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Abstract

The study of Neural Tangent Kernels (NTKSs) in deep learning has drawn increasing
attention in recent years. NTKs typically actively change during training and are
related to feature learning. In parallel, recent work on Gradient Descent (GD)
has found a phenomenon called Edge of Stability (EoS), in which the largest
eigenvalue of the NTK oscillates around a value inversely proportional to the step
size. However, although follow-up works have explored the underlying mechanism
of such eigenvalue behavior in depth, the understanding of the behavior of the NTK
eigenvectors during EoS is still missing. This paper examines the dynamics of
NTK eigenvectors during EoS in detail. Across different architectures, we observe
that larger learning rates cause the leading eigenvectors of the final NTK, as well
as the full NTK matrix, to have greater alignment with the training target. We then
study the underlying mechanism of this phenomenon and provide a theoretical
analysis for a two-layer linear network. Our study enhances the understanding of
GD training dynamics in deep learning.

1 Introduction

Gradient Descent (GD) is a canonical minimization algorithm widely used in optimization and
machine learning problems. While its behavior and guarantee in convex settings has been fully
studied, there are still enormous challenges when understanding its dynamics in non-convex settings,
especially for deep learning, where we usually encounter high-dimensional and highly non-convex
losses. In recent years, the study on Neural Tangent Kernel (NTK) proposed in [JGH 18] has been more
and more popular when understanding the learning mechanism of GD, for example, [DZPS18] first
proved the convergence of GD in the so-called /azy regime, where NTK remains unchanged during
training. More and more follow-up studies point out the limitation of this lazy regime and advocate
for the analysis in the rich regime where the NTK actively evolves during training. They argue
that neural networks can learn more efficiently than kernel methods [GMMM20, [WGL*20, [DLS22].
These results motivate us to track the learning dynamics and the evolution of NTK more carefully.

There has also been a line of research on the behavior of NTK eigenvalues when training neural
networks using GD. [CKL™21]] observed a phenomenon called Edge of Stability (EoS) where the
largest eigenvalue of loss Hessian first increases and then hovers around a value inversely proportional
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to the step size during training. This can also translate to similar behavior of the largest eigenvalue of
NTK if we use MSE loss. There is a lot of follow-up work studying the underlying mechanism of
this eigenvalue behavior (e.g. [WLL22||DNL23||). Despite the success of those works in studying
the behavior of eigenvalues of NTK, the understanding of the rotation of its eigenvectors, especially
those leading ones, is still lacking. Inspired by the evolution equation under Gradient Flow (GF),

%(ft —y) = —Ki(ft —y)

where y is the target vector, f; and K represent the model output and NTK at time ¢, we are interested
in studying the alignment between the NTK and the target, and how this alignment evolves over time.

The study of the alignment of NTK and the target is not a new story [KI20,[SB21, WES™ 23] and many

different alignment metrics have been developed, e.g. Kernel Target Alignment (KTA) [CMR12]].

Definition 1.1 (Full Kernel Target Alignment (KTA)). Lety € R™ be the target vector and K €
T

R™>™ be the NTK. Then we say that the kernel target alignment is m
2

Howeyver, there has been a lack of research on how the EoS interacts with the evolution of the NTK
eigenvectors and the kernel target alignment. This motivates us to study the following question:

How do eigenvectors of NTK evolve over time and align with the target, especially during EoS when
eigenvalues of NTK have nontrivial oscillation?

1.1 Overview of Our Main Contributions

This paper is dedicated to addressing the above question. Apart from the KTA in Definition[I.T] we
are also interested in the individual eigenvector target alignment (see Definition[1.2)). We aim to track
the evolution of these two metrics during GD training and study their connection to the EoS.

Definition 1.2 (Individual Eigenvector Target Alignment). For the target vector y € R™, if ui, € R™

T 2
is the k-th eigenvector of the NTK, then we say that its alignment with the target is (yHyIﬂ’;) . Note
2

that the alignment values sum up to 1, so they can be regarded as a kind of “distribution”.

We make the following contributions:

1. Across different architectures, we observe that larger GD learning rates cause the final NTK matrix
to have higher KTA alignment (Definition[I.2)) with the target, as shown in Figure[Ta] Looking into
the mechanism, we observe that larger learning rates cause the leading eigenvectors of the final NTK
to have greater individual alignment with the target (Definition [I.2). Namely, larger learning rates
cause the “distribution” of the Individual Eigenvector Target Alignment to shift towards leading
eigenvectors, as shown in Figure We refer to this phenomenon as alignment shift.

2. We study the underlying mechanism of the alignment shift phenomenon by tracking the detailed
training dynamics. We find that during the phases of EoS when the sharpness reduces, we usually
observe sudden or fast increases in alignment, as shown in Figure [Ic]

3. To better understand these empirical findings, we theoretically analyze the alignment shift
phenomenon in a 2-layer linear network. This analysis reveals that the phase of EoS when the
sharpness reduces is not only correlated with but essentially a contributing factor to the alignment
shift. We also partially generalize our theoretical analysis to nonlinear networks in Appendix

4. To further link sharpness reduction with increased kernel-target alignment, we use the central flow
framework [CDT™24], which models gradient descent at EoS as implicitly following a sharpness-
penalized gradient flow. We show empirically that this sharpness penalty leads to increased KTA.

2 Related Work

Study on eigenvalues of NTK [LBD™20] showed that when wide neural networks are trained with
a learning rate large enough to trigger initial instability, the largest eigenvalue of the NTK drops
until stability is restored, an effect referred to as the “catapult mechanism.” [CKL 21| showed that
when standard neural networks are trained using GD with a fixed learning rate, the largest Hessian
eigenvalue (which is nearly equivalent to the largest NTK eigenvalue up to a constant under MSE
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Figure 1: (a) KTA across learning rates, (b) the alignment shift, and (c) connection between the
alignment dynamics and Edge of Stability in a fully-connected network (see Section[3.T). Note that
(b) only plots the alignment on top 20 eigenvectors as later ones have much smaller alignment.

loss[WLL22]) rises until reaching the value 2/7 (the threshold beyond which instability is triggered),
and then oscillates or fluctuates around that value. This phenomenon was referred to as “Edge of
Stability” (EoS). Later, [WLL22] analyzed the underlying mechanism of EoS in two-layer linear
networks, and [DNL23|] proposed a more general framework to understand its mechanism in more
general settings. [GKW™25] studied the ranges of 7 under which EoS oscillates with different ranks.

Alignment between NTK and the target Prior works have argued that the evolution of NTK and its
alignment with the target is related to feature learning [WES™23||. [OJMDF21] [SB21]] observed that
KTA is trending to increase during training. [KI20] found that top NTK eigenvectors tend to align
with the learned target function, which improves the optimization. However, existing works either
lack theoretical analysis of underlying mechanisms or focus on the GF setting or GD case before EoS,
lacking study on the NTK behavior at EoS during which its eigenvalues have nontrivial oscillation.

Relation between optimization dynamics and feature learning [ZLRB23]] argued that “catapult
dynamics,” which they defined as spikes in the training loss and decreases in the NTK maximum
eigenvalue, promote better feature learning, as quantified by the alignment of the AGOP matrix
[RBPB22] with the ground truth. The AGOP is an outer product matrix of the network gradients
with respect to the input, whereas the NTK (studied here) is an outer product matrix of the network
gradients with respect to the weights. On the two-layer linear network which we use in Section[3.1]
and for theoretical analysis, we find that large learning rates and sharpness reduction are much more
associated with enhanced NTK alignment than with enhanced AGOP alignment (see Appendix [A.4).
Note also that [ZLRB23]] was limited to empirical observations and did not attempt to theoretically
explain the mechanism by which catapult dynamics enhance AGOP alignment.

3 Empirical Observations about Alignment

3.1 Alignment Shift Phenomenon in Different Settings

Linear networks We start with a simple task on a two-layer linear network. We use Gaussian data
X as input where X = Zdiag(3,1.5,1.2,0.8,...,0.8) where each entry of Z € R?*" is sampled
i.i.d from the standard normal A'(0,1). Here, n = 200 is the number of training examples, and
d = 400 is the input dimension. The target is a linear function of the input: ¥ = 37X with an
all-one vector 3. We use MSE loss and GD to train the model. Figure [2a] plots the evolution of the
KTA under different learning rates starting from the same initialization, showing that larger learning
rates cause more significant increases of KTA. Figure 2b|plots the alignment between Y and top 5
NTK eigenvectors (u1, ..., us) for the final models, showing that large learning rates cause alignment
shift towards leading eigenvectors, while do not substantially change the normalized eigenvalue
distribution (where the normalization is by the [o-norm of the eigenvalue list). Figure [2c|plots the
dynamics of the training loss, sharpness, and individual eigenvector target alignment under a learning
rate 0.014, showing that the alignment shift occurs during the period when the sharpness decreases.

Fully-connected networks We trained a 4-layer GeLU network using GD under MSE loss on a
subset of CIFAR-10 [KH™09]] where we randomly selected about 2000 examples in two classes
(roughly 1000 for each class) and relabeled the target values as 1. We trained the model from the
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Figure 2: (a) KTA across learning rates, (b) the alignment shift, and (c) connection between the
alignment dynamics and Edge of Stability in a 2-layer linear network (see Section @

same initialization under different learning rates to roughly the same training loss. We plotted the
evolution of KTA (every 50 steps) in Figure[Taland the individual eigenvector target alignment for
the final models in Figure[Tb] As is mentioned in Section[I] we see the increase of KTA and the
alignment shift. Figure[Ic|zooms in the EoS period and plots the evolution of the sharpness and KTA
(every 3 steps). We see that during the periods when the sharpness decreases, the KTA usually has a
sudden or fast increase. During the periods when the sharpness increases, the KTA increases slower
or can decrease, i.e. the “speed” of increase is lower. Table[Taprovides a quantitative analysis of the
above connection, where we compute the total and average change (per step) of KTA during each
sharpness-decreasing period and sharpness-increasing period. We see that the average change in KTA
per step, which can be regarded as the average changing “speed” of KTA, is positive and much larger
in the sharpness-decreasing period than in the sharpness-increasing period. In Section 5} we study the
above connection from another perspective using a tool called central flow developed by [CDT ™24
and demonstrate that adding a sharpness penalty to gradient flow can promote the increase of KTA.

Vision Transformer On the same dataset as above, we also trained a simple ViTE| using GD under
MSE loss from the same initialization under different learning rates. Figure|3alplots the evolution of
KTA (every 20 iterations) when training to roughly the same loss. Figure [3b|shows the individual
eigenvector target alignment as well as its cumulative summation for the final models. Again, we see
the increase of KTA and the alignment shift phenomenon. Figure [3c|zooms in the EoS period and
plots the evolution of sharpness and the evolution of KTA every 5 steps. Here, we see a stair-wise
behavior of KTA where, after each period when the sharpness decreases, the KTA value goes up to
the next “stair”. We also add numerical evidence in Table[Ib]to make a quantitative analysis, where
we again see the connection between the decrease of sharpness and the fast increase of KTA per step.
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Figure 3: (a) KTA across learning rates, (b) the alignment shift, and (c) connection between the
alignment dynamics and Edge of Stability in a simple ViT (see Section [3.1) Similar to Figure[Ib] we
plot the alignment of the first 20 eigenvectors in (b).

3.2 Summary and Discussion

We demonstrate that larger learning rates cause the NTK matrix as well as its leading eigenvectors to
have higher alignment with the targets, and reveal the connection between this alignment behavior and
EoS. In Appendix [A:2] we provide supplementary results to demonstrate that our observations also

"https://github.com/lucidrains/vit-pytorch, MIT license.
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Table 1: Comparison of the changing speed of KTA between the sharpness-decreasing periods and
sharpness-increasing periods on (a) fully-connected network and (b) ViT. See Section @for details.

(a) (b)

Iteration interval 7275 7596 96-102  102-117 117-120 Iteration interval 130-145  145-235 235255 255-345 345365 365-425
Sharpness behavior decrease increase decrease increase  decrease Sharpness behavior decrease increase decrease increase decrease increase
Total change of KTA 00086 00065 00287 -0.021  0.01948 Total change of KTA 00100 -0.0034 00065 -0.0042 00046 -0.0024
Avg change of KTA perstep  0.0029  0.0003  0.0048  -0.0014 00065  Avgchange of KTA perstep 6.68e-4 -3.83¢-5 326e4 -4.67e-5 2304  -3.99%-5

hold in many other settings, such as different architectures, multi-class tasks, language transformers.
Although we focus on GD for simplicity, in Appendix [A.3] we show that our observations also
generalize to the SGD setting. Now we add more discussion on the implication of our findings.

Connection to feature learning. Our work provides an interesting perspective on the beneficial
effects of large learning rates on deep learning. While a common perspective is that large learning
rates find “flatter minima” which generalize better [HS97], our findings support the (potentially
complementary) view that large learning rates improve feature learning [AVPVEF23|[ZL.RB23]], in our
case by enhancing the alignment between the NTK and the target vector.

Connection to the generalization ability. [ADH™ 19] proposed a generalization bound in terms of

the alignment between inverse NTK K ~! and the target , which is proportional to 4/ y”:%ly where
n is the number of training examples. Hence, if y gets more alignment with earlier eigenvectors of

K, i.e. later eigenvectors of K -1 we will expect to have a smaller value of 4/ @ and a better

generalization. This fact, together with our alignment shift observation, can help us understand the
generalization ability of large learning rates. Appendix [A.5]provides empirical results to demonstrate
that the reducing sharpness during EoS and the alignment shift towards earlier eigenvectors are
correlated with a sudden decrease of the normalized 37 K ~'y, and that larger learning rates lead to
more significant decreases. We also directly examine the change of the test loss over time and observe
the improvement of the generalization ability after the zigzag period when alignment shift occurs.

Results on overlarge learning rates. Finally, we want to point out that the correlation between better
generalization ability and better kernel target alignment discussed above also holds for overlarge
learning rates. Table [ shows the change of the kernel target alignment under several large learning
rates. We observe that 1) an overlarge learning rate may lead to bad test performance, 2) in the
meantime, the alignment gets worse, too. That means our focus on the kernel target alignment is a
reasonable choice to understand the effect of the learning rate on the generalization ability.

Table 2: Generalization ability and KTA on large learning rates. Experiments were conducted in the
fully-connected setting using SGD with batch size 256. All models were trained to the same training
loss of 0.01.

Learning rates 0.02 0.025 0.03 0.035

Test losses 0.4290 0.4244 04241 0.4664
Kernel Target Alignment (KTA) 0.3607 0.3669 0.3878  0.3432

4 Theoretical Analysis on Two-layer Linear Networks

To better understand the mechanism of the empirical results presented in Section |3} in this section we
provide a theoretical analysis of the alignment behavior during EoS on a two-layer linear network.

4.1 Setup

Notation We use || - ||2 to denote the [ norm of a vector, and || - || ¢ to denote the Frobenius norm of
a matrix. Let (-, -) be the inner product between vectors or matrices. Let X [¢] (resp. X[, j]) denote
the i-th (resp. (¢, 7)-th) component of a vector (resp. matrix) X. For a quantity A which evolves
throughout training, we use A, to denote its value at iteration .



Model setup Our training dataset consists of n datapoints in d dimensions, represented by the data
matrix X € R%*™ and the label matrix Y € R'*™, We will use {g;} and {\;} (A1 > Ao > ... > \,)
to denote the eigenvectors and eigenvalues, respectively, of the data kernel K, := X7 X. We also
use {p;} to denote the eigenvectors of the covariance matrix X X 7.

We consider a two-layer linear network with one-dimensional output which maps R? — R: =
WEW Mg with parameters W := (W@ W), where W) ¢ R¥**d and W2 ¢ R'*dn
and dj, is the hidden layer size. We train the network using GD with the square loss function
LW) =5 |[WEAWDX — YH? By simple calculation, the NTK at iteration ¢ is given by:

2
Ko = W x7x - xTwVTwV x (1)

Data distribution Many prior works (e.g. [AGCHI19l/ABP22])) analyzing GD in linear networks use
whitened data. On the other hand, most EoS analyses assume that the spectrum of the NTK/Hessian
has just one outlier eigenvalue, as this setting results in only one direction of oscillation (which is
more tractable to analyze). This typically requires the data kernel X7 X to have one or several outlier
eigenvalues, e.g. assumed in [WLL22]. Therefore in our case, we use the following data with several
unwhitened leading eigenvalues, but a roughly whitened tail.

Assume that A\; = O(n). Suppose there exists k such that 1) for the first k eigenvalues, Vi < k,
Ai < Ai—1/7 with some v > 1; 2) the later n — k eigenvalues have the order ©(n®) with a € (0, 1),
and that )\, — ﬁ Z;L:kﬂ Ai = 0 n® with 65 = o(1). We use a linear function of our input as the

target, i.e. Y = 87X with |Y || = ©(y/n). Further, recalling that {p;} denotes the eigenvectors of
XXT, weassume Vi < n : ‘<ﬁ,pi

=0 (ﬁ) This is to assume that 3 is evenly distributed
across the principal components of the data, reflecting the intuition that [ is independent of X.

Rank-1 structure of Wf(l) Existing papers have shown that weight matrices approach low ranks
during training [GWB™ 17, [LMZ18| [CGMR20]. For example, [ABP22, TML24]| focus on whitened
data (i.e. %X X7 is identity) and argued that if the initialization is small, then the weights will have
the following approximate updates since W2 W, X is small during early training iterations:

1 1 2)T 2 2 T
Wt(—i-)l ~ Wt( ) + 77/” . Wt( ) Aya:a Wt(+)1 ~ Wt( ) + n/n 3 Ayth( )

where 7) is the learning rate and Ay, = Y'.X 7' Based on these approximate updates, [JML24] proved

that under small initialization, the weights have the approximate rank-1 structure Wt(ol) ~ Uy, thO,

Wt(f) ~ ctoug; with some c;, > 0 after a short time ¢y. They also proved that after time ¢¢, this
approximate structure is preserved and that the w; remains unchanged and ¢, v; are quantities which
actively change. This allows us to write Wt(l), Wt(2) fort > tg as Wt(l) ~uzl, Wt@) ~ cul.

Our paper focuses on the general case with unwhitened X X 7. Since eq. (1) involves Wt(l)X , we
now focus on the update of Wt(l)X and Wt(z) and apply a similar argument as above. Then we have

WX~ WX 4/ WwPTYxxT, W = w® +qm-y(wHx)T

We can use a similar argument as in [ABP22, IML24] to show that Wt(l)X and Wt(2) quickly
converge to the approximate structure Wt(OI)X ~ uvtj;, Wt(f ) ~ cioul’ after a short time ¢y with
vy, = X 7T 2z4,. In the following analysis, we will assume this approximate structure is exact.

Assumption 4.1. Assume that at some early iteration to, we have Wt(ol) X = uv%,Wt(OZ) =ciul,

with c;, € R,u € R v, € R". Without loss of generality, assume that c;, > 0 and ||ul|s = 1.
Also assume small network output at to such that Vi < n, |Fy,[i]| = O(Y[i]).

In Appendix we prove that if this rank-1 structure holds at time %, then it will be preserved for
t > t(. This allows us to focus on the dynamics of ¢; and v;. In particular, the network output F; and
the NTK K can be written as F; = Wt(z)Wt(l)X = vy, K = cfXTX + 'Ut'vtT. We also define
the error vector F; := F; — Y. Here and throughout, we use standard notations O(-), (+), ©() and
o(+) to represent order of quantities when n — oo.

2This assumes that ¢ is in early training, which has been proven or verified before, e.g. in [ABP22| IML24].



4.2 Four Phases of the Training Dynamics

[WLL22, [DNL23|| revealed that when there is one eigenvalue at EoS, the training dynamics can
be divided into four phases based on the position and the sign of change in the sharpness (see Ap-
pendix [B.T]for a cartoon illustration). In the two-layer linear network setting, [WLL22] demonstrated
that the largest eigenvalue of the Hessian is nearly equivalent to the largest eigenvalue of the NTK,
and that this is in turn nearly equivalent to the norm squared of the second-layer weight matrix times
the largest eigenvalue of the data kernel: Apax(VZL(W;)) & LA (K;) ~ ’)L—lcf Since )\ is

constant, the four phases can therefore be specified by the position and the sign of change in c?.

While [WLL22] essentially ignored the quadratic term of the step size, i.e. 7%, our results reveal that
n? plays a crucial role on the alignment shift. More details can be found later in Phase III analysis.

Phase I: %cf < % and is increasing During this phase, the training dynamics are stable and
approximately follow the GF trajectory. Under GF updates, we have that

d 2 2
2 _ _;77<Et,Ft> =—

3|5

;(Et7Qi><FtaQi>a aHth :_;Z)\i<Etaqi><Ftvqi> @)

i=1

where ¢; is the i-th eigenvector of the data kernel X7 X mentioned before. In Appendix we
prove that under GE, Vi < n : (Ey, ¢;)(F}, ¢;) < 0 for ¢t > ¢’ with some ¢’, making (E}, F;) < 0 and
c? increase. If the learning rate is very small, the loss will converge before the sharpness increases to
the stability threshold 2/7. Otherwise, the sharpness will increase to 2/7 during training, causing
the dynamics to go unstable and move to Phase II discussed below. To ensure that this occurs, we
need to carefully pick our learning rate. Appendix [B.4]discusses the intuition on the choice of 7 in
detail, where we pick 7 = ©(n~"z"). Noticing the ||v,||? update in eq. , we also have that ||v,||?
increases as well during Phase I. A more careful analysis can be found in Appendix

Here we see the behavior of ¢ and ||v||? is consistent, in that they are both increasing. This will not
always be true in other phases, especially in Phase III. It turns out that the different behavior of ¢?
and ||v;]|? in Phase III is the key contributing factor to the alignment shift phenomenon. For later
phases, we make the following assumptions.

Assumption 4.2. Assume that during the whole training procedure, %ctz < % for some constant
i 2 1 .
C > 0 and that ey < Eforz > 2.

The first part of Assumption stipulates that the largest eigenvalue of the approximate NTK is
smaller than %, an assumption previously made in [WLL22] with C' = 4. The second part stipulates

that other eigenvalues are small, which was also assumed in [WLL22].

Assumption 4.3. Assume that during the training procedure, ||E;||*> < O (n/n). Also assume that
at the end of Phase I, the loss has undergone a nontrivial decrease: ||E;|| = 0o||Y || with 69 = o(1).
Further denote &, := | cos(Y, q1)| = (Y, q)|/||Y ||, 82 := max{do, /51 }.

The first part of Assumption [d.3]assumes that the loss does not diverge too much during training.

Because we pick n = Q(Wl(n)) mentioned before and the initial || Ep||? is at the order O(]|Y]|?) =

O(n), the assumption that || E;||? < O (n/n) is saying that the loss is no larger than poly(n) times
the initial loss, which is not a strong assumption.

Phase II: %ctz > % and is still increasing. During this phase, the approximate sharpness has

risen above 2, which will lead to the oscillation of the network output along some direction. More
precisely, we prove in Lemma .4 that the error vector E; will oscillate with increasing magnitude
along the ¢; direction, whereas (F, ¢;) for ¢ > 2 will remain small in magnitude.

Lemma 4.4. Under our data distribution (Section and Assumption Pickn = @(n‘kTa)
as discussed before. Write Ay := %C% — % with Ay > 0. Then for t during Phase II, we have that

n

(B, )] > L+ 00 )[(Beor,q)| — 0076/ (Y, q))), D> (Bra:)® < O (3] ]%) = o(|[Y])

=2



Recall from Phase I that under the gradient flow, the time derivative of ¢ was determined by the
sign of (E}, F;). We prove in Appendix that in Phase II and later phases, even though GD no
longer follows the gradient flow, the sign of ¢7,; — ¢7 is still determined by the sign of (E;, F}).
That means in Phase 11, ¢7 will keep increasing as long as (F;, F;) < 0. However, since Lemma
shows the divergence of F; along the ¢; direction, once |(E},q1)| grows sufficiently large, we
have ||Et|| > ||Y||, which yields (E;, Fy) = || E||* + (E:,Y) > HEtH2 — [[E|IY]| > 0, causing
c? 1 < c¢? and we move to Phase III. The detailed analysis of Phase Il is presented in Appendix i

Phase III: %cf > % and starts to decrease. As discussed in Phase II, the divergence of E; along
the ¢; direction eventually causes c? to decrease. In Phase III, ¢? will keep decreasing until the
sharpness (which is approximately = >‘1 ¢? in our case) goes below % and |(F, q1)| starts to shrink.
Then we will move to Phase IV. As for ||'vt |2, we can prove that ||v;||? is increasing in Phase III. In
particular, the one-step evolution of ||v||? is given by the following lemma.

Lemma 4.5. We have that

M+ An? = A2 A
el = flodll* = =200 5 S8 (B ) 4+ = 5 (B ——ZA Et,qﬂ——EtK YT
=2

where A, is defined in Lemmal4.4)

By the divergence of |(E},q1)|, we can prove that the RHS is dominated by the second term

A;”Q A1 {E¢, q1)? (see Appendix , which does not exist under GF update and was usually ignored

in prior works. Note that in Phase III, ﬁcf > %, and hence A; > 0. This leads to the increase of

|lv¢||%. In the following section, we will see that this increasing behavior of ||v;||?, which is different

from the decrease of ¢, is the key contributing factor to the alignment shift, suggesting that the
typically ignored 7? term actually plays a crucial role on the alignment behavior during EoS.

Phase IV: ﬂef < % and is still decreasing. In Phase IV, F; starts to shrink along the ¢; direction.

[WLL22] showed that we eventually have (F;, F}) < 0 and go back to Phase I. Our paper will not
analyze Phase IV in detail but will study the overall behavior after going through Phase IV.

4.3 Alignment Shift During the Sharpness Reduction Phases (III and IV)

Now we are ready to analyze the alignment shift phenomenon. We begin by defining the following

ratio between ¢7 and ||vy H2 which turns out to be a crucial quantity when analyzing alignment shift.
I

Definition 4.6. Define o := 122-

i

We note that the sharpness reduction phases (III and IV) are typically correlated with the spikes of the
loss (as is shown empirically in Section . [CKL"21,[WLL22| have observed a non-monotonically
decreasing behavior of the loss where it has a decreasing trend in spite of oscillation. In other words,
the loss after the spike is typically around or smaller than the value before the spike. This motivates
us to introduce the following assumption on the change of loss after going through phases III and I'V.

Assumption 4.7. Let t1 be the start of Phase 11 and to the end of Phase IV. Assume || Ey,||*> < || E¢, ||*
Theorem 4.8. Denote A; := —ctQ n' Under our data distribution (see Section and Assump-

tion and pickn = O(n~ = ) as discussed before.

(A). For t in Phase I such that |(Ey, q1)| > Q((52||Y||) with 3 deﬁned in Lemmad.4land A, >
Q(max{l a/4 }), we have that ¢i_y < ¢f and ||vei1]]? > [Jv.]|%

(B). Suppose we further have Assumption For t1,ts defined in Assumption if Ay, > Q(f)
then we will get that o, > v, and that cos(v,,Y) > 1 — O(62),cos(v,,Y) > 1 — O(d2).

Theorem [.8] (A) implies a one-step increasing behavior of «; in Phase III. In Phase IV, although
a; may not have this one-step increase, Theorem |.8](B) shows that it will have an overall increase
after going through the whole Phase IIl and IV, i.e. o, > oy, . It also shows that at times ¢; and
to, v¢ approximately aligns with the training target Y, which allows us to write K; at ¢ and t5 as

Ky~ EXTX + ||lvg|?9ygy” where § := YT /||Y|| € R™ is the unit vector.



We now argue that in the above approximate structure at ¢1 and ¢o, a larger a;; causes ¢ to align with
earlier NTK eigenvectors, as opposed to the later ones. Intuitively, if ||v||? is large relative to c?
(i.e. if @ = ||v]|?/c? is large), then early eigenvectors of K will align with @, rather than with the
top eigenvectors of X7 X . The following lemma gives a sufficient condition (involving « and the
eigenvalue spectrum of X7 X) for the j-th NTK eigenvector to be the one with the highest alignment
with g. The lemma is just a property of eigenvalue spectra, and does not involve training dynamics.
Hence for ease of notation, we drop the iteration subscript ¢ in the lemma statement. We provide an
illustration of it in a warm-up setting in Appendix [C.1]and proofs in the general case in Appendix [C.2]

Lemma 4.9. Let Gi, ..., Gy, be the eigenvectors of the approximate NTK matrix 2 X7 X + ||'U||2'QQT

2
with corresponding non-increasing eigenvalues, and let o :== @ Consider the k and 0 defined
C

. T . . . . A=Ak
in our data distribution in Sectwn For any j < k — 1, if « satisfies 0@ n-) < @ <
Aj_1—Ak

00, 7Ty We have that arg maxi<;<n |{¢i, ¥)| = j.

Theorem (B) and Lemma4.9|suggest that Y tends to align more with earlier NTK eigenvectors at
to than at ¢;. This is the alignment shift trend after sharpness reduction periods, i.e. Phase III and IV.

The above discussion reveals the alignment shift trend in a single sharpness reduction period. We
highlight that for the long-term behavior after many oscillation phases, this trend still holds. To
see this, note that during EoS, ¢? oscillates around a fixed value - As for |ve]|?, the analysis in
Appendix [B.3] proves its increasing behavior in Phase I. By proof details in Appendix [B.7} we know
that the behavior of |[v]|? in Theorem (A) also applies to Phase II, which gives the increasing
trend of ||v¢||? during Phase II and III. During Phase IV it may decrease for some steps but will have
an overall increase after going through Phase III and IV, according to Theorem {.§] (B). Then we
know that the long-term trend of ||v¢||? is to increase, which gives us a long-term increasing trend of
o and thus a long-term tendency to increase the alignment between Y and earlier NTK eigenvectors.

In Appendix [A.6 we generalize the above crucial quantity o in Definition [.6|to nonlinear networks.

S Leveraging Central Flows

In this section, we present further evidence that sharpness reduction at EoS improves the kernel
target alignment. We leverage the recent central flows technique [CDT™24], which models the
time-averaged (i.e. locally smoothed) GD trajectory using an ODE called a central flow of the form:

aw

=1 VL(W) + V{(X(t), VZL(W)) | . (3)

sharpness penalty

Here, 3(t) is a particular matrix defined as the solution to a convex optimization problem, and (-, -)
denotes the Frobenius inner product between two matrices (i.e. the dot product of the two matrices
when they are flattened into vectors), so the quantity (X(¢), V2L(W)) is a metric of sharpness where
each entry of the Hessian V2L(W) is weighted by the corresponding entry of 3(t). The central
flow eq. (3)) penalizes this quantity and is therefore a sharpness-penalized gradient flow. [CDT™24]
shows that central flow averages out the oscillations while retaining their effect on the time-averaged
gradient descent trajectory, which takes the form of this sharpness penalty. They demonstrate that
central flow is a good approximation to the time-averaged GD. See more evidence in Appendix

In Figure fal we run both GD and the central flow at different learning rates in the fully-connected
setting described in Section[3.1] and show that higher learning rates lead to higher KTA even under the
central flow. Since the only difference between the central flow trajectories at different learning rates
is the differing sharpness penalty this experiment supports our contention that sharpness reduction
leads to higher KTA. In Figure starting at various points along the central flow trajectory for
1 = 0.1, we branch off and run gradient flow ‘Z—VX = —nV L(W) for 100 units of time (red). We find
that gradient flow takes a trajectory with lower KTA than the central flow. Since gradient flow differs
from the central flow only by omitting the sharpness penalty term, this experiment further supports

3The 7 prefactor in eq. (3) is just a time rescaling and does not affect the overall trajectory, only the speed at
which the flow traverses that trajectory. It is only via the sharpness penalty that 7 influences the trajectory.



our contention that sharpness reduction leads to higher KTA. Results under more settings can be
found in Appendix [A.7]

KTA at different learning rates KTA on central flow vs. gradient flow
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Figure 4: (a) The KTA under the central flows (dashed black) match those of gradient descent (colors).
In particular, the KTA is larger when 7 is larger. (b) Gradient flow (red), when branched off from
the central flow at times {100, 300, 500}, takes a lower-KTA trajectory than the central flow (dashed
black). The experiments are conducted in the fully-connected setting described in Section

6 Conclusion and Future Work

This paper analyzes the evolution of NTK on EoS by examining its alignment effect with the
training target. We show that the EoS dynamics enhance the alignment of NTK with the target and
provide a theoretical analysis of the underlying mechanism of this phenomenon on a 2-layer linear
network. There are several potential future directions: 1. It is known that the evolution of NTK is
related to feature learning. Hence it would be interesting to connect our findings to more feature
learning properties. 2. Although we provide a detailed theoretical analysis on 2-layer linear networks
and partially generalize it to 2-layer ReLU networks in Appendix [A.6] a more general theoretical
understanding of multi-layer nonlinear networks is still needed in the future.
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A Supplementary Empirical Results

A.1 Experimental details

Here we would like to provide more details of our experimental setup.

Training resources The experiment on the linear network (see Section for details) was trained
on a CPU since the model is small. All the other experiments, including those described in Section[3.1]
and additional experiments presented later in Appendix [A.Z] were conducted on V100 GPUs with 40
GB of memory.

Dataset The main dataset we use is CIFAR-10 [KH'09]. As is described in Section due to
GPU memory constraints, we randomly selected about 2000 examples in classes 0 and 1 (roughly
1000 for each class) and relabeled the target values as +1. In Appendix we will use a subset of
the IMDB dataset [MDP™ 11]] where we randomly selected 1024 examples.

Network architectures Here we provide more details on the network architectures we use.

1. Linear network. As described in Section[3.1} we use a 2-layer linear network with input dimension
400 on Gaussian data. The size of the hidden layer is also 400.

2. Fully connected network. We trained a 4-layer fully connected network with GeLU activation.
The input dimension is 32 * 32 % 3, which is the size after flattening a CIFAR-10 image. The sizes of
the three hidden layers are 128,128,64, respectively.

3. Vision Transformer. We also trained a simple Vision Transformer (ViT) using an online imple-
mentatiorﬂ We use their “SimpleViT” model with detailed parameters SimpleViT(image_size=32,
patch_size = 4, num_classes = 1, dim = 64, depth = 4, heads = 8, mlp_dim = 256).

4. VGG-11. We also conducted experiments on VGG[Sim14]. We use an online implementatiorﬂ
with the “vggl1_bn” architecture in their implementation.

5. ResNet-20. In Appendix [A.2.2] we conducted experiments on a ResNet[HZRS16]] with 20 layers
and GeLU activation. We use Group Normalization instead of Batch Normalization in this ResNet.

6. BERT-small. In Appendix[A.2.3|We conducted experiments on language tasks where we fine-tuned
BERT-small [TCLT19, BDR21]] from an online implementatiorﬁ

A.2 Experiments in more settings
A2.1 VGG

On the same dataset as in Section we also trained a VGG-11 network using GD under MSE
loss from the same initialization under different learning rates to roughly the same training loss. We
again plotted the evolution of KTA (every 20 iterations) in Figure[5a]and the individual eigenvector
target alignment for the final models in[5b} where we see the increase of KTA and the alignment shift
phenomenon. Similar to Section[3.1] we also observe a consistent correlation between a fast increase
in KTA and the sharpness-decreasing period of EoS (see Figure[5c) and provide a quantitative analysis
in Table [3]to show this connection. Similar to Section[5] we also study the above connection in this
VGG setting using the central flow[[CDT™24] in Appendix and demonstrate the benefit of the
sharpness penalty to the increase of KTA.

A.2.2 ResNet

On the same dataset as in Section[3.1] we also trained a ResNet with 20 layers using GeLU activation
under GD and MSE loss from the same initialization. Again, we trained the model under different
learning rates to roughly the same training loss. We plotted the evolution of KTA (every 20 iterations)
in Figure[6a]and the individual eigenvector target alignment (along with its cumulative summation)
for the final models in Figure [6b] where we see the increase of KTA and the alignment shift. In

*https://github.com/lucidrains/vit-pytorch, MIT license.
Shttps://github.com/chengyangfu/pytorch-vgg-cifar10, MIT license.
Shttps://huggingface.co/docs/transformers/v4.16.2/en/training, Apache-2.0 license.
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Figure 5: (a) KTA across different learning rates, (b) the alignment shift, and (c) connection between
the alignment dynamics and Edge of Stability in VGG-11 (see Section[A.2.T)). Similar to Figure [Ib}
we plot the alignment of the first 20 eigenvectors in (b).
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Table 3: Comparison of the changing speed of KTA between the sharpness-decreasing periods and
sharpness-increasing periods on VGG-11. See Appendix [A.2.T|for the detailed experimental setup.

Iteration interval 12-15 15-42 42-48 48-78
sharpness behavior decrease increase decrease gradually stablized

total change of KTA 0.1008 0.0163 0.0260 0.0083

avg change of KTA per step  0.0336 0.0006 0.0043 0.0003

Section [A.7] we study the connection between the increase of KTA and EoS using the central
flow[CDT24] and demonstrate the benefit of the sharpness penalty to the increase of KTA.
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Figure 6: (a) KTA across different learning rates, (b) the alignment shift in ResNet-20. More details
can be found in Appendix [A.2.2}

A.2.3 Language transformer

In this section, we provide experiments to demonstrate that our results on the alignment behavior
also generalize to language tasks. We fine-tuned BERT-small [TCLT19, BDR21]] on a subset (1024
randomly selected examples) of the IMDB dataset [MDP™11]]. The task is to classify whether movie
reviews are positive or negativeﬂ and the labels are +1. Again, we trained the model from the
same initialization under different learning rates to roughly the same training loss. We plotted the
evolution of KTA (every 20 steps) in Figure [/al and the cumulative summation of the individual
eigenvector target alignment for the final models in Figure[7b] Here, we see the increase of KTA and
the alignment shift phenomenon, similar to other tasks.

"https://huggingface.co/docs/transformers/v4.16.2/en/training
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Figure 7: (a) KTA across different learning rates, (b) the alignment shift in the sentence classification
task using BERT-small. Detailed setup is described in Appendix[A.2.3]

A.2.4 Multi-class tasks

Section [3| presents empirical results on binary classes. Here we provide more experiments on multi-
class tasks. More precisely, we randomly selected 2000 examples in all ten classes in CIFAR-10
and trained a VGG-11 network using one-hot labels and MSE loss. We computed the cumulative
summation of the individual eigenvector target alignment amd made a comparison after the same
effective steps: 400 (or 200) steps for a learning rate of 0.01 v.s. 200 (or 100) steps for a learning
rate of 0.02, as is shown in Figure[8] Here we see that a larger learning rate has a larger cumulative
alignment value, which indicates the alignment shift towards earlier eigenvectors and is consistent
with the alignment shift phenomenon in the binary-class case.

Cumulative Eigenvector Target Alignment After the Same Effective Steps Cumulative Eigenvector Target Alignment After the Same Effective Steps
—— 1r0.01 after 200 steps ( —— Ir0.01 after 400 steps
04 1r0.02 after 100 steps — 0.7 1r0.02 after 200 steps
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[ 0.3
{ 0.2
0.1
0.1
004 - 0.0
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Eigenvector Index Eigenvector Index

Figure 8: Cumulative summation of the Individual Eigenvector Target Alignment values after the
same effective steps on VGG-11 with CIFAR-10.

A.3 Generalization to the SGD setting

This paper mainly focuses on full-batch GD, since the dynamics of GD are simpler than SGD, and the
EoS of GD is well defined. In particular, for GD, the EoS period often consists of distinct phases (e.g.,
the four phases discussed in our theoretical analysis in Section[d]) where the sharpness rises above
and then falls below 2/(step size). However, for SGD, [CKL™21]] pointed out that “the sharpness
does not always settle at any fixed value, let alone one that can be numerically predicted from the
hyperparameters”. That means for SGD, it’s hard to link the increase in KTA to the period where
the sharpness falls, as there is no clear division of the cycles and the so-called sharpness-decreasing
phase. Nevertheless, we find that our observation that larger learning rates result in stronger KTA
alignment still holds for SGD. We added the following experiments on the fully connected setting
described in Section [3.1] with batch sizes 1024 and 256. Again, we trained the models under different
learning rates to roughly the same training loss. Figure[9aand Figure show the increasing trend
of KTA where larger learning rates lead to larger KTA values. Figure[9b]and Figure [T0b|plot the
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individual eigenvector target alignment for the final models as well as their cumulative summations,
where we see the alignment shift phenomenon.
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Figure 9: SGD experiments in the fully connected network described in Section with batch size
1024: (a) KTA across different learning rates, (b) the alignment shift. Similar to Figure [Tb} we plot
the alignment of the first 20 eigenvectors in (b).
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Figure 10: SGD experiments in the fully connected network described in Section [3.1|with batch size
256: (a) KTA across different learning rates, (b) the alignment shift. Similar to Figure[Tb] we plot the
alignment of the first 20 eigenvectors in (b).

A4 Comparison with the AGOP alignment in [ZLLRB23||

Here we provide evidence on the claim in Section 2] that on the two-layer linear network setting, the
enhanced AGOP alignment is less correlated with large learning rates and sharpness reduction in EoS
than the enhanced NTK alignment. We trained the 2-layer linear network described in Section [3.1]
using GD with learning rates 0.005 and 0.01 and plotted the evolution of the AGOP alignment and
KTA conditioned on the same effective iterations (defined as the learning rate times the number of
iterations). Figure shows the evolution of these two alignment values during the whole training
procedure and Figure zooms in the EoS period where we see the sudden increase of KTA but no
significant increase of AGOP.

A.5 Connection to the generalization ability

As is discussed in Section [ADH™ 19] proposed a generalization bound proportional to @

where K is the NTK and n is the number of the training examples. This can be viewed as an inverse
version of the KTA. Here we focus on the 2-layer linear network setting described in Section [3.1]and
plot the evolution of the normalized y” K ~'y. We demonstrate that the sharpness reduction period of
EoS and the alignment shift phenomenon towards earlier eigenvectors are correlated with a sudden
decrease of the normalized y* K ~'y, see Figure Figure demonstrates that larger learning
rates lead to a more significant decrease of the normalized y” K~ 'y than smaller learning rates.
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Figure 11: Comparison between the AGOP alignment and KTA in a 2-layer linear network described

in Section @

We also conducted experiments on the fully-connected network described in Section [3.1] Here, we
notice that the tail NTK eigenvalues are much smaller than earlier ones, as is shown in Figure [I3a]
which can make K ~! “noisy” and cause numerical issues. Hence we add [ to the original K and then

T —1
calculate the inverse. More formally, we compute the following “inverse KTA”: m
2

We set € = 0.0005Amax (K ). The top and middle subfigures of Figure [13b]plot the training loss and
the evolution of the sharpness. The bottom subfigure of Figure[T3b|shows the change of the inverse
KTA every 3 steps, where we see negative values, and that means the inverse KTA is decreasing over
time. By comparing the middle and bottom subfigures, we see that the sharpness-decreasing periods
correspond to larger decreasing values of the inverse KTA than the sharpness-increasing periods.

Evolution of the inverse KTA

Evolution of the sharpness 0.022

Ir=0.005
Ir=0.008

7777777777777777 e ] 1r=0.01
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a— [ 0.002
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Iteration

(a) (b)

Figure 12: (a) Evolution of the sharpness, alignment between the target and the top 5 NTK eigenvec-
tors, and alignment between the target and inverse NTK. (b) The evolution of the alignment between
the inverse NTK and the target under different learning rates.

Now we provide empirical results on a direct connection between the alignment shift phenomenon
and the generalization ability. Figure [[4a] and [T4b] show the alignment shift phenomenon under
different learning rates where we see that a larger learning rate leads to a more significant sharpness
oscillation and a larger alignment shift towards earlier eigenvectors. To compare the generalization
ability, we measure the decrease of the test loss in two ways.

1. Measures the test loss Ly after the same effective iterations, i.e. for different learning rates
M1, ---, Mn, train the network for ¢4, ..., t,, iterations such that 91t; = nate = ... = Ny tn.

2. Measures the change of test loss AL during the oscillation period when sharpness
decreases and the alignment shift phenomenon occurs. For example in Figure [I4a] we
compute the change between the 55th and the 75th step, and in Figure [[4b] compute the
change between the 10th and the 20th step.
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Figure 13: (a) NTK spectrum in the fully-connected network described in Section|3.1|after 60 steps.
The spectra for other steps have roughly the same shape. (b) Evolution of the training loss, the
sharpness, and change of the inverse KTA every 3 steps.
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Figure 14: Alignment shift under different learning rates

As is shown in Table ] a larger learning rate leads to a smaller test loss after the same effective
steps, as well as a larger decrease in the test loss during the period when sharpness reduces and the
alignment shift phenomenon occurs.

Table 4: Generalization ability under different learning rates

Learning rate 0.8 0.9 1.2

Ly after the same effective steps 1.211 1.206  1.199
A Lyes during the oscillation period when alignment shift occurs  -0.008  -0.020  -0.062

A.6 Potential Generalizations to Two-layer Nonlinear Networks

In this section, we try to generalize our crucial quantity in Definition .6|to the two-layer network

with ReLU activation. We again use the MSE loss L(W) = 5- || WReWmhX) — YH? where o (+)
is the elementwise ReLU operator. By simple calculation, the NTK at iteration ¢ in this case is given
by

K,=KY+ K%, where K" =ocWX)TeWVX), K* = DI'D,,

2 .
WP [1) X diag(1 WO Lx0p)"
with D, =

2 .
Wt( ) [dh]Xdlag(l{th [dh):]X>0})
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We first demonstrate that Kt(l) = O'(Wt(l)X )TO'(Wt(l)X ) still exhibits a low-rank structure where it
is close to a rank-2 matrix. Here we train a 2-layer ReL.U network and plot the eigenvalue distribution

of K. t(l) after 5 and 40 steps in Figure We can see that it quickly becomes an approximate rank-2
matrix after only 5 steps.

Eigenvalue after 5 steps Eigenvalue after 40 steps

0 50 100 150 200 0 50 100 150 200
Coordinate index Coordinate index

Figure 15: The approximate rank-2 structure of O'(Wt(l)X )Ta(Wt(l)X ) in a two-layer ReLU network
after (a) 5 steps and (b) 40 steps

This approximately rank-2 structure allows us to define a new version of c7 as the leading eigenvalue

)

of Kt(2) and ||v;||? as the summation of the top 2 leading eigenvalues of Kt(1 , and calculate the

corresponding v as
el 2+ 20

M (K )

Figure[T6|compares the evolution of the sharpness, our new version of c, and the alignment of ¥’
with top 5 NTK eigenvectors (denoted as u1, ..., us) between small and large learning rate settings.
The setup is the same as in the linear network setting described in Section [3.T]except that we use
ReLU activation now. Here we see that in the large learning rate case, the alignment shift phenomenon
happens towards earlier eigenvectors during the sharpness reduction period, and in the meantime,
there is a sudden increase of a;. This is consistent with the behavior of o; and the alignment trend
discussed in the theoretical analysis in Section 4]

Evolution of the Evolution of the sharpness
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Figure 16: The alignment shift and evolution of «; in a two-layer ReLU network

A.7 Supplementary Results on Central Flow

First, we provide evidence to demonstrate that the central flow is a good approximation to the time-
averaged gradient descent. On the fully-connected network, VGG-11 and ResNet-20 described in
Section [3.T]and Appendix[A.2] we run both central flow and gradient descent under different learning
rates. Figure|l7/|plots the evolution of the training losses, sharpness and the KTA, where we see that
central flow approximately matches the time average of GD trajectories. (For the dashed lines in the
training loss subplots, we report the “central flow prediction” for the training loss [CDT™24], not the
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training loss along the central flow.) For the VGG-11 in these experiments, we use average pooling
(rather than maxpooling) and GeLU activation (rather than ReLU), so that the training objective is
smooth, as is needed in order for the central flows to work well.

train loss top Hessian eigenvalue kernel / target alignment
60 1
1.004 03
0.75 40 — GD,n=0.05
021 w T GD,n=0.1
0.50 2 T —— GD,n=02
0.25 0.1 == central flows
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step / time step / time step / time
(a) Fully connected network
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1.0
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GD, n=0.01
0.4 —— GD, n=0.02
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0 200 400 600 0 200 400 600 0 200 400 600
step / time step / time step / time
train loss top Hessian eigenvalue kernel / target alignment
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4004 4* <Al
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(c) ResNet-20

Figure 17: Demonstration that the KTA along the central flow reasonably matches that along the GD
trajectory under different network architectures. In the subplots on the training losses, the thin/light
solid lines are the actual training loss curves under GD, and the thick/dark solid lines are the smoothed
(time-averaged) version.

We now provide more results on the evolution of the KTA under central flow compared to gradient
flow. Same as in Section[3] in Figure[I8] starting at various points along the central flow trajectory in

different architectures, we branch off and run gradient flow %—VX = —nVL(W) for some time (red).

Again, we find that gradient flow takes a trajectory with lower KTA than the central flow.

B Detailed Theoretical Analysis and Proofs for the Four Phases

B.1 Cartoon Illustration

As is discussed in Section[4.2] the training dynamics at EoS can be divided into four phases based on
the position and the sign of change in the sharpness. We plot a cartoon figure to illustrate this division
in Figure[T9] A similar illustration figure was also provided in [WLL22].

B.2 Rank-1 structure

In this section, we verify that the structure in Assumption ff.T|will be preserved for ¢ > o where t is
defined in Assumption 4.1}
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Figure 18: Gradient flow (red), when branched off from the central flow at different times, takes a
lower-KTA trajectory than the central flow (dashed black).
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Figure 19: A Cartoon illustration of the four phases during EoS

whx = uvl, Wt@) = cyu”.

We prove it by induction. Suppose at time ¢ after ¢y, we have that W,

Then at time ¢ + 1, by the update rule of Wt(l)X and Wt(Q) , we have that:
WX =whx - IwPTE XTX = wol — LeuB X XT = u(v! — Le,E,XXT)
n n n
Wt(i)l = Wt(2) — %Et(Wt(l)X)T = Ct’LLT — %EtvtuT = (Ct — %<Et7’Ut>)UT
Hence we see that the rank-1 structure is preserved with « unchanged and
Cit1 = Ct — ﬁ<Et»vt>
n
ol =ol = Lo BxXT
n

This completes the proof by induction.
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B.3 Analysis of Phase I

Note that under the rank-1 structure in Assumption[4.1] the NTK at iteration ¢ can be written as
Kt = ||Wt(2)||2K.E + XTWt(l)TWt(l)X — C?XTX + ’Ut’Uf

We want to prove that during Phase I, both ¢ and ||v;||? increase over time. We first introduce
another assumption on Phase I where we assume that the dynamics follow the GF trajectory. This
assumption was also made and empirically verified in [WLL22].

Assumption B.1. During Phase I, the dynamics follow GF trajectory.

Recall that we denote F; = Wt(2)Wt(1)X = ¢;v; under the rank-1 structure, and £y = F; — Y and
use {q;}™_; to represent the eigenvectors of K, = X7 X. Then plugging in the update rule of ¢; and
v, in Section[B.2] we immediately get the following results.

4
dt
d

n T nA;
i q) = — LG EXTXq = — ey (B,
dt<vt7q> nCt t q " Ct< t CI>

Ct = _g<Et>'Ut>

By Assumption [4.1] we have that at time to, ¢, > 0 and Ey[i] = —O(Y[i]) for all i < n, which
gives us that (B, q;) = —©((Y,g;)) for all i < n. That means % (v,, ¢;) has the same sign as
(Y, q;) at t = to, which promotes (v;, ¢;) to move towards (Y, ¢;), a direction deviating from (Ey, ¢;)
since (F, ¢;) has the opposite sign as (Y, ¢;) at o and for a short time period later.

If (Ey,,v:,) < 0, then %ct > 0 at t = ty, which helps keep the positive sign of ¢; for a short
time period later. On the other hand, the behavior of % (v¢, q;) will help keep the negative sign of
(E}:,v¢). Repeating this procedure, we will get a consistent increase of ¢; and a consistent movement
of (v, ¢;) towards (Y, ¢;) for a short time period after ¢.

If (Ey,, v,) > 0, then %ct < 0 att = to, which makes c; decrease for a short time period later. Note

that in this case, the behavior of % (vy, ¢;) will promote (E;, v;) to decrease and become negative
during the following training time. Repeating this procedure, we have that:

1) If (E}, vs) becomes negative before ¢; changes the sign, then ¢; will start to increase and keep
positive and we will go back to the case with (E;, v;) < 0and ¢; > 0.

2) If ¢; becomes negative before (Fy, v;) changes the sign, then (v, ¢;) will start to move towards
—(Y, ¢;), the same sign as (E}, ¢;), which will prevent (F;, v;) from decreasing and changing
the sign. Then (FE;, v;) will keep positive, ¢; < 0 and will keep decreasing, which will in turn
promote (v, ¢;) to move towards — (Y, ¢;). If we rewrite —c;, —v; as ¢; and v; respectively, then
we essentially get the same dynamics as in the case with (E;, v;) < 0 and ¢; > 0.

In summary, the dynamics will eventually move to a stage where we have an increase of ¢; and a
movement of (v, g;) towards (Y, ¢;), which has the opposite sign as (E}, ¢;). Now we assume that
at some time point ¢’ > t( in Phase I, for all i < n, (v, ¢;) will have the opposite sign as (Ey, ¢;).

Assumption B.2. Assume that at some time t' in Phase I, ¢y > 0 and that (vy, q;) has the opposite
sign as (Ey, q;) forall i < n.

The following lemma ensures that for later training time ¢ > ¢’ in phase I, before |(F}, ¢;)| becomes
very small, it always holds that ¢; > 0 and that (v, ¢;) has the opposite sign as (Ey, ¢;) for all i < n.
When |(FE}, q;)| becomes very small, it already implies convergence of F; along ¢; direction. The
detailed analysis is beyond the scope of this paper and has been studied in [WLL22]. They show that
we will either enter EoS or have a small || E;|| which implies convergence.

Lemma B.3. Under Assumption fort > t' with t' defined in Assumpti()n Fori <n,
when |(Ey, q;)| is not very small, we will have that ¢, > 0 and that (v, q;) has the opposite sign as
(E}, q;). Then we immediately get that (Fy, q;) = (ctvy, q;) has the opposite sign as (Ey, q;).
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Proof. We have that

d Y

%<Et,(h> =1 2<Etaql> - %<Etvvt><vtﬂqi>
d
%Ct = —g<Et,’0t>

d Y

p — (v, qi) = _gCtEtXTXQi = _%Ct<EtaQi>

Suppose for some T' > ¢’ in Phase I such that for all ¢t € [t/,T], ¢; > 0 and that (E}, ¢;) doesn’t
change the sign for all ¢ < n. By the definition of ¢/, we know that Vi < n : (vy, ¢;) has the opposite
sign as (Ey, ¢;). Then the dynamic of (v, ¢;) gives us that (v, ¢;) has the opposite sign as (Fy, g;)
fort € [/, T). Hence (Ey,v:) < 0. Then for ¢t € [T, T + dt] we have that

Ctidt = Ct — %<Et, ’Ut>dt >0

and that (Ey, v¢)(ve, ¢;) = d; 1 (E4, ;) for some d; ; > 0. When |[(Ey, ¢;)| is not very small, we will
have a bounded d; ;, which yields

d 77)\
Ey,q) =
dt< t7q>

Fort € [T, T + dt] we have that

)\Z' >\i
(B ) = (Bv) = 4+ dia)at(Brva) = exo (=24 4 i it ) B

which has the same sign as (E¢, ¢;). Processing the above steps completes the proof. O

: (C? +d;i 1 )(Ey, i)

Now notice that we have the following dynamics for ¢ and ||v; ||2,

d d 2n 2n
dt (C?) = 2Ctact = _?<EtaFt> = —; <Et7Qz><Ft7qi>

i=1
d d 21
%Hvtﬂz = QUtTdt L= ;)‘i<Etaqi><FtaQi>

Then Lemma [B.3]implies that ¢ and ||v;||? are increasing for ¢ > ¢ in Phase I before |(E}, ¢;)|
becomes very small. As mentioned above, a more detailed analysis in [WLL22] gives us that we will
either enter EoS due to the increase of ¢? or get convergence before EoS.

B.4 Intuition on the choice of the learning rate

Let’s consider the time period after ¢Z\; /n reaches ©(1/n) (denoted as Tp). From the proof of
Lemma [B.3] we have that with d; ; > 0,

;lt<Et,qz> = 772 (¢ +di) (B, qi) < —%Ct (Ey, qi) = 9(%)<Etv%‘>
Then after T’ = (9()‘1 logn) steps, (Ey, g;) will shrink by O(poly(n ).
such that Ay = ©(n®*€) for some small € > 0. Note that for i < k:' ’\1 = O(n'7%7¢), hence after
T = O(n'=2<logn) steps, (E11,¢;),4 < k' will shrink by O(—+—

Let’s consider some index k'

poly(n) )

That means after T = O(n'~% €logn) steps, (—Ey, ¢;)(F;, q;) for i < k' will be negligible
compared to those 7 > k’. Moreover, by our data distribution (see Section , we know that
k' = O(logn) and k = O(logn) (where k is defined in our data distribution), which gives us
k — k' = O(logn) and hence the number of terms (—FE}, q;)(Fy, q;) for k¥’ < i < k will be
neghglble compared to the number of terms when 7 > k Combining the above two facts yields that,
S Xil—FEy, ¢;)(Fy, ¢;) will be dominated by Y, , \i(—E, ¢;)(F}, ¢;). Therefore,

i>k
2 2
@nvtn? =1 in<fEt,qi><Ft7qi> = 1003 M~ Er. ) (Froa)
=1 1>k
_ 2, . W o4
= ZIntO(Y (~Er,qi) (Fiv i) = (") Z(cEA)

i>k
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Denote the end of Phase I as 7. Then we have

n n
oz, [|? = vz ol = @(;)(C% — )N = @(;)

Here we check that T 4+ 1" will not exceed the length of Phase I, 77. Note that

d 2n n
9@ = -2UB, Ry < Lo(y ) = o)
Starting from Tp to T3, ¢? has a total increase of order @(%), which means that 77 = T + Q(n%)

By the choice of learning rate discussed below, we have that n? = @(nl—l,a) and hence 77 =
To + Q(n'~?), which is at a higher order than Ty + T = Ty + O(n!=2"<logn).

Choice of learning rate The above calculation implies that the increasing speed of ||v;||? is @(’;—a)
times the increasing speed of ¢? for later period (after 7' + Ty of Phase I). If we further assume that
for early training period, we have ||vr, 17> = O(%), then we can get that at the end of Phase I,

[v:]* = ©(n/n).

Note that at the end of Phase [, i.e. the beginning of EoS, we have ¢7 = ©(1/n), then for the output
norm, we get that || F;||? = ¢?||v¢||* = ©(n%/n?). When ||F;|| goes to order of ||Y||, we want it to
o pass the above order ©(n®/n?) so that we will have EoS. (Otherwise F; will approach Y before
reach the order ©(n®/n?) and we will have convergence before EoS) That means we require

1
nl—a)

n/n* <O([Y]*) =0(m), = n*=Q

So we can pick n? = O(—).

nl—a

B.5 Dynamics of 7

In Phase I under the gradient flow, we prove that the time derivative of c? is determined by the sign of
(E}, F;). Now we prove that in Phase II and later phases, even though gradient descent no longer
follows the gradient flow, the sign of ¢7 11— c? is still determined by the sign of (E}, F;). Note that
the update of ¢Z under gradient descent is given by

2 2 2c 2
C§+1 — C? = —;77<Et,Ft> + %<Et,vt>2 = —Ttn<Et,'Ut> + %<Et,’l}t>2
<Et7vt> <Z<Et7vt> - 2Ct) = %(Et7vt> <%<Ctvt - Y,Ut> - 2Ct)

(Bw0) (e (Lo~ 2) ~ Loy, 00)

By Assumption we have that cf |[v[|> = || || < 2||E¢||* + 2||Y||* < O(%). Combining with
the fact that ¢ = ©(;) during EoS yields that [|v[|* < O(n). Then we have ! [|v||* — 2 = —©(1)
and that | 2(Y, v,)| < Z[|Y]|[|lve]| < O(n). Hence ¢; (L|vg]|? — 2) — 2(Y, v;) = —¢;O(1), which

implies that the update of ¢7 has the same sign as —(Ey, v;)c; = —(Ey, F}).

SIsS3IS

B.6 Analysis of Phase II and Proof of Lemma4.4]

First note that during Phase II, we have that (E;, F;) < 0, which means that || E;|| < ||Y|| because
otherwise, we would have that (Ey, F}) = ||E||? + (B, Y) > ||[E||? — ||E¢||[|Y]| > 0. Similarly,
we have that || F;|| < ||Y||. Hence we have |(E;, ;)| < O(||Y]|?) = O(n).
We prove Lemma 4.4 by induction using the following two lemmas.

l1—a
Lemma B.4. Under Assumption during Phase Il and pick n = O(n~ "2 ). Write A; :=
%cf = % with Ay > 0. Suppose for s < t — 1, we have |(Es, Fs)| = O(82||Y||?), we can get that

[(Boa)| = (1+ Ot (B, an)| — 028V, 1))
A .
(Bl < 0 (62 SV, + (B} 25

where T} is the end of Phase I.

24



Proof. During EoS we have that 21c7 = @(%) Combining with A\; = ©(n) assumed in our data
distribution (see Section gives us that ¢7 = @(%) For the update of (F, g;), we have that

(Er,qi) = (Be—1,qi) + (By — By, i) = (Bv—1, qi) + (v — ¢—1v1-1, ¢3)
= (Ey_1,¢i) + (et — ce—1)(ve, ¢i) + com1 (Ve — V1, Gi) + (¢t — ce—1) (Ve — Vi1, Gi)

nA;

= (E_1,qi) — %<Et—17vt—1><vt—lv%> - i (Bio1,qi)

n*\;

(B, Fr_1) (B, qi)

nA;

<Et—17 Ft—1><Ft—1a Qi> - TC%—1<E7‘/—17 Qi>

= <Et—1; q1> -

n*\i

t—1

<Et 1, F—1)(Ee1, qi)

+

)\i 2/\i
= ( 77n - Z 1<Et 1, Fio1) + 77712<Et1aFt1>) (Bt-1,q:)
t

— ——(Ey 1, Fy1)(Y,q;
ncf_1< t—1, t1>< aQ>

4)
For 7 = 1, we have that
i n?A (1 + A,
(Bt q1) g (1 —2-nA1 + n2z§+n2tf1;)<Et_l’Ft_l>> (Br—1,q1)
n
E F Y,
ncf 1< t—1, Fi-1) (Y, q1)
2
) n°A1(1 4+ A1)
= (-1—nAiq — E, 1, F_ E,_
(-1 - LB Bl ) (B )
2
-0 (n) (Bi1, Fe1)(Y, q1)
where (i) uses 21c7_, = + Ay and (ii) uses 2c? | = @(%) and A1 = ©(n) and the fact that

during phase II, (F;_1, Ft,1> < 0.
Then by the assumption |(F;_1, F;_1)| = O(82]|Y]|?) = O(dan), it immediately follows that

(Ee,q1)] > (14 nAe1)[(Beor, q1)| — O 62/ (Y, q1)))

Now we bound |(Fj, ¢;)| for any s < t— 1 with 4 > 2. First notice that "2 i, = @(i—;)

and %KES_L F,_1)| = O(T %) = ("f\%)‘) by the assumption [(Fs_1, Fs_1)| <

O(0,]|Y]|?) = O(d2n), then we can merge these two terms together and write

0 i 1+’7 i “(Es_1,Fs_ >=—@(A) S

n A

Substituting into eq. (@) and replacing ¢ by s give us

(il < (10 (3 ) +0 (L) Bss Fea)l) [KBeor.ai)
+0 (L) [Ewms, FeliY.a)

y (1 6 (j) i (’)(77252)) (Ey-1, )| + ©0252) (Y, 1)
< (1-0(2)) 1Bl + otPaI )
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where (4ii) substitutes the order ¢2_; = @(%), (iv) uses |(Es—1, Fs—1)| < O(b2n) again and (v) is

because under our data distribution (see Section@) and the choice of learning rate 7 = @(n‘lfTa )s
we have 1?8y = @(" 02) < O( o) = 0( +). Telescoping this from 77 to ¢ completes the proof.

O
B Fy)| = O(620lY]?)

Proof. The upper bound of |(E}, ¢;)| for i > 2 in Lemma|[B.4]can be further upper bounded by

OGﬁtZkHWHK&mO0@4ﬁ}?1ﬂ@wﬂ)

which gives us

n n

02ntn
(Ey,q;)? QWMWH%MQ
1+a

1=2 1=2

O (837 n*72) Y |I* + || Bx, |1* = O3 Y [1?)

where the last equality uses 7 = @(n_%) and that ||E7, ||? = 53[|Y||? = O(83]|Y]|?).

By the analysis of Phase I, we know that |(F;.q;}| for 2 < ¢ < k shrink faster than those for ¢ > & in
Phase I. Hence at T}, we have that

k
Ak A1logn
Z )\i<ET17qi>2 < ﬁ Z<ET1vqi>2 = O(i) Z<ET17qi>2 = O(logn) Z<ET1aqi>2
=2

n
i>k i>k >k

Therefore,

Y MilBr,a)® <Y OQogn + A\)(Er.ai)* < O(n®| Er, ) = OG0 ||V |*)

=2 i>k

Then for time ¢ in Phase II, we can get that

n 2
Z/\ Et,Qz < Z (527) n ‘YHQ‘F/\ <ET17q1> )
1=2
O

05" n* =" + 65n”) [Y[|* = O(63n") [ Y]|?

(6)

We have that §; = O ( Zill\k) = O(n~%?) and that sin(Y, ¢1) = /1 — 62 = 1 — ©(63).

In the subspace spanned by ¢; and Y, choose Y := Y/||Y'|| and § as orthonormal basis. We have that
lgr — B = 2 — 2 cos(q1,p) = 2 — 2sin(q1,Y) = O(47)
Hence we know that
(B, p)? = (B, 1) — 2(Ev, 1) (Ev, o — P) + (Ev, 1 — p)°
> (Ey,q1)® = 2B, )| Eelllar — Bl = |1 Bl [l — 51
> (E, q1)* = O(6) | Ee|(Er, q1)] — ©(67) || x|
> (Ey,q1)” — ©(61) || ||
= (B, Y)* < ||Et||2 (Ee,0)? < 1E” = (Evy 1) + ©(61) | B2
= S (B a)? + O | B

=2
< OGNV + 0@ Y]?) < 0@y )

In the subspace spanned by E; and Y, denote Y and 7 as orthonormal basis. Note that F;, = E; +Y
also lies in this subspace. Since (Fy, F}) < 0, by geometry relationships between E}, Y, F; (note
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that they form a triangle with cos(E}, F,) < 0), we know that |(Ey, ) (Fy, #)| < |[(Ey, Y)(F;, V)|,
which yields that
(Er, F2)| < [(Ex, fo)(Ey o)l + (B Y){F, V)]
< 2By, YY) < O(KEL Y)Y < O] Y]?)
O

Now we are ready to prove Lemma#.4] Combining Lemma [B-4]and [B-3]together, and noting that
at the beginning of phase I, we have |(Ey, F})| < ||E|[|[E]] < O@6]|Y]?) < OS2V ]?) by
Assumption[d.3] we can prove by induction that Lemma[&.4]holds for ¢ in Phase II.

By the proof details of Lemma we know that |(E;, Y)| < O(8,|Y||). This allows us to prove
that ¢ in Phase II,

<Ft7Y>
I

(V,Y) + (E,Y) . (E,Y)| B
1

cos(Y,vy) =cos(Y, Fy) =

B.7 Analysis of Phase III and Proof of Theorem 4.8 Part (A)

Since in Phase III, we have (E}, F;) < 0, then by the dynamics of ¢? discussed in Appendix we
know that ¢}, < ¢f.

Now we analyze the dynamics of ||v:||>. We start by introducing the following lemma on the
dynamics of (Fy, ¢;).

Lemma B.6. Under Assumption during Phase III and pick n = @(n‘l_Ta ). Write Ay :=
)\TLICtQ — % with Ay > 0. Then we have that

KB, q1)| > (14 ConA—1)(Ei—1, 1) — O(AL_ (Y, 1))
Ai

(Bnal < (1- 0810~ 0 () ) Bnall + 0LV, 2<i<n

where A, = %(Et, Fp).

Proof. The proof of this lemma is similar to that of Lemma[B-4] In particular, eq. @) still holds.

For 7 = 1, we have that

A (1 +nAi1)
n2(2+ A1)

n

— ——(Fy_1, Fi_1) (Y,
TLCt271< t—1, 4Lt 1>< aq1>

(B, q1) = (1 —2-—nAq + (Et—l,Ft—1>) (Ee—1,q1)

2
i

= (*1 — A1 + 0(77)) <Et717Q1> -0 <:’1> <EtflaFt71><Yv7 (Z1>

—~
=

where (i) is because under Assumption we have that [(E;_1, F;_1)| < O(

2
N A (1+nl¢_q) (77)\1>
E L F <o) -0
22+ A1) (B, Fro1)| < n (n)

) and thus

n
n

By our choice of A;_1, we have nA;_; = Q(poly(n)). Plugging in this and the definition of A}
gives us that

(B q1)] > (1410810 — Om)) (Bi—1,q1)| — O(A;—l‘ﬁfa au)l)

>
> (1+nAi1) (Er—1, q1)] — O(AL_ (Y, 1))

For i > 2, although we do not have the assumption |(E;_1, F;_1)| < O(8:]|Y||?) = O(dan), by

Assumption we have that 7725\1 [(Ei_1,Fi_1)| < O(”T)‘L) = @(71\);’5 ), which is at a lower order
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than 2% 2 = @(%) That means we can still merge these two terms together and eq. (§) still
n 1
holds. Then it follows that

(Bl < (1-0 (3) 0 (L) s i) ) KBl + 0 (L) (Bros, P (Yo
)

Ai
Note that in the last term of the first inequality, we use (FE;_1, F3—1) > 0 in Phase IIL O

< (1 -0 (M) -0 (Ail)) (Ei1,40) + © (A1 (Y, @)

The first inequality in the above lemma tells us that |(E}, ¢1)| keeps the increasing trend as in Phase
II. When it increases to 2(d2]|Y||), we have the following lemma.

Lemma B.7. During time intervals in Phase Il and Il when ||E;| = O(y/n) and Ay > Q(\/57),
denote T := inf{t : |(Ey,q1)| > 62||Y||} and &¢ == [(Er, ¢1)
(B, qi)| < O((Sth%\(Y, ¢i)| + (BT, q;)|) where Ty is the end of Phase I.

, |{E, q1)| increases monotonically, which gives us that d; > ds.
To see thls note that both Lemmaand Lemmal[B.6|give us [ (B 1, q1)| = (1+ConA¢)[(Ey, q1)|—

O(|AL(Y, q1)]) with A} = (Et, Fy). Suppose at time t > T, d; > da, then we have |(Fy, q1)| >
S| > \/%TIKY, q1)| by \(Y q1)| = 61]|Y]| and d; > 1/3;. Combining with the condition A; >

Q(V/01) gives us that ConA[(Ey, q1)| > Qnl(Y,q1)]) > QALY q1)] by [Af] < O(% ) <
O(n). Hence [(Ei11,q1)| > [(Ey, q1)| and 6,41 > da.

Now we prove this lemma by induction.

Let’s first prove the base case t = T'. For ¢t < T, if T' is in Phase II, then we know that Lemma
holds. If T"is in Phase III, we can modify the proof of Lemma[B.3|to get that Lemma [B.3]still holds
for t < T'. To see this, note that the only part we need to modify is the part using the geometry
relationship between the vectors E;, F; and Y. The geometry relationship |(Ey, 7 ) {(Fy, 7)] <
|(Ey,Y)(F;,Y)| doesn’t hold in Phase III because now we have (E;, F;) > 0. However, the
inequality > ,(Ey, ¢;)* < O(63]|Y||?) still holds. That means when ¢ < T, i.e. when (E,, ¢1)? <
63||Y||%, we have that | E¢||> = 0o (Et, ¢;)* < O(63||Y||?) and hence || E¢|| < O(2|Y]|). Then
we get that 1] < [|Ef| + [[V]| < O(|[Y]]) and that [(E,, Fy)| < |E|[F] < O@6]Y]?).
That means for ¢ < T, specially t = T, the proof of Lemma @ still holds, and we have that
(B, qi)| < (’)((52772:\\—1 (Y, q:)| + |{ET,, ¢)|). Note that we have proved &; > d, then we prove the
base case t =T

Now let’s deal with the case when ¢ > T. Suppose for T' < s < ¢, we have that |(E;, ¢;)| <
O(0sn? ’/\\1 Y, q:)| + [(Er,,q:)|). Then applying the calculation in the proof of Lemma we
get that ZZ:2<ES,qi>2 < O(82||Y||?), which means (E, ¢1)? > Q(>_1 ,(Es,¢:)?). Hence for
T < s < LB = OUE.a)?) < O(Ena)?) = O@2|Y|2). which implies |[E,| <
O(0:[|Y])- Note that IIEs|| = O(vn) = O(||Y]]), we have that || Fi|| < [ Es[| + [Y]| < O([[Y]).
Therefore, |(Es, F,)| < ||Esl||Fsll < O(8:]|Y]|?). Then at time ¢ + 1, imitating the calcu-
lation in Lemma m we get that [(Ey1,q)| < O(6m*5* (Y, ¢i)| + [(E7y,¢:)). Note that

S ALY, qi)| = LEetln2 (v, q)| < O(LEall 2 a(v g))) = O@1n? 321V, q0) ).
Then we have [(Ey 11, :)| < O(m* 31 1(Y, 03| +[(Bry , 4:)]) < OB 3 1Y, )| +1(Ex, 4:))).

Hence we can complete the proof by induction. O

Now we are ready to prove the first part of Theorem[4.8] The goal is to give a sufficient condition of A,
to ensure the increase of ||v, ||, Substituting the results in Lemmato the calculation in Lemma
we know that during time intervals in Phase II and III when || E:|| = O(y/n) and A; > Q(\/(S» ),
for t > T, we have Y i ,(Et,q;)% < O(2|Y]1?), Doy Ni(Er, ;) < O(62n®)||Y||* and that
Yima MilEr i) (Y qi) < O0m* )Y = O(dime .
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Now we start analyzing the update of |lv||?. Recall that we denote K, = X T X. We have for |lv|?,

2 2
[veal? = lloil? = =SB KL FT + LG BK2ET

20+ Ay® E,K2E]
A1

P P
= p,K,E" - —”EtKgEYT T
n

n

2

n 2 27 2 27 T
M{(E ——E/\iE,i - —FEK,Y
1< t,Q1> n < tQ> n t

=2 i=2

277 + At’l’)Q A2 A
= E
n E A1< ty q. 7,> +

We want to have that AT"Z))\;L(Et7 )% -2 o Ni(Erqi)? — 27”EtKIYT > (0, which means that

n

AmA(Er, q1)* — QZ Xi(Ery qi)? = 200 By, )Y, 1) — QZ Ai(Er, qi) (Y, q:) > 0
=2 =2
When || E;[|?> < O(n) and ¢t > T, we can use Lemma[B.7]and get that A1 (E;, ¢1)? = ©(62n[|Y||?) >
MONEL a)lIY ] = Z= (B, a1)(Y, q1)| where we use [(Y,q1)| = d1[|Y]| and 62 > /61
We also get that >, X\ (Ey, ¢;)% < O(07n®)||Y||? and 31" o Ni(Ey, ¢:) (Y, ¢;) < O(62n®)||Y 2.

Then we need a lower bound of A;: A = maX{Q(@), Q(nnl )} = maX{Q(nna/4) Q(m%)}

When || E;||? = Q(n), LemmaB.6|tells us that for i > 2,

(Bl < (1-0(3) 0 (810 ) [Eva)l + 0LV

< (1-0(AL 1) - {Bi1, @) | + O(AL_ (Y, ai)),

Denote the start of Phase III, which is also the end of Phase II, as T5. We have proved in Lemma[4.4]
that [(Er,,q)] < O(d2n*3 Ay (Y, i) + (BT, @:)]) = o([(Y,¢:)|) by our data distribution (see
Section |4.1) and our choice of n. For t > Ty, i.e. in Phase III, |(E}, ¢;)| may increase but will
not exceed the order O(|(Y, ¢;)|). This is because once |[(E¢, g;)| > (|(Y, ¢;)|) such that RHS is
smaller than |(E};_1, ¢;)|, then we will have |[(Fy, ¢;)| < |(Et_1, ¢;)|. Hence we will have a stable
upper bound |(E¢, ¢;)| < O(|(Y, ¢;)|). Hence Y- ,(E¢, q;)? < O(||Y]|?) = O(n). In other words,
when [|E¢||* = Q(n), (E:, ¢1)* dominates Y- ,(FEy, g;)?. More precisely, denote T5 as the first
time in Phase III when || E¢||> > 23" ,(Ey, ¢;). Consider time ¢ such that t > T3, we get that
(Ei,q1)® > > i o(Er, q1)?. Then we have (E;, Fy) = O(||E¢||?) = O((Et, ¢1)?). Now for s in
Phase III such that s < ¢, by Lemma@ we know that for i > 2,
(Eeadl < (1-0 ($) =0 (a0 ) [Bv.a)l + 0L LY.

< (1—@(5))~|<Es 1)+ O, (Y, 1))

1

Telescoping this inequality from time 7" defined in Lemma [B.7|to ¢ yields that

maxp<s<t AL_1 A
()| < O (RIS g (B

(maXT§s§t<E87 q)°n* M
=0

(¥, + )]
<0 (BB Ry g+ |(Bra) ) = 0 (TEEEE Vo)) + [(Br. i)

Analyses before already give us that > , \(Er,¢;)?> <  O(d3n)||Y[]* and that
S o XNilBr, i)Y, q;) < O(63n®)|]Y||%. Then we have that

ZAz Etan Y Q1> < O 5 ||Y||2 + ZO Etan <K Qi>2)
=2

< O(n)|[Y]* + (9 (n IY1*) (Er,q1)* = O(*n)(Ey, 1)*
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where the last equality uses 7> = O(n~1~%)) and (E;, ;)% = Q(n). We also have
S A B ai)? < O3 |V |2 +ZO( By 02)
i=2

— 063 >||Y||2+n<Et,q14Zo( Yqz>)

=2

_ 2,4 2 4 4 S w
= OV 12 + n* By, 1) ;O<zm

B, q)?
<O6nM)|[Y]? + n'*n*(Er, q1)*O (%Eﬁ)

(@) (@)

< O(&En)Y|* + O(n*n® ) (B, q1)* < O(nn)(Er, 1)
where (i) uses Assumption[4.3|that (E;, 1)? < ||E¢||> < O(n/n) and (ii) plugs in 7> = ©(n~(1~*))
and (E;, q1)% = Q(n).

Combining these two cases together yields that

S B + 30 Al Ee, (s ) < Omax{, 1A (Er,a1)? = O(nha (B, g1)?
i=2 i=2
On the other hand, A1 (Ey, ¢1)(Y, q1) = 61 A1 (E, ¢1)||Y ]| < 011 (E}, ¢1)?. That means we require
that Ay > Q (maX{l, %}) = max{Q(1), Q77472)}-

marz

Combining all the bounds of A; together and noticing the choice n = @(n_kTa ), we can get that
A; > max{Q(1), (=)}

nna/a

B.8 Analysis of Phase IV and Proof of Theorem [4.8| Part (B)

By definition of ¢; and ¢, we know that they are the turning points for (E}, F;) to change the
sign, which means at these two time points, we have (E;,, F},) ~ 0 and (Ey,, F;,) ~ 0. More
precisely, by the analysis in Appendix [B.6|and Lemma we know that || Ey, || < o(]|Y]]) and
(B, Fyy)| < O8:2||Y)|?) = O(82)|F, ||>. The final part of Appendix also implies that
cos(Y, vy, ) > 1—0O(d2). Under Assumption|4.7, we know that at time t2, | B, || < |1 B || = 0(||Y||)
and hence |(Ey,, F,,)| < O(5:]|Y|?) = O(8)||F, |2 = O(62)||F,, ||2. By a similar argument in
the final part of Appendix we also get that cos(Y, v¢,) > 1 — O(d2).

Note that ||Y||? = | Fy — E¢||? = || Fy||? + | E¢||? — 2(Ey, F}), we have
1Fal? = 1Y 1 = 1B 1? + 2( By, Fio) 2 Y12 = 1B, [P+ 2(B,, Fro)
= ||Ft1 H2 + 2<Et27Ft2> - 2<Et17Ft1>
> | Eu|? = O0) |, |17 = (1 = O(8)) || B, |12

Hence if Ay, > C % for some constant C' > 0, we can get that

A1 A1 o Ao 2 AL 5
;Ctl - ;Ctz > ;Ctl — ; = Atl Z 9(62)76151

and hence ) )
2 2
C, =C, T ¢, — ¢ < (1- (52))Ct1

which gives us
[Foull® o 1= 0) [|Fy,|I* _ 1—0(0)
C%Z - 1- 9(52) C%l 1-— Q((Sg)

loe, 1* = e, [1*

If the constant C in the inequality A;, > C %’ is sufficiently large, we can ensure that |vy,[|? >
|lvs, ||? and therefore v, > oy, .
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Figure 20: Illustration of Lemma[4.9]in a warm-up setting described in Appendix

C Proof of Lemma 4.9

Let XTX := Qdiag(\,...,\,)QT be the eigenvalue decomposition of the data kernel
XTX. The approximate NTK matrix in Lemma 4.9 can be written as ¢*(X7X + agg”) =

A2Q(diag(\1, ..., \n) + a(QTH)(QTH)THQT. Then it suffices to consider the matrix A :=
diag(A1, ..., An) + abb” with a > 0 and b := QT'§. Denote A > Ay > .. > )\, as the eigenvalues
of A with corresponding eigenvectors §;. Let b[i] be the i-th component of b.

C.1 Warm-up: A Simple Case

Let’s first start with a warm-up case where A\; > Ay > A3 = Ny = ... = \,, i.e there are
only 3 distinct eigenvalues for the data kernel. We first conduct an experiment with n = 100,
A1 = 300,As = 150 and \3 = Ay = ... = X\, = 100 and b is a random vector with unit
norm. Figure[20] plots the absolute values of the cosine alignment between b and the first 3 leading
eigenvectors of A, denoted as ¢1, G2, g3. We observe that as « increases, b gradually gets larger
alignment values with earlier eigenvectors. We also notice sharp transitions around values 50 and
200, which are equal to Ay — A3 and \; — A3, respectively. Now we start the theoretical analysis in
this warm-up setting.

Assumption C.1. Let A := diag(\i, A2, A3, ..., A3) + abb’ € R™™ with o > 0, ||b||> = 1. We
assume that A\1 — Ao = O(n), Ao — A3 = O(n), A3 = O(n) and |bi]| = ©(1/y/n),Vi € [n].

Lemma C.2. Under Assumption|C.1| we have that

1. When oo < we have that arg maxi<;<p [(¢i, b)| = 3.

1+(9( *1/2)’

Ao A: AL=A: -
2. When m <a< m, we have that arg maxi<;<n |<Qz7 b>| = 2.

3. When o > % we have that arg maxi<i<p [(¢;, b)| = 1.

Proof. By the Bunch-Nielsen—Sorensen formula [BNS78], the eigenvalues of A have the following
structures.

1. The first 3 largest eigenvalues A1, A2, Az are the roots of the following secular equation

— O[K* _ B[1]* | b[2? R 1 2 2 2
ZAk—t*Al—ﬁAg—ﬁAg—t**&’ where R? = 1 — b[1]2 — b[2] @)

They also showed that A3 < A3 < A2 < A2 < A1 < A;. Note that under Assumption
R?=1-0().

n

2. The other n — 3 eigenvalues are all equal to As.
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By Wikipediﬂ the k-th component of ¢; (i = 1, 2, 3) is given by
- blk
Gilk] = [7~]
(A — AN,
where N, is a number that makes the vector ¢; normalized. Hence it follows that

B b[1]? b[2]? R?
; ( 2 \/0\1 — )2 " (A2 — X)? " (A3 — )2

where R? = 1 — b[1]? — b[2]? is defined in eq. (7). Then for the alignment (g;, b) with i = 1,2, 3,
We have that

n_blk]?
(i b) = b = “L/a ®)
v b[1]2 b[2]2 R~ \/ b[1]2 b2 R
=X T (e=x)Z T (a2 (=202 T e—x)?2 T (a2

Case 1: sp]all «. Since when o — 0, we have 5\1 — )\, then we can choose « sufficiently small
such that A3 (1 + —=) < Xa.

Then by Assumption we know that

b[1]? b[2)? 1 1 1
< — =0(3) +0(—=) = 0(—=)
A=Az A — 3 n? ny/n
Hence eq. (7) is approximated by
R? 1 1
—=——+0(—=

A3 — A3 o (n\/ﬁ)

> | £ /\3 5| = ©(1), then we can further write the approximated equation as
R? 1

—(1+0(n %) = -
. /\3( (n=7%) = ——
which gives us A3 = A3+ aR?(1 £ O(n~Y?)) = A3 4+ a1 + O(n~1/?)). Then the condition
A3(1 +n~1/2) < Ay can be satisfied for certain choice of « such that a < % Then by
eq. (8), we have

RZ

1 - 1
(a5 1)] = [ ~ BN gyl
\/ [ R P G R2 n

(A1 —A3)?2 (A2—A3)? (A3—A3)?2 (A3—A3)?

That means arg maxi<;<, |{Gi, b)| = 3.

Case 2: medium o For the choice of o such that Ay < Ao(1—O(n _1/2)) and X (1+0(n"1/2)) <
A1. Then we know that b[l])\2 4|2 = O(n\lf) while \ | = O(2). Hence eq. (7) is
approximated by

A2—A2

2
B _1somvy)=-1
A3 — Ao «

which gives us Ao = A3 + aR?*(1+O(n/2)) = Ag + a(1 £ O(n~'/2)). Then the condition
A2 < A2(1 —O(n~1/2)) and A2 (1 + O(n~1/2)) < A; can be satisfied for certain choice of o such
that %5) <a< m Again by eq. (§), we have |(G2,b)| ~ R =1— O(n~!). Hence

arg maxi<i<n |(g,b)| = 2.

Case 3: large a. For the choice of « such that A\; > A (1 + O(n~'/2)). By a similar argument
as in the previous two cases, we know that arg maxj<;<yn [{(¢1,b)| = 1. In this case, the condition

A1 > A1 (1+ O(n~1/2)) can be satisfied for certain choice of « such that & > %

O

%https://en.wikipedia.org/wiki/Bunch-Nielsen-Sorensen_formula
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C.2 Analysis of General Cases and Proof of Lemma

Recall that we denote p; to be the left singular vectors of X . Further denote o; as the i-th singular value
of X. Note that we write A := diag(\1, ..., \p) + abb’ with b := QT4 By our data distribution

(see Section, we have b[i] « (Y, ¢;) = 0;(5, pi), then we know that ||Z[[Z]]|‘ = @(%),W,j € [n],

ie. 2%’:]2 = (ﬁ). Combining with the order of {);}?_; in our data distribution yields that

bi)? = O(H42) = O(2) for i > k where the index k is defined in our data distribution. We know
that k = Oﬁog7

Now we are ready to prove Lemma Recall aht we enote 5\1 > 5\2 > ... > 5\n as the eigenvalues
of A with corresponding eigenvectors ¢;. Again, by the Bunch—Nielsen—Sorensen formula [BNS7§]],

5\]‘ (1 < j < n) satisfies the secular equation

i=1
[BNST78] also proved that \; < \; < Aj_1 forj > Land A\; > ;.

By our data distribution (see Section , for the eigenvalue 5\j with 7 < k — 1, we have 5\]- -\ =

O();),i > k. Note that we already proved b[i]> = O(2) for i > k. Using these two facts, we can
replace F H ,1 > k by /\ w1th approximation error
1 1 /\ _/\i /\ _/\i
b[i]? — - —| = b[i]? — =0 |2
A=A A=A (Aj =) (A — ) A
Hence we can write the secular equation ) ;_; /\b“];_ =—Las
J
k=1 .
b[i]? R? 1
LU N
o1 i — )\j Ak — )\j «

where R? = Y7, b[i]* and that

n

A< Y bl

i=k+1

1
M= A A=A

1 1 " 5\n®
< — - — i | = &
_0<A2> (Ak n_kE /\Z> 0<A2>

J i=k+1 J

where the last equality uses the assumption that |- 3"" . A; — Xg| = dxn® with 6, = o(1).

By the order of {\;}?_, in our data distribution, we have that

S U o (Zimi A (nlogn 5 (L
R2 Z?:k )‘z notl ne |’

and hence

i=1
The order of {\;}?_; in our data distribution also tells us that Vj < k — 1, A\;_1 — A; = Q(n%).
Then for certain choice of a such that \; < \;(1 — n~%2) and \;(1 +n~%2) < X\;_; for certain
Jj <k —1, then we have |\; — \;| = Q()\jn_“/Q) for i < k — 1. Using these facts, we get that

k—1 /2 ~ 1
Z b =0 = 2
i<k—1 Aj Ajne/

Hence the approximated secular equation can further be written as

2 1 5 1
B _ 1.2 .6 Vi <k-1
A=A, o« \2 Xjna/2

b2
A=A |

i=1

J
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Recall that by discussion above, we have \; — Ay = O(};) and that \; = Q(n®). That means
( ) and 5” <&

< $*. This allows us to write the above approximated equation as
J

RQ /2
1000\ +n"¢
)\k—)\( (Ox+n )

1
__*7Vj§k_1
(&%

We get that \; = A, + a1 £ O(85 + n~%2)). Then the condition \; < A;(1 —n~%2) and
S\j(l +n?) < Aj—1 can be satisfied for certain choice of « such that

)\jf)\k
=00 tn o7 < @<
Aj_1—=Ak

1+0(8r+n—a/2)"
Moreover,

1/ e

@ =Xl

QJa 7’]2 ~ R2 =R
\/Ez 1 (M —_\; )2 \/()\k,;jp

That means arg max; <;<y, |(Gi, b)| = j.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The paper’s contributions are clearly stated in the introduction, along with a
brief overview of the main results/contributions.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss limitations and potential future directions in Section [6]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: The full set of assumptions is provided in Section d] Complete proofs are
provided in Appendix [B]and[C]

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We described the experimental details in Section[3.1]and Appendix[A.T]to help
others reproduce the main results.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We provide code of our experiments in the supplemental material.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: All details are provided in Section [3.T]and Appendix [A.T]
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: This paper focuses on full-batch gradient descent, and hence, there is no
randomness during training. Different initializations can cause randomness, but the resulting
training trajectories can be quite different, making it unreasonable to calculate the average
and standard deviation. Therefore, instead of calculating the error bars, we report lots of
plots under different experimental settings to demonstrate the universality of our results.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Compute resources are reported in Appendix
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: All parts conform with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: This paper is foundational research and not tied to particular applications.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no safety risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: In Section[3.T]and Appendix we credited creators or owners of assets, and
also mentioned and respected the licenses.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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