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Fine-Grained Visual Understanding for Multimodal and
Trustworthy AI

Abstract
Fine-Grained (FG) and Ultra-Fine-Grained (UFG) Visual Under-
standing has recently become an important problem in AI research,
because of its considerable ability to distinguish objects visually
very similar but semantically different. This paper aims to offer a
viewpoint-based overview and taxonomy on the state of the art
of the FGVC tasks, covering existing FGVC datasets as well as ap-
proaches, and identify possible pros and cons for FGVC datasets in
terms of scalability, cost basis of annotating, domain coverage and
generalization. We also review how recent trends, with transformer-
based vision architecture, advanced data augmentation (in particu-
lar generative augmentation), and the multimodal integration of
vision, language/metadata are pushing towards the practical need
for FGVC and Ultra-Fine-Grained Visual Categorization (UFGVC)
necessary in building multimodal and trustworthy AI systems. In
our study, we detect a number of standing challenges: lack of public
ultra-fine-grained datasets, high annotation complexity, non-trivial
long-tail/rare class learning setting and inadequate exploitation on
multimodal and semantic context. Finally, we present a prospective
research roadmap on multimodal visual understanding covering
robustness under long-tailed distributions, explainability, data ef-
ficient learning and deployment to real-world applications. Moti-
vated by previous advances, as well as the remaining challenges
in this field, we hope that this survey can shed light on the design
of more generalizable, reliable and semantically-grounded visual
intelligence.
ACM Reference Format:
. . Fine-Grained Visual Understanding for Multimodal and Trustworthy AI.
In Proceedings of . ACM, New York, NY, USA, 13 pages.

1 Introduction
This study will begin by elucidating the primary motive for in-
terpreting the significance of Fine-Grained Visual Categorization
(FGVC)/Ultra-Fine-Grained Visual Categorization (UFGVC) in rela-
tion toMultimodal and Trustworthy AI. Furthermore, it will provide
definitions and delineate the scope, concluding with an introduction
to the aims of this survey. Figure 1 summarizes our positioning of
FG/UFG as evidence-centric primitives bridging multimodal align-
ment and trustworthy evaluation.

1.1 Motivation
This section examines one question: (I) Is FGVC / UFGVC considered
an outdated question?

1.1.1 Is FGVC / UFGVC considered an outdated question? Recent
developments suggest that FGVC and UFGVC are not out-of-favor,
but are instead on an upswing within modern visual understanding,
propelled by transformer-based architectures, improved learning

,
©

Figure 1: Positioning of fine-grained (FG) and ultra-fine-
grained (UFG) visual understanding within multimodal and
trustworthy AI.
Real-world deployment demands multimodal alignment,
trustworthiness, and reliability, motivating FG/UFG capa-
bilities such as subtle attribute recognition, part-level evi-
dence localization, and relation-level reasoning, which in
turn shape datasets, model architectures, and evaluation.

procedures, and broader real-world requirements. In FGVC, hier-
archical attention and transformer-based methods continue to im-
prove both performance and methodology [13, 25, 103]. UFGVC re-
mains an open frontier and a significant challenge, especially when
inter-class differences are extremely subtle or beyond human per-
ceptual capability, with strong relevance to applications such as agri-
culture and biodiversity [109]. Transformer-style and contrastive
learning techniques continue to rejuvenate representation learn-
ing in fine-grained and ultra-fine-grained settings [27, 106, 107],
while attention-based and part-detection approaches still hold their
ground across canonical benchmarks [9, 10]. The continued release
of datasets and domain-specific deployments (e.g., plant cultivar or
produce recognition) provide evidence of sustained community en-
gagement and practical utility [88, 95, 109, 115]. Meanwhile, mask-
based and self-supervised methods further enhance methodological
diversity and sample efficiency [55, 56, 108].

1.2 Why FG / UFG Is Becoming More
Important?

Fine-grained (FG) and ultra-fine-grained (UFG) perception is no
longer just a "harder classification setting"; it is becoming a struc-
tural requirement for modern AI. This shift is driven by three con-
verging trajectories—multimodal intelligence, trustworthy inter-
pretability, and real-world deployment—where decisions increas-
ingly hinge on subtle attributes, parts, and interactions. Figure 2
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Figure 2: From 2020 to 2025, FGVC shows steady growth,
while Multimodal AI and Trustworthy AI surge rapidly in
recent years, indicating a shift toward multimodal integra-
tion and reliable AI research.

shows the publication-trend analysis under our exact query strings
(Appendix A.4).

Multimodal AI. Contemporary multimodal systems depend
on stable and interpretable fine-grained primitives to align repre-
sentations across vision, language, and other modalities. Frame-
works such as DIME and MultiSHAP suggest that disentangling
fine-grained cross-modal interactions enables interpretable and ro-
bust reasoning, which is crucial for debugging and alignment in
multimodal models [46, 90]. Moreover, FG analysis naturally sup-
ports semantic supervision in tasks where subtle attributes and re-
lations determine performance—for example, emotion recognition
and language–vision grounding [38]. As multimodal AI expands
beyond vision–language into biosignals, speech, and robotics, fine-
grained interpretability increasingly serves as the backbone for
generalizable alignment across heterogeneous sensing and decision
pipelines [44].

Trustworthy AI. As trustworthy and explainable AI becomes a
central requirement, many fairness, bias, and reliability failures are
found to originate at the fine-grained feature/attribute level rather
than at coarse class labels. Accordingly, trust increasingly relies
on interpretability methods that expose fine-grained causal and
interactional structures, especially for black-box foundation models
[75, 77]. In medical and social domains, human-centered trust is
often achieved through explanations at the diagnostic-feature level—
not merely through high-level confidence scores [21]. In addition,
the rise of synthetic content makes fine-grained forensics (e.g., pixel-
/token-level cues) essential for transparency and for countering
deception, as exemplified by recent multimodal forensics models
[39].

Real-world Deployment. FG/UFG capabilities have shifted
from academic benchmarks to deployment necessities in safety-
critical and high-precision settings. Deployment-centricmultimodal
AI highlights that fine-grained interpretability is required to ensure
reliable operation across healthcare, environmental monitoring,
and industrial applications [44]. For instance, multimodal ECG
resources such as MEETI emphasize beat-level annotations to sup-
port trustworthy diagnosis and integration into clinical decision

support workflows [112]. Similarly, biodiversity and agriculture ap-
plications often require ultra-fine-grained recognition (e.g., subtype-
level fungi identification), where such distinctions directly affect
ecosystem management and agricultural health [58].

In summary, FG/UFG understanding is becoming indispensable
because modern multimodal, trustworthy, and deployed AI systems
increasingly depend on precise, interpretable, and ethically con-
strained handling of detailed semantic attributes. In high-stakes,
human-centered settings, FG/UFG is where performance, reliability,
and accountability ultimately converge.

1.3 Definitions & Scope
This survey adopts the position that fine-grained (FG) and ultra-
fine-grained (UFG) problems should not be reduced to "a deeper
taxonomy" or "more classes". While label granularity often corre-
lates with difficulty, the defining challenge is the kind of under-
standing required to separate categories: correct recognition hinges
on weak, localized, and compositional evidence that is easy to miss,
easy to confuse with context, and often meaningful only under
domain-specific semantics. Under this view, FG/UFG settings are
best interpreted as instances of fine-grained visual understanding,
where the model must ground decisions in subtle attributes, part-
level structure, and relation-level cues rather than relying on coarse
global appearance or dataset-specific shortcuts.

1.3.1 Clarifying FGVC, UFGVC, and Fine-Grained Understanding.

Fine-Grained Visual Categorization (FGVC). FGVC typically refers
to distinguishing sub-categories within a shared super-class, such
as species within birds or trims within a vehicle family. The diffi-
culty arises from a characteristic imbalance: inter-class differences
are small and often concentrated in limited regions, whereas intra-
class variation induced by pose, illumination, viewpoint, occlu-
sion, and background can be substantial. As a result, FGVC is not
merely a matter of capacity or data scale; it is a matter of whether
representations and training signals encourage attention to the
truly discriminative evidence and suppress spurious correlations.
In FG/UFG, such spurious cues often come from background or
acquisition artifacts, so evaluations should include slice checks or
simple perturbations that break non-causal context.

Ultra-Fine-Grained Visual Categorization (UFGVC). UFGVC nar-
rows inter-class margins to the point where discriminative cues are
faint, highly localized, and sensitive to imaging conditions. Conse-
quently, reliable evaluation typically demands tighter protocols and
high-fidelity annotations, since small labeling or acquisition ambi-
guities can dominate observed performance; the goal shifts from
identifying the object to resolving its precise variant or condition
under domain-specific semantics.

Fine-grained understanding is more than category granularity.
FG/UFG refers to the level of visual understanding required rather
than the number of labels. In practice, recognition depends on subtle
visual attributes, localized part-level evidence, relational structure,
and domain-specific semantics. Consequently, a task can be fine-
grained even with few classes if such evidence is required, while a
large label set does not necessarily imply fine-grained understand-
ing when coarse cues suffice.
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1.3.2 Scope of this survey. This survey covers datasets, methods,
and evaluation protocols that operationalize FG/UFG recognition
for multimodal trustworthy AI, focusing on how distinctions are
defined, supervised, and assessed; how models attend to discrim-
inative attributes/parts/relations; how language/metadata/other
modalities ground subtle visual differences; and how reliability
(shift robustness, long-tail behavior, attribute-/part-level faithful-
ness) is ensured. It is not leaderboard-centric; comparisons are
used only to expose trade-offs (spurious cues, noise sensitivity, data
efficiency, generalization, and evidential support).

1.3.3 Working definition used throughout. Throughout the remain-
der of the paper, we use the following operational definition to
guide our perspective-driven analysis. Fine-/ultra-fine-grained vi-
sual understanding refers to a model’s ability to make correct, ro-
bust, and explainable decisions when the decisive signal is subtle,
localized, and compositional, and when the meaning of distinc-
tions is grounded in domain semantics that may not be captured
by generic object categories. This definition makes explicit why
FG/UFG should be studied beyond label granularity, and it motivates
the survey’s emphasis on multimodal grounding and trustworthi-
ness rather than benchmark ranking alone.

1.4 Survey Objectives and Contributions
Fine-Grained andUltra-Fine-Grained Visual Categorization (FG/UFG)
constitute a stringent testbed for modern visual recognition, where
decisions rely on subtle, localized, and compositional evidence such
as object parts, attributes, and fine-grained relations. Beyond ac-
curacy benchmarks, FG/UFG expose fundamental limitations in
robustness, calibration, and interpretability, particularly under dis-
tribution shifts and annotation ambiguity.

This survey has three objectives: (i) to organize recent FG/UFG
advances from the perspectives of multimodal alignment and trust-
worthy AI, (ii) to identify structural challenges in evaluation and
deployment beyond data scarcity, and (iii) to outline future research
directions.

Accordingly, we present three complementary perspectives: (i)
FG/UFG as semantic primitives that support fine-grained ground-
ing and multimodal alignment beyond global image–text match-
ing; (ii) FG/UFG as reliability stress tests that reveal robustness
and calibration failures under uncertainty and distributional shift;
and (iii) FG/UFG as tools for auditing and transparency, enabling
attribute- and part-level explanations for bias analysis and account-
able decision-making.

2 Background
2.1 Historical Evolution
From the earliest handcrafted visual systems to modern Vision-
Language Models (VLMs), the development of FG and UFG recog-
nition reflects the changing way in which models extract and align
evidence. Early methods explicitly defined primitives and relied
on human-engineered descriptors, while deep learning gradually
internalized these processes, embedding them into more complex
and integrated architectures. Yet, despite this shift, the core demand
for fine-grained discrimination — recognizing subtle, localized cues

— has never disappeared, only been increasingly hidden within
larger representational and alignment frameworks.

Handcrafted. Initial FGVC methods were dominated by hand-
engineered features like SIFT, HOG, and BoW that explicitly defined
visual primitives. These models relied on manually selected key-
points and descriptors to represent fine details in texture and shape
[29]. While interpretable, such systems lacked adaptability and
performed poorly on large-scale, complex datasets.

CNN. The emergence of Convolutional Neural Networks (CNNs)
revolutionized FG recognition by learning localized discriminative
features automatically. CNN-based architectures such as ResNet and
attention-augmented models could extract hierarchical texture cues
and region-specific signals, but they often over-relied on shortcuts
and context biases rather than truly fine-grained evidence [26, 68].

Transformer. Transformers reframed FG recognition by mak-
ing evidence selection itself the central task. Their self-attention
mechanism enables global reasoning about which visual tokens
matter, bridging local and contextual cues [27, 87]. This paradigm
integrates both local and global dependencies but often turns dis-
criminative "parts" into implicit attention maps rather than explicit
primitives.

Multimodal. In theMultimodal era, tasks like FG andUFG recog-
nition are no longer treated as standalone problems but as emergent
capabilities of massive image–text alignment systems such as CLIP.
Models like FGM-CLIP show that multimodal pretraining can cap-
ture fine-grained cues through implicit cross-modal correlations,
though this also makes errors appear more "human-like" [40, 97].

Across this evolution, FG/UFG recognition has transitioned from
explicit manual design to implicit representational learning. The
need for subtle, part-based reasoning persists, but it has been pro-
gressively absorbed into broader architectures where "what counts
as evidence" is learned, weighted, and sometimes obscured. This
marks not the disappearance of fine-grained vision, but its deep
embedding into multimodal intelligence.

2.2 FG / UFG as Perceptual Bottlenecks
Recent work on fine-grained and multimodal perception suggests
an intermediate representational bottleneck in which compression
attenuates subtle yet semantically decisive cues, especially when
weak visual evidence must be aligned with high-level concepts
[43, 96, 104]. In this view, FGVC/UFGVC function less as “finer clas-
sification” andmore as diagnostic probes: they test whether internal
representations retain minimal discriminative evidence for seman-
tic grounding under overlapping cues and annotation ambiguity.
For MLLMs, such bottlenecks often manifest as encoder–reasoner
misalignment, degrading reasoning under subtle distribution shifts
[24, 54]. Across FG/UFG and multimodal studies, models near this
bottleneck repeatedly exhibit evidence–concept misalignment, un-
supported attribute hallucination, and shortcut reliance on spurious
correlations rather than discriminative cues [2, 67, 80].

Importantly, these failure modes have been independently re-
ported across different architectures and tasks, including CLIP-like
models, concept bottleneck models, and recent MLLMs, suggesting
that they reflect structural limitations rather than isolated imple-
mentation issues.
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Figure 3: Historical evolution of FG and UFG visual recog-
nition. The progression from handcrafted features to CNNs,
transformers, and multimodal foundation models reflects a
shift from explicit, human-defined evidence toward implicit,
learned representations. While modern models achieve
strong performance, the visibility and auditability of fine-
grained evidence often decrease, motivating renewed empha-
sis on interpretable FG/UFG structures.

Ultimately, the FG/UFG perceptual bottleneck should be reframed
as a design insight rather than a limitation: it highlights the need
for models that can disentangle minimal sufficient representations,
align semantics across modalities, and verify evidence reliability.
Thus, FG/UFG benchmarks function not merely as finer recognition
tasks, but as semantic atoms—essential testing grounds and align-
ment interfaces for trustworthy multimodal cognition and system
design [11, 69].

This dataset-level trend supports the same interpretation. As
shown in Figure 4, recent benchmarks increasingly target ultra-fine
distinctions, implying that FG/UFG tasks are often used as diag-
nostic probes for representational bottlenecks rather than simply
harder classification settings.

From a survey perspective, FG/UFG tasks therefore act as empir-
ical probes of how perceptual evidence is selected, compressed, and
aligned with semantics in modern vision and multimodal systems.
This view consolidates evidence across datasets and models, clari-
fying why FG/UFG benchmarks are repeatedly adopted as stress
tests for robustness, grounding, and trustworthiness.

3 Datasets and Methodologies

Survey protocol. We conducted a structured search over major
scholarly indices (details in Appendix A), using predefined keyword
sets and year filters, followed by title/abstract screening and full-
text inclusion criteria to curate the reviewed papers. Exact search
queries (used for Fig. 2) and the final paper list are provided in
Appendix A for reproducibility. The dataset inventory in Table 1
(and Fig. 4 derived from it) is representative rather than exhaus-
tive, hence temporal trends should be interpreted as indicative. We
summarize commonly used evaluation metrics/protocols in Ap-
pendix B. Limitations include potential coverage bias from search

Figure 4: Dataset granularity has shifted over time: fine-
grained (FG) visual recognitionmoved from early reliance on
classical FG datasets toward increasingly ultra-fine-grained
(UFG) settings. This reflects rising needs for subtle, expert-
defined distinctions and a dataset-design evolution toward
real-world semantics and deployment constraints, not just
larger label sets. Based on Table 1; the dataset list is repre-
sentative, so apparent trend changes should be interpreted
cautiously.

sources/keywords and subjective boundaries between FGVC and
UFGVC.

From the perspective of FG/UFG as a semantic bottleneck, datasets
are not merely collections of labels, but mechanisms that decide
which fine-grained evidence can be learned, audited, and aligned
across modalities. The historical progression of dataset granularity
shown in Figure 4 provides important context for understanding
why contemporary FG/UFG benchmarks differ fundamentally from
earlier fine-grained datasets.

3.1 FG Datasets
Classical FG datasets such as ImageNet[63] or CUB-200[85] have
been instrumental in advancing visual recognition, but their ap-
parent accuracy saturation does not mean the problem is solved.
Studies show that high accuracy often reflects dataset-specific bi-
ases or limited variability, which artificially inflates performance
metrics without true generalization [94]. For example, vehicle clas-
sification models achieve over 95% accuracy but fail under more
diverse or realistic testing conditions due to inherent dataset homo-
geneity [73]. This accuracy saturation thus reflects overfitting to
narrow domains rather than progress toward robust, trustworthy
AI systems.

These limitations of classical FG datasets motivate a push toward
UFG settings, where distinctions are more semantically precise but
also far more demanding in terms of annotation fidelity, expert
involvement, and ambiguity management.

3.2 UFG Datasets
UFG datasets push toward higher resolution and deeper semantic
distinctions, yet they come with high annotation costs, subjectivity,
and dependence on domain experts. For instance, the TomatoMAP
dataset for plant phenotyping required extensive manual labeling
by experts to ensure consistency across growth stages [113, 114].
Similarly, fine-grained legal datasets rely on human experts to la-
bel fact-article correspondences, revealing that fine distinctions
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Table 1: Representative FG and UFG Visual Recognition Datasets, sorted chronologically by release year. Beyond cataloging
datasets by domain and granularity, the table highlights a structural transition toward ultra-fine-grained, expert-driven, and
long-tailed benchmarks, underscoring emerging challenges in annotation cost, generalization, and trust-related evaluation
discussed in later sections.

Dataset Year Venue / Source Domain Granularity Task Type
Oxford Flowers 102 2008 ICVGIP 2008[53] Flowers FG (category-level, 102 classes) Classification
Caltech-UCSD Birds-200-2011 (CUB-200-2011) 2011 Dataset release[85] Birds FG (species-level, 200 classes) Classification / Part localization
Stanford Dogs 2011 FGVC @ CVPR 2011[34] Dogs FG (breed-level, 120 classes) Classification
Leafsnap 2012 ECCV 2012[37] Plants / Trees FG (species-level) Classification
FGVC-Aircraft 2013 arXiv 2013[47] Aircraft FG (variant / model-level, hierarchical) Classification
Stanford Cars (Cars196) 2013 FGVC @ CVPR 2013[36] Cars FG (make / model / year) Classification
Birdsnap 2014 CVPR 2014[4] Birds FG (species-level, 500 classes) Classification
Food-101 2014 ECCV 2014[7] Food FG (dish-level, 101 classes) Classification
NABirds 2015 CVPR 2015[81] Birds FG (species-level with subspecies / gender) Classification
CompCars 2015 CVPR 2015[102] Cars FG (model-level; web + surveillance) Classification / Verification
LifeCLEF / PlantCLEF 2015 2015 LifeCLEF Challenge[20] Plant Identification FG (species-level, ∼1000 classes) Classification / Retrieval
PlantVillage 2015 arXiv 2015[31] Agriculture (Plant disease) FG (species × disease) Classification
DeepFashion 2016 CVPR 2016[45] Fashion FG (categories / attributes) Classification / Retrieval
Stanford Online Products (SOP) 2016 CVPR 2016[70] E-commerce Products UFG (instance-level) Retrieval / Metric Learning
Urban Trees (Pasadena Urban Trees) 2016 CVPR 2016[91] Urban forestry / Remote sensing FG (species-level) Detection + Classification
iNaturalist 2017 (iNat2017) 2017 CVPR 2018[83] Biodiversity FG–UFG continuum (taxonomy-aware) Classification / Detection
HAM10000 2018 arXiv 2018 / ISIC Challenge[12, 78] Medical (Dermatology) FG–UFG continuum (lesion-type level) Classification / Segmentation
DeepFashion2 2019 CVPR 2019[16] Fashion UFG (clothing identity with dense annotations) Detection / Pose / Segmentation / Re-ID
Herbarium-2019 2019 CVPR 2019[74] Herbarium Sheets / Botany FG (species-level) Classification
SKU-110K 2019 CVPR 2019[22] Retail Shelves UFG (dense instance-level detection) Detection
IP102 2019 CVPR 2019[95] Insect Pests / Agriculture FG (species-level) Classification
Plant-Pathology-2020 2020 arXiv 2020 / CVPR 2020 FGVC Workshop[76] Apple Leaves / Plant Disease UFG (fine-grained disease-level) Classification
Products-10K 2020 arXiv 2020 / ICPR Challenge[3] E-commerce Products UFG (SKU-level) Classification
Google Landmarks Dataset v2 (GLDv2) 2020 CVPR 2020[93] Landmarks UFG (instance-level) Recognition / Retrieval
Danish-Fungi-2020 (DF20) 2020 WACV 2022[57] Wild Fungi / Biodiversity Monitoring UFG (species-level, long-tailed) Classification
iNaturalist 2021 (iNat2021) 2021 CVPR 2021[82] Biodiversity FG–UFG continuum (taxonomy-aware) Classification / Detection
UFGVC 2021 ICCV 2021[109] Leaf UFG (gene, order) Classification
BIOSCAN 2023 NeurIPS 2023[18] Insects UFG (BIN, order, family) Classification
AMI 2024 ECCV 2024[33] Wild Insects / Camera Trap Monitoring UFG (species-level, long-tailed, OOD) Classification
AquaMonitor 2025 arXiv 2025[32] Aquatic Invertebrates / Biodiversity Monitoring UFG (species-level, ultra-fine-grained) Classification
TomatoMAP 2025 arXiv 2025[113, 114] Agriculture / Plant Phenotyping UFG (phenotyping) Classification / Detection / Segmentation

improve interpretability but increase annotation subjectivity and la-
bor intensity [15]. These challenges highlight the trade-off between
dataset granularity and scalability, especially in domains requiring
expert validation.

3.3 Hidden Gap: Dataset Design vs Trustworthy
AI

While increasing dataset granularity improves fine-grained recog-
nition performance, it does not automatically translate into trust-
worthy behavior. A deeper gap remains between how datasets
are constructed and how trust-related properties—such as bias,
explanation faithfulness, and uncertainty—are evaluated. Despite
progress, a hidden gap remains between current dataset design
and the goals of trustworthy AI. Most datasets still lack mecha-
nisms for systematic bias analysis or explanation evaluation [1];
they fail to capture how demographic, environmental, or stylistic
biases propagate through models [19]. Recent works emphasize
that dataset documentation and hybrid bias-tracing frameworks are
essential to bridge this gap, enhancing explainability and fairness
in AI pipelines [64]. Without such integration, even highly accurate
systems risk being untrustworthy due to unexamined biases and
opaque evaluation protocols.

In summary, although FG and UFG datasets improve bench-
mark performance, they fall short of supporting trustworthy AI,
as limited data coverage often leads to benchmark-specific gains
rather than real-world generalization.

4 FG / UFG for Multimodal AI
While datasets determine which fine-grained cues are learnable,
effective reasoning ultimately depends on aligning these visual
distinctions with other modalities, especially language.

4.1 Fine-grained Visual–Language Alignment
Recent works emphasize that fine-grained alignment between vi-
sual and textual modalities is essential for improving reasoning ac-
curacy in multimodal systems. For instance, VideoGLaMM achieves
pixel-level grounding between video frames and text, effectively
connecting temporal and spatial elements for precise part–phrase
correspondence [50]. Similarly, AlignCAT introduces category- and
attribute-basedmatching to refine weakly supervised visual ground-
ing, enabling more accurate attribute grounding and part–phrase
alignment [89]. Failure analyses, such as those from LEGO Co-
builder, reveal that even advanced models like GPT-4o fail at de-
tailed spatial reasoning tasks, exposing persistent limitations in
fine-grained visual understanding [30]. Likewise, ViGoR demon-
strates that large vision-language models (VLMs) still hallucinate
nonexistent visual elements, but fine-grained reward modeling can
mitigate such failures by reinforcing accurate grounding [100].

4.2 FG Knowledge as Multimodal Anchors
FG knowledge acts as symbolic hooks and reasoning anchors that
connect perceptual inputswith conceptual structures.𝑀2ConceptBase
exemplifies this by introducing a concept-centricmultimodal knowl-
edge base that links visual and linguistic representations through
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context-aware symbol grounding, improving reasoning and re-
trieval performance [111]. Similarly, Dr-LLaVA leverages symbolic
clinical grounding to constrain VLM reasoning with structured
medical knowledge, ensuring interpretability and domain reliability
[72]. Further, VaLiK demonstrates how aligning visual features to
language for multimodal knowledge graph construction enhances
reasoning depth in large models, making symbolic FG knowledge a
key anchor for multimodal understanding [42]. Collectively, these
advances show that FG knowledge structures can serve as cog-
nitive scaffolds—stabilizing multimodal reasoning and reducing
hallucination by tying perception to symbolic semantics.

However, improved multimodal alignment alone does not guar-
antee reliability or accountability, motivating a dedicated discussion
on trustworthiness.

5 FG / UFG for Trustworthy AI
Trust failures in multimodal AI often occur when FG/UFG evidence
is absent, confounded, or unverifiable. Although Table 1 catego-
rizes datasets by granularity and domain, it does not capture trust-
related properties. To address this, Table 2 re-examines FG/UFG
datasets using operational, reproducible criteria: Bias/Fairness (sub-
group annotations + auditing protocol), Long-tail (imbalance +
rare-slice/OOD evaluation),Annotation Quality (expert vs. mixed
pipelines), Ambiguity (uncertainty/disagreement representation),
and Explainability Signal (strongest supervision such as parts/
hierarchy/lesions). We map each attribute to High/Medium/Low via
a simple rubric: High = explicit annotations & protocol, Medium
= partial/proxy support, Low = none. We further synthesize meth-
ods under a unified taxonomy, highlighting shared design choices,
trade-offs, and failure modes across paradigms.

5.1 Bias and Fairness
Bias often hides in fine-grained attributes that coarse-grained labels
fail to expose. Recent research demonstrates that fine-grained se-
mantic computation allows AI systems to detect subtle biases across
demographic groups by analyzing claim-level meanings rather than
token-level features [99]. A practical limitation is that fairness can-
not be directly audited when subgroup annotations are missing,
so many FG/UFG studies rely on proxy slices as a minimum di-
agnostic rather than a complete fairness evaluation. Fine-grained
fairness auditing frameworks such as Predictive Representativity
further reveal outcome-level inequities, emphasizing the need to
evaluate model generalization across underrepresented populations
rather than merely balancing datasets [49]. Additionally, methods
like Fairness Regularizers improve performance across minority
subpopulations in long-tailed and noisy data scenarios, promoting
equitable learning without sacrificing accuracy [92].

5.2 Transparency and Explainability
Fine-grained representations naturally support part-based explana-
tions and attribute-level reasoning, enabling transparent and inter-
pretable AI behavior. Representation Engineering (RepE) enhances
AI transparency by analyzing high-level, population-based repre-
sentations to better interpret complex model cognition [116]. Simi-
larly, prototypical and self-explainable classifiers, such as Pantypes,
capture diverse latent features to provide interpretable, part-level

justifications for model predictions [35]. Involving domain experts
in the representation debiasing process can further enhance inter-
pretability and fairness without reducing model accuracy [6].

5.3 Robustness and Long-tail Reliability
Long-tailed settings can further amplify spurious correlations, where
head-class context becomes a shortcut that fails under rare-slice or
shifted conditions. Long-tail scenarios represent ultra-fine distinc-
tions where foundation models often exhibit their greatest fragility.
Studies indicate that robust long-tail learning frameworks, such
as ViRN and Distributional Robustness Loss, improve model gen-
eralization and reduce overfitting to head classes by enhancing
representation quality for rare or fine-grained instances [14, 65].
Moreover, fine-grained evaluation frameworks like SALTED un-
cover rare but critical long-tail errors in generative and translation
models, providing diagnostic visibility into subtle reliability issues
[62] . These findings reinforce that ultra-fine granularity in rep-
resentation and monitoring is central to building AI systems that
remain fair, interpretable, and reliable under distributional stress.

6 Open Challenges and Research Gaps
Despitemajor advances inmultimodal large languagemodels (MLLMs),
several open challenges remain in achieving FG and UFG multi-
modal understanding.

6.1 Lack of FG-aware multimodal benchmarks
Current benchmarks often lack the resolution and annotation rich-
ness necessary for FG/UFG analysis. New datasets such as FG-BMK
and FineBadminton emphasize multi-level semantic hierarchies and
spatio-temporal reasoning but still face issues in defining precise
"evidence units" like parts, attributes, or relations [28, 105].

Emerging multimodal benchmarks increasingly recognize the
importance of fine-grained evidence but still expose critical inte-
gration gaps. Recent work such as VER-Bench and FAVOR-Bench
shows that models struggle to reason over subtle visual or temporal
cues [59, 79]. Multimodal datasets likeMACSA and Fakeddit demon-
strate the value of linking textual, visual, and contextual elements
for fine-grained reasoning and annotation richness [51, 101]. More-
over, biosignal-based studies highlight new directions for modeling
embodied ambiguity and subjectivity in evidence interpretation
[52]. Together, these advances underscore the need for FG-aware
benchmarks that model multi-modal "evidence units" dynamically
across perception, context, and interpretation.

6.2 Evaluation beyond accuracy
Recent studies show that accuracy-based metrics are insufficient
for evaluating fine-grained reasoning and structural understanding
in multimodal models. Process-oriented benchmarks such as MM-
MATH assess intermediate reasoning steps and solution processes
to reveal procedural and diagram-level errors [71]. Human-Aligned
Bench incorporates human performance baselines to measure rea-
soning gaps between models and people [60]. This remains unre-
solved because we still lack standardized, evidence-centric proto-
cols that separate genuine fine-grained reasoning from benchmark
shortcuts, and in UFG settings even slight annotation or acquisition
noise can dominate measured gains.
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Table 2: Trustworthiness Dimensions in FG / UFG Datasets

Dataset Bias / Fairness Long-tail Explainability Signal Annotation Quality Ambiguity
CUB-200-2011 Low Low Parts Expert Low
iNat2021 Medium High Taxonomy Mixed Medium
BIOSCAN Medium Ultra High Hierarchy Expert High
HAM10000 High Low Lesion-level Expert Medium
AMI Medium Ultra High OOD / Long-tail Expert High

6.3 Integration with foundation models
While foundation models dominate multimodal AI, their FG/UFG
integration is limited. Approaches like HEMM [41] and SciVer [86]
show the need for "FG-aware adapters" or modular probes to en-
hance foundation models rather than retraining them entirely. This
challenge persists because injecting FG-aware components into
foundation backbones can disturb their learned global alignment,
and in UFG a tiny shift in token-level attention can flip the pre-
dicted subtype. Integrating foundationmodels is non-trivial because
FG/UFG needs evidence-level control (parts/attributes/relations),
while general-purpose models provide limited hooks to enforce
such fine-grained supervision.

6.4 Human-in-the-loop and expert knowledge
integration

Few studies integrate expert reasoning into training or evaluation.
Datasets like EVADE [98] and FineBadminton demonstrate the bene-
fits of human refinement pipelines, yet comprehensive frameworks
for continuous expert feedback loops in multimodal reasoning re-
main scarce. This gap is also economic: expert labels are costly,
making label-efficient expert-in-the-loop strategies a key practical
direction. It is still open because expert feedback is scarce, hetero-
geneous, and hard to translate into consistent training signals, and
in UFG genuine inter-expert disagreement is often intrinsic rather
than a fixable labeling error.

6.5 FG/UFG × Temporal or Process
Understanding

Fine-grained temporal reasoning remains an underexplored do-
main. TemporalBench [8], EOC-Bench [110], and VideoMathQA [61]
highlight persistent gaps in modeling ultra-fine temporal evidence
— understanding process-level causality, motion sequences, and
temporally entangled multimodal events. This gap remains because
temporal evidence is sparse and entangled with context, making
causality difficult to verify, and in UFG a few frames or a slight
phase shift can decide the class.

7 Future Research Directions
This section outlines seven future research directions, synthesizing
the preceding discussions to highlight promising paths for advanc-
ing fine-grained and ultra-fine-grained visual understanding in
multimodal and trustworthy AI. Future benchmarks should define
FG evidence units across modalities (image, text, metadata, biosig-
nals) and incorporate controlled ambiguity and expert disagreement
rather than enforcing single labels [48].

7.1 FG-aware Multimodal Representation
Learning

Building upon the challenges identified in Section 6.1, we focus
on FG evidence-preserving multimodal representations. Recent
multimodal representation learning, especially vision–language
pretraining, achieves strong performance on coarse-grained tasks
such as retrieval and captioning. However, multiple studies indi-
cate that this success does not reliably transfer to FG and UFG
understanding, where decisions depend on subtle, localized, and
compositional evidence. In many cases, FG/UFG capability emerges
only incidentally, as standard pretraining objectives do not explic-
itly require such evidence to be preserved.

A key recurring limitation lies in the unit of alignment. Most
methods align global image representations with global sentence
embeddings, which encourages semantic averaging and allows
discriminative part-, attribute-, or relation-level cues to be diluted.
As a result, models may rely on convenient correlated signals, such
as background context or acquisition artifacts, while remaining
strong on conventional benchmarks. In addition, treating language
as the default alignment interface constrains extensibility, since
other modalities (e.g., sensor signals or structured metadata) do
not naturally reduce to text. This is especially critical for temporal
reasoning, where global-to-global alignment can average out short-
lived discriminative moments unless temporally localized evidence
units are modeled.

Recent work has begun to explore finer-grained alignment strate-
gies, including part- or attribute-level matching, lightweight inter-
mediate structures, and objectives that emphasize minimal visual
differences. Nevertheless, these efforts remain fragmented, and
a unified framework for preserving fine-grained evidence across
modalities is still lacking.

7.2 FG for Bias Auditing and Model Diagnosis
Building upon the challenges identified in Section 6.2, we develop
FG-aware evaluation and diagnostic protocols beyond accuracy.
Recent studies show that many biases and failure modes in mul-
timodal models manifest at the FG level. A model can appear fair
under coarse evaluation yet make systematic errors on semantically
meaningful slices defined by attributes, subtypes, or acquisition
factors (e.g., pose, illumination, sensor). Such hidden heterogeneity
means aggregate metrics may mask consistent harms.

Current bias audits often rely on coarse labels and broad group-
ings, which miss attribute-conditional bias and FG shortcuts. Diag-
nostic tools also provide limited FG resolution: saliency maps are
frequently non-causal, and post-hoc explanations are hard to com-
pare across samples. As a result, recent work calls for FG-aware
auditing (e.g., attribute/part-based slicing, worst-slice reporting,
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counterfactual perturbations, and evaluation against FG annota-
tions), but standardized FG-level auditing frameworks remain un-
derdeveloped.

7.3 Data-efficient & Self-supervised UFG
Building upon the challenges identified in Section 6.4, we revisit
data-efficient and self-supervised learning for UFG settings under
a realistic assumption: expert supervision is scarce, expensive, and
imperfect. Our framework therefore does not treat expert labels as
oracle signals, but as limited and potentially noisy supervision that
must be modeled and allocated carefully.

In practice, UFG annotations often exhibit inter-expert disagree-
ment due to subtle cues and intrinsically fuzzy category boundaries;
this ambiguity is frequently a property of the task rather than a
labeling defect. Consequently, resource-efficient pipelines empha-
size (i) active learning and triage to send experts only the “hard
cases”, and (ii) ambiguity-aware labeling (e.g., multi-label or soft
labels) to preserve uncertainty instead of forcing a single ground
truth. Meanwhile, standard SSL objectives can be misaligned with
UFG needs because broad invariances may suppress fine discrimina-
tive evidence, motivating UFG-compatible SSL variants that better
respect near-neighbor distinctions.

7.4 FG as Interfaces between Perception and
Reasoning

Building upon the challenges identified in Sections 6.3 and 6.5,
we enable structured FG reasoning and temporal understanding
with foundation models. A recurring limitation of current multi-
modal systems lies in the weak coupling between perception and
reasoning. Visual encoders produce dense and expressive represen-
tations, while reasoning modules operate over abstract concepts
and language. When the connection between these stages is im-
plicit, models may generate coherent reasoning while relying on
incorrect or unverified perceptual evidence, leading to brittle or
misleading conclusions.

Recent work suggests that FG and UFG structures can serve
as an explicit interface between perception and reasoning. Parts,
attributes, relations, and simple processes provide inspectable and
compositional primitives that translate raw sensory inputs into
reasoning-ready representations. By making evidence selection
explicit, such interfaces enable reasoning modules to operate on
grounded information rather than opaque embeddings.

Despite growing interest in structured intermediates and neuro-
symbolic hybrids, existing approaches remain fragmented and task-
specific. A systematic treatment of FG primitives as a general-
purpose interface—supporting evidence verification, ambiguity han-
dling, and FG-aware evaluation—remains largely unexplored, high-
lighting a key direction for future multimodal research.

7.5 Summary: A Research Roadmap
Together, these four threads outline a roadmap for fine-grained
vision–language research. FG-aware representation clarifies what
is preserved by retaining semantically meaningful details. FG for
auditing clarifies what can be trusted by making grounding and evi-
dence inspectable. Data-efficient UFG clarifies what can be learned
under limited supervision via transfer and weak/scalable signals.

FG as an interface clarifies what can be reasoned about by enabling
compositional, verifiable primitives. Collectively, this agendamoves
the field from plausible multimodal outputs toward systems that
preserve the right semantics, justify claims, learn with fewer labels,
and reason over grounded structure. Future multimodal FG/UFG
research highlights: (1) semantically transparent benchmarks for
ambiguity tolerance; (2) evaluation-aware architectures; (3) struc-
tural alignment with base models; (4) expert-in-the-loop learning
and advisement, and (5) temporal reasoning to link perceptual and
conceptual levels.

8 Conclusion
FG and UFG visual understanding should be treated as core founda-
tions for general and trustworthy multimodal AI rather than niche
recognition tasks. By forcing models to rely on subtle, localized,
and compositional evidence, FG/UFG exposes whether multimodal
systems are genuinely grounded or merely generating plausible
outputs, while providing precise semantic building blocks for ro-
bust cross-modal alignment and faithful multimodal reasoning. At
the same time, FG/UFG serves as a practical stress test for trustwor-
thiness: when discriminative cues are weak, confounded, or scarce,
failures in robustness, calibration, and uncertainty estimation be-
come more visible, revealing shortcut learning, hallucination, and
attribute-driven bias. Meaningful progress therefore requires a shift
from prediction-centric pipelines to evidence-centric paradigms
that preserve decisive traits, support transparent verification, and
enable learning under expensive or ambiguous supervision. Cru-
cially, closing the dataset sufficiency gap—in both coverage and
realism—is necessary to move trustworthy FG/UFG beyond a small
set of canonical benchmarks and toward multimodal models that
generalize under distribution shift, communicate uncertainty re-
sponsibly, and remain auditable in deployment. Our coverage is
limited by the availability of public datasets and prior literature, and
by unavoidable subjectivity in delineating FG/UFG across domains;
Appendix C details these scope choices.
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A Systematic Search Protocol
In order to limit bias and provide reproducible approach to the field,
a systematic search strategy was implemented according to the
predefined research questions. The review is organized over the
following three Research Questions (RQs) to address conceptual
demarcations, methodological compromises and evaluation validity
of fine-grained visual understanding.

A.1 Research Questions
• RQ1: Operationalization of Definitions. How are the

definitions and operational boundaries of Fine-Grained
(FGVC) versus Ultra-Fine-Grained Visual Categorization
(UFGVC) established in the literature? specifically, how is
the distinction operationalized beyond mere label granular-
ity?

• RQ2: Methodological Paradigms and Trade-offs. Un-
der what experimental settings are distinct methodologi-
cal paradigms (e.g., CNNs, Transformers, VLMs, Genera-
tive, Metric Learning, and Part-based approaches) effective,
and what are their associated deployment costs and failure
modes?

• RQ3: Impact of Data and Evaluation. How do dataset
characteristics (e.g., annotation quality, long-tail distribu-
tions) and evaluation protocols influence the validity, re-
producibility, and generalizability of conclusions in fine-
grained research?

A.2 Sources
To ensure a comprehensive coverage of the literature, we conducted
a systematic search across multiple primary scholarly databases and
indexing services. The primary sources included Google Scholar,
arXiv, IEEE Xplore, ACM Digital Library, Springer Link, El-
sevier (ScienceDirect), and OpenReview. These platforms were
selected to encompass both established peer-reviewed venues and
high-impact preprints, reflecting the rapid pace of advancement in
the field. The final search across all databases was completed on
January 10, 2026.
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A.3 Time Window + Filters
Time Window (2013–2025): We restricted our primary survey
scope to the period between 2013 and 2025. This window was cho-
sen to capture the complete evolution of modern Deep Learning
approaches in Fine-Grained Visual Categorization (FGVC), starting
from early CNN-based part-localization methods (circa 2013–2014)
through the Transformer era, up to the emergence of current Mul-
timodal Large Language Models (MLLMs).

Inclusion and Exclusion Criteria:

• Publication Type:We prioritized peer-reviewed articles
from top-tier computer vision and machine learning con-
ferences (e.g., CVPR, ICCV, ECCV, NeurIPS, ICML, AAAI)
and journals (e.g., TPAMI, IJCV). Given the high velocity
of research in Multimodal AI, we also included impactful
preprints from arXiv and OpenReview that have garnered
significant community attention or citations.

• Language: The search was restricted to manuscripts writ-
ten in English.

• Relevance Filter:Articles were screened based on title and
abstract to ensure they explicitly addressed fine-grained vi-
sual tasks, multimodal alignment, or trustworthiness issues
(e.g., bias, explainability) rather than general generic object
recognition.

A.4 Query Strings for Figure. 2
To quantitatively visualize the shifting research focus shown in
Figure 2, we performed a trend analysis using Google Scholar. We
queried the total number of publications per year for three distinct
keywords representing the core themes of this survey. The exact
query strings used were:

(1) "fine grained classification" — representing the tra-
ditional FGVC domain.

(2) "Multimodal AI"— representing the expansion into vision-
language and cross-modal research.

(3) "Trustworthy AI" — representing the growing emphasis
on reliability, fairness, and explainability.

For each keyword, we applied an exact-match search filter (using
quotationmarks) and restricted the results to custom date ranges for
each year (𝑌 ) from 2013 to 2025 (i.e., as_ylo=𝑌, as_yhi=𝑌 ). The
resulting counts were aggregated to plot the comparative growth
trajectories, highlighting the stabilization of traditional FGVC re-
search alongside the exponential surge in Multimodal and Trust-
worthy AI topics.

A.5 Screening & Inclusion/Exclusion Criteria
To ensure a comprehensive and representative review of the field,
we adopted a systematic literature search and screening process.
The initial corpus was identified through Google Scholar using a
set of carefully selected keywords related to "Fine-Grained Visual
Categorization" (FGVC) and "Ultra-Fine-Grained Visual Catego-
rization" (UFGVC), spanning multiple time ranges to capture both
foundational works and recent advancements. We verified the total
number of papers to ensure a robust sample size before applying
our filtering criteria.

Regarding eligibility, papers were selected for inclusion if they
were directly relevant to FGVC or UFGVC tasks, explicitly propos-
ing a novel methodology, dataset benchmark, or extensive analysis,
and if the full text was publicly available in English. Conversely,
we excluded studies that focused solely on applications (e.g., indus-
trial inspection) without methodological contributions, duplicate
publications—retaining only the most complete peer-reviewed ver-
sion—and research strictly outside the scope of visual categorization,
such as non-visual modalities or pure detection tasks.

A.6 Coding Procedure
To systematically analyze the selected literature, we developed
a multi-dimensional taxonomy that characterizes how modern
approaches tackle the challenges of fine-grained understanding.
The coding scheme categorizes each paper across five key dimen-
sions: the primary learning Paradigm (e.g., Fully Supervised, Self-
Supervised, orWeakly Supervised), the Supervision Signal employed
(e.g., Image-level vs. Part-level), the scale of Feature Granularity,
the degree of VLM Integration, and the usage of Generative Aug-
mentation.

Labeling Protocol and Borderline Cases. Every paper in our sur-
vey is assigned at least two mandatory labels: a Task Label (FGVC
or UFGVC) and a Paradigm Label. To ensure consistency amidst
intersecting methodologies, we established specific rules for bor-
derline cases. For instance, papers tackling fine-grained recognition
using open-vocabulary setups are coded primarily under the Mul-
timodal/VLM paradigm rather than standard Zero-Shot Learning,
reflecting that the core contribution typically lies in cross-modal
alignment. Similarly, for hybrid architectures combining multiple
supervision signals, we prioritize the signal driving the primary
novelty of the proposed method.

B Evaluation Metrics & Protocols
Evaluating fine-grained and ultra-fine-grained (UFG) visual under-
standing requires a shift from aggregate performance measures
toward metrics that capture discriminative precision, distributional
robustness, and alignment reliability. While standard classification
benchmarks rely heavily onTop-1 andTop-5Accuracy, thesemet-
rics often fail to reflect model behavior in real-world deployments
where class distributions are highly imbalanced and semantic dis-
tinctions are subtle. Consequently, the community has increasingly
adopted Mean Per-Class Accuracy (MPCA) as a primary metric
for fine-grained tasks. unlike standard accuracy, which can be dom-
inated by head classes in long-tailed datasets (e.g., iNaturalist[83]),
MPCA weighs each category equally, exposing whether a model
has truly learned to distinguish rare subpopulations or is merely
overfitting to prior probabilities. For tasks involving retrieval or
verification, such as identifying products in e-commerce, mean
Average Precision (mAP) and Recall@K become the standard,
measuring the model’s ability to rank the correct fine-grained in-
stance among visually similar distractors.

Beyond simple correctness, the requirements for Trustworthy AI
necessitate metrics that assess confidence and stability. Expected
Calibration Error (ECE)[23] is increasingly cited in FGVC liter-
ature to quantify whether a model’s predicted probability scores

12



1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Fine-Grained Visual Understanding for Multimodal and Trustworthy AI , ,

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

align with its actual accuracy, a critical property when distinguish-
ing between ultra-fine-grained categories where visual ambigu-
ity is inherent. Furthermore, robustness protocols have evolved
to include Worst-Group Accuracy and Adversarial Robust-
ness scores, which test model performance under specific pertur-
bations or within the lowest-performing demographic slices. These
value-added metrics ensure that high aggregate scores do not mask
fragility in safety-critical or semantically specific sub-domains.

Experimental protocols in this field are categorized by how they
structure the training and evaluation sets to mimic real-world
scarcity. The most common setup involves Standard Closed-Set
Splits, where training and testing classes are disjoint but drawn
from the same domain, as seen in CUB-200-2011 and Stanford Cars.
However, to test generalization, Cross-Domain Protocols are
employed, where models are trained on web-scraped data and
evaluated on user-captured photos, rigorously testing invariance
to domain shifts. Addressing the challenge of identifying novel
categories, Open-Set and Open-Vocabulary Protocols[17, 66]
evaluate a model’s ability to classify known classes correctly while
rejecting or flagging "unknown" inputs. In these settings, evaluation
often utilizes the Area Under the Receiver Operating Characteristic
(AUROC) curve to measure the separation between known and
unknown distributions. For data-scarce applications, Few-Shot
Learning Protocols utilize episodic evaluation, typically format-
ted as 𝑁 -way 𝐾-shot episodes [84]. Here, the model must learn to
discriminate between 𝑁 previously unseen classes given only 𝐾 ex-
amples of each, testing the system’s ability to acquire fine-grained
concept boundaries from minimal evidence rather than large-scale
statistical correlation.

The suitability of a metric is intrinsically linked to the dataset’s
specific challenges, particularly regarding class imbalance and label
granularity. Mean Per-Class Accuracy is essential for long-tailed
datasets like iNaturalist or fungal recognition benchmarks, where
standard accuracy would allow a model to ignore the majority
of rare species while still achieving high scores. Conversely, in
Ultra-Fine-Grained (UFG) scenarios where inter-class differences
are microscopic or subject to expert disagreement (e.g., distinct
cultivars or slight disease progressions), strict Top-1 accuracy may
be overly penalizing. in such cases, Hierarchical Metrics orM-
distance are often more appropriate, as they penalize errors based
on semantic distance in the taxonomy tree rather than treating all
misclassifications as equally wrong[5]. This hierarchical evaluation
is particularly relevant for datasets with open-vocab definitions,
where "correctness" is better defined by semantic proximity in an
embedding space than by an exact match to a discrete label ID.

C Limitations
Despite providing a broad overview of FG and UFGVC, this survey
has several limitations. First, our literature coverage may be biased
by the search strategy: the set of reviewed papers is influenced
by the specific indices (e.g., digital libraries and preprint servers),
keywords, and time range that we used, andwe do not claim that the
resulting collection is exhaustive. This also introduces publication
bias, as preprints (e.g., arXiv) and peer-reviewed venues can differ
in visibility, revision cycles, and reporting practices. Second, the
proposed taxonomy necessarily involves subjective design choices;

boundaries between methodological categories (e.g., recognition
vs. localization vs. part-based modeling, or discriminative learning
vs. generative augmentation) can be ambiguous, and some works
may reasonably fit multiple categories.

Third, our dataset list is non-exhaustive. The datasets summa-
rized in Table 1 were collected through the same non-exhaustive
process, so any downstream aggregation (e.g., figures derived from
Table 1) should be interpreted as descriptive rather than definitive
of the entire field. In particular, trends inferred from dataset counts
across years may reflect discovery and selection effects, and should
not be read as evidence of a sharp or universal shift in research
emphasis. Fourth, performance comparisons across architectural
paradigms are inherently limited: results reported in the literature
are often not directly comparable due to differences in backbones,
pretraining data, training recipes, data splits, annotation protocols,
and evaluation metrics. Because many papers evaluate under het-
erogeneous settings, we avoid claiming a single global ranking of
methods and instead emphasize qualitative patterns.

Finally, our discussion of evaluation practices is incomplete.
While common metrics (e.g., top-1 accuracy, mean per-class ac-
curacy, mAP, localization accuracy, calibration measures) appear
throughout the literature, we do not provide a fully standardized
metric taxonomy nor a unified re-evaluation across datasets and
protocols. Future work could address these limitations via a fully
reproducible systematic review (explicit queries, sources, inclu-
sion/exclusion criteria, and counts), a structured cross-paradigm
comparison table under controlled settings, and a more comprehen-
sive dataset/metric audit including annotation cost, scalability, and
failure modes.
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