expert	Medium
AMI	Medium	Ultra High	OOD / Long-tail	Expert	High

6.3 Integration with foundation models

While foundation models dominate multimodal AI, their FG/UFG integration is limited. Approaches like *HEMM* [41] and *SciVer* [86] show the need for "FG-aware adapters" or modular probes to enhance foundation models rather than retraining them entirely. **This challenge persists because injecting FG-aware components into foundation backbones can disturb their learned global alignment, and in UFG a tiny shift in token-level attention can flip the predicted subtype.** Integrating foundation models is non-trivial because FG/UFG needs evidence-level control (parts/attributes/relations), while general-purpose models provide limited hooks to enforce such fine-grained supervision.

6.4 Human-in-the-loop and expert knowledge integration

Few studies integrate expert reasoning into training or evaluation. Datasets like *EVADe* [98] and *FineBadminton* demonstrate the benefits of human refinement pipelines, yet comprehensive frameworks for continuous expert feedback loops in multimodal reasoning remain scarce. **This gap is also economic: expert labels are costly, making label-efficient expert-in-the-loop strategies a key practical direction.** It is still open because expert feedback is scarce, heterogeneous, and hard to translate into consistent training signals, and in UFG genuine inter-expert disagreement is often intrinsic rather than a fixable labeling error.

6.5 FG/UFG × Temporal or Process Understanding

Fine-grained temporal reasoning remains an underexplored domain. *TemporalBench* [8], *EOC-Bench* [110], and *VideoMathQA* [61] highlight persistent gaps in modeling ultra-fine temporal evidence – understanding process-level causality, motion sequences, and temporally entangled multimodal events. **This gap remains because temporal evidence is sparse and entangled with context, making causality difficult to verify, and in UFG a few frames or a slight phase shift can decide the class.**

7 Future Research Directions

This section outlines seven future research directions, synthesizing the preceding discussions to highlight promising paths for advancing fine-grained and ultra-fine-grained visual understanding in multimodal and trustworthy AI. **Future benchmarks should define FG evidence units across modalities (image, text, metadata, biosignals) and incorporate controlled ambiguity and expert disagreement rather than enforcing single labels** [48].

7.1 FG-aware Multimodal Representation Learning

Building upon the challenges identified in Section 6.1, we focus on FG evidence-preserving multimodal representations. Recent multimodal representation learning, especially vision–language pretraining, achieves strong performance on coarse-grained tasks such as retrieval and captioning. However, multiple studies indicate that this success does not reliably transfer to FG and UFG understanding, where decisions depend on subtle, localized, and compositional evidence. In many cases, FG/UFG capability emerges only incidentally, as standard pretraining objectives do not explicitly require such evidence to be preserved.

A key recurring limitation lies in the *unit of alignment*. Most methods align global image representations with global sentence embeddings, which encourages semantic averaging and allows discriminative part-, attribute-, or relation-level cues to be diluted. As a result, models may rely on convenient correlated signals, such as background context or acquisition artifacts, while remaining strong on conventional benchmarks. In addition, treating language as the default alignment interface constrains extensibility, since other modalities (e.g., sensor signals or structured metadata) do not naturally reduce to text. **This is especially critical for temporal reasoning, where global-to-global alignment can average out short-lived discriminative moments unless temporally localized evidence units are modeled.**

Recent work has begun to explore finer-grained alignment strategies, including part- or attribute-level matching, lightweight intermediate structures, and objectives that emphasize minimal visual differences. Nevertheless, these efforts remain fragmented, and a unified framework for preserving fine-grained evidence across modalities is still lacking.

7.2 FG for Bias Auditing and Model Diagnosis

Building upon the challenges identified in Section 6.2, we develop FG-aware evaluation and diagnostic protocols beyond accuracy. Recent studies show that many biases and failure modes in multimodal models manifest at the FG level. A model can appear fair under coarse evaluation yet make systematic errors on semantically meaningful slices defined by attributes, subtypes, or acquisition factors (e.g., pose, illumination, sensor). Such hidden heterogeneity means aggregate metrics may mask consistent harms.

Current bias audits often rely on coarse labels and broad groupings, which miss attribute-conditional bias and FG shortcuts. Diagnostic tools also provide limited FG resolution: saliency maps are frequently non-causal, and post-hoc explanations are hard to compare across samples. As a result, recent work calls for FG-aware auditing (e.g., attribute/part-based slicing, worst-slice reporting,

813 counterfactual perturbations, and evaluation against FG annotations), but standardized FG-level auditing frameworks remain underdeveloped.
814
815

816 817 7.3 Data-efficient & Self-supervised UFG

818 Building upon the challenges identified in Section 6.4, we revisit
819 data-efficient and self-supervised learning for UFG settings under
820 a realistic assumption: expert supervision is scarce, expensive, and
821 imperfect. Our framework therefore does *not* treat expert labels as
822 oracle signals, but as limited and potentially noisy supervision that
823 must be modeled and allocated carefully.
824

825 In practice, UFG annotations often exhibit *inter-expert disagreement*
826 due to subtle cues and *intrinsically fuzzy* category boundaries;
827 this ambiguity is frequently a property of the task rather than a
828 labeling defect. Consequently, resource-efficient pipelines emphasize
829 (i) *active learning* and triage to send experts only the “hard
830 cases”, and (ii) *ambiguity-aware labeling* (e.g., multi-label or soft
831 labels) to preserve uncertainty instead of forcing a single ground
832 truth. Meanwhile, standard SSL objectives can be misaligned with
833 UFG needs because broad invariances may suppress fine discriminative
834 evidence, motivating UFG-compatible SSL variants that better
835 respect near-neighbor distinctions.
836

837 7.4 FG as Interfaces between Perception and 838 Reasoning

839 Building upon the challenges identified in Sections 6.3 and 6.5,
840 we enable structured FG reasoning and temporal understanding
841 with foundation models. A recurring limitation of current multi-
842 modal systems lies in the weak coupling between perception and
843 reasoning. Visual encoders produce dense and expressive represen-
844 tations, while reasoning modules operate over abstract concepts
845 and language. When the connection between these stages is im-
846 plicit, models may generate coherent reasoning while relying on
847 incorrect or unverified perceptual evidence, leading to brittle or
848 misleading conclusions.
849

850 Recent work suggests that FG and UFG structures can serve
851 as an explicit interface between perception and reasoning. Parts,
852 attributes, relations, and simple processes provide inspectable and
853 compositional primitives that translate raw sensory inputs into
854 reasoning-ready representations. By making evidence selection
855 explicit, such interfaces enable reasoning modules to operate on
856 grounded information rather than opaque embeddings.
857

858 Despite growing interest in structured intermediates and neuro-
859 symbolic hybrids, existing approaches remain fragmented and task-
860 specific. A systematic treatment of FG primitives as a general-
861 purpose interface—supporting evidence verification, ambiguity han-
862 dling, and FG-aware evaluation—remains largely unexplored, high-
863 lighting a key direction for future multimodal research.
864

865 7.5 Summary: A Research Roadmap

866 Together, these four threads outline a roadmap for fine-grained
867 vision–language research. FG-aware representation clarifies *what*
868 is *preserved* by retaining semantically meaningful details. FG for
869 auditing clarifies *what can be trusted* by making grounding and evi-
870 dence inspectable. Data-efficient UFG clarifies *what can be learned*
871 under limited supervision via transfer and weak/scalable signals.
872

873 FG as an interface clarifies *what can be reasoned about* by enabling
874 compositional, verifiable primitives. Collectively, this agenda moves
875 the field from plausible multimodal outputs toward systems that
876 preserve the right semantics, justify claims, learn with fewer labels,
877 and reason over grounded structure. Future multimodal FG/UFG
878 research highlights: (1) semantically transparent benchmarks for
879 ambiguity tolerance; (2) evaluation-aware architectures; (3) struc-
880 tural alignment with base models; (4) expert-in-the-loop learning
881 and advisement, and (5) temporal reasoning to link perceptual and
882 conceptual levels.
883

884 8. Conclusion

885 FG and UFG visual understanding should be treated as core founda-
886 tions for general and trustworthy multimodal AI rather than niche
887 recognition tasks. By forcing models to rely on subtle, localized,
888 and compositional evidence, FG/UFG exposes whether multimodal
889 systems are genuinely grounded or merely generating plausible
890 outputs, while providing precise semantic building blocks for ro-
891 bust cross-modal alignment and faithful multimodal reasoning. At
892 the same time, FG/UFG serves as a practical stress test for trustwor-
893 thiness: when discriminative cues are weak, confounded, or scarce,
894 failures in robustness, calibration, and uncertainty estimation be-
895 come more visible, revealing shortcut learning, hallucination, and
896 attribute-driven bias. Meaningful progress therefore requires a shift
897 from prediction-centric pipelines to evidence-centric paradigms
898 that preserve decisive traits, support transparent verification, and
899 enable learning under expensive or ambiguous supervision. Cru-
900 cially, closing the dataset sufficiency gap—in both coverage and
901 realism—is necessary to move trustworthy FG/UFG beyond a small
902 set of canonical benchmarks and toward multimodal models that
903 generalize under distribution shift, communicate uncertainty re-
904 sponsibly, and remain auditable in deployment. Our coverage is
905 limited by the availability of public datasets and prior literature, and
906 by unavoidable subjectivity in delineating FG/UFG across domains;
907 Appendix C details these scope choices.
908

909 9. References

- [1] Ashionye Aninze. 2024. Artificial Intelligence Life Cycle: The Detection and Mitigation of Bias. *International Conference on AI Research* (2024). doi:10.34190/icair.4.1.3131
- [2] Tianyi Bai, Yuxuan Fan, Jiantao Qiu, Fupeng Sun, Jiayi Song, Junlin Han, Zichen Liu, Conghui He, Wentao Zhang, and Binhang Yuan. 2025. Hallucination at a Glance: Controlled Visual Edits and Fine-Grained Multimodal Learning. *ArXiv* abs/2506.07227 (2025). doi:10.4555/arxiv.2506.07227
- [3] Yalong Bai, Yuxiang Chen, Wei Yu, Linfang Wang, and Wei Zhang. 2020. Products-10k: A large-scale product recognition dataset. *arXiv preprint arXiv:2008.10545* (2020).
- [4] Thomas Berg, Jiongxin Liu, Seung Woo Lee, Michelle L Alexander, David W Jacobs, and Peter N Belhumeur. 2014. Birdsnap: Large-scale fine-grained visual categorization of birds. In *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2011–2018.
- [5] Luca Bertinetto, Romain Mueller, Konstantinos Tertikas, Sina Samangooei, and Nicholas A Lord. 2020. Making better mistakes: Leveraging class hierarchies with deep networks. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*. 12506–12515.
- [6] Aditya Bhattacharya, Simone Stumpf, Robin De Croon, and K. Verbert. 2024. Explanatory Debiasing: Involving Domain Experts in the Data Generation Process to Mitigate Representation Bias in AI Systems. *Proceedings of the 2025 CHI Conference on Human Factors in Computing Systems* (2024). doi:10.1145/3706598.3713497
- [7] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. 2014. Food-101-mining discriminative components with random forests. In *European conference on computer vision*. Springer, 446–461.

929 [8] Mu Cai, Reuben Tan, Jianrui Zhang, Bocheng Zou, Kai Zhang, Feng Yao, Fangrui
930 Zhu, Jing Gu, Yiwu Zhong, Yuzhang Shang, Yao Dou, Jaden Park, Jianfeng
931 Gao, Yong Jae Lee, and Jianwei Yang. 2024. TemporalBench: Benchmarking
932 Fine-grained Temporal Understanding for Multimodal Video Models. *ArXiv*
933 abs/2410.10818 (2024). doi:10.48550/arxiv.2410.10818

934 [9] Po-Yung Chou, Yu-Yung Kao, and Cheng-Hung Lin. 2023. Fine-grained visual
935 classification with high-temperature refinement and background suppression.
936 *arXiv preprint arXiv:2303.06442* (2023).

937 [10] Po-Yung Chou, Cheng-Hung Lin, and Wen-Chung Kao. 2022. A novel plug-in
938 module for fine-grained visual classification. *arXiv preprint arXiv:2202.03822*
939 (2022).

940 [11] Sanghyuk Chun. 2025. Multiplicity is an Inevitable and Inherent Challenge in
941 Multimodal Learning. *ArXiv* abs/2505.19614 (2025). doi:10.48550/arxiv.2505.
942 19614

943 [12] Noel Codella, Veronica Rotemberg, Philipp Tschandl, M Emre Celebi, Stephen
944 Dusza, David Gutman, Brian Helba, Aadi Kalloo, Konstantinos Liopyris, Michael
945 Marchetti, et al. 2019. Skin lesion analysis toward melanoma detection 2018: A
946 challenge hosted by the international skin imaging collaboration (isic). *arXiv*
947 preprint arXiv:1902.03368 (2019).

948 [13] Shiyuan Cui and Bin Hui. 2024. Dual-Dependency Attention Transformer for
949 Fine-Grained Visual Classification. *Sensors (Basel, Switzerland)* 24 (2024). doi:10.
950 3390/s24072337

951 [14] Hao Dai, Chong Tang, and Jagmohan Chauhan. 2025. ViRN: Variational Inference
952 and Distribution Trilateration for Long-Tailed Continual Representation
953 Learning. (2025). doi:10.48550/arXiv.2507.17368

954 [15] Jidong Ge, Yunyun Huang, Xiaoyu Shen, Chuanyi Li, Wei Hu, and B. Luo. 2021.
955 Learning Fine-Grained Fact-Article Correspondence in Legal Cases. *IEEE/ACM
956 Transactions on Audio, Speech, and Language Processing* 29 (2021), 3694–3706.
957 doi:10.1109/taslp.2021.3130992

958 [16] Yuying Ge, Ruimao Zhang, Xiaogang Wang, Xiaou Tang, and Ping Luo. 2019.
959 Deepfashion2: A versatile benchmark for detection, pose estimation, segmentation
960 and re-identification of clothing images. In *Proceedings of the IEEE/CVF
961 conference on computer vision and pattern recognition*. 5337–5345.

962 [17] Chuanxing Geng, Sheng-jun Huang, and Songcan Chen. 2020. Recent advances
963 in open set recognition: A survey. *IEEE transactions on pattern analysis and
964 machine intelligence* 43, 10 (2020), 3614–3631.

965 [18] Zahra Gharaee, ZeMing Gong, Nicholas Pellegrino, Iuliia Zarubiieva,
966 Joakim Bruslund Haurum, Scott Lowe, Jaclyn McKeown, Chris Ho, Joschka
967 McLeod, Yi-Yun Wei, et al. 2023. A step towards worldwide biodiversity
968 assessment: The BIOSCAN-1M insect dataset. *Advances in Neural Information
969 Processing Systems* 36 (2023), 43593–43619.

970 [19] C. K. Gitonga, Dennis Murithi, and Edna Chebet. 2025. Mitigating Demographic
971 Bias in ImageNet: A Comprehensive Analysis of Disparities and Fairness in
972 Deep Learning Models. *European Journal of Artificial Intelligence and Machine
973 Learning* (2025). doi:10.24018/ejai.2025.4.2.51

974 [20] Hervé Goëau, Alexis Joly, Pierre Bonnet, Souheil Selmi, Jean-François Molino,
975 Daniel Barthélémy, and Nozha Boujemaa. 2025. Lifeclef plant identification
976 task 2014. *arXiv preprint arXiv:2509.23900* (2025).

977 [21] Melanie Goisauf, Mónica Cano Abadia, Kaya Akyüz, Maciej Bobowicz, Alena
978 Buix, Ilaria Colussi, Marie-Christine Fritzsche, K. Lekadir, Pekka Marttinen,
979 Michaela Th. Mayrhofer, and Janos Meszaros. 2025. Trust, Trustworthiness, and
980 the Future of Medical AI: Outcomes of an Interdisciplinary Expert Workshop.
981 *Journal of Medical Internet Research* 27 (2025). doi:10.2196/71236

982 [22] Eran Goldman, Roel Herzog, Aviv Eisenshtat, Jacob Goldberger, and Tal Hassner.
983 2019. Precise Detection in Densely Packed Scenes. In *Proc. Conf. Comput. Vision
984 Pattern Recognition (CVPR)*.

985 [23] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. 2017. On calibration
986 of modern neural networks. In *International conference on machine learning*.
987 PMLR, 1321–1330.

988 [24] Shauna Halbe, Junjiao Tian, K. J. Joseph, James Seale Smith, Katherine Stevo,
989 Vineeth N. Balasubramanian, and Z. Kira. 2024. Grounding Descriptions in
990 Images informs Zero-Shot Visual Recognition. *ArXiv* abs/2412.04429 (2024).
991 doi:10.48550/arxiv.2412.04429

992 [25] A. Yeong Han, Kwang Moo Yi, Kyeong Tae Kim, and Jae Young Choi. 2025.
993 Hierarchical Feature Attention Learning Network for Detecting Object and
994 Discriminative Parts in Fine-Grained Visual Classification. *IEEE Access* 13 (2025),
995 19533–19544. doi:10.1109/access.2025.3534444

996 [26] Harald Hanselmann and H. Ney. 2019. ELoPE: Fine-Grained Visual Classification
997 with Efficient Localization, Pooling and Embedding. *2020 IEEE Winter Conference
998 on Applications of Computer Vision (WACV)* (2019), 1236–1245. doi:10.1109/
999 wacv45572.2020.9093601

999 [27] Ju He, Jie-Neng Chen, Shuai Liu, Adam Kortylewski, Cheng Yang, Yutong Bai,
1000 and Changhu Wang. 2022. Transfg: A transformer architecture for fine-grained
1001 recognition. In *Proceedings of the AAAI conference on artificial intelligence*,
1002 Vol. 36. 852–860.

1003 [28] Xusheng He, Wei Liu, Shanshan Ma, Qiang Liu, Chenghao Ma, and Jianlong
1004 Wu. 2025. FineBadminton: A Multi-Level Dataset for Fine-Grained Badminton
1005 Video Understanding. *Proceedings of the 33rd ACM International Conference on
1006 Multimedia* (2025). doi:10.1145/3746027.3758218

1006 [29] Zhifeng Hu, Yin Zhang, and Liangjun Tan. 2016. Research on the Fine-grained
1007 Plant Image Classification. (2016). doi:10.2991/icmmma-16.2016.239

1008 [30] Haochen Huang, Jiahuan Pei, Mohammad Aliannejadi, Xin Sun, Moonisa Ahsan,
1009 Chuang Yu, Zhaochun Ren, Pablo Cesar, and Junxiao Wang. 2025. LEGO Co-
1010 builder: Exploring Fine-Grained Vision-Language Modeling for Multimodal
1011 LEGO Assembly Assistants. *ArXiv* abs/2507.05515 (2025). doi:10.48550/arxiv.
1012 2507.05515

1013 [31] David Hughes, Marcel Salathé, et al. 2015. An open access repository of images
1014 on plant health to enable the development of mobile disease diagnostics. *arXiv
1015 preprint arXiv:1511.08060* (2015).

1016 [32] Mikko Impio, Philipp M Rehsen, Tiina Laamanen, Arne J Beermann, Florian
1017 Leese, and Jenni Raitoharju. 2025. AquaMonitor: A multimodal multi-view
1018 image sequence dataset for real-life aquatic invertebrate biodiversity monitoring.
1019 *arXiv preprint arXiv:2505.22065*.

1020 [33] Aditya Jain, Fagner Cunha, Michael James Bansen, Juan Sebastián Cañas,
1021 Léonard Pasi, Nathan Pinoy, Flemming Helsing, JoAnne Russo, Marc Botham,
1022 Michael Sabourin, Jonathan Fréchette, Alexandre Anctil, Yacksecari Lopez,
1023 Eduardo Navarro, Filonila Perez Pimentel, Ana Cecilia Zamora, José Alejandro
1024 Ramírez Silva, Jonathan Gagnon, Tom August, Kim Bjerge, Alba Gomez
1025 Segura, Marc Bélisé, Yves Basset, Kent P. McFarland, David Roy, Toke Thomas
1026 Høye, Maxim Larrivée, and David Rolnick. 2025. Insect Identification in the Wild:
1027 The AMI Dataset. In *Computer Vision – ECCV 2024*, Aleš Leonardis, Elisa Ricci,
1028 Stefan Roth, Olga Russakovsky, Torsten Sattler, and Gülsar Varol (Eds.). Springer
1029 Nature Switzerland, Cham, 55–73.

1030 [34] Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao, and Li Fei-Fei.
1031 2011. Novel Dataset for Fine-Grained Image Categorization. In *First Workshop
1032 on Fine-Grained Visual Categorization, IEEE Conference on Computer Vision and
1033 Pattern Recognition*. Colorado Springs, CO.

1034 [35] R. Kjærsgaard, Ahcène Boubekki, and Line H. Clemmensen. 2024. Pantypes:
1035 Diverse Representatives for Self-Explainable Models. *ArXiv* abs/2403.09383
1036 (2024). doi:10.1609/aaai.v38i12.29223

1037 [36] Jonathan Krause, Jia Deng, Michael Stark, and Li Fei-Fei. 2013. Collecting a
1038 large-scale dataset of fine-grained cars. (2013).

1039 [37] Neeraj Kumar, Peter N. Belhumeur, Arijit Biswas, David W. Jacobs, W. John
1040 Kress, Ida C. Lopez, and João V. B. Soares. 2012. Leafsnap: A Computer Vision
1041 System for Automatic Plant Species Identification. In *Computer Vision – ECCV
1042 2012*, Andrew Fitzgibbon, Svetlana Lazebnik, Pietro Perona, Yoichi Sato, and
1043 Cordelia Schmid (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 502–516.

1044 [38] Hang Li, Wenbiao Ding, Zhongqin Wu, and Zitao Liu. 2020. Learning Fine-
1045 Grained Cross Modality Excitement for Speech Emotion Recognition. (2020),
1046 3375–3379. doi:10.21437/interspeech.2021-158

1047 [39] Yixuan Li, Yu Tian, Yipo Huang, Wei Lu, Shiqi Wang, Weisi Lin, and Anderson
1048 Rocha. 2025. FakeScope: Large Multimodal Expert Model for Transparent AI-
1049 Generated Image Forensics. *ArXiv* abs/2503.24267 (2025). doi:10.48550/arxiv.
1050 2503.24267

1051 [40] Yuening Li, Xiuhua Yang, and Changkui Chen. 2025. Brain-inspired multimodal
1052 motion and fine-grained action recognition. *Frontiers in Neurorobotics* 18 (2025).
1053 doi:10.3389/fnbot.2024.1502071

1054 [41] Paul Pu Liang, Akshay Goindani, Talha Chafekar, Leena Mathur, Haofei Yu, R.
1055 Salakhutdinov, and Louis philippe Morency. 2024. HEMM: Holistic Evaluation
1056 of Multimodal Foundation Models. *ArXiv* abs/2407.03418 (2024). doi:10.48550/
1057 arxiv.2407.03418

1058 [42] Junming Liu, Siyuan Meng, Yanting Gao, Song Mao, Pinlong Cai, Guohang Yan,
1059 Yirong Chen, Zilin Bian, Botian Shi, and Ding Wang. 2025. Aligning vision to
1060 language: Text-free multimodal knowledge graph construction for enhanced
1061 llms reasoning. *arXiv preprint arXiv:2503.12972* (2025).

1062 [43] Junting Liu, Weihao Zeng, Xiwen Zhang, Yijun Wang, Zifei Shan, and Junxian
1063 He. 2025. On the Perception Bottleneck of VLMs for Chart Understanding.
1064 *ArXiv* abs/2503.18435 (2025). doi:10.48550/arxiv.2503.18435

1065 [44] Xianyuan Liu, Jiayang Zhang, Shuo Zhou, T. L. V. D. Plas, Avish Vijayaraghavan,
1066 Anastasios Grishina, Mengdie Zhuang, Daniel Schofield, Christopher Tomlinson,
1067 Yuhang Wang, Ruizhe Li, Louisa van Zeeland, Sina Tabakhi, Cyndie Demeocq,
1068 Xiang Li, Arunava Das, Orlando Timmerman, Thomas Baldwin-McDonald, Jing
1069 Wu, Peizhen Bai, Zahraa Al Sahili, Omnia Alwazzan, T. N. Do, M. N. Suvon,
1070 Angeline Wang, Lucia Cipolina-Kun, Luigia A. Moretti, Lucas Farndale, Nitisha
1071 Jain, Natalia Efremova, Yan Ge, Marta Varela, Hak-Keung Lam, Oya Çelikutan,
1072 Ben R. Evans, Alejandro Coca-Castro, Honghai Wu, Z. Abdallah, Chen Chen,
1073 V. Danchev, Nataliya Tkachenko, Lei Lu, Tingting Zhu, Gregory G. Slabaugh,
1074 Roger K. Moore, William K. Cheung, Peter H. Charlton, and Haiping Lu. 2025.
1075 Towards deployment-centric multimodal AI beyond vision and language. *Nature
1076 Machine Intelligence* 7 (2025), 1612 – 1624. doi:10.1038/s42256-025-01116-5

1077 [45] Ziwei Liu, Ping Luo, Shi Qiu, Xiaogang Wang, and Xiaou Tang. 2016. Deepfash-
1078 ion: Powering robust clothes recognition and retrieval with rich annotations.
1079 In *Proceedings of the IEEE conference on computer vision and pattern recognition*.
1080 1096–1104.

1081 [46] Yiwei Lyu, Paul Pu Liang, Zihao Deng, Ruslan Salakhutdinov, and Louis-Philippe
1082 Morency. 2022. Dime: Fine-grained interpretations of multimodal models via
1083

1045 disentangled local explanations. In *Proceedings of the 2022 AAAI/ACM Conference*
 1046 *on AI, Ethics, and Society*. 455–467.

[47] S. Maji, J. Kannala, E. Rahtu, M. Blaschko, and A. Vedaldi. 2013. *Fine-Grained*
 1047 *Visual Classification of Aircraft*. Technical Report. arXiv:1306.5151 [cs-cv]

[48] Leena Mathur, Marian Qian, Paul Pu Liang, and Louis philippe Morency. 2025.
 1048 Social Genome: Grounded Social Reasoning Abilities of Multimodal Models.
 1049 *ArXiv* abs/2502.15109 (2025). doi:10.48550/arxiv.2502.15109

[49] Andrés Morales-Forero, Lili J. Rueda, Ronald Herrera, Samuel Bassetto, and
 1050 Eric Coatanéa. 2025. Predictive Representativity: Uncovering Racial Bias in
 1051 AI-based Skin Cancer Detection. *ArXiv* abs/2507.14176 (2025). doi:10.48550/
 1052 arxiv.2507.14176

[50] Shehan Munasinghe, Hanan Gani, Wenqi Zhu, Jiale Cao, Eric P. Xing, F. Khan,
 1053 and Salman H. Khan. 2024. VideoGLaMM: A Large Multimodal Model for Pixel-
 1054 Level Visual Grounding in Videos. *2025 IEEE/CVF Conference on Computer Vision*
 1055 *and Pattern Recognition (CVPR)* (2024), 19036–19046. doi:10.1109/cvpr52734.
 1056 2025.01773

[51] Kai Nakamura, Sharon Levy, and William Yang Wang. 2020. Fakeddit: A New
 1057 Multimodal Benchmark Dataset for Fine-grained Fake News Detection. (2020),
 1058 6149–6157.

[52] Gennie Nguyen, Lei Wang, Yangxueqing Jiang, and Tom Gedeon. 2025. Truth
 1059 and trust: fake news detection via biosignals. *International Journal of Information*
 1060 *Technology* (2025), 1–14. doi:10.1007/s41870-025-02836-y

[53] M-E. Nilsback and A. Zisserman. 2008. Automated Flower Classification over a
 1061 Large Number of Classes. In *Proceedings of the Indian Conference on Computer*
 1062 *Vision, Graphics and Image Processing*.

[54] Changdae Oh, Jiatong Li, Shawn Im, and Yixuan Li. 2025. Visual Instruction
 1063 Bottleneck Tuning. *ArXiv* abs/2505.13946 (2025). doi:10.48550/arxiv.2505.13946

[55] Zicheng Pan, Xiaohan Yu, Miaohua Zhang, and Yongsheng Gao. 2021. Mask-
 1064 guided feature extraction and augmentation for ultra-fine-grained visual categori-
 1065 zation. In *2021 Digital Image Computing: Techniques and Applications (DICTA)*.
 1066 IEEE, 1–8.

[56] Zicheng Pan, Xiaohan Yu, Miaohua Zhang, and Yongsheng Gao. 2023. Ssfe-net:
 1067 Self-supervised feature enhancement for ultra-fine-grained few-shot class incre-
 1068 mental learning. In *Proceedings of the IEEE/CVF winter conference on applica-
 1069 tions of computer vision*. 6275–6284.

[57] Lukáš Picek, Milan Šulc, Jiří Matas, Thomas S Jeppesen, Jacob Heilmann-
 1070 Clausen, Thomas Læsøe, and Tobias Frølev. 2022. Danish fungi 2020-not
 1071 just another image recognition dataset. In *Proceedings of the IEEE/CVF Winter*
 1072 *Conference on Applications of Computer Vision*. 1525–1535.

[58] Lukáš Picek, Milan Šulc, Juan E. Sala Matas, J. Heilmann-Clausen, T. Jeppesen,
 1073 and Emil Lind. 2022. Automatic Fungi Recognition: Deep Learning Meets
 1074 Mycology. *Sensors (Basel, Switzerland)* 22 (2022). doi:10.3390/s22020633

[59] Chenhui Qiang, Zhaoyang Wei, Xumeng Han, Zipeng Wang, Siyao Li, Xi-
 1075 angyuan Lan, Jianbin Jiao, and Zhenjun Han. 2025. VER-Bench: Evaluating
 1076 MLLMs on Reasoning with Fine-Grained Visual Evidence. *Proceedings of the*
 1077 *33rd ACM International Conference on Multimedia* (2025). doi:10.1145/3746027.
 3758208

[60] Yansheng Qiu, Li Xiao, Zhaopan Xu, Pengfei Zhou, Zheng Wang, and Kaipeng
 1078 Zhang. 2025. Human-Aligned Bench: Fine-Grained Assessment of Reasoning
 1079 Ability in MLLMs vs. Humans. *ArXiv* abs/2505.11141 (2025). doi:10.48550/arxiv.
 1080 2505.11141

[61] H. Rasheed, Abdelrahman M. Shaker, Anqi Tang, Muhammad Maaz, Ming-
 1081 Hsuan Yang, Salman H. Khan, and F. Khan. 2025. VideoMathQA: Benchmarking
 1082 Mathematical Reasoning via Multimodal Understanding in Videos. *ArXiv*
 1083 abs/2506.05349 (2025). doi:10.48550/arxiv.2506.05349

[62] Vikas Raunak, Matt Post, and Arul Menezes. 2022. SALTED: A Framework for
 1084 SALient Long-Tail Translation Error Detection. *ArXiv* abs/2205.09988 (2022).
 1085 doi:10.48550/arxiv.2205.09988

[63] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
 1086 Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bern-
 1087 stein, Alexander C. Berg, and Li Fei-Fei. 2015. ImageNet Large Scale Visual
 1088 Recognition Challenge. *International Journal of Computer Vision (IJCV)* 115, 3
 1089 (2015), 211–252. doi:10.1007/s11263-015-0816-y

[64] Mayra Russo, Yasharajsinh Chudasama, Disha Purohit, S. Sawischka, and Maria-
 1090 Esther Vidal. 2024. Employing Hybrid AI Systems to Trace and Document Bias
 1091 in ML Pipelines. *IEEE Access* 12 (2024), 96821–96847. doi:10.1109/access.2024.
 1092 3427388

[65] Dvir Samuel and Gal Chechik. 2021. Distributional Robustness Loss for Long-
 1093 tail Learning. *2021 IEEE/CVF International Conference on Computer Vision (ICCV)*
 1094 (2021), 9475–9484. doi:10.1109/iccv48922.2021.00936

[66] Walter Scheirer, Anderson Rocha, Archana Sapkota, and Terrance Boult. 2013.
 1095 Toward Open Set Recognition. *IEEE transactions on pattern analysis and machine*
 1096 *intelligence* 35 (07 2013), 1757–72. doi:10.1109/TPAMI.2012.256

[67] Nithish Muthuchamy Selvaraj, Xiaobao Guo, Bingqian Shen, A. Kong, and
 1097 A. Kot. 2024. Improving Concept Alignment in Vision-Language Concept
 1098 Bottleneck Models. *ArXiv* abs/2405.01825 (2024). doi:10.48550/arxiv.2405.01825

[68] Narges Semirozimzadeh, Omid Nejati Manzari, S. B. Shokouhi, and S. Mirza-
 1099 kuchaki. 2024. Enhancing Vehicle Make and Model Recognition with 3D Atten-
 1100 tion Modules. *2024 14th International Conference on Computer and Knowledge*
 1101 *Engineering (ICCKE)* (2024), 087–092. doi:10.1109/iccke65377.2024.10874749

[69] Yucheng Shi, Quanzheng Li, Jin Sun, Xiang Li, and Ninghao Liu. 2025. Enhanc-
 1102 ing Cognition and Explainability of Multimodal Foundation Models with Self-
 1103 Synthesized Data. *ArXiv* abs/2502.14044 (2025). doi:10.48550/arxiv.2502.14044

[70] Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio Savarese. 2016. Deep
 1104 Metric Learning via Lifted Structured Feature Embedding. In *IEEE Conference*
 1105 *on Computer Vision and Pattern Recognition (CVPR)*.

[71] Kai Sun, Yushi Bai, Ji Qi, Lei Hou, and Juanzi Li. 2024. MM-MATH: Advanc-
 1106 ing Multimodal Math Evaluation with Process Evaluation and Fine-grained
 1107 Classification. (2024), 1358–1375. doi:10.18653/v1/2024.findings-emnlp.73

[72] Shenghuan Sun, Gregory M. Goldgof, Alexander Schubert, Zhiqing Sun, Thomas
 1108 Hartvigsen, A. Butte, and Ahmed Alaa. 2024. Dr-LLaVA: Visual Instruction
 1109 Tuning with Symbolic Clinical Grounding. *ArXiv* abs/2405.19567 (2024). doi:10.
 1110 48550/arxiv.2405.19567

[73] Héctor Corrales Sánchez, Noelia Hernández Parra, Ignacio Parra Alonso, E.
 1111 Nebot, and D. Fernández-Llorca. 2021. Are We Ready for Accurate and Unbiased
 1112 Fine-Grained Vehicle Classification in Realistic Environments? *IEEE Access* 9
 1113 (2021), 116338–116355. doi:10.1109/access.2021.3104340

[74] Kiat Chuan Tan, Yulong Liu, Barbara Ambrose, Melissa Tulig, and Serge
 1114 Belongie. 2019. The herbarium challenge 2019 dataset. *arXiv preprint*
 1115 arXiv:1906.05372 (2019).

[75] Xiaoli Tang and Han Yu. 2022. Towards Trustworthy AI-Empowered Real-Time
 1116 Bidding for Online Advertisement Auctioning. *Comput. Surveys* 57 (2022), 1 –
 1117 36. doi:10.1145/3701741

[76] Ranjita Thapa, Noah Snavely, Serge Belongie, and Awais Khan. 2020. The plant
 1118 pathology 2020 challenge dataset to classify foliar disease of apples. *arXiv*
 1119 preprint arXiv:2004.11958 (2020).

[77] L. Tronchin, E. Cordelli, L. R. Celsi, Daniele Maccagnola, Massimo Natale, P.
 1120 Soda, and R. Sicilia. 2024. Translating Image XAI to Multivariate Time Series.
 1121 *IEEE Access* 12 (2024), 27484–27500. doi:10.1109/access.2024.3366994

[78] Philipp Tschandl, Cliff Rosendahl, and Harald Kittler. 2018. The HAM10000
 1122 dataset, a large collection of multi-source dermatoscopic images of common
 1123 pigmented skin lesions. *Scientific data* 5, 1 (2018), 1–9.

[79] Chongjun Tu, Lin Zhang, Pengtao Chen, Peng Ye, Xianfang Zeng, Wei Cheng,
 1124 Gang Yu, and Tao Chen. 2025. FAVOR-Bench: A Comprehensive Benchmark
 1125 for Fine-Grained Video Motion Understanding. *ArXiv* abs/2503.14935 (2025).
 1126 doi:10.48550/arxiv.2503.14935

[80] Berkant Turan, Suhrab Asadulla, David Steinmann, Wolfgang Stammer, and
 1127 Sebastian Pokutta. 2025. Neural Concept Verifier: Scaling Prover-Verifier Games
 1128 via Concept Encodings. *ArXiv* abs/2507.07532 (2025). doi:10.48550/arxiv.2507.
 1129 07532

[81] Grant Van Horn, Steve Branson, Ryan Farrell, Scott Haber, Jessie Barry, Panos
 1130 Ipeirotis, Pietro Perona, and Serge Belongie. 2015. Building a bird recognition
 1131 app and large scale dataset with citizen scientists: The fine print in fine-grained
 1132 dataset collection. In *Proceedings of the IEEE conference on computer vision and*
 1133 *pattern recognition*. 595–604.

[82] Grant Van Horn, Elijah Cole, Sara Beery, Kimberly Wilber, Serge Belongie, and
 1134 Oisin Mac Aodha. 2021. Benchmarking representation learning for natural
 1135 world image collections. In *Proceedings of the IEEE/CVF conference on computer*
 1136 *vision and pattern recognition*. 12884–12893.

[83] Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alex Shepard,
 1137 Hartwig Adam, Pietro Perona, and Serge Belongie. 2018. The inaturalist species
 1138 classification and detection dataset. In *Proceedings of the IEEE conference on*
 1139 *computer vision and pattern recognition*. 8769–8778.

[84] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. 2016.
 1140 Matching networks for one shot learning. *Advances in neural information*
 1141 *processing systems* 29 (2016).

[85] Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie.
 1142 2011. The caltech-ucsd birds-200-2011 dataset. (2011).

[86] Chengye Wang, Yifei Shen, Zexi Kuang, Arman Cohan, and Yilun Zhao. 2025.
 1143 SciVer: Evaluating Foundation Models for Multimodal Scientific Claim Verifica-
 1144 tion. *ArXiv* abs/2506.15569 (2025). doi:10.48550/arxiv.2506.15569

[87] Jun Wang, Xiaohan Yu, and Yongsheng Gao. 2021. Feature Fusion Vision
 1145 Transformer for Fine-Grained Visual Categorization. *ArXiv* abs/2107.02341
 1146 (2021). doi:10.5244/c.35.192

[88] Yimin Wang, Zifeng Xiao, and Lingguo Meng. 2021. Learning attention-aware
 1147 interactive features for fine-grained vegetable and fruit classification. *Applied*
 1148 *Sciences* 11, 14 (2021), 6533.

[89] Yidan Wang, Chenyi Zhuang, Wutao Liu, Pan Gao, and N. Sebe. 2025. AlignCAT:
 1149 Visual-Linguistic Alignment of Category and Attribute for Weakly Supervised
 1150 Visual Grounding. *Proceedings of the 33rd ACM International Conference on*
 1151 *Multimedia* (2025). doi:10.1145/3746027.3755751

[90] Zhanliang Wang and Kai Wang. 2025. Multishap: A shapley-based framework
 1152 for explaining cross-modal interactions in multimodal ai models. *arXiv preprint*
 1153 arXiv:2508.00576 (2025).

1161 [91] Jan D. Wegner, Steve Branson, David Hall, Konrad Schindler, and Pietro Perona. 1219
 1162 2016. Cataloging Public Objects Using Aerial and Street-Level Images – Urban 1220
 1163 Trees. In *2016 IEEE Conference on Computer Vision and Pattern Recognition 1221* (CVPR). 6014–6023. doi:10.1109/CVPR.2016.647

1164 [92] Jiaheng Wei, Zhaowei Zhu, Gang Niu, Tongliang Liu, Sijia Liu, Masashi 1222
 1165 Sugiyama, and Yang Liu. 2023. Fairness Improves Learning from Noisily Labeled 1223
 1166 Long-Tailed Data. *ArXiv* abs/2303.12291 (2023). doi:10.48550/arxiv.2303.12291

1167 [93] Tobias Weyand, Andre Araujo, Bingyi Cao, and Jack Sim. 2020. Google 1224
 1168 landmarks dataset v2-a large-scale benchmark for instance-level recognition and 1225
 1169 retrieval. In *Proceedings of the IEEE/CVF conference on computer vision and 1226
 1170 pattern recognition*. 2575–2584.

1171 [94] Stefan Wolf, Jannik Koch, L. Sommer, and Jürgen Beyerer. 2023. Addressing 1227
 1172 Bias in Fine-Grained Classification Datasets: A Strategy for Reliable Evaluation. 1228
 1173 *2023 IEEE 13th International Conference on Pattern Recognition Systems (ICPRS)* 1229
 1174 (2023), 1–7. doi:10.1109/icpr58416.2023.1017905

1175 [95] Xiaoping Wu, Chi Zhan, Yu-Kun Lai, Ming-Ming Cheng, and Jufeng Yang. 1230
 1176 2019. Ip102: A large-scale benchmark dataset for insect pest recognition. In 1231
 1177 *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*. 1232
 1178 8787–8796.

1179 [96] Yan Xie, Zequn Zeng, Hao Zhang, Yucheng Ding, Yi Wang, Zhengjue Wang, 1233
 1180 Bo Chen, and Hongwei Liu. 2025. Discovering Fine-Grained Visual-Concept 1234
 1181 Relations by Disentangled Optimal Transport Concept Bottleneck Models. *2025 1235*
 1182 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2025), 1236
 30199–30209. doi:10.1109/cvpr52734.2025.002811

1183 [97] Songsong Xiong and H. Kasaei. 2022. Fine-grained Object Categorization for 1237
 1184 Service Robots. *ArXiv* abs/2210.04613 (2022). doi:10.48550/arxiv.2210.04613

1185 [98] Ancheng Xu, Zhihao Yang, Jingpeng Li, Guanghu Yuan, Longze Chen, Liang Yan, 1238
 1186 Jiehui Zhou, Zhen Qin, Hengyu Chang, Hamid Alinejad-Rokny, Bo Zheng, and 1239
 1187 Min Yang. 2025. EVADE: Multimodal Benchmark for Evasive Content Detection 1240
 1188 in E-Commerce Applications. *ArXiv* abs/2505.17654 (2025). doi:10.48550/arxiv. 1241
 1189 2505.17654

1190 [99] Weijie Xu, Yiwen Wang, Chi Xue, Xiangkun Hu, Xi Fang, Guimin Dong, and 1242
 1191 Chandan K. Reddy. 2025. Quantifying Fairness in LLMs Beyond Tokens: A 1243
 1192 Semantic and Statistical Perspective. *ArXiv* abs/2506.19028 (2025). doi:10.48550/ 1244
 1193 arxiv.2506.19028

1194 [100] Siming Yan, Min Bai, Weifeng Chen, Xiong Zhou, Qi-Xing Huang, and Erran L. 1245
 1195 Li. 2024. ViGoR: Improving Visual Grounding of Large Vision Language Models 1246
 1196 with Fine-Grained Reward Modeling. *ArXiv* abs/2402.06118 (2024). doi:10.48550/ 1247
 1197 arxiv.2402.06118

1198 [101] Hao Yang, Yanyan Zhao, Jianwei Liu, Yang Wu, and Bing Qin. 2022. MACSA: 1248
 1199 A Multimodal Aspect-Category Sentiment Analysis Dataset with Multimodal 1249
 1200 Fine-grained Aligned Annotations. *ArXiv* abs/2206.13969 (2022). doi:10.48550/ 1250
 1201 arxiv.2206.13969

1202 [102] Linjie Yang, Ping Luo, Chen Change Loy, and Xiaoou Tang. 2015. A large-scale 1251
 1203 car dataset for fine-grained categorization and verification. In *Proceedings of the 1252
 1204 IEEE conference on computer vision and pattern recognition*. 3973–3981.

1205 [103] Shengying Yang, Xinqi Yang, Jianfeng Wu, and Boyang Feng. 2024. Significant 1253
 1206 feature suppression and cross-feature fusion networks for fine-grained visual 1254
 1207 classification. *Scientific Reports* 14 (2024). doi:10.1038/s41598-024-74654-4

1208 [104] Shuo Ye, Shujian Yu, W. Hou, Yu Wang, and Xinge You. 2023. Coping with 1255
 1209 Change: Learning Invariant and Minimum Sufficient Representations for Fine- 1256
 1210 Grained Visual Categorization. *ArXiv* abs/2306.04893 (2023). doi:10.48550/arxiv. 1257
 1211 2306.04893

1212 [105] Hong-Tao Yu, Xiu-Shen Wei, Yuxin Peng, and Serge Belongie. 2025. Benchmarking 1258
 1213 Large Vision-Language Models on Fine-Grained Image Tasks: A Comprehensive 1259
 1214 Evaluation. *ArXiv* abs/2504.14988 (2025). doi:10.48550/arxiv.2504.14988

1215 [106] Xiaohan Yu, Zicheng Pan, Yang Zhao, Qin Zhang, and Yongsheng Gao. 2025. 1260
 1216 Contrastive Lie Algebra Learning for Ultra-Fine-Grained Visual Categorization. 1261
 1217 In *Proceedings of the 33rd ACM International Conference on Multimedia (Dublin, 1262
 1218 Ireland) (MM '25)*. Association for Computing Machinery, New York, NY, USA, 1263
 3242–3250. doi:10.1145/3746027.3755024

1218 [107] Xiaohan Yu, Jun Wang, and Yongsheng Gao. 2023. Cle-vit: Contrastive learning 1264
 1219 encoded transformer for ultra-fine-grained visual categorization. In *32nd 1265*
 1220 International Joint Conference on Artificial Intelligence (IJCAI-23). International 1266
 1221 Joint Conferences on Artificial Intelligence Organization.

1222 [108] Xiaohan Yu, Yang Zhao, Yongsheng Gao, and Shengwu Xiong. 2021. MaskCOV: 1267
 1223 A random mask covariance network for ultra-fine-grained visual categorization. 1268
 1224 *Pattern Recognition* 119 (2021), 108067. doi:10.1016/j.patcog.2021.108067

1225 [109] Xiaohan Yu, Yang Zhao, Yongsheng Gao, Xiaohui Yuan, and Shengwu Xiong. 1269
 1226 2021. Benchmark Platform for Ultra-Fine-Grained Visual Categorization Beyond 1270
 1227 Human Performance. In *Proceedings of the IEEE/CVF International Conference 1271* (ICCV). 10285–10295.

1228 [110] Yuqian Yuan, Ronghao Dang, Long Li, Wentong Li, Dian Jiao, Xin Li, Deli Zhao, 1272
 1229 Fan Wang, Wengqiao Zhang, Jun Xiao, and Yueting Zhuang. 2025. EOC-Bench: 1273
 1230 Can MLLMs Identify, Recall, and Forecast Objects in an Egocentric World? 1274
 1231 *ArXiv* abs/2506.05287 (2025). doi:10.48550/arxiv.2506.05287

A Systematic Search Protocol

In order to limit bias and provide reproducible approach to the field, a systematic search strategy was implemented according to the predefined research questions. The review is organized over the following three Research Questions (RQs) to address conceptual demarcations, methodological compromises and evaluation validity of fine-grained visual understanding.

A.1 Research Questions

- **RQ1: Operationalization of Definitions.** How are the definitions and operational boundaries of Fine-Grained (FGVC) versus Ultra-Fine-Grained Visual Categorization (UFGVC) established in the literature? specifically, how is the distinction operationalized beyond mere label granularity?
- **RQ2: Methodological Paradigms and Trade-offs.** Under what experimental settings are distinct methodological paradigms (e.g., CNNs, Transformers, VLMs, Generative, Metric Learning, and Part-based approaches) effective, and what are their associated deployment costs and failure modes?
- **RQ3: Impact of Data and Evaluation.** How do dataset characteristics (e.g., annotation quality, long-tail distributions) and evaluation protocols influence the validity, reproducibility, and generalizability of conclusions in fine-grained research?

A.2 Sources

To ensure a comprehensive coverage of the literature, we conducted a systematic search across multiple primary scholarly databases and indexing services. The primary sources included **Google Scholar**, **arXiv**, **IEEE Xplore**, **ACM Digital Library**, **Springer Link**, **Elsevier (ScienceDirect)**, and **OpenReview**. These platforms were selected to encompass both established peer-reviewed venues and high-impact preprints, reflecting the rapid pace of advancement in the field. The final search across all databases was completed on **January 10, 2026**.

1277 A.3 Time Window + Filters

1278 **Time Window (2013–2025):** We restricted our primary survey
1279 scope to the period between 2013 and 2025. This window was cho-
1280 sen to capture the complete evolution of modern Deep Learning
1281 approaches in Fine-Grained Visual Categorization (FGVC), starting
1282 from early CNN-based part-localization methods (circa 2013–2014)
1283 through the Transformer era, up to the emergence of current Multi-
1284 modal Large Language Models (MLLMs).

1285 Inclusion and Exclusion Criteria:

- 1287 • **Publication Type:** We prioritized peer-reviewed articles
1288 from top-tier computer vision and machine learning con-
1289 ferences (e.g., CVPR, ICCV, ECCV, NeurIPS, ICML, AAAI)
1290 and journals (e.g., TPAMI, IJCV). Given the high velocity
1291 of research in Multimodal AI, we also included impactful
1292 preprints from arXiv and OpenReview that have garnered
1293 significant community attention or citations.
- 1294 • **Language:** The search was restricted to manuscripts writ-
1295 ten in English.
- 1296 • **Relevance Filter:** Articles were screened based on title and
1297 abstract to ensure they explicitly addressed fine-grained vi-
1298 sual tasks, multimodal alignment, or trustworthiness issues
1299 (e.g., bias, explainability) rather than general generic object
1300 recognition.

1302 A.4 Query Strings for Figure. 2

1303 To quantitatively visualize the shifting research focus shown in
1304 Figure 2, we performed a trend analysis using **Google Scholar**. We
1305 queried the total number of publications per year for three distinct
1306 keywords representing the core themes of this survey. The exact
1307 query strings used were:

- 1309 (1) "fine grained classification" – representing the tra-
1310 ditional FGVC domain.
- 1311 (2) "Multimodal AI" – representing the expansion into vision-
1312 language and cross-modal research.
- 1313 (3) "Trustworthy AI" – representing the growing emphasis
1314 on reliability, fairness, and explainability.

1315 For each keyword, we applied an exact-match search filter (using
1316 quotation marks) and restricted the results to custom date ranges for
1317 each year (Y) from 2013 to 2025 (i.e., `as_ylo=Y, as_yhi=Y`). The
1318 resulting counts were aggregated to plot the comparative growth
1319 trajectories, highlighting the stabilization of traditional FGVC re-
1320 search alongside the exponential surge in Multimodal and Trust-
1321 worthy AI topics.

1323 A.5 Screening & Inclusion/Exclusion Criteria

1325 To ensure a comprehensive and representative review of the field,
1326 we adopted a systematic literature search and screening process.
1327 The initial corpus was identified through Google Scholar using a
1328 set of carefully selected keywords related to "Fine-Grained Visual
1329 Categorization" (FGVC) and "Ultra-Fine-Grained Visual Cate-
1330 gorization" (UFGVC), spanning multiple time ranges to capture both
1331 foundational works and recent advancements. We verified the total
1332 number of papers to ensure a robust sample size before applying
1333 our filtering criteria.

1335 Regarding eligibility, papers were selected for inclusion if they
1336 were directly relevant to FGVC or UFGVC tasks, explicitly propos-
1337 ing a novel methodology, dataset benchmark, or extensive analysis,
1338 and if the full text was publicly available in English. Conversely,
1339 we excluded studies that focused solely on applications (e.g., indus-
1340 trial inspection) without methodological contributions, duplicate
1341 publications—retaining only the most complete peer-reviewed ver-
1342 sion—and research strictly outside the scope of visual categorization,
1343 such as non-visual modalities or pure detection tasks.

1344 A.6 Coding Procedure

1345 To systematically analyze the selected literature, we developed
1346 a multi-dimensional taxonomy that characterizes how modern
1347 approaches tackle the challenges of fine-grained understanding.
1348 The coding scheme categorizes each paper across five key dimen-
1349 sions: the primary learning *Paradigm* (e.g., Fully Supervised, Self-
1350 Supervised, or Weakly Supervised), the *Supervision Signal* employed
1351 (e.g., Image-level vs. Part-level), the scale of *Feature Granularity*,
1352 the degree of *VLM Integration*, and the usage of *Generative Aug-
1353 mentation*.

1355 *Labeling Protocol and Borderline Cases.* Every paper in our sur-
1356 vey is assigned at least two mandatory labels: a *Task Label* (FGVC
1357 or UFGVC) and a *Paradigm Label*. To ensure consistency amidst
1358 intersecting methodologies, we established specific rules for bor-
1359 derline cases. For instance, papers tackling fine-grained recognition
1360 using open-vocabulary setups are coded primarily under the *Mul-
1361 timodal/VLM* paradigm rather than standard Zero-Shot Learning,
1362 reflecting that the core contribution typically lies in cross-modal
1363 alignment. Similarly, for hybrid architectures combining multiple
1364 supervision signals, we prioritize the signal driving the primary
1365 novelty of the proposed method.

1367 B Evaluation Metrics & Protocols

1368 Evaluating fine-grained and ultra-fine-grained (UFG) visual under-
1369 standing requires a shift from aggregate performance measures
1370 toward metrics that capture discriminative precision, distributional
1371 robustness, and alignment reliability. While standard classification
1372 benchmarks rely heavily on **Top-1 and Top-5 Accuracy**, these met-
1373 rics often fail to reflect model behavior in real-world deployments
1374 where class distributions are highly imbalanced and semantic dis-
1375 tinguishes are subtle. Consequently, the community has increasingly
1376 adopted **Mean Per-Class Accuracy (MPCA)** as a primary metric
1377 for fine-grained tasks. Unlike standard accuracy, which can be dom-
1378 inated by head classes in long-tailed datasets (e.g., iNaturalist[83]),
1379 MPCA weighs each category equally, exposing whether a model
1380 has truly learned to distinguish rare subpopulations or is merely
1381 overfitting to prior probabilities. For tasks involving retrieval or
1382 verification, such as identifying products in e-commerce, **mean**
1383 **Average Precision (mAP)** and **Recall@K** become the standard,
1384 measuring the model's ability to rank the correct fine-grained in-
1385 stance among visually similar distractors.

1386 Beyond simple correctness, the requirements for Trustworthy AI
1387 necessitate metrics that assess confidence and stability. **Expected**
1388 **Calibration Error (ECE)**[23] is increasingly cited in FGVC liter-
1389 ature to quantify whether a model's predicted probability scores

align with its actual accuracy, a critical property when distinguishing between ultra-fine-grained categories where visual ambiguity is inherent. Furthermore, robustness protocols have evolved to include **Worst-Group Accuracy** and **Adversarial Robustness** scores, which test model performance under specific perturbations or within the lowest-performing demographic slices. These value-added metrics ensure that high aggregate scores do not mask fragility in safety-critical or semantically specific sub-domains.

Experimental protocols in this field are categorized by how they structure the training and evaluation sets to mimic real-world scarcity. The most common setup involves **Standard Closed-Set Splits**, where training and testing classes are disjoint but drawn from the same domain, as seen in CUB-200-2011 and Stanford Cars. However, to test generalization, **Cross-Domain Protocols** are employed, where models are trained on web-scraped data and evaluated on user-captured photos, rigorously testing invariance to domain shifts. Addressing the challenge of identifying novel categories, **Open-Set and Open-Vocabulary Protocols**[17, 66] evaluate a model’s ability to classify known classes correctly while rejecting or flagging “unknown” inputs. In these settings, evaluation often utilizes the Area Under the Receiver Operating Characteristic (AUROC) curve to measure the separation between known and unknown distributions. For data-scarce applications, **Few-Shot Learning Protocols** utilize episodic evaluation, typically formatted as N -way K -shot episodes [84]. Here, the model must learn to discriminate between N previously unseen classes given only K examples of each, testing the system’s ability to acquire fine-grained concept boundaries from minimal evidence rather than large-scale statistical correlation.

The suitability of a metric is intrinsically linked to the dataset’s specific challenges, particularly regarding class imbalance and label granularity. **Mean Per-Class Accuracy** is essential for long-tailed datasets like iNaturalist or fungal recognition benchmarks, where standard accuracy would allow a model to ignore the majority of rare species while still achieving high scores. Conversely, in Ultra-Fine-Grained (UFG) scenarios where inter-class differences are microscopic or subject to expert disagreement (e.g., distinct cultivars or slight disease progressions), strict Top-1 accuracy may be overly penalizing, in such cases, **Hierarchical Metrics** or **M-distance** are often more appropriate, as they penalize errors based on semantic distance in the taxonomy tree rather than treating all misclassifications as equally wrong[5]. This hierarchical evaluation is particularly relevant for datasets with open-vocab definitions, where “correctness” is better defined by semantic proximity in an embedding space than by an exact match to a discrete label ID.

1439 C Limitations

1441 Despite providing a broad overview of FG and UFGVC, this survey
 1442 has several limitations. First, our literature coverage may be biased
 1443 by the search strategy: the set of reviewed papers is influenced
 1444 by the specific indices (e.g., digital libraries and preprint servers),
 1445 keywords, and time range that we used, and we do not claim that the
 1446 resulting collection is exhaustive. This also introduces *publication
 1447 bias*, as preprints (e.g., arXiv) and peer-reviewed venues can differ
 1448 in visibility, revision cycles, and reporting practices. Second, the
 1449 proposed taxonomy necessarily involves *subjective design choices*;

1453 boundaries between methodological categories (e.g., recognition
 1454 vs. localization vs. part-based modeling, or discriminative learning
 1455 vs. generative augmentation) can be ambiguous, and some works
 1456 may reasonably fit multiple categories.

1457 Third, our dataset list is non-exhaustive. The datasets summarized
 1458 in Table 1 were collected through the same non-exhaustive
 1459 process, so any downstream aggregation (e.g., figures derived from
 1460 Table 1) should be interpreted as descriptive rather than definitive
 1461 of the entire field. In particular, trends inferred from dataset counts
 1462 across years may reflect discovery and selection effects, and should
 1463 not be read as evidence of a sharp or universal shift in research
 1464 emphasis. Fourth, performance comparisons across architectural
 1465 paradigms are inherently limited: results reported in the literature
 1466 are often not directly comparable due to differences in backbones,
 1467 pretraining data, training recipes, data splits, annotation protocols,
 1468 and evaluation metrics. Because many papers evaluate under het-
 1469 erogeneous settings, we avoid claiming a single global ranking of
 1470 methods and instead emphasize qualitative patterns.

1471 Finally, our discussion of evaluation practices is incomplete.
 1472 While common metrics (e.g., top-1 accuracy, mean per-class ac-
 1473 curacy, mAP, localization accuracy, calibration measures) appear
 1474 throughout the literature, we do not provide a fully standardized
 1475 metric taxonomy nor a unified re-evaluation across datasets and
 1476 protocols. Future work could address these limitations via a fully
 1477 reproducible systematic review (explicit queries, sources, in-
 1478 clusion/exclusion criteria, and counts), a structured cross-paradigm
 1479 comparison table under controlled settings, and a more comprehen-
 1480 sive dataset/metric audit including annotation cost, scalability, and
 1481 failure modes.

1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508