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ABSTRACT

Accurately quantifying objects with text-to-image diffusion models remains chal-
lenging, especially under distribution shifts. Existing methods struggle to maintain
numerical precision across varying object categories, count distributions, and vi-
sual domains. To address this, we propose QuantiShift, a shift-aware prompting
framework that adapts to different shift types without diffusion model retraining.
QuantiShift introduces shift-aware prompt optimization, where distinct prompt
components explicitly tackle number shifts, label shifts, and covariate shifts, ensur-
ing precise object quantification across varying distributions. To further enhance
generalization, we propose consistency-guided any-shift prompting, which en-
forces alignment between textual prompts and generated images by mitigating
inconsistencies caused by distribution shifts. Finally, we develop hierarchical
prompt optimization, a two-stage refinement process that first adapts prompts to
individual shifts and then calibrates them for cross-shift generalization. To evaluate
robustness, we introduce a new benchmark designed to assess object quantification
under diverse shifts. Extensive experiments demonstrate that QuantiShift achieves
state-of-the-art performance, considerably improving accuracy and robustness over
existing methods.

1 INTRODUCTION

Text-to-image generative models have made impressive strides in producing high-quality images from
textual descriptions, e.g., (Paiss et al., 2023; Starr et al., 2013; Dao et al., 2023; Yang et al., 2024;
Chen et al., 2024). However, precisely quantifying objects within these generated images remains a
challenging task (Zafar et al., 2024; Binyamin et al., 2025; Kang et al., 2025). Zafar et al. (2024)
posed the problem of object quantification and introduced a prompt learning approach to address
the problem, laying the foundation for subsequent works. Building on this idea, Sun et al. (2024)
quantifies objects under domain shifts. However, their QUOTA framework primarily focuses on
domain generalization and does not explicitly handle other types of distribution shifts, such as number
shifts and label shifts. These limitations highlight a critical gap in achieving robust, shift-aware object
quantification, particularly for generative models. In this paper, we propose an object quantification
method that is designed to be robust to any shift in prompt distributions.

Any-shift prompting has been introduced by Xiao et al. (2024) as a probabilistic inference framework
to improve generalization across multiple distribution shifts in vision-language models. By explicitly
modeling the relationship between training and test distributions, it constructs hierarchical training
and test prompts to enhance adaptation. However, existing any-shift prompting methods are primarily
designed for classification tasks and have not been explored for object quantification in text-to-image
generation. Inspired by their work, we introduce QuantiShift, the first any-shift object quantification
framework for text-to-image diffusion models. Unlike prior work, QuantiShift explicitly models
shift-aware prompting in the context of generative models, addressing number shifts, label shifts, and
covariate shifts. Any-shift prompting focuses on classification tasks, modeling distribution shifts
through hierarchical prompt structures. In contrast, QuantiShift directly learns shift-aware prompt
embeddings for generative models, enabling precise object quantification without requiring test-time
adaptation.

In this work, we make three key contributions. First, we introduce a shift-aware prompt optimization
framework that explicitly models number, label, and covariate shifts using dedicated prompt tokens.
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(a) Various distribution shifts

a photo of 8 dogs a sketch of 8 dogs

Covariate shift

SDXL SDXL

(b) Generalization over distributions by any-shift prompting
Joint distribution shift

SDXL

a photo of 13 dogs a photo of 8 cats a sketch of 8 dogs a sketch of 8 cats a photo of 4 horses

Test

Various distribution shifts

SDXL

a photo of 8 dogs

Training

a photo of 8 dogs a photo of 8 cats

Label shift

SDXL SDXL

a photo of 8 dogs a photo of 13 dogs

Number shift

SDXL SDXL

Figure 1: Distribution shifts in text-to-image diffusion models. (a) Examples of different shift types, including
number shifts, label shifts, and covariate shifts. (b) Our proposed QuantiShift leverages shift-aware prompting to
jointly address individual distribution shifts and their combinations, considerably enhancing object quantification
robustness.

This structured design disentangles different shift factors, enabling targeted adaptation without retrain-
ing. Second, we propose consistency-guided prompting to enhance robustness by enforcing alignment
between textual prompts and generated images across varying linguistic and visual conditions, thereby
mitigating discrepancies between intended object counts and generated outputs. Third, we present
hierarchical prompt optimization (HPO), a two-stage refinement strategy that first adapts prompts to
individual shifts and then calibrates them for cross-shift generalization. By jointly optimizing prompt
representations at both the local and global levels, HPO consistently improves numerical accuracy
and robustness under unseen distribution shifts. Figure 1 illustrates these distribution shifts and
their impact on text-to-image generation, where conventional models struggle to maintain numerical
accuracy under varying conditions. Our proposed QuantiShift leverages shift-aware prompting to
jointly address individual shifts and their combinations, significantly enhancing robustness in object
quantification across domains. We also introduce a new benchmark specifically designed to evaluate
object quantification under number shifts, label shifts, and covariate shifts, enabling a rigorous and
standardized analysis of robustness and generalization in text-to-image diffusion models.

2 RELATED WORK

Text-to-image generation. Image generation has advanced significantly, evolving from early GAN-
based methods (Goodfellow et al., 2014; Li et al., 2019b; Qiao et al., 2019a;b; Tao et al., 2022; Li et al.,
2019a; Zhang et al., 2018) to diffusion-based models (Ho et al., 2020; Crowson et al., 2022; Ramesh
et al., 2021; Gafni et al., 2022; Jain et al., 2022). Recent text-to-image diffusion models (Ramesh
et al., 2022; Saharia et al., 2022; Höllein et al., 2024; Qu et al., 2024; Jiang et al., 2024; Ding et al.,
2022) have demonstrated impressive image-generation capabilities, enabling high-quality synthesis
from textual prompts. Flow matching models have emerged as an alternative approach to generative
modeling, offering advantages in training stability and sample quality (Lipman et al., 2023; Hu et al.,
2024; Chen & Lipman, 2023). While these methods have shown promise in controllable generation
tasks, precise object quantification remains a challenge. Similar to diffusion models, they struggle
to maintain numerical accuracy, particularly under distribution shifts. Our work addresses this gap
by introducing shift-aware prompting techniques to improve robustness in text-to-image diffusion
models.

Controllable and personalized image generation. Controlling image attributes during generation is
a fundamental challenge. Textual Inversion (Gal et al., 2023) and DreamBooth (Ruiz et al., 2023)
enable personalization by fine-tuning models on new concepts. However, while methods like Textual
Inversion and DreamBooth focus on qualitative personalization, other approaches (Pang et al., 2024;
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Lin et al., 2024) further explore controllable generation but still lack explicit numerical control.
Existing numerical control approaches (Kajić et al., 2024; Yi et al., 2024; Sohn et al., 2023) often rely
on prompt engineering, which may be sensitive to distribution shifts, potentially limiting robustness
in real-world scenarios. Our work introduces shift-aware prompt optimization to achieve precise
object quantification without retraining, extending personalized generation techniques to numerical
control across different visual domains.

Prompt optimization for image consistency. Ensuring consistency between text prompts and
generated images has been explored through various prompt optimization techniques. Methods
like Prompt-to-Prompt (Hertz et al., 2023) and Null-inversion (Mokady et al., 2023) manipulate
attention mechanisms to refine generated content, while Attend-and-Excite (Chefer et al., 2023)
ensures all mentioned objects appear in the output. However, these approaches were not designed for
numerical control and do not explicitly enforce object count accuracy in generated images. Our work
introduces a structured, shift-aware prompting framework with hierarchical prompt optimization that
enables precise object quantification across diverse prompts and visual styles, substantially improving
numerical consistency in generated images.

3 PROBLEM STATEMENT

Accurately quantifying objects in text-to-image diffusion models remains a fundamental challenge,
particularly under distribution shifts where object categories, counts, or visual styles differ from those
seen during training. These shifts often cause models to generate incorrect object counts, limiting
their reliability for applications requiring numerical precision. To systematically address this issue,
we define three key types of distribution shifts that impact object quantification.

Distribution shifts in object quantification. We formalize object quantification shifts using three
primary factors:

• Number shift (N): Variation in numerical counts of objects, requiring models to generalize
to unseen quantities.

• Label shift (O): Differences in object categories, testing the model’s ability to quantify
novel objects.

• Covariate shift (S): Changes in visual styles, assessing robustness to stylistic variations.

Training and evaluation setup. To evaluate model generalization under these shifts, we divide the
dataset into disjoint training and evaluation sets:

Dbase = (Sbase,Nbase,Obase) (1)

Dnew = (Snew,Nnew,Onew) (2)

where Dbase is used for training, and Dnew is reserved for evaluation. We enforce strict separation:

Sbase ∩ Snew = ∅,Nbase ∩Nnew = ∅,Obase ∩ Onew = ∅. (3)

This ensures that models are tested on entirely new conditions without relying on memorization.

Challenges in text-to-image quantification. Unlike classification tasks (Zhou et al., 2022a;b), where
models predict discrete labels, object quantification requires precise numerical consistency between
textual prompts and generated images. However, diffusion models often misinterpret numerical
specifications, leading to incorrect object counts, particularly under distribution shifts. This highlights
the need for explicit shift-aware mechanisms to enhance numerical precision and robustness.

4 METHODS

Text-to-image diffusion models often miscount under distribution shifts in number, category, and style.
We address this with QuantiShift, a prompting framework that improves numerical fidelity and transfer
without retraining the diffusion model. The framework comprises three complementary pieces. First,
shift-aware prompt optimization factorizes control into disentangled tokens for number, class, and
style, enabling targeted handling of number/label/covariate shifts (§4.1). Second, consistency-guided
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(b) Consistency guided any-shift prompting (c)  Hierarchical prompt optimization

A sketch of 8 cats.

Text

Encoder

...

A sketch of 8 different breeds of cats sitting

together. The cats are of various sizes and colors,

including a Siamese, a Maine Coon, a Persian, a

Sphynx, and a British Shorthair.


Text

Encoder

Word Embedding Word Embedding

SDXL SDXL

CLIP-Count CLIP-Count

...

Local adaptation Global calibration

A photo of 8 dogs.

Text

Encoder

...

A photo of 8 different breeds of dogs sitting

together. The dogs are of various sizes and colors,

including a golden retriever, a dachshund, a German

shepherd, a husky, a poodle, and a beagle.


Text

Encoder

Word Embedding Word Embedding

SDXL SDXL

Image

Encoder

CLIP-Count CLIP-Count
Image


Encoder

...

(a) Shift-aware prompt optimization

Word EmbeddingA photo of 4 horses

Text

Encoder

...
SD

XL

C
LIP-C

ount

Figure 2: QuantiShift prompting framework for object quantification under distribution shifts. (a) Shift-
aware prompt optimization: dedicated tokens for number (N ), class (O), and style (S) explicitly encode shift
factors, enabling structured adaptation in diffusion models. (b) Consistency-guided prompting: alignment
between textual descriptions and generated images is enforced (via a frozen CLIP-Count estimator), improving
robustness across domains. (c) Hierarchical Prompt Optimization (HPO): a two-stage refinement that first adapts
prompts to each observed shift (local stage) and then calibrates them for cross-shift generalization (global stage),
without retraining the diffusion model.

prompting regularizes prompts by enforcing paraphrase- and style-invariant text–image alignment,
stabilizing counts across wording and domains (§4.2). Third, Hierarchical Prompt Optimization
(HPO) casts prompt refinement as a two-stage objective—local adaptation followed by global
calibration—to strengthen cross-shift generalization (§4.3). We detail each component below.

4.1 SHIFT-AWARE PROMPT OPTIMIZATION

Our shift-aware prompt optimization approach constructs prompts using structured representations of
object count, category, and style, ensuring adaptability to unseen distributions.

Prompt representation. We formulate a prompt as a structured sequence: P =
⟨A,S, of N CLASS, O⟩, where ⟨A⟩ is a fixed template, ⟨S⟩ ∈ S denotes the style, ⟨N⟩ ∈ N
specifies the object count, and ⟨O⟩ ∈ O represents the object category. To ensure adaptability
across diverse shifts, we introduce a shift-aware token space T, which encapsulates three learnable
shift-specific tokens.

Shift-specific learnable tokens. To systematically handle different distribution shifts, we define T
as: T = {N ,O,S} where:

• Number token (N ): Captures numerical variations to mitigate number shift.
• Class token (O): Encodes object category-specific features to address label shift.
• Style token (S): Embeds domain-specific characteristics to adapt to covariate shift.

While our framework focuses on these three primary shift types, it can be extended to incorporate
additional shifts, such as positional or compositional variations, by introducing corresponding
learnable tokens. This structured token representation allows for explicit modeling of distribution
shifts, improving object quantification robustness in text-to-image diffusion models.

During training, we optimize the prompt embeddings to minimize object quantification error across
seen shifts while ensuring generalization to unseen conditions. Specifically, we sample prompts from
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the training set Dbase: Pi = ⟨A,Sbase
i , of N base

i CLASS, Obase
i ⟩ and use a pre-trained CLIP-Count

model (Jiang et al., 2023) to obtain object count estimates. The objective function for prompt
optimization is defined as:

Lcount =
∑
i

∥fcnt(G(Pi))−Ni∥2, (4)

where G(·) represents the text-to-image diffusion model and fcnt(·) is the counting function. By
minimizing Lcount, we refine prompts to improve object quantification accuracy. As illustrated in
Figure 2 (a), this process is part of our shift-aware prompt optimization framework, where distinct
prompt tokens explicitly model number shifts, label shifts, and covariate shifts.

4.2 CONSISTENCY-GUIDED ANY-SHIFT PROMPTING

While shift-aware prompt optimization enables the model to handle individual distribution shifts,
ensuring robustness across unseen conditions remains a challenge. Standard prompting methods
in text-to-image diffusion models often struggle to maintain numerical accuracy and semantic
consistency under distribution shifts. To address this, we introduce consistency-guided any-shift
prompting, a mechanism that reinforces alignment between textual prompts and generated images,
improving generalization across shifts. By enforcing consistency constraints, our approach enhances
robustness to prompt rewording and shift perturbations, ensuring more stable object quantification.

Consistency regularization. To enforce consistency across different prompt formulations, we
introduce an auxiliary textual variation generated by GPT-4o (OpenAI, 2023): P alt

i = Trans(Pi),
where Trans(·) represents a transformation function that paraphrases the original prompt Pi while
preserving its semantic meaning. Furthermore, P alt

i incorporates the same learnable shift-aware
tokens as the original prompt, including the number, class, and covariate tokens, as shown in Figure 2.
This ensures that both prompt variants share identical shift-specific representations, reinforcing
consistency at both the linguistic and embedding levels.

Given the original prompt Pi and its reworded counterpart P alt
i , we generate corresponding images

using the text-to-image diffusion model:

Ii = G(Pi), Ialt
i = G(P alt

i ). (5)

To ensure alignment between Ii and Ialt
i , we define a contrastive consistency loss:

Lcon = 1− cos(Ii, I
alt
i ), (6)

where cos(·, ·) represents the cosine similarity between image embeddings extracted from a frozen
image encoder. This loss penalizes unintended variations between images generated from semantically
equivalent prompts, reinforcing prompt consistency under distribution shifts.

Consistency-guided any-shift prompting is integrated into our shift-aware prompt optimization
framework. The total training objective combines the count loss from object quantification and the
consistency loss to ensure both numerical precision and shift robustness:

L = Lcount + λconLcon, (7)

where λcon is a weighting coefficient balancing the two objectives. Our consistency-guided any-
shift prompting, shown in Figure 2 (b), enforces alignment between prompts and generated images,
enhancing numerical accuracy and improving generalization to unseen distribution shifts in text-to-
image diffusion models.

4.3 HIERARCHICAL PROMPT OPTIMIZATION

To further improve generalization under unseen distribution shifts, we introduce Hierarchical Prompt
Optimization (HPO), a two-stage (bi-level) objective that refines shift-aware prompt embeddings
across diverse conditions without retraining the text-to-image diffusion model. Conventional prompt
learning optimizes prompts for a fixed training distribution, which limits transfer. HPO explicitly
separates (i) local, shift-specific adaptation from (ii) global, cross-shift calibration, yielding prompts
that remain numerically faithful beyond the training shifts.

Two-stage objective. HPO is formulated as a bi-level optimization with an inner objective for local
adaptation and an outer objective for cross-shift generalization.
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Local adaptation. Given a training distribution Dbase, we adapt the shift-aware tokens to each
observed condition: Pi = ⟨A, Sbase

i , of N base
i CLASS, Obase

i ⟩, and minimize the counting loss

Llocal =
∑
i

∥∥fcnt
(
G(Pi)

)
−Ni

∥∥2. (8)

Global calibration. To promote robustness under prompt rewording and unseen shifts, we evaluate
the inner-updated tokens on an auxiliary textual variation P alt

i and minimize

Lglobal =
∑
i

∥∥fcnt
(
G(P alt

i )
)
−Ni

∥∥2. (9)

Bi-level optimization. Let T denote all learnable prompt embeddings (number/class/style tokens).
HPO solves

min
T

Lglobal(T
′) s.t. T′ = T − α∇TLlocal(T), (10)

where α is the inner update step size. This hierarchical objective encourages inner-stage improvements
that translate into stronger outer-stage generalization across shifts.

As illustrated in Fig. 2(c), HPO first adapts the shift-aware tokens to the observed condition (local
stage) and then calibrates them for cross-shift generalization (global stage), leading to more accurate
and robust object quantification without modifying the diffusion or text encoders.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Benchmark. We introduce QSBench, a new benchmark specifically designed to evaluate the robust-
ness of text-to-image diffusion models under number shift, label shift, and covariate shift. Unlike
existing datasets that primarily assess image quality and text-image alignment, QSBench focuses on
measuring how well a model adheres to numerical, categorical, and stylistic constraints specified in
the prompt. QSBench builds upon QUANT-bench (Sun et al., 2024) but extends it beyond covariate
shifts to comprehensively evaluate object quantification across multiple distribution shifts. While
QUANT-bench primarily addresses domain generalization and is limited to 19 categories due to its
reliance on YOLO-based object detection, QSBench introduces a broader evaluation setting with 147
object categories and explicitly models number shifts, label shifts, and covariate shifts. QSBench
is derived from FSC-147 (Ranjan et al., 2021) and systematically evaluates object quantification
across disjoint training and evaluation splits. The base subset consists of 74 object categories and
12 numerical values, while the new subset contains 73 distinct categories and 13 numerical values,
ensuring no overlap between training and evaluation. For covariate shift assessment, we adopt a
leave-one-out setting, where the model is trained on three visual styles (Photo, Painting, Cartoon,
Sketch) and evaluated on the remaining unseen style. This structured evaluation allows for a rigorous
assessment of model robustness across diverse distribution shifts.

Metrics. To evaluate quantification accuracy, we use Mean Absolute Error (MAE) and Root Mean
Square Error (RMSE) based on an evaluation variant of CLIP-Count (Jiang et al., 2023), which
estimates object counts from multiple localized patches. MAE measures the average absolute
deviation from the target count, while RMSE penalizes larger errors through squared deviations.
Since the model is trained on the Base subset and evaluated on both Base and New subsets, we
compute the harmonic mean (H) of MAE and RMSE across Base and New to comprehensively assess
both performance and generalization.

Implementation details. We conducted training and evaluation on a single NVIDIA L20 GPU with
48GB of memory. Each experiment consists of 5 epochs, with 2,664 iterations per epoch, totaling
13,320 iterations per experiment. Training each iteration takes approximately 0.1 minutes, leading
to a total training time of around 22.2 hours. For image quality, we find a single denoising step is
sufficient. The optimized quantification token can be reused without additional optimization time.
We set the learning rate at 0.01 for optimization, and the CLIP-Count (Jiang et al., 2023) scaling
hyperparameter λscale to 0.6 for a static scale. Additional details on datasets and experimental settings
can be found in the supplementary material. We will make our code available.
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w/o consistency

Cartoon Painting Sketch Photo

w/ consistency

15 boats 16 biscuits 11 milk cartons 3 flamingos

20 815 2

15 14 11 3

15 16 11 3

Base New

    w/ HPO (Full)

Figure 3: Effect of consistency-guided prompting and Hierarchical Prompt Optimization (HPO). Enforcing
text–image consistency improves numerical accuracy across styles but can still fail on harder cases (red frames
indicate incorrect counts; green frames indicate correct counts). Adding HPO, a two-stage refinement that first
adapts locally and then calibrates globally, further strengthens cross-shift generalization and yields more precise
counts on both Base and New domains.

5.2 RESULTS

Effect of shift-aware tokens. To analyze the contribution of each shift-aware token, we conduct an
ablation study by selectively removing each token while keeping the other components unchanged.
Table 1 reports the results on Base, New, and Harmonic Mean (H) subsets using MAE and RMSE as
evaluation metrics, while Figure 7 (See Appendix) provides a qualitative comparison of generated
images under different token configurations. The results indicate that incorporating any individual
shift-aware token improves performance over the baseline SDXL model. Specifically, the number
token helps control object count variations, the class token aids in category-specific adaptations, and
the covariate token enhances robustness to style variations. However, relying on a single token leads
to suboptimal performance under certain distribution shifts. As shown in Figure 7, using only a
single token often results in inaccurate object counts, while the combination of all tokens ensures
better numerical precision and consistency across different domains. The full model, incorporating
all three tokens, achieves the lowest error across all settings, demonstrating the importance of jointly

N O S Base New H

MAE ↓ RMSE ↓ MAE ↓ RMSE ↓ MAE ↓ RMSE ↓
17.83 31.99 17.52 43.80 17.32 36.07

✓ 12.79 21.95 15.58 42.29 13.76 28.06
✓ ✓ 15.23 27.92 16.53 44.63 15.75 34.09
✓ ✓ 10.59 18.90 17.90 54.79 13.18 27.86
✓ ✓ ✓ 10.27 19.03 13.95 35.93 12.53 24.55

Table 1: Impact of different shift-aware tokens.

optimizing shift-aware tokens for effec-
tive generalization. These findings validate
our shift-aware prompt optimization strat-
egy, showing that a structured representa-
tion of shift factors significantly enhances
object quantification accuracy in text-to-
image diffusion models.

Effect of consistency-guided any-shift prompting. We analyze the impact of consistency regu-
larization by comparing models with and without the consistency constraint in Table 2. Enforcing
consistency improves MAE and RMSE across all subsets, suggesting enhanced stability in object
quantification. The results indicate that consistency constraints help maintain numerical precision
under shift conditions, reducing discrepancies between intended and generated outputs, as illustrated

Methods Base New H

MAE ↓ RMSE ↓ MAE ↓ RMSE ↓ MAE ↓ RMSE ↓
Shift-aware tokens 11.38 19.03 13.95 35.93 12.53 24.55
w/ consistency 10.58 15.89 14.13 35.86 12.05 21.81
w/ HPO (full) 7.30 9.36 7.29 9.03 7.26 9.12

Table 2: Ablation of consistency-guided prompting and hierar-
chical prompt optimization.

in Figure 3. Figure 3 further il-
lustrates the benefits of consistency-
guided any-shift prompting. The left
column shows images generated using
simple prompts, where object counts
are often inaccurate due to ambiguity
in prompt interpretation. In contrast,

7
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2 bottles and 25 pills 7 peaches and 3 cups 3 oranges and 2 kiwis 10 apples and 8 eggs

QuantiShift

CartoonSketch Photo Photo

SDXL

Figure 4: Multi-class object quantification results. Orange labels indicate that the domain, number, and object
class originate from the Base set, while blue labels indicate they come from the New set. QuantiShift accurately
quantifies multiple object categories while ensuring numerical precision, outperforming SDXL (Podell et al.,
2024) in handling diverse object compositions across different domains.

A photo of 3 
6-foot-tall men

A race of 7 
100-meter sprinters

QuantiShift

A photo of 4 
90-year-olds

A lineup of 9
cars from 1965

SDXL

Figure 5: Effect of number token on explicit and implicit numerical attributes. Our method maintains
accurate explicit counts while preserving implicit numerical attributes, demonstrating that the learned number
token does not interfere with implicit numbers.

Metrics Methods Photo Painting Cartoon Sketch Average

Base New H Base New H Base New H Base New H Base New H

MAE↓
SDXL (Podell et al., 2024) 15.77 19.29 17.35 18.32 17.35 17.82 17.52 21.71 19.39 19.69 11.74 14.71 17.82 17.52 17.32
IoCo (Zafar et al., 2024) 11.98 16.23 13.79 13.13 15.24 14.11 11.56 19.72 14.57 14.48 11.11 12.57 12.79 15.58 13.76
QUOTA (Sun et al., 2024) 10.21 14.25 11.90 11.93 12.86 12.38 9.75 14.21 11.56 10.73 9.21 9.91 10.66 12.63 11.44
QuantiShift 7.72 8.79 8.22 6.99 7.10 7.04 6.75 7.02 6.88 7.71 6.24 6.89 7.30 7.29 7.26

RMSE↓
SDXL (Podell et al., 2024) 27.00 39.52 32.08 33.24 47.86 39.23 32.56 60.73 42.40 35.14 27.08 30.59 31.99 43.80 36.07
IoCo (Zafar et al., 2024) 21.13 35.23 26.41 21.92 44.77 29.43 20.36 61.88 30.64 24.40 27.28 25.76 21.95 42.29 28.06
QUOTA (Sun et al., 2024) 18.54 23.71 20.81 18.25 27.56 21.96 16.32 40.32 23.24 20.21 21.25 20.72 18.33 28.21 21.68
QuantiShift 9.79 10.63 10.19 11.36 8.78 9.39 8.45 8.64 8.55 10.41 7.43 8.67 9.36 9.03 9.12

Table 3: Comparison with state-of-the-art for object quantification across QuantShift four visual styles:
Photo, Painting, Cartoon, and Sketch. QuantiShift achieves the lowest errors across all domains, demonstrating
superior robustness and generalization.

the right column demonstrates the effect of consistency-enforced descriptions, which lead to more
precise object quantification. The structured descriptions guide the model to generate images with the
correct number of objects by reinforcing alignment between textual cues and visual representations.
This validates that enforcing consistency during prompting enhances robustness, ensuring more
reliable numerical adherence across different styles and object categories.

Effect of hierarchical prompt optimization. To further improve generalization, we incorporate hier-
archical prompt optimization (HPO), which refines the shift-aware tokens across diverse conditions.
Table 2 shows that HPO substantially reduces both MAE and RMSE compared to the consistency-only
variant, with gains consistent on Base, New, and their harmonic mean. Figure 3 illustrates this trend:
without consistency, the model often miscounts in the New domain (e.g., generating “2 flamingos”
instead of “3”); adding consistency improves accuracy but still fails on harder cases. With HPO,
local adaptation followed by global calibration yields the most reliable counts, enhancing numerical
precision and robustness under diverse shifts.

Multi-class object quantification analysis. Figure 4 illustrates the effectiveness of QuantiShift in
accurately quantifying multiple object categories across different domains, compared to the SDXL
baseline. The results highlight two key observations. First, QuantiShift successfully maintains
numerical precision when generating multi-class objects, whereas SDXL often produces incorrect
object counts, as indicated by the red bounding boxes. Second, QuantiShift demonstrates the
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Cartoon Painting Sketch Photo

 

12 bottles 24 hot air ballons 11 peaches 25 flowers 11 chairs 16 cassettes 8 crab cakes 23 bottle caps

QuantiShift

SDXL

IoCo

QUOTA

Base New

Figure 6: Qualitative comparison of object quantification performance across different visual styles. The
red bounding boxes highlight failure cases where models generate incorrect object counts. QuantiShift produces
more accurate object quantities across diverse domains, demonstrating improved generalization to unseen shifts.
generalization across both base and new distributions, as evidenced by its ability to correctly generate
object compositions with varying domain, number, and class configurations. These results validate
the robustness of our shift-aware prompt optimization strategy in handling complex multi-object
generation scenarios.

Handling explicit and implicit numerical attributes. Figure 5 evaluates whether the learned
number token correctly handles explicit numerical values without interfering with implicit numerical
attributes. Each prompt contains two numbers: one explicitly defining the quantity of objects (e.g.,
“4 people”, “9 cars”) and another implicitly describing an attribute (e.g., “90-year-olds”, “1965
cars”). While QuantiShift effectively preserves both explicit and implicit numerical references in
most cases, some challenges remain. For example, in the third case, where the prompt specifies “A
photo of 4 90-year-olds”, the model generates a larger group of elderly individuals instead of the
exact count. This limitation arises from the entanglement between explicit count constraints and
implicit demographic attributes in large-scale vision-language models. Future work will explore
refining prompt embeddings to better disentangle numerical constraints from contextual attributes,
ensuring more precise object quantification.

Comparison with state-of-the-art. We compare our proposed QuantiShift with three baseline
models, SDXL (Podell et al., 2024), IoCo (Zafar et al., 2024) and QUOTA (Sun et al., 2024), on
object quantification across different visual styles in QSBench (Table 3). Our method consistently
achieves the lowest errors across all domains, significantly outperforming prior works. These
results highlight the effectiveness of our shift-aware prompt optimization and hierarchical prompt
optimization, which enable more precise and generalizable object quantification in text-to-image
diffusion models. Figure 6 provides qualitative comparisons of object quantification performance
across different styles. The red bounding boxes indicate failure cases where SDXL, IoCo, and
QUOTA struggle to maintain accurate object counts, particularly in Painting and Cartoon styles. In
contrast, QuantiShift consistently produces object counts that align more closely with the prompts,
reducing errors across both Base and New domains. This demonstrates its ability to generalize to
unseen shift conditions while maintaining high numerical fidelity.

6 CONCLUSION

We introduced QuantiShift, a shift-aware prompting framework that enhances object quantification
in text-to-image diffusion models by addressing number shift, label shift, and covariate shift. Our
approach combines shift-aware prompt optimization, consistency-guided adaptation, and hierarchical
prompt optimization to improve numerical accuracy and generalization. To evaluate robustness under
diverse shifts, we proposed QSBench, a benchmark specifically designed to assess object quantifi-
cation performance. Experimental results demonstrated that QuantiShift significantly outperforms
existing baselines.

9
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Ethics statement This work studies object quantification in text-to-image diffusion models under
distribution shifts. We do not collect or annotate any new human data. All components rely on
publicly available resources under their respective licenses: a pretrained diffusion model (e.g.,
SDXL), a frozen counting estimator (CLIP-Count), and category/number/style specifications derived
from public datasets (e.g., FSC-147 categories/styles) to define prompts and splits. Images used for
optimization are synthetically generated; no personally identifiable information is processed. We
employ GPT-based paraphrasing only to reword prompts without adding demographic or sensitive
attributes. Our method targets numerical robustness (accurate counts) and does not infer or exploit
identity-related attributes. Potential misuse includes generating misleading or restricted imagery (e.g.,
privacy-sensitive scenes or copyrighted content) with precise object counts. We discourage such
practices and recommend deployments follow data-governance policies, model and dataset licenses,
and content-safety filters (e.g., keyword blocking for sensitive categories). We report per-domain
results to expose failure modes (e.g., style or category imbalance), and we constrain compute (single
L20 GPU, §5) to keep the environmental footprint modest.

Reproducibility statement All datasets, pretrained models, and baselines are publicly accessible.
We fully specify shift-aware prompt optimization, consistency-guided prompting, and Hierarchical
Prompt Optimization (HPO) in §4.1, §4.2, and §4.3, including losses, update rules, and evaluation
with paraphrased prompts. Experimental settings—splits (Base/New), styles, metrics (MAE/RMSE
and harmonic means), hardware, and hyperparameters—are documented in §5. We provide ablations
isolating tokens, consistency regularization, and HPO to facilitate replication. We will release
source code, environment files with pinned versions, training/evaluation scripts, random seeds, and
configuration files for all tables and figures. The release includes: (i) scripts to regenerate QSBench
splits and prompts (categories, counts, and styles), (ii) precomputed paraphrases used for consistency
experiments, (iii) reference prompt-token initializations and checkpoints, and (iv) instructions to
reproduce every result from a fresh environment on a single-GPU machine.

REFERENCES

Lital Binyamin, Yoad Tewel, Hilit Segev, Eran Hirsch, Royi Rassin, and Gal Chechik. Make it count:
Text-to-image generation with an accurate number of objects. In CVPR, pp. 13242–13251, 2025.

Hila Chefer, Yuval Alaluf, Yael Vinker, Lior Wolf, and Daniel Cohen-Or. Attend-and-excite:
Attention-based semantic guidance for text-to-image diffusion models. TOG, 42(4):1–10, 2023.

Anthony Chen, Jianjin Xu, Wenzhao Zheng, Gaole Dai, Yida Wang, Renrui Zhang, Haofan Wang,
and Shanghang Zhang. Training-free regional prompting for diffusion transformers. arXiv preprint
arXiv:2411.02395, 2024.

Ricky TQ Chen and Yaron Lipman. Riemannian flow matching on general geometries. arXiv e-prints,
pp. arXiv–2302, 2023.

Katherine Crowson, Stella Biderman, Daniel Kornis, Dashiell Stander, Eric Hallahan, Louis Castri-
cato, and Edward Raff. VQGAN-CLIP: Open domain image generation and editing with natural
language guidance. In ECCV, pp. 88–105, 2022.

Quan Dao, Hao Phung, Binh Nguyen, and Anh Tran. Flow matching in latent space. arXiv preprint
arXiv:2307.08698, 2023.

Ming Ding, Wendi Zheng, Wenyi Hong, and Jie Tang. CogView2: Faster and better text-to-image
generation via hierarchical transformers. In NeurIPS, volume 35, pp. 16890–16902, 2022.

Oran Gafni, Adam Polyak, Oron Ashual, Shelly Sheynin, Devi Parikh, and Yaniv Taigman. Make-A-
Scene: Scene-based text-to-image generation with human priors. In ECCV, pp. 89–106, 2022.

Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit Haim Bermano, Gal Chechik, and
Daniel Cohen-or. An image is worth one word: Personalizing text-to-image generation using
textual inversion. In ICLR, 2023.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. NeurIPS, 27, 2014.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel Cohen-or. Prompt-
to-prompt image editing with cross-attention control. In ICLR, 2023.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In NeurIPS,
volume 33, pp. 6840–6851, 2020.
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BASE NEW

Cartoon Painting Sketch Photo

12 lipsticks 7 crows 11 oyster shells 17 kitchen towels

6 1722 19

13 8 11 18

16 6 14 14

12 7 11 17

❌ ❌

❌

❌

Shift-aware tokens

Figure 7: Effect of different shift-aware tokens on object quantification. We evaluate the impact of individual
shift-aware tokens: N (number token), O (class token), and S (style token). The results show that using all
tokens leads to the most accurate object counts across both base and new distributions, while individual tokens
contribute to partial improvements depending on the shift type.

A painting of exactly 11 croissants, placed evenly on a plate,

each with a golden brown color and distinct flaky texture, no

overlaps, all clearly visible.

A painting of 11 croissants

A sketch of exactly 7 cupcakes, each with colorful frosting

and unique decorations, placed evenly on a plate, no

overlaps, all clearly visible.

A sketch of 7 cupcakes
A cartoon of exactly 14 individual shoes, each side-viewed and

arranged playfully without overlapping, ensuring clear visibility.
A cartoon of 14 shoes

Figure 8: Effect of detailed descriptions on numerical accuracy. Simple prompts often produce incorrect
object counts, while structured descriptions improve adherence to specified quantities by explicitly encoding
numerical constraints and spatial arrangements.

A LLM USAGE STATEMENT

We used a large language model (ChatGPT) solely for grammar checking and language polishing
of the manuscript text. It did not contribute to research ideation, method design, experiments, data
analysis, or result generation; all technical content was authored and verified by the authors.
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B DETAILED EXPERIMENTAL SETUP

QSBench: dataset splitting strategy. To rigorously evaluate the generalization ability of text-
to-image diffusion models under number, label, and covariate shifts, we introduce QSBench, a
benchmark explicitly designed with controlled splits. To create balanced splits, we first evaluated
the generation difficulty of the SDXL model (Podell et al., 2024) across all 147 FSC-147 categories
and numerical counts ranging from 1 to 25, totaling 3,675 tasks. For each task, we computed the
Mean Absolute Error (MAE) between the generated and requested object counts. We then applied
clustering based on these MAE scores along category and numerical dimensions separately, creating
two subsets—Base and New—with similar cumulative MAE scores to ensure comparable difficulty
levels. The resulting Base set contains 74 object categories and 12 numerical levels, while the New
set comprises the remaining 73 categories and 13 numerical levels. Table 4 provides detailed category
and quantity breakdowns for each subset.

Covariate shift evaluation. To further evaluate generalization across visual styles, we consider four
distinct styles: Photo, Painting, Cartoon, Sketch. Following a leave-one-out protocol, we perform
four separate experiments, each time training on three styles (designated as Base) and evaluating on
the remaining unseen style (New). Performance is assessed using MAE and RMSE metrics, and we
report the harmonic mean to balance performance across seen and unseen styles. Finally, we average
performance across all four scenarios to comprehensively measure the generalization capability of
QuantiShift.

Base Set New Set
Categories m&m pieces, geese, screws, sheep, cereals,

coffee beans, horses, legos, red beans, pills,
beads, bees, cashew nuts, grapes, mini blinds,
chairs, matches, goats, birds, markers, cranes,
fishes, naan bread, shoes, straws, cartridges,
boxes, peppers, boats, caps, crows, stapler
pins, cassettes, kidney beans, cans, prawn
crackers, alcohol bottles, oranges, bottles,
oyster shells, sticky notes, books, chopstick,
elephants, lighters, finger foods, windows,
keyboard keys, ice cream, spring rolls, cala-
mari rings, skis, stairs, oysters, shallots, hot
air balloons, jeans, croissants, people, in-
stant noodles, cupcakes, rice bags, biscuits,
watches, peaches, flowers, lipstick, meat
skewers, baguette rolls, toilet paper rolls, pota-
toes, bread rolls, milk cartons, green peas

mosaic tiles, flamingos, candy pieces, buf-
faloes, stamps, goldfish snack, skateboard,
cars, polka dot tiles, roof tiles, nuts, pi-
geons, pearls, ants, chewing gum pieces,
crayons, seagulls, bricks, cows, polka dots,
sea shells, zebras, swans, pencils, pens, water-
melon, bottle caps, bananas, marbles, camels,
gemstones, candles, supermarket shelf, cot-
ton balls, tree logs, potato chips, coins,
sunglasses, balls, cement bags, crab cakes,
sauce bottles, clams, jade stones, tomatoes,
nails, macarons, flower pots, deers, bullets,
sausages, kiwis, fresh cut, spoon, penguins,
cups, carrom board pieces, onion rings, go
game, birthday candles, donuts tray, nail
polish, strawberries, plates, chicken wings,
bowls, kitchen towels, buns, shirts, cupcake
tray, comic books, apples, eggs

Numbers 1, 2, 7, 11, 12, 14, 15, 16, 20, 22, 24, 25 3, 4, 5, 6, 8, 9, 10, 13, 17, 18, 19, 21, 23

Table 4: QSBench category and quantity splits for Base and New sets. The Base set and New set contain
non-overlapping categories and quantities while maintaining comparable cumulative MAE scores.

B.1 DESCRIPTION GENERATION

To enhance the alignment between text prompts and generated images, we optimize the original
prompt structure ⟨A,S, of N CLASS, O⟩ using GPT-4o. The goal is to ensure that the generated
images accurately reflect the specified quantity (N) and category (O) while maintaining clarity,
correctness, and consistent arrangement. We employ the following instruction for GPT-4o (OpenAI,
2023) to generate structured, optimized descriptions:

Prompt to GPT-4o:

I want to generate optimized Prompts starting from a template: ’A S of N O’.
The objective is to ensure the generated images accurately reflect the specified
quantity (N) and category (O), with a focus on clarity, correctness, and consistent
arrangement. Each O should be well-described in terms of appearance and
arrangement, avoiding overlaps, semantic ambiguity, or inclusion of unrelated
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objects or complex backgrounds. The range for N is from 1 to 25, and S can be one
of four options: ’photo’, ’painting’, ’sketch’, or ’cartoon’. For each O, create an
optimized Prompt Bank of 10 entries that describe the objects clearly and guide
their spatial arrangement to support accurate generation.

For each category, we construct a description template bank consisting of 10 entries. During
generation, a description is randomly sampled from the template bank, with placeholders replaced to
match the required style (S) and quantity (N).

Example category-specific description templates:

• Flowers:
– A S of exactly N flowers, each with a different color,
arranged symmetrically in a vase, no overlaps, all
clearly visible.

– A S showing N flowers, each with distinct colors, neatly
arranged in a row on a flat surface, no overlaps, all
visible.

– A S of N flowers, each with unique colors and types,
placed evenly on a flat surface, no overlaps, all
visible.

– A S showing exactly N flowers, each with vibrant petals
and different colors, arranged symmetrically, no
overlaps, all visible.,

– A S of N flowers, placed symmetrically on a flat surface,
each with a unique color, no overlaps, all visible.

• Cupcakes:
– A S of exactly N cupcakes, each with colorful frosting
and unique decorations, placed evenly on a plate, no
overlaps, all clearly visible.

– A S showing N cupcakes with bright, colorful frosting
and sprinkles, arranged symmetrically on a flat surface,
no overlaps, all visible.

– A S of N cupcakes, each with a different frosting design
and color, placed neatly in a row, no overlaps, all
visible.

– A S showing exactly N cupcakes with distinct frosting
designs and colors, arranged symmetrically on a plate,
no overlaps, all visible.

– A S of N cupcakes, placed evenly on a plate, each with
unique frosting designs and decorations, no overlaps,
all visible.

By using GPT-4o to refine the prompts, QSBench ensures that the generated images align more accu-
rately with their intended attributes, improving consistency in object count, style, and arrangement.

B.2 TRAINING DETAILS

Each experiment consists of 5 epochs, with each epoch comprising 2,664 iterations, determined by
the total number of category-quantity-style combinations in the Base set (74 × 12 × 3). This results in
a total of 13,320 iterations per experiment.

To prevent overfitting and improve generalization, we employ an independent random sampling
strategy for each iteration. Rather than iterating over all possible combinations in a fixed order, our
approach ensures that each training instance is drawn stochastically, introducing variability in the
data and making the model more robust to unseen samples. It is important to note that this random
sampling strategy is applied only during the training phase. In the evaluation phase, both Base and
New sets are tested exhaustively, ensuring full coverage of all category-quantity-style combinations.
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Photo Painting Sketch Cartoon

2 elephants 11 biscuits 1 people 12 watches 1 goats 7 beads 9 birthday candles 10 flower pots

QuantiShift

Cartoon Photo Sketch Painting

11 ice cream 22 flowers 16 cans 11 croissants 12 cupcakes 14 people 9 onion rings 18 macarons

QuantiShift

Cartoon Painting Photo Sketch

7 alcohol bottles 7 goats 2 crows 16 birds 11 stairs 22 flowers 4 camels 8 nuts

QuantiShift

(a) Painting as the unseen style.

(b) Cartoon as the unseen style.

(c) Sketch as the unseen style.

SDXL

SDXL

SDXL

Base New

Base New

Base New

Figure 9: Qualitative comparison of object quantification performance across different visual styles.
We compare the generated images from SDXL and QuantiShift when generalizing to unseen visual styles:
Painting, Cartoon, and Sketch. The red bounding boxes highlight failure cases where SDXL generates incorrect
object counts. Our approach, QuantiShift, demonstrates improved generalization and more accurate quantity
preservation across diverse styles.

Specifically, the Base set evaluation consists of 74 × 12 × 3 = 2,664 test cases, while the New set
evaluation includes 73 × 13 = 949 test cases. This comprehensive testing approach ensures that model
performance is assessed fairly across all possible conditions.

Each training iteration takes approximately 0.1 minutes, leading to an estimated total training
duration of around 22.2 hours per experiment. The exact time may vary depending on the styles
present in the Base set. Compared to IoCo (Zafar et al., 2024), which trains separate models for
each category-quantity-style combination—requiring approximately 88.8 hours to complete similar
training tasks—our method is significantly more efficient while maintaining model adaptability.

We use the AdamW optimizer with a learning rate of 0.01 to ensure stable convergence throughout
training, balancing effective learning dynamics and preventing excessive parameter updates.

C MORE RESULTS

Qualitative Analysis To further demonstrate the effectiveness of QuantiShift in handling object
quantification across different visual styles, we conduct additional qualitative comparisons where
Painting, Cartoon, and Sketch are treated as unseen styles. These comparisons focus on evaluating the
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Figure 10: Analysis of object count difficulty across domains. We visualize the relationship between object
quantity and MAE for the Base and New subsets under four distinct styles (Photo, Painting, Cartoon, Sketch).
The results show that quantifying objects accurately becomes increasingly challenging for both SDXL and our
method as the object quantity increases. However, QuantiShift consistently maintains significantly lower MAE
across all numerical ranges, especially in challenging mid-to-high quantity scenarios, demonstrating robust
handling of numerical variations compared to SDXL.

object quantity accuracy and overall image quality of QuantiShift against SDXL. Figure 9 presents
visual results across these unseen styles. As highlighted by the red bounding boxes, SDXL frequently
fails to maintain the correct object count, particularly when the required quantity is large. In contrast,
QuantiShift consistently produces images with more accurate object quantities while preserving
visual quality and diversity. Interestingly, we observe that SDXL can accurately generate images with
smaller object quantities. For example, in Figure 9 (b), cases such as “A photo of 2 elephants,” “A
painting of 1 person,” and “A sketch of 1 goat” exhibit correct object counts. However, as the specified
number increases, the deviation becomes more pronounced, further emphasizing the advantage of
QuantiShift in handling complex quantity control. In the following section, we provide a quantitative
analysis using line plots to measure the MAE across different object quantities in each experiment.

Analysis of object quantification difficulty across quantities. Figure 10 analyzes how the difficulty
of object quantification varies with the specified quantity of objects. We observe a clear trend: as the
number of objects increases, our method, the SDXL baseline, and IoCo (Zafar et al., 2024) all face
higher quantification errors, reflecting the intrinsic difficulty of counting more objects in complex
visual scenes. Despite this, QuantiShift consistently achieves lower MAE values compared to SDXL
and IoCo, particularly for mid-range (8-15) and high-range (16-25) quantities. This highlights the
effectiveness of our shift-aware and consistency-guided prompting strategies, which significantly
improve numerical accuracy by mitigating ambiguities associated with higher counts. These findings
confirm that our method enhances robustness and reliability in object quantification, particularly in
scenarios involving higher object quantities that typically pose substantial challenges.
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