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Abstract
Large Vision-Language Models (LVLMs) typ-001
ically learn visual capacity through visual in-002
struction tuning, involving updates to both a003
projector and their LLM backbones. Draw-004
ing inspiration from the concept of visual re-005
gion in the human brain, we investigate the006
existence of an analogous visual region within007
LLMs that functions as a cognitive core, and008
explore the possibility of efficient training of009
LVLMs via selective layers tuning. We use010
Bunny-Llama-3-8B-V for detailed experiments011
and LLaVA-1.5-7B and LLaVA-1.5-13B for012
validation across a range of visual and textual013
tasks. Our findings reveal that selectively up-014
dating 25% of LLMs layers, when sparsely and015
uniformly distributed, can preserve nearly 99%016
of visual performance while maintaining or en-017
hancing textual task results, and also effectively018
reducing training time. Based on this targeted019
training approach, we further propose a novel020
visual region-based pruning paradigm, remov-021
ing non-critical layers outside the visual region,022
which can achieve minimal performance loss.023
This study offers an effective and efficient strat-024
egy for LVLM training and inference by acti-025
vating a layer-wise visual region within LLMs,026
which is consistently effective across different027
models and parameter scales.028

1 Introduction029

Large Vision-Language Models (LVLMs) (Li et al.,030

2023; Zhu et al., 2023; Bai et al., 2023; Liu et al.,031

2024) have emerged as an increasing research inter-032

est for interpreting and interacting with the world033

through both visual and linguistic channels. Exist-034

ing LVLMs generally utilize advanced Large Lan-035

guage Models (LLMs), like FlanT5 (Chung et al.,036

2022) and Vicuna (Chiang et al., 2023), as their cog-037

nitive core, and align visual features from visual038

encoders with LLMs’ knowledge and reasoning039

abilities. This alignment has demonstrated remark-040

able performance across diverse visual tasks (Lu041

et al., 2022; Liu et al., 2023b; Fu et al., 2024).042

LVLMs are primarily trained through visual in- 043

struction tuning (Liu et al., 2023a), which involves 044

training both a projector and LLMs on visual in- 045

struction datasets, with optional updates to the vi- 046

sual encoder. Despite its efficacy, fully tuning 047

all LLMs layers remains computationally costly, 048

even when using efficient strategies like Low-Rank 049

Adaptation (LoRA) (Hu et al., 2021) and its quan- 050

tized variant (QLORA) (Dettmers et al., 2024). 051

Additionally, extensive multimodal training risks 052

degrading LLMs’ pre-trained linguistic knowl- 053

edge and reasoning capabilities (Dai et al., 2024; 054

Agrawal et al., 2024), as evidenced by LVLMs’ 055

increased perplexity on textual tasks compared to 056

their LLM backbone in the purple section of Fig. 1. 057

Inspired by specialized visual regions in the hu- 058

man brain (Grill-Spector and Malach, 2004) and 059

LLMs’ brain-like versatility across tasks, we pro- 060

pose an analogous concept of a visual region within 061

LLMs. We hypothesize that visual alignment to 062

LLMs can only activate this specific visual region 063

while preserving LLMs’ core language abilities, 064

potentially manifesting as a layer-wise structure 065

considering layer redundancy in LLMs (Men et al., 066

2024; Gromov et al., 2024). We further detailedly 067

analyze LVLMs’ layer redundancy in Fig. 1 (green 068

part), shows that reverting certain layers of a LVLM 069

to its backbone LLM’ parameters minimally im- 070

pacts downstream visual performance. This sug- 071

gests certain layers within LLMs are non-essential 072

for visual tasks, thereby supporting our hypothesis. 073

Although layer-wise freezing techniques (Zhang 074

et al., 2024b) enable efficient LLM fine-tuning by 075

adapting later layers for specific language tasks, 076

they cannot be directly applied to visual tasks. Be- 077

cause visual alignment requires visual perception 078

capabilities beyond textual understanding and rea- 079

soning. While Zhang et al. (2024a) propose param- 080

eter localization for visual tasks, it remains highly 081

task-specific and data-dependent, limiting its gen- 082

eralizability to versatile multimodal learning and 083
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Model Variants
Visual Textual

OCRVQA DocVQA WikiText Pile-10k

LLaVA 2.43 30.55 11.44 29.58

LLaVAr (layer 0∼7) 1.87 38.49 [↑] 11.37 [↑] 29.19 [↑]
LLaVAr (layer 8∼15) 1.93 32.35 [↑] 11.38 [↑] 29.21 [↑]
LLaVAr (layer 16∼23) 2.18 16.47 11.35 [↑] 29.33 [↑]
LLaVAr (layer 24∼31) 2.11 17.47 11.36 [↑] 29.27 [↑]

Vicuna (all layers) 80.75 175.10 11.32 28.38
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Figure 1: Left: Perplexity of LLaVA with selected layers (in parentheses) reverted to Vicuna parameters on
visual and textual tasks. Arrows indicate perplexity increases relative to LLaVA (visual tasks) and Vicuna (textual
tasks). Both results suggest layer redundancy in LVLMs and degraded linguistic capability. Right: Accuracy of
LLaVA-1.5-7B when pruning certain layers based on angular distance scores (Gromov et al., 2024).

neglecting the preservation of linguistic capabil-084

ities. To bridge this gap, we identify a general-085

purpose visual region within LLMs for efficient086

LVLM training across diverse tasks without dimin-087

ishing linguistic performance. Specifically, we aim088

to investigate two key questions: (1) Where is this089

visual region located within LLMs? (2) What is090

the necessary scale of layers in this visual region091

to ensure effective and efficient LVLMs training?092

To this end, we embark on empirical experiments093

with Bunny-Llama-3-8B-V (He et al., 2024) across094

diverse visual tasks. Our findings indicate that095

sparsely and uniformly distributed layers within096

LLMs are the optimal position for visual learn-097

ing while simultaneously preserving textual perfor-098

mance. This strategic visual region selection also099

outperforms previous layer importance strategies.100

Notably, updating only 25% of layers achieves101

nearly 99% performance on visual tasks while102

effectively saving training time. We further validate103

this conclusion with LLaVA-1.5-7B and LLaVA-104

1.5-13B (Liu et al., 2023a), demonstrating its con-105

sistent applicability across models and parameter106

scales. Specifically, we achieve time reductions107

of nearly 23% for LLaVA-1.5-7B and LLaVA-1.5-108

13B, and 12% for Bunny-Llama-3-8B-V.109

Additionally, as shown in Figure 1 (right), we110

find that commonly used layer-pruning strategies111

are ineffective for LVLMs, with even minimal layer112

removal causing significant performance degrada-113

tion. In response, we propose a visual region-114

based pruning paradigm that selectively prunes less-115

important layers outside the visual region after tar-116

geted training. Specifically, we follow the angular117

distance based layer importance strategy (Gromov118

et al., 2024) outside the visual region, and exper-119

imental results demonstrate that our paradigm is120

effective to minimizes performance decline. Over- 121

all, our work highlights promising potential for 122

more efficient LVLMs training and inference. 123

2 Preliminary of LVLMs 124

2.1 Model Architecture 125

Mainstream LVLMs consist of three components: 126

a LLM, a visual encoder, and a projector or con- 127

nection module, aim to effectively leverage the 128

capabilities of both the pre-trained visual model 129

and LLMs. The visual encoder extracts visual fea- 130

tures from images, commonly utilizing pre-trained 131

models such as CLIP ViT-L/14 (Radford et al., 132

2021). The connection module then projects these 133

extracted features into word embedding space un- 134

derstandable by LLMs, commonly employing tech- 135

niques such as linear projection (Tsimpoukelli 136

et al., 2021), Q-former (Li et al., 2023), or cross- 137

attention layers (Alayrac et al., 2022). This enables 138

LVLMs based on LLMs cores, like Vicuna (Chi- 139

ang et al., 2023), FlanT5 (Chung et al., 2022), and 140

LLaMA (Touvron et al., 2023) to process visual 141

information in a similar manner as text. 142

2.2 Model Training 143

The training process of LVLMs can be broadly di- 144

vided into two phases: pre-training and supervised 145

fine-tuning. Unlike LLMs, both the pre-training 146

and supervised fine-tuning of LVLMs utilize su- 147

pervised image-text pairs for visual instruction tun- 148

ing. The pre-training stage primarily utilizes large- 149

scale captioning instruction data, which requests 150

the model to briefly describe images. This phase 151

enables the model to interpret image content, usu- 152

ally with LLMs’ weights frozen and the visual en- 153

coder optionally updated. Some works such as 154
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Qwen-VL (Bai et al., 2023), also expand the pre-155

training to incorporate additional tasks like visual156

question answering, and update the LLMs com-157

ponent accordingly. During the supervised fine-158

tuning stage, high-quality instruction data are em-159

ployed to enhance the LVLMs’ ability in following160

diverse visual instructions and engaging in conver-161

sations. The visual encoder in this stage is typically162

kept static while the LLMs are tuned. During both163

stages, the projector is consistently updated, ensur-164

ing the model’s evolving ability to bridge visual165

and textual data.166

3 Experimental Setup167

In this study, we conduct empirical experiments168

on Bunny-Llama-3-8B-V to investigate our hypoth-169

esis regarding the existence of a specific visual170

region within LLMs (Sec. 4.1∼ 4.3), and apply our171

findings on LLaVA-1.5-7B and LLaVA-1.5-13B172

to validate its general applicability across different173

model configurations (Sec. 5.1).174

3.1 LVLM Implementation175

We employ Bunny-Llama-3-8B-V for investiga-176

tion experiments, which builds upon the 32-layer177

Llama3-8B (Touvron et al., 2023), and LLaVA-178

1.5-7B/13B, built on the 32/40-layer Vicuna-1.5-179

7B/13B (Chiang et al., 2023), for validation. Since180

the LLM components remain frozen during pre-181

training, our focus is on the supervised fine-182

tuning stage using 695K and 665K language-183

image instruction-following instances for Bunny184

and LLaVA, respectively. Considering computa-185

tional constraints, we use the LoRA (Hu et al.,186

2021) strategy, highlighting that our approach is187

complementary to other efficient training methods.188

Training was conducted with DeepSpeed (Song189

et al., 2023) configured for zero3 optimization on190

8×A800 GPUs. Additional implementation details191

are available in the Appendix.192

3.2 Evaluation Tasks193

Our investigation spans diverse visual perception194

and cognition tasks, to comprehensively evaluate195

models and thoroughly examine our hypothesis.196

3.2.1 Visual perception tasks197

Visual perception tasks assess models’ ability to in-198

terpret and understand surface-level visual features,199

such as object identification and scene recognition,200

mirroring human sensory perception process.201

• OCRVQA (Mishra et al., 2019): VQA by read- 202

ing text in images through optical character 203

recognition (OCR). We adopt the accuracy cal- 204

culation method from (Bai et al., 2023) on the 205

test set, allowing a certain margin of error. 206

• DocVQA (Mathew et al., 2021): VQA by in- 207

terpreting document images. For DocVQA’s 208

validation set, we employ the same evaluation 209

method and metric as in OCRVQA. 210

• RefCOCOg (Yu et al., 2016): A variant of Re- 211

fCOCO (Kazemzadeh et al., 2014) featuring 212

more complex object referring expressions in 213

COCO images (Lin et al., 2014). We assess the 214

reference expression generation task on the test 215

set using Intersection over Union as the metric. 216

• TDIUC (Kafle and Kanan, 2017): a VQA task 217

suite across 12 categories, primarily perception 218

tasks (e.g., object presence, counting, recogni- 219

tion) with some cognition tasks (e.g., positional 220

reasoning, affordance, subordinate). Accuracy 221

is measured on the validation set. 222

3.2.2 Visual cognition tasks 223

Contrary to perception tasks, cognition tasks re- 224

quire deeper reasoning based on visual stim- 225

uli, drawing on prior knowledge and advanced 226

decision-making abilities learned within LLMs. 227

This process resembles cognitive thinking and ma- 228

nipulation in human mental activities. 229

• MMBench (Liu et al., 2023b): a benchmark 230

mainly for cognition tasks, with some fine- 231

grained perception tasks requiring knowledge 232

and reasoning. For simpler model variant com- 233

parison, we calculate accuracy on the dev subset 234

instead of submitting to the evaluation server. 235

• GQA (Hudson and Manning, 2019): a dataset 236

featuring real-world visual reasoning and com- 237

positional question answering. 238

• ScienceQA (Lu et al., 2022): sourced from el- 239

ementary and high school science curricula, re- 240

quiring external knowledge and reasoning. We 241

focus on questions with image context. 242

• TextVQA (Singh et al., 2019): a dataset re- 243

quiring reasoning about text in images. For 244

TextVQA, ScienceQA, and GQA, we use the 245

LLaVA evaluation codes to measure accuracy. 246

4 Visual Region Investigation 247

We first analyze the position and scale of the 248

layerwise-structure vision region within its LLM 249
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Model Version
Perception Cognition

Avg
OCRVQA DocVQA RefCOCOg TDIUC MMBench GQA ScienceQA TextVQA

All layers 64.26% 29.45% 50.12% 83.84% 74.74% 64.29% 79.28% 62.11% 63.51%

Heuristic Selections

Sparse & Uniform 62.65% 29.51% 48.33% 83.68% 73.88% 63.68% 78.78% 62.43% 62.88%
Consecutive Lower 61.38% 22.47% 46.49% 83.27% 73.63% 62.33% 75.26% 62.26% 60.89%

Consecutive Lower-middle 62.54% 26.13% 48.17% 83.77% 72.51% 62.81% 77.14% 60.96% 61.75%
Consecutive Upper-middle 62.32% 28.06% 43.12% 83.40% 70.27% 61.28% 78.83% 59.33% 60.83%

Consecutive Top 60.48% 26.47% 39.92% 83.22% 67.96% 60.30% 77.54% 58.71% 58.08%
Hybrid Top-Lower 57.63% 29.76% 41.79% 83.26% 72.25% 62.71% 77.99% 62.74% 61.02%

Importance-based Selections

Image Attention Score 63.65% 24.53% 43.62% 83.90% 72.59% 62.82% 77.59% 61.99% 61.34%
Parameter Change Ratio 63.94% 26.94% 47.67% 83.88% 73.54% 63.21% 78.68% 61.73% 62.45%
Block Influence Score 62.38% 28.45% 46.37% 83.73% 71.13% 61.93% 77.34% 59.93% 61.41%
Multimodal BI Score 61.48% 28.80% 46.68% 83.74% 73.02% 63.23% 77.24% 62.23% 62.05%

Angular Distance 60.95% 27.71% 46.74% 83.49% 73.88% 62.11% 77.14% 62.76% 61.85%

Table 1: Performance comparison of Bunny-LLaMA-3-8B-V tuned with different layer selection methods (8
layers). Bold numbers indicate the best performance in each column (excluding “all layers”).

core on Bunny-Llama-3-8B-V, to answer the fol-250

lowing two questions.251

4.1 Where are visual region layers located252

within LLMs for effective visual learning?253

To demonstrate the optimal positioning of the vi-254

sual region in LLMs for effective and efficient vi-255

sual learning, we re-train Bunny-Llama-3-8B-V by256

updating 25% of layers (8 layers) 1 under various257

selection configurations. As pre-training does not258

involve LLM optimization, we focus on supervised259

fine-tuning, starting from the pre-trained check-260

point. We specifically explore different positional261

selection strategies as detailed below.262

• Heuristic Layer Selection (1) We intuitively hy-263

pothesize that tuning sparsely and uniformly dis-264

tributed layers (0,4,8,12,18,22,26,30) preserves265

LLMs’ existing knowledge and reasoning abili-266

ties while enabling visual learning. (2) We exper-267

iment with tuning consecutive 8-layer blocks at268

different positions in LLMs: lower layers (0∼7),269

lower-middle layers (8∼15), upper-middle lay-270

ers (16∼23), and top layers (24∼31), with the271

latter being a common practice of efficient down-272

stream fine-tuning (Liao et al., 2024). (3) We test273

a hybrid of lower and top layers (0∼3, 28∼31).274

• Importance-based Layer Selection We com-275

pare layer selection strategies based on vary-276

ing importance metrics. (1) Image Attention277

Score: We compute the average attention score278

1We use the 8-layer configuration as a testbed for its bal-
ance of efficiency and effectiveness.

on all image tokens at each layer to gauge the 279

layer’s affinity for image information. The top 280

8 layers with the highest scores are selected 281

(1,2,3,4,5,27,29,31). (2) Parameter Change Ra- 282

tio (Zhao et al., 2023): 8 layers with the high- 283

est relative parameter change ratios (averaged 284

all parameters in each layer) in Bunny-Llama- 285

3-8B-V compared to its backbone Llama are 286

selected (0,2,9,12,23,24,25,26). (3) Block In- 287

fluence (BI) Score (Men et al., 2024): Using 288

Flickr30k dataset, we calculate hidden state 289

transformations at each layer as the BI score, 290

and select 8 layers with the highest scores 291

(12,15,18,25,27,29,30,31). (4) Multimodal BI 292

Score: We propose a multimodal variant that av- 293

erage hidden state transformations respectively 294

of visual tokens and textual tokens, and select 8 295

layers with highest scores (0,1,2,3,4,5,9,31). (5) 296

Angular Distance Score (Gromov et al., 2024): 297

The top 8 layers with the highest angular dis- 298

tances between consecutive layer inputs are se- 299

lected (0,1,2,3,5,6,7,8). Detailed calculations 300

for these metrics are provided in Appendix A. 301

The results are shown in Table 1. We observe that 302

tuning sparsely and uniformly distributed layers 303

achieves the best overall performance across per- 304

ception and cognition tasks, closely matching the 305

all-layers upper bound. In contrast, consecutive 306

layers generally underperform, likely due to lim- 307

ited diversity in similar representations across adja- 308

cent layers (Kornblith et al., 2019), which hinders 309

adaptability to various tasks. This further under- 310

4



Model Scale
Perception Cognition

Avg
OCRVQA DocVQA RefCOCOg TDIUC MMBench GQA ScienceQA TextVQA

32 layers 64.26% 29.45% 50.12% 83.84% 74.74% 64.29% 79.28% 62.11% 63.51%
16 layers 62.42% 26.43% 49.15% 84.04% 74.83% 64.10% 78.93% 62.96% 62.86% (98.98%)
8 layers 62.65% 29.51% 48.33% 83.68% 73.88% 63.68% 78.78% 62.43% 62.88% (99.00%)
6 layers 62.25% 29.76% 47.71% 84.01% 75.00% 62.93% 77.54% 62.92% 62.78% (98.85%)
4 layers 62.40% 28.89% 46.00% 83.99% 73.71% 62.66% 77.69% 62.74% 62.26% (98.03%)
2 layers 57.96% 28.49% 44.67% 83.15% 72.68% 61.00% 78.48% 60.35% 60.85% (95.81%)
1 layer 53.68% 24.33% 38.47% 82.92% 68.64% 59.19% 77.69% 58.32% 57.91% (91.18%)

Table 2: Performance comparison of Bunny-Llama-3-8B-V fine-tuned with different numbers of layers. Bold
numbers represent the best performance in each column. Values in parentheses denotes the percentage relative to
the performance achieved by tuning all layers.
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Figure 2: Performance variation of the re-trained Bunny-Llama-3-8B-V model across different training data scales
during the supervised fine-tuning stage, with tuning varying number of layers. Dashed lines indicate 98% of the
performance achieved by tuning all layers with the corresponding training data scale.

scores the superiority of sparsely and uniformly311

distributed layers. Notably, tuning top layers yields312

the worst performance, deviating from the con-313

ventional practice in domain-specific fine-tuning,314

where the last few layers are typically adjusted for315

downstream tasks (Liao et al., 2024). This high-316

lights a significant distinction between adapting317

to new modalities and new downstream domains.318

Furthermore, while importance-based metrics are319

effective for layer pruning during LLMs inference,320

they are less effective than our empirically selected321

sparse and uniform layers for visual learning.322

4.2 What is the necessary scale of layers for323

effective and efficient LVLMs training?324

To investigate the necessary scale of this visual re-325

gion to enable LVLMs to receive visual signals and326

align with linguistic features, we re-train Bunny-327

Llama-3-8B-V by updating varying number of lay-328

ers. We respectively experiment with configura-329

tions of 32, 16, 8, 6, 4, 2 and 1 layers, with all330

selected layers uniformly distributed across all lay-331

ers 2. This selection strategy is based on our finding332

2Specifically, we select all even-numbered layers for the
16-layer configuration; layer 0, 4, 8, 12, 18, 22, 26, 30 for the

that sparsely and uniformly distributed layers are 333

the optimal position for effective visual learning. 334

The results of tuning varying scales of layers on 335

visual perception and cognition tasks are summa- 336

rized in Table 2. Tuning 20∼25% of the layers 337

(6 and 8 layers) retains approximately 98% of the 338

performance achieved by tuning all LLMs layers 339

of Bunny-Llama-3-8B-V, with 25% (8 layers) pre- 340

serving up to 99%. However, updating fewer than 341

4 layers leads to a significant performance drop, 342

particularly in perception tasks that heavily relies 343

on visual interpretation, highlighting the necessity 344

of tuning at least 12.5% of the layers (4 layers) for 345

effective visual alignment. 346

4.3 Trend between Data Size and Visual 347

Region Scale 348

We further explore the trend between data size and 349

the optimal layer count for effective visual instruc- 350

tion tuning. Using random subsets of 100%, 25% 351

8-layer setup; layer 0, 6, 12, 18, 24, 30 for the 6-layer setup;
and layer 0, 10, 20, 30 for the 4-layer configuration (Our ex-
periments show that using layer 30 or 31 leads to comparable
results). For 2 layers and 1 layers that can not selected uni-
formly, we choose layers with highest block influence scores,
i.e., layer 0 and 31 for 2 layers, and layer 31 for 1 layer.
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Model Scale
Perception Cognition

Avg
OCRVQA DocVQA RefCOCOg TDIUC MMBench GQA ScienceQA TextVQA

LLaVA-1.5-7B

32 layers 61.51% 19.46% 49.01% 83.40% 66.67% 62.98% 68.47% 58.19% 58.71%
16 layers 64.01% 20.75% 48.02% 83.47% 64.00% 62.43% 67.53% 58.27% 58.56% (99.74%)
8 layers 62.19% 21.10% 47.71% 83.10% 63.92% 61.60% 68.17% 57.35% 58.14% (99.03%)
6 layers 61.39% 22.84% 46.54% 83.31% 61.77% 61.08% 68.32% 56.19% 57.69% (98.26%)
4 layers 63.28% 21.01% 43.47% 83.14% 60.82% 60.48% 67.97% 54.48% 56.83% (96.80%)
2 layers 54.54% 19.10% 41.90% 81.47% 57.22% 57.38% 65.84% 53.27% 53.84% (91.70%)
1 layer 53.16% 16.96% 33.29% 81.20% 51.89% 55.83% 64.50% 45.51% 50.29% (85.66%)

LLaVA-1.5-13B

40 layers 67.60% 25.19% 50.26% 83.61% 68.38% 63.29% 71.64% 60.21% 61.27%
10 layers 65.17% 23.56% 48.27% 83.57% 66.58% 62.01% 70.75% 59.13% 59.88% (97.73%)
9 layers 66.47% 23.65% 49.29% 83.74% 65.61% 62.31% 72.14% 59.71% 60.37% (98.53%)

Table 3: Performance Comparison of LLaVA-1.5 with different model scales tuned with different numbers of layers.
Bold numbers represent the best performance in each column. Values in parentheses denotes the percentage relative
to the performance achieved by tuning all layers.

and 10% from a pool of 695K visual instruction-352

following instances, we tune Bunny-Llama-3-8B-353

V with varying numbers of layers following the354

same selection strategy as the full dataset. We re-355

port the performance trends across four datasets,356

OCRVQA, TextVQA, TDIUC and GQA. As shown357

in Figure 2, tuning 25% of the layers consistently358

achieves over 98% of full performance across dif-359

ferent data sizes while reducing training time. This360

approach offers a resource-efficient pathway for361

optimizing hyperparameters and training data se-362

lection by tuning such a visual region before final-363

izing the model with all layers. Moreover, even364

with smaller datasets, tuning fewer than 4 layers365

still results in notable performance declines.366

5 Further Analysis367

5.1 Generalizability Validation368

To validate our findings of visual region beyond369

Bunny-Llama-3-8B-V, we take LLaVA-1.5-7B and370

LLaVA-1.5-13B as additional testbeds to assess371

the generalizability across LVLMs with different372

LLM backbones and parameter scales. Following373

the setup in Sec. 4.2, we re-train both models with374

different number of layers that are sparsely and375

uniformly distributed within their respective back-376

bones, Vicuna-1.5-7B and Vicuna-1.5-13B. Results377

presented in Table 3 show that under our visual378

region positioning strategy, tuning approximately379

25% of the layers consistently yield 98% of the full380

performance. This demonstrates that our approach381

generalizes effectively across LVLMs.382

5.2 Computational Cost 383

To demonstrate the efficiency of visual region- 384

based tuning, we report the computational costs 385

associated with tuning different numbers of lay- 386

ers across various models using the LoRA strategy. 387

For fair comparison across setups with different 388

numbers of GPUs (specifically A800 GPUs in this 389

analysis), we compute the product of the number 390

of GPUs and running hours as a measure of com- 391

putational cost. From Figure 3, Table 2 and Ta- 392

ble 3, tuning a visual region comprising up to 25% 393

of layers (8 layers for LLaVA-1.5-7B and Bunny- 394

Llama3-8B-V, 10 layers for LLaVA-1.5-13B) can 395

achieve 98% of full performance while achieving 396

substantial reductions in computational overhead.
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Figure 3: Computational costs for tuning LLaVA-1.5-
7B, Bunny-Llama-3-8B-V, and LLaVA-1.5-13B with
different number of layers using LoRA.
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Specifically, we reduce training time by 23% for397

LLaVA models and 13% for Bunny. These results398

highlight that the effectiveness of visual region-399

based tuning in training LVLMs efficiently with400

minimal performance trade-offs.401

5.3 Evaluation of Textual Tasks402

As highlighted in (Dai et al., 2024; Agrawal et al.,403

2024) and illustrated in Figure 1, multimodal train-404

ing risks significant degradation of LLMs’ pre-405

trained linguistic knowledge and reasoning capabil-406

ities. To verify whether training our sparsely and407

uniformly distributed visual region compromises408

the model linguistic capacity, we extend our experi-409

ments to two text-only question answering datasets,410

MMLU (Hendrycks et al., 2020) and BIG-bench-411

Hard (Suzgun et al., 2022), covering a wide range412

of topics and fields. We use “Answer with the op-413

tion’s letter from the given choices directly” and414

“Please answer this question in a word or phrase” as415

the prompts for MMLU and BIG-bench-Hard. We416

calculate the multi-choice accuracy as the evalua-417

tion metric, allowing models to provide additional418

explanations alongside its responses. We adopt419

a five-shot prompting strategy for MMLU and a420

zero-shot strategy for BIG-bench-Hard.

Model Version MMLU BIG-bench-hard

Bunny-LLaMA3-8B-V

Fully-trained (32 layers) 60.27% 30.93%
Partial-trained( 8 layers) 63.36% 31.50%

LLM-Backbone 66.01% 57.93%

LLaVA-1.5-7B

Fully-trained (32 layers) 50.52% 26.85%
Partial-trained (8 layers) 50.74% 31.64%

LLM-Backbone 49.78% 29.33%

Table 4: Performance on text-only tasks. The LLm
backbones of Bunny-LLaMA3-8B-V and LLaVA-1.5-
7B are respectivly LLaMA3-8B and Vicuna-1.5-7B.

421
As shown in Table 4, fully-trained LVLMs gen-422

erally exhibit decreased performance on text-only423

tasks compared to their LLM backbones, particu-424

larly on the challenging BIG-bench-Hard dataset.425

In contrast, our selectively trained LVLMs consis-426

tently achieve better performance than fully-trained427

LVLMs, even sometimes outperform their LLMs428

backbones. These results support our hypothesis429

regarding the positioning of visual region, that tun-430

ing sparsely and uniformly distributed layers better431

preserves LLMs’ pre-existing linguistic knowledge432

and reasoning capabilities, while full training may 433

cause minor disruptions. 434

6 Visual Region-Based Layer Pruning 435

Beyond layer selection for efficient LVLMs train- 436

ing, we explore whether the visual region can also 437

benefit LVLM efficient inference. Although layer 438

pruning techniques (Men et al., 2024; Ma et al., 439

2023) have been widely developed for LLM infer- 440

ence, they prove ineffective for LVLMs. As shown 441

in Figure 1 (right), minimal layer removal caus- 442

ing significant performance degradation on visual 443

tasks even using advanced angular distance based 444

pruning strategy (Gromov et al., 2024).
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Figure 4: Results of pruning LLaVA-1.5-7B using
angular distance-based strategy with 0∼4 layers re-
moved. Dashed lines represent pruning applied to the
fully trained model while solid layers denote our visual
region-based pruning within the targeted trained model.

445
Building on our visual region targeted training, 446

we propose a visual region-based pruning paradigm 447

that selectively prunes less-important layers outside 448

the visual region after training. Specifically, we fol- 449

low the angular distance based layer importance 450

metric and select 0∼4 layers with the lowest an- 451

gular distance outside the visual region. We do 452

not evaluate pruning beyond this range as remov- 453

ing additional layers in LVLMs would lead to sig- 454

nificant performance collapse. We evaluate this 455

approach on LLaVA-1.5-7B across four datasets: 456

OCRVQA, TextVQA, DocVQA and SciQA. As 457

shown in Figure 4, our paradigm generally main- 458

tain higher performance, especially when pruning 459
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3∼4 layers, even though the visual region targeted460

trained model performs slightly worse than fully461

trained model without pruning. This result demon-462

strates that our paradigm effectively minimizes per-463

formance degradation compared to pruning in full-464

layer trained LVLMs.465

7 Related Work466

7.1 Efficient Training and Inference467

Recent research community has witnessed an emer-468

gent interest in LLMs (Touvron et al., 2023; Chiang469

et al., 2023) and LVLMs (Li et al., 2023; Zhu et al.,470

2023; Bai et al., 2023; Liu et al., 2024) due to their471

remarkable ability to interpret and interact with the472

world via linguistic and visual channels. With the473

sustainably increased scale of LLMs and LVLMs,474

training or inference using all model parameters475

are cost for practical deployment. There are nu-476

merous techniques for efficient model training and477

inference. For instance, quantization reduce the478

memory footprint of models by decreasing the pre-479

cision of model weights (Dettmers et al.; Dettmers480

and Zettlemoyer, 2023; Xiao et al., 2023). Low481

rank adapters enable cost-effective fine-tuning by482

updating only a small subset of the adapter parame-483

ters (Hu et al., 2021; Karimi Mahabadi et al., 2021).484

Moreover, LLMs exhibit significant redundancy485

at the layer level, making training or inference with486

all layers computationally wasteful, and this redun-487

dancy is established for LVLMs as well, where488

LLMs serve as the core cognitive brain for visual489

learning. In responding, layer-wise freezing tech-490

niques (Zhang et al., 2024b; Liang et al., 2023;491

Pan et al., 2024) and layer pruning strategies (Men492

et al., 2024; Ma et al., 2023; Gromov et al., 2024)493

are proposed to enable efficient LLM fine-tuning494

and inference. However, they are designed for495

LLMs and fail to generalize effectively to visual496

learning, often resulting in substantial performance497

degradation. While Zhang et al. (2024a) introduce498

parameter localization for visual tasks, their ap-499

proach is highly task-specific and data-dependent,500

limiting its applicability to versatile visual learn-501

ing and neglecting the preservation of linguistic502

capabilities. In contrast, we propose a more effi-503

cient layer-selected strategy for LVLMs training504

and inference.505

7.2 Functional Regions in LLMs506

The existing literature on cognitive science and507

brain localization indicates that different regions508

among the human brain are dedicated to specific 509

functions (Fedorenko and Varley, 2016), such as 510

frontotemporal language processing region local- 511

ized by Scott et al. (2017). Grill-Spector and 512

Malach (2004) highlight the existence of visual re- 513

gions in neuroscience (Grill-Spector and Malach, 514

2004). These insights have inspired an analogy 515

with LLMs, increasingly viewed as cognitive core 516

for remarkable performance across diverse tasks, 517

mirroring the human brain’s functionality in terms 518

of overall planning and processing. For exam- 519

ple, Aw et al. (2023) propose that LLMs can be 520

aligned to the human brain through instruction- 521

tuning. Building upon this parallel, Zhao et al. 522

(2023) unveil a core linguistic region within LLMs, 523

accounting approximately 1% of the model’s pa- 524

rameters. Li and Li (2024) identify a duality be- 525

tween Tulving’s synergistic ecphory model (SEM) 526

of memory and LLMs’ emergent abilities. Draw- 527

ing inspiration from these, our research focuses on 528

defining a vision region within LLMs, suggesting a 529

more effective and efficient pipeline to optimizing 530

LVLMs for visual tasks. 531

8 Conclusion 532

In this study, we introduce an effective and effi- 533

cient training paradigm for LVLMs by activating 534

a specific visual region within LLMs. This offers 535

a new pipeline for advancing LVLMs which first 536

identify such visual region using limited data fol- 537

lowed by efficient continual training. Specifically, 538

we investigating the necessity of tuning all layers 539

within LLM cores, and propose the concept of a 540

specialized visual region within LLMs. We con- 541

duct extensive empirical experiments with Bunny- 542

LLaMA-3-8B-V, covering a range of visual and 543

textual tasks. Our results reveal that selectively 544

updating no more than 25% of sparsely and uni- 545

formly layers, can preserve nearly 99% visual per- 546

formance, while also yielding comparable results 547

in textual tasks. This targeted LVLMs’ training 548

approach is consistently effective for different mod- 549

els and parameter scales, effectively reducing train- 550

ing time by 23% for LLaVA models and 12% for 551

Bunny-LLaMA-3-8B-V. Additionally, we propose 552

a visual region-based layer pruning by strategy re- 553

moving non-critical layers outside the visual region 554

and achieve minimal performance drop. Overall, 555

our work presents a promising pathway for more 556

efficient LVLMs training and inference, while com- 557

plementing existing efficient training methods. 558
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Limitations559

Experimented Models Our work primarily fo-560

cuses on LLaVA-1.5 family and Bunny-LLama3-561

8B-V to demonstrate the effectiveness and effi-562

ciency of our proposed training and inference563

paradigms for LVLMs. Future work will expand564

to a broader range of models to further validate the565

generalizability of our approach. Additionally, we566

will explore extensions to other modalities such567

as speech, and investigate the existence of other568

modality-specific regions to develop more versatile569

and scalable multimodal models.570

Sparse Architectures While our approach ef-571

fectively reduces training and inference costs by572

activating the visual region, it currently operate in573

a layer-wise dense manner. Future efforts will fo-574

cus on integrating our method with sparse model575

architectures to optimize visual region activation.576

For example, explore routing mechanisms target-577

ing modality-specific partitions within models to578

implement sparse mixture-of-expert architectures579

with specialized functional areas, analogous to the580

functional regions of the human brain.581
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A Details of Layer Importance Metrics819

To demonstrate the effectiveness of our heuristi-820

cally identified sparsely and uniformly distributed821

visual region, we conduct a comparative analysis822

against several other layer importance metrics (orig-823

inally for layer pruning) by selecting 8 layers and824

re-training Bunny-Llama-3-8B-V. Below are the 825

details of how these metrics are calculated. 826

• Block Influence (BI) Score (Men et al., 2024): 827

serves as an indicator of layer importance by 828

measuring the transformation of hidden states. 829

We utilize the Flickr30k dataset (Jia et al., 2015) 830

to calculate the BI score for each layer within 831

LVLMs. The BI score of ith layers is calculated 832

as following: 833

BIi = 1− EX,t

XT
i,tXi+1,t

∥Xi∥2∥Xi+1∥2
834

where Xi represents the hidden states of the ith 835

layer and Xi,t denotes the hidden states of the 836

tth token at the ith layer. By calculating the 837

average cosine similarity of token states before 838

and after passing through a layer, we measure 839

the change magnitude across all tokens. 840

• Multimodal BI Score: As the above method 841

treats visual image and text as a single modality, 842

we propose a multimodal variant that separately 843

calculates the hidden state transformations of 844

visual tokens and textual tokens, and take its av- 845

erage as a multimodal BI score. The Multimodal 846

BI score of ith layers is calculated as follows. 847

BI ′i = 1− 1

2
(EX,t

XT
i,tXi+1,t

∥Xi∥2∥Xi+1∥2
848

+EY,l

Y T
i,lYi+1,l

∥Yi∥2∥Yi+1∥2
) 849

Xi,t and Yi,l respectively mean the hidden states 850

of the tth visual token and the lth text token 851

at the ith layer. We calculate the cosine simi- 852

larity of each modality tokens before and after 853

passing through a layer, then average the results. 854

This balances the token quantity across various 855

modalities. 856

• Parameter Change Ratio (Zhao et al., 2023): 857

We calculate the relative change ratio of the pa- 858

rameters in LVLM against its backbone LLM 859

across each layer (by averaging all parameters 860

within each layer). The parameter change ratio 861

of ith layers is calculated as follows: 862

Ri = Eθ∈Li,j |
θ′j − θj

θj
| 863

where θj and θ′j respectively mean the jth pa- 864

rameter of layer Li in LLM and LVLM. 865
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• Angular Distance (Gromov et al., 2024): We866

calculate the Angular Distance of the parameters867

in LVLM against its backbone LLM across each868

layer (by averaging all parameters within each869

layer). The Angular Distance of ith layers is870

calculated as follows:871

Di =
1

π
arccos

(
θ′j · θj

∥θ′j∥∥θj∥

)
872

where θj and θ′j respectively mean the jth pa-873

rameter of layer Li in LLM and LVLM, ∥ · ∥874

denotes the L2-norm and the factor of 1
π is a875

constant.876

• Image Attention Score: We calculate image877

attention score to measure each layer’s affinity878

for image information. We utilize the DocVQA,879

OCRVQA, TDIUC, and RefCOCOg datasets,880

sampling 50 instances from each dataset to cal-881

culate the attention scores of the all image tokens882

for each layer within Bunny-Llama-3-8B-V. The883

heat map of image attention Score of every in-884

stances for each layers in Bunny-Llama-3-8B-V885

is showed in Figure 5. The image attention score886

of one instance in ith layers Ai is calculated as887

follows:888

Ai =

∑k+Nimg−1
t=k

∑H
h=1

∑T
j=1 Attn[i][h, j, t]

NimgH
889

where H represents the number of attention890

heads per layer and T denotes the total num-891

ber of tokens at the ith layer. Nimg is the number892

of image tokens of the instance. The index range893

for the image tokens is from k to k +Nimg − 1.894

While Attn[h, j, t] means the attention score of895

the hth attention head for the jth token to the tth896

token.897
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Figure 5: Visualization of Image Attention Scores for every instances across all layers
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