
DeeR-VLA: Dynamic Inference of Multimodal
Large Language Models for Efficient Robot Execution

Yang Yue∗ 1 Yulin Wang∗ 1 Bingyi Kang2 Yizeng Han1 Shenzhi Wang1

Shiji Song1 Jiashi Feng2 Gao Huang† 1

1 Department of Automation, BNRist, Tsinghua University 2 ByteDance
{le-y22, wang-yl19}@mails.tsinghua.edu.cn {gaohuang}@tsinghua.edu.cn

Abstract

Multimodal Large Language Models (MLLMs) have demonstrated remarkable
comprehension and reasoning capabilities with complex language and visual data.
These advances have spurred the vision of establishing a generalist robotic MLLM
proficient in understanding complex human instructions and accomplishing various
embodied tasks. However, developing MLLMs for real-world robots is challenging
due to the typically limited computation and memory capacities available on robotic
platforms. In contrast, the inference of MLLMs involves storing billions of pa-
rameters and performing tremendous computation, imposing significant hardware
demands. In our paper, we seek to address this challenge by leveraging an intrigu-
ing observation: relatively easier situations make up the bulk of the procedure of
controlling robots to fulfill diverse tasks, and they generally require far smaller mod-
els to obtain the correct robotic actions. Motivated by this observation, we propose
a Dynamic Early-Exit Framework for Robotic Vision-Language-Action Model
(DeeR-VLA, or simply DeeR) that automatically adjusts the size of the activated
MLLM based on each situation at hand. The approach leverages a multi-exit archi-
tecture in MLLMs, which allows the model to terminate processing once a proper
size of the model has been activated for a specific situation, thus avoiding further
redundant computation. Additionally, we develop novel algorithms that establish
early-termination criteria for DeeR, conditioned on predefined demands such as av-
erage computational cost (i.e., power consumption), as well as peak computational
consumption (i.e., latency) and GPU memory usage. These enhancements ensure
that DeeR operates efficiently under varying resource constraints while maintaining
competitive performance. Moreover, we design a tailored training method for
integrating temporal information on top of such multi-exit architectures to pre-
dict actions reasonably. On the CALVIN robot manipulation benchmark, DeeR
demonstrates significant reductions in computational costs of LLM by 5.2-6.5x
and GPU memory of LLM by 2-6x without compromising performance. Code and
checkpoints are available at https://github.com/yueyang130/DeeR-VLA.

1 Introduction
The recent astonishing progress in multimodal large language models (MLLMs) has unveiled their
remarkable potential of extracting, aligning, and integrating the representations from complicated
language and visual data [1, 2, 3, 4]. These advances have spurred the vision of a generalist robot, i.e.,
an embodied agent equipped with vision-language comprehension and problem-solving capabilities,

∗Equal contribution. †Corresponding author.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/yueyang130/DeeR-VLA

proficient in interacting with humans and the physical world to flexibly execute complex manipulation
tasks [5, 6]. An encouraging preliminary work, RT-2 [7, 8], has demonstrated the feasibility of
adopting MLLMs to control robots in end-to-end. This not only yields performant robotic policies,
but also exhibits some emergent abilities obtained from large models, such as understanding novel
commands, generalizing to objects never seen before, and reasoning.

Despite these favorable findings, the high demands of MLLMs on hardware are usually an important
bottleneck that inhibits the establishment of generalist robots with advanced MLLMs. Typically,
robotic applications are based on resource-hungry platforms with limited computational capability,
memory space, and battery capacity, yet usually necessitate acting in real-time and performing
low-latency interactions with humans or the physical environments. However, every time MLLMs
are activated to obtain a robotic action involves utilizing billions of parameters to accomplish
a computationally intensive inference process. Such inefficiencies may lead to considerable GPU
memory requirements, tremendous power consumption, as well as nontrivial time delays in controlling
robots. These weaknesses make it challenging to deploy MLLMs on real embodied robotic systems.

To alleviate this problem, we propose an approach based on dynamic neural networks. Our work
is inspired by an intriguing observation: in the procedure of controlling a robot to fulfill various
tasks, relatively ‘easier’ circumstances make up the bulk of all the situations confronted by the robot.
When encountered with these ‘easier’ situations, an embodied agent can actually acquire proper
robotic actions with a much smaller model compared to the full MLLMs. Or more precisely, only
the remaining small number of ‘more difficult’ circumstances necessitate the full capacity of large
MLLMs. This phenomenon can be demonstrated using the representative example in Table 1, where
we train RoboFlamingo [9] with varying model sizes, and report the FLOPs and task successful rate
in the Calvin Long-Horizon Multi-Task Language Control (LH-MTLC) challenge [10]. Adopting the
officially recommended 24-layer Flamingo only correctly finishes 3.2% (78.9% v.s. 75.7%) more
tasks compared to using 6 layers, but it increases the computational cost by 4x. In other words,
computational resources are wasted on activating larger models in many easy circumstances for which
smaller models are sufficient.

Table 1: Computation cost v.s. task successful
rate1(RoboFlamingo++) on CALVIN LH-MTLC
chanllenge D→D. Notably, we mainly focus on
the core component, LLM, of the MLLM, which
comprises the majority of parameters. We vary
the size of the LLM to examine its impact. For
a focused comparison, we report the FLOPs (and
GPU memory usage) of the LLM in our paper,
unless otherwise specified.

LLM layers 24 12 6

GFLOPs/action (LLM) 31.2 15.6 7.8
Task success rate % 78.9 78.0 75.7

Motivated by this observation, we propose a Dy-
namic Early-Exit for Robotic MLLM (DeeR) frame-
work, seeking to automatically configure the size of
MLLMs conditioned on each situation confronted
by an embodied agent. Specifically, we introduce
a MLLM architecture featuring multiple intermedi-
ate exits, with which a correct robotic action can
be immediately obtained once a proper size of the
model has been activated, eliminating further redun-
dant computation. Additionally, we develop novel
algorithms that are able to establish early-termination
criteria for DeeR conditioned on arbitrarily specified
demands of average computational cost (i.e., power
consumption), and peak computational cost (i.e., latency) or GPU memory overhead. At inference,
DeeR can adaptively activate smaller models for less complex situations and larger models for more
challenging cases. Consequently, computation is unevenly allocated among situations, yielding a con-
siderable improvement in efficiency. Besides, the computational cost of DeeR can be adjusted online
by simply modifying the termination criterion on top of a fixed main model, making it appealing in
flexibility. Moreover, we design a tailored training method for DeeR, enabling integrating temporal
information on top of such multi-exit architectures to control robots reasonably.

The performance of DeeR is evaluated on 3 CALVIN LH-MTLC challenges with RoboFlamingo [9].
Extensive robot experiments show that DeeR reduces the LLM computational cost by 5.2-6.5x
without sacrificing performance. Surprisingly, even when considering GPU memory limitations in the
termination criterion, DeeR remains competitive with other SOTA methods while only utilizing 2GB
memory for the activated LLM. Consequently, DeeR demonstrates the potential to enable a wider
range of users to operate their own robots equipped with MLLMs on resource-limited platforms.

1Average successful rate over all subtasks in the long-horizon chains.

2

2 Related Works

LLM/MLLM for language-conditioned robot control. A range of studies have explored the use
of natural language to instruct robots in performing tasks [11, 12, 13, 14, 15, 16]. Methods such as
SayCan and PaLM-E [17, 18, 19] utilize LLMs as high-level planners to translate commands into
individual primitives that are then executed by low-level controllers. However, these controllers are
usually domain-specific small models and lack the semantic understanding and reasoning capabilities
that LLMs/MLLMs possess. To fully leverage LLM’s astonishing capabilities, RT-2 [7, 9] proposes an
end-to-end MLLM that directly generates low-level robotic actions via co-finetuning on robotic data
and image-language data. It exhibits some emergent abilities obtained from large MLLMs, such as
generalizing to instructions and objects never seen before, and reasoning. Further, RoboFlamingo [9]
proposes to adapt existing MLLMs to a low-level robotic policy through straightforward fine-tuning
on robotics data. While representative projects like RT-2 and RoboFlamingo have showcased the
promising potential in enabling generalist robots, the use of MLLMs for such low-level control is
computationally intensive. This is because each robotic action requires processing through all layers
of an MLLM, whose inefficiencies often yield significant bottlenecks in practical robotic applications.

Efficient LLM. Considerable strides have been made to improve the inference efficiency of LLMs [20,
21, 22]. Research in this domain typically falls into three categories: efficient structural design[23, 24,
25, 26, 27, 28, 29], model compression [30, 31, 32, 33, 34, 35, 36], and dynamic networks [37, 38,
39, 40]. Our research focuses on the third category, dynamic networks, which optimize computational
resources based on input data to reduce unnecessary computation. A key strategy within this category
is early exiting, discussed further below.

Early exiting is an innovative method for dynamically halting forward propagation at a certain layer
based on intermediate predictions. This technique has been well explored in both computer vision [41,
42, 43, 44, 45, 46], language processing [47, 48, 49, 50, 51, 52, 53], and multimodality [54, 55]. A
challenge in implementing early-exiting models is devising an appropriate metric to determine when
to issue an intermediate prediction. Traditionally, in tasks such as image classification, metrics such
as Softmax confidence [43] or entropy [49] are utilized. Alternative approaches include training
learning-based exit strategies with pseudo labels [56, 48, 57, 58]. Recent advancements [38, 39] have
expanded early exiting to encompass the next-token prediction of LLMs focused on, treating it as
a classification task. Diverging from these methods, our work adapts an MLLM to generate action
outputs for sequential decision-making. We introduce a novel dynamic paradigm that integrates
temporal information to predict action. Further, we devise a novel early-exiting metric based on action
consistency, necessary because typical metrics like confidence and entropy are infeasible without
direct Softmax outputs. Lastly, we develop an algorithm to derive termination criteria through online
environmental interaction—a strategy not explored in prior early-exiting research in vision or NLP.

3 Dynamic Early-Exit for Robotic MLLM

The strong task instruction understanding and visual grounding capabilities of MLLMs [5, 4] have
exhibited great promise for language-instructed multitask robotic manipulation [7, 8, 9]. However,
existing works tend to be computationally intensive since the actions of the robot are obtained by
inferring all layers of an MLLM. At each timestep, this process may activate billions of parameters,
necessitating substantial computation and memory, and yielding a significant latency and power
consumption. These inefficiencies are usually important bottlenecks for practical robotic applications.

Overview. We seek to address this challenge by leveraging an intriguing observation: relatively
‘easier’ situations make up the bulk of the procedure of controlling robots to fulfill various tasks, and
they generally require far smaller models to obtain the correct robotic actions (as shown in Table 1).
Inspired by this phenomenon, we propose Dynamic Early-Exit for Robotic MLLM (DeeR), aiming
to improve the computational efficiency of the robotic MLLM systems by dynamically adopting a
proper size of MLLM for each situation. In specific, we first develop a novel MLLM architecture with
multiple intermediate exits (Section 3.1). Consequently, given an input, one can immediately acquire
a proper robotic action once a sufficient number of model parameters have been activated, avoiding
further redundant computation. Then, Section 3.2 establishes early-termination criteria for DeeR
conditioned on arbitrarily specified demands of average computational cost, and peak computational
cost or GPU memory overhead. Finally, Section 3.3 proposes a tailored training algorithm for our
model, demonstrating how to integrate temporal information on top of this dynamic network and
reasonably predict robotic actions.

3

MLLMMLLM

ℒ!∗

𝒂𝒕𝟏AuxH1…

…

…

AuxH2

AuxH𝑁

Action
head

L
L

M
 d

ep
th

𝒂𝒕𝟐

𝒂𝒕𝑵

𝒂𝒕∗

𝑜!𝑜!"#$%𝑜!"#$&𝑜!"#

Train multi-exit MLLM

MLLM MLLM

𝑥"!"#$

… … … …

𝑥"!"#%

𝑥"!$

𝑥"!%

𝑥"!&𝑥"!"#&
ℒ!'

𝒂𝒕
ℒ!(

ℒ!)

…

… AuxH input

Sampling strategy

Dynamic inference with early-exit

Feature skipped
by early-exit

Exit?

L
L

M
 d

ep
th

Exit?

…

Yes

No

Exit? Exit Criterion

MLLM

𝑜!

𝑥"!$

𝑥"!%

𝑥"!&

𝒂𝒕∗
Action
head

History hidden state

Figure 1: Left: Dynamic inference of DeeR. For inference, we adaptively activate an appropriate size of MLLM
based on an exit criterion c, which accounts for the current situation (including task instruction l and observation
ot) and predefined computational and GPU memory budgets. The language instruction and gripper camera
image, not shown in this figure, are also inputs to the MLLM. An action is then obtained using the intermediate
feature x̃

c(t)
t and historical information. Right: Training of DeeR.We randomly sample features from all exits

during training. This strategy helps minimize the discrepancy between training and dynamic inference. Moreover,
we employ several auxiliary action heads (AuxH) to better optimize the MLLM.

3.1 Multi-exit Architecture for Robot

𝑥"!"

𝑥"!#

Pooling

Fixed
Layer

Vision
Encoder

Perceiver
Resampler

Feature from
MLLM layers

Rotate red block right

x2

Self-attention
Cross-attention

x2

Self-attention
Cross-attention

…

x2

Self-attention
Cross-attention

…

…

…
Pre-trained MLLM

…
𝑜!

𝑥"!$

Forward Trained
Layer

Pooling

Pooling

Figure 2: Multi-exit MLLM architecture for robot.

We first introduce an MLLM architecture featuring
multiple intermediate exits, enabling the dynamic
adaptation of the MLLM’s size to suit the varying
situations encountered by robots.

Basic architecture. Tasked with a language instruc-
tion l, a robot receives an observation ot from sen-
sors (e.g., RGB image from the camera in our paper)
at timestep t and predicts an action a∗t to execute.
To correctly predict the action, the robot should not
only sufficiently understand the language instructions,
but also extract task-relevant information from the
images [59]. Built upon an existing work [9], we
achieve this by employing a pretrained MLLM, i.e.,
Flamingo [60, 61], to process and integrate both vi-
sion and language inputs, thus obtaining fused mul-
timodal features for decision-making.

Our basic MLLM mainly consists of a vision encoder
EI and a LLM. The vision encoder EI comprises a
Vision Transformer (ViT) [62] paired with a Perceiver Resampler [60], which encodes an input image
ot into a sequence of informative tokens. For multimodal fusion, an LLM is established on top
of the visual representations generated by the vision encoder EI . More specifically, we interleave
the self-attention blocks of a pretrained, frozen text-only LLM with newly introduced, learnable
cross-attention blocks that cross-attend to the visual tokens. This configuration allows the original
MLLM to function as an effective multimodal feature extractor Fθ, formalized as follows:

xt = Fθ(l, EI(ot)), (1)
where l denotes the input language instruction tokens with a length L, and the output xt =
(xt,1, xt,2, . . . , xt,L) represents the hidden state sequence from the last layer of our MLLM at
timestep t. Notably, despite the effectiveness of LLMs in multimodal feature integration, their
reliance on billions of parameters results in substantial computational costs and memory usage.

Visual language model with intermediate exits. We dynamically adapt the size of the LLM to the
specific requirements of each situation encountered by a robot by introducing a model with intermedi-
ate exits. Specifically, we divide the LLM layers into N consecutive groups, noted as F 1

θ , F
2
θ , . . . , F

N
θ .

Each group F i
θ outputs an intermediate hidden state sequence xi

t=(xi
t,1, x

i
t,2, . . . , x

i
t,L). When com-

putation terminates at an intermediate exit i, we apply a max-pooling operator P to aggregate the infor-
mation across the token dimension, resulting in a compact representation x̃i

t=P (xi
t,1, x

i
t,2, . . . , x

i
t,L)

4

that effectively summarizes the image ot and instruction l. This representation serves as the input for
the subsequent action prediction module. With such a multi-exit MLLM architecture, we can obtain a
series of informative representations x̃1

t , x̃
2
t , ..., x̃

N
t at varying scales of LLM processing. This allows

us to dynamically select the most suitable LLM size conditioned on the situation complexity without
activating parameters beyond the chosen exit point. Our multi-exit MLLM is illustrated in Figure 2.

Predicting robotic actions with an action head. After the LLM processes to an appropriate level, the
output x̃i

t from the i-th intermediate exit is transformed into low-level actions by a lightweight action
head. In this paper, we consider a 7 DoF end-effector action as a representative example of low-level
actions, where the first six continuous dimensions specify the position and orientation of the end-
effector, and the seventh discrete value indicates whether the gripper is open or closed. Notably, given
that the decision-making environment is typically characterized as a Partially Observable Markov
Decision Process (POMDP) [63], optimal decisions rely not only on the current observation ot but
also on historical observations. Thus, we employ a sequence model as the action head πθ to aggregate
information across a history window of size H . Without loss of generality, this paper considers a
lightweight LSTM [64] as an example. On the top of LSTM are two distinct MLP modules: one
dedicated to predicting the pose of the end-effector, and the other to predict the discrete gripper status.
The lightweight action head πθ computes actions efficiently with minimal computational overhead.

Early-terminated inference of robotic actions. Equipped with the action head, we assume that a
criterion c is defined to determine the optimal point for the conditional exiting from an appropriately
sized LLM at the current timestep t (we will discuss the details of criteria in Section 3.2). The index
of the selected exit, denoted as c(t), ranges from 1 to N . Consequently, we utilize the feature x̃

c(t)
t

from the c(t)-th LLM block to compute the predicted action a∗t for the current timestep as follows:

a∗t , ht = πθ(x̃
c(t)
t , ht−1), (2)

where ht represents the LSTM’s hidden state, with h0 initially set to a zero vector. The predicted
action a∗t is composed of pose action and gripper action.

3.2 Adaptive Inference

This section demonstrates how DeeR efficiently executes robot tasks by adaptively activating a proper
size of the MLLM under predefined computation and GPU memory budgets. Specifically, we first
discuss the termination criterion utilized by DeeR, designed to activate smaller models for less
complex scenarios and larger models for more challenging conditions. Next, we explore our approach
to devising an effective resource allocation strategy that addresses limitations in computation and
GPU memory. The inference process of DeeR is illustrated in Figure 1.

Termination criterion. As mentioned in related works, many previous works utilize confidence-
based criteria for determining when to terminate, typically involving metrics such as the maximum
element or entropy of the SoftMax output [37, 43, 65, 66, 49]. In our case, where the goal is action
prediction and SoftMax output is not readily available, we adopt a different approach by leveraging the
consistency of action predictions from adjacent intermediate features as our criterion. The underlying
intuition is that if the action predictions from two differently sized MLLMs remain consistent, it
suggests that the computational model may have reached saturation, and further processing is unlikely
to yield any further improvements. For a given timestep t, we identify the smallest i within the range
[1, 2, ..., N] that satisfies the following action consistency condition as termination exit:

∥πθ(x̃
i
t, ht−1)− πθ(x̃

i−1
t , ht−1)∥2 < ηi, (3)

where we disregard the hidden state outputs of πθ and focus solely on comparing the L2 norm of the
difference in predicted actions against a predefined threshold ηi. We always adopt infinity as ηN to
ensure all samples can exit. For i = 1 , we use the input features to the LLM layer as xi−1

t .

Budgeted task execution. Given the predefined constraints of computation and memory budgets, it
can be challenging to manually set optimal threshold values {η1, η2, . . .} to ensure that the robotic
MLLM policy achieves peak performance while adhering to budget limitations. In contrast, we
propose to determine these values by formulating an optimization problem. We operate under a
Budgeted Task Execution Setting, where DeeR is required to perform a set of tasks T within a
specified total computational budget B > 0. To ensure that each action is delivered within an
acceptable waiting time, we impose constraints on peak computation where G > 0. Additionally, we
limit GPU memory usage to M > 0 to accommodate scenarios where users may not have access
to high-memory GPUs. Let Scc(T , {η1, η2, . . .}) represent the success rate of tasks in T , and let

5

FLOPs(T , {η1, η2, . . .}) denote the computational cost for executing these tasks under specified
constraints. Furthermore, MFLOPs(T , {η1, η2, . . .}) denotes the peak FLOPs across all timesteps,
and Mem(T , {η1, η2, . . .}) indicates GPU memory used during task execution. We seek the optimal
thresholds by addressing the following optimization problem:

max
η1,η2,...

Scc(T , {η1, η2, . . .}), (4)

subject to

FLOPs(T , {η1, η2, . . .}) < B, (average FLOPs constraint)
MFLOPs(T , {η1, η2, . . .}) < G, (peak FLOPs constraint)

Mem(T , {η1, η2, . . .}) < M. (GPU memory constraint)

Due to the non-differentiability of the success rate function Scc(·, ·), we may leverage heuristic
algorithms to solve for the thresholds that maximize success within the computational constraints.
We discuss strategies for determining optimal thresholds under two conditions: one where we only
have access to a demonstration dataset, and another where real environment interaction is permitted.

Solving problem (4) using a demonstration dataset. We denote by 0 < q ≤ 1 the probability
that a sample reaching an exit point will meet the termination criterion and thus exit at that point.
When accessing only a demonstration dataset, we assume q is constant across all layers [43]. This
suggests that the proportion of samples exiting at exit i can be represented as qi = zqi, where z is
a normalizing constant ensuring that

∑n
i=1 qi = 1. Here, n ≤ N denotes the maximum allowable

exit index where the corresponding activated LLM meets the constraints of peak GFLOPs and GPU
memory. The proportions of samples at the exits whose index are greater than n is set to zero. At
testing time, we must adhere to the computational budget constraint:

|T |L
∑n

i=1
qiCi ≤ B, (5)

where |T | is the number of tasks to perform, L represents the average length of tasks as derived from
the dataset statistics and Ci is the computational cost when the LLM inference terminates at i-th exit.
Equation (5) allows us to solve for q and determine qi. Using these target proportions qi for each exit,
we then determine the threshold values ηi on the dataset to ensure that approximately qi proportion
of timesteps exits at the i-th exit [43].

Solving with online interactions. If the interaction with a real environment is feasible, we can utilize
online learning algorithms that iteratively adjust thresholds based on feedback regarding success
rates. To solve Equation (4) under budget constraints, we implement Bayesian Optimization [67]. We
construct the objective function for Bayesian Optimization to maximize as follows:

fobj = Scc(T , {η1, η2, . . .})− P, (6)

where P = 0 if budget constraints are satisfied otherwise a significant penalty term. This online
paradigm allows us to determine thresholds without assuming an exponential distribution, enabling
the acquisition of more effective thresholds through real-time feedback. Here, we employ Bayesian
Optimization as a representative example of an online solving approach. Future work could extend to
other online algorithms such as multi-armed bandit or reinforcement learning [68].

3.3 Training Algorithm
Notably, it is nontrivial to train our dynamic robotic MLLM properly. Specifically, dynamic adjust-
ment of the network architecture leads to a discrepancy between training and inference. During
inference, we use a deterministic criterion to select a proper intermediate feature at each timestep.
Nevertheless, during training, we lack a well-defined termination criterion and remain unaware of
the distribution of features across the exits. To enable our model to learn to integrate temporal
information effectively, we propose a tailored training algorithm, as introduced in the following.

Learning with an arbitrary size of models. To reduce the aforementioned discrepancy, we propose
a simple yet effective random sampling strategy during training. As depicted by the “winding” curves
on the right side of Figure 1, our approach involves sampling an exit index from 1 to N at each
timestep. We implement two types of sampling strategies. The first strategy, denoted as s1, is to
uniformly sample an exit index from 1 to N at each step. This ensures that features from all possible
exits are effectively captured in the action head during training. It simulates scenarios where the action
head might encounter features from all exits within a given time window, thus accommodating an

6

Table 2: Comparison with baselines. GR-1 uses extra proprioceptive information as input. Note that some
baselines mainly focus on one or two settings, and we present results following their original papers. We report
the performance of our method at the last epoch. The value in parentheses indicates the LLM FLOPs required to
achieve the reported score. The success rates for the 1st to 5th subtasks are in Appendix B.1.

Method Input Data Foundation model Avg. successful len (LLM GFLOPs)

D→D ABCD→D ABC→D

GR-1 [69] (ICLR’24)
RGB+
Proprio LANG Video-pretrained

Transformer - 4.21 3.06

HULC [13] (RA-L’22) RGB ALL ✗ 2.64 3.06 0.67
RT-1 [15] (RSS’23) RGB LANG ✗ - 2.45 0.9

SPIL [70] (ICML’24) RGB ALL ✗ 2.67 - 1.71
SuSIE [71] (ICLR’24) RGB ALL InstructPix2Pix [72] - - 2.69

RoboFlamingo (ICLR’24) RGB LANG OpenFlamingo 3B 2.46 (31.2) 4.08 (31.2) 2.47 (31.2)

RoboFlamingo++ RGB LANG OpenFlamingo 3B 2.71 (31.2) 4.07 (31.2) 2.59 (31.2)

DeeR (ours) RGB LANG OpenFlamingo 3B 2.83 (8.6) 4.13 (10.0) 2.82 (12.5)

DeeR w. online (ours) RGB LANG OpenFlamingo 3B 2.92 (8.5) 4.13 (9.7) 2.90 (9.5)

arbitrary inference pattern and reducing the training-inference discrepancy. Moreover, we observe that
in practice, the dynamic model often terminates at the same exit for multiple consecutive timesteps,
as the neighboring observations tend to be quite similar. The model then switches to another exit
for a sequence of subsequent timesteps. To better emulate this pattern during training, we adopt a
second sampling strategy denoted as s2. Specifically, we split the time window ot:t+H−1 into two
consecutive segments ot:t+i and ot+i+1:t+H−1, with i chosen randomly. In each segment, a single
uniformly sampled index is assigned and shared across all timesteps.

On top of these two sampling strategies, we can define our training loss function. We sample
from a robot demonstration dataset a language instruction l and a clip of observation-actions
{ot, at, ot+1, at+1, . . . , ot+H−1, at+H−1}. For each sampling strategy s ∈ {s1, s2}, we use Equa-
tion (1) and Equation (2) to predict each action a∗,st+i for s = s1, s2 and i = 0, 1, . . . ,H − 1, where
c(t) in Equation (2) is replaced by the sampling strategy s. For each pair of the predicted action a∗

and the actual action a, we define a single-action loss function L(a∗, a) that incorporates both mean
squared error (MSE) for pose prediction and cross-entropy loss for gripper status prediction with a
coefficient λ to balance the two terms [9]. The total loss for a sequence is then the sum of the losses
over timesteps:

L∗ =
∑

s∈{s1,s2}

∑H−1

i=0
L(a∗,s

t+i, at+i). (7)

Auxiliary losses. The intermediate features from the original MLLM, intended as input for subsequent
layers, may not be optimal for output prediction. To ensure that each activated size of the MLLM
in our framework produces features suitable for predicting actions, we introduce auxiliary losses.
Specifically, we attach N auxiliary action heads (denoted as UAH in Figure 1) at the exits. The j-th
auxiliary head processes temporal features from the j-th exit and predicts the action ajt . We jointly
train the auxiliary heads and the MLLM using the loss function:

Laux =
∑N

j=1

∑H−1

i=0
L(aj

t+i, at+i). (8)

These auxiliary heads are employed only during training and are not used for inference.

Total Loss. The full training pipeline is depicted in Figure 1. We fine-tune only the parameters of the
perceiver sampler and cross-attention layers in the MLLM, with the randomly initialized action head
πθ and auxiliary action heads. The visual encoder and the other LLM components, remain frozen.
The total loss for the training process is expressed as Ltotal = L∗ + Laux.

4 Experiments
Setup. In this section, we conduct experiments to validate the effectiveness of DeeR as an efficient
robot policy. Specifically, we build DeeR upon the RoboFlamingo++ codebase. We preserve hyper-
parameters from RoboFlamingo++ for fair comparison, except for the number of LLM layers and our
proposed dynamic early-exit paradigm. we compare DeeR in terms of budget v.s. performance with
similarly sized RoboFlamingo++ models [9] and other SOTA baselines. We provide implementation
details in Appendix A.

Measures of efficiency. In modern foundation models, the LLM typically plays a pivotal role within
an MLLM in terms of reasoning and problem-solving tasks, and it usually contains the majority of the

7

model’s parameters [4, 61]. Our work mainly focuses on improving the efficiency of LLMs within
a robotic context. To facilitate a focused comparison, in our experiments, we report the number of
floating point operations (FLOPs) and GPU memory usage for LLM’s inference.

Benchmark. We utilize the CALVIN Long-Horizon Multi-Task Language Control benchmark
(LH-MTLC) [10] as the testbed to test our learned multi-task, language-conditioned policy. In the
CALVIN, the objective is for the agent to successfully complete task sequences, each with five
subtasks described in natural language. Following previous works [10, 12, 13, 9], model performance
is evaluated based on the average successful length (0 to 5) across 1000 task sequences.

Datasets. The CALVIN dataset [10] is divided into four environmental splits, labeled A through
D, each characterized by unique backgrounds and object configurations. Each split contains over 2
million robot manipulation trajectories (denoted as ‘ALL’). Of these, only about 1%, approximately
24 thousand trajectories, are annotated with language instructions (denoted as ‘LANG’). For training
DeeR, we exclusively utilize the ‘LANG’ data. In our study, we evaluate models across three settings
to thoroughly assess their imitation and generalization capabilities: 1) D→D: Train and evaluate in a
single environment, 2) ABC→D: Zero-Shot Multi-Environment, 3) ABCD→D: Multi-Environment.

Baselines. For a comprehensive comparison, we consider various baselines. We include HULC [13]
and SPIL [70] as representatives of approaches reliant on hierarchical planning and skill priors [12,
14, 73]. Additionally, we evaluate models using pretrained or foundation models, such as RT-1 [15],
SuSIE [71], GR-1 [69], and RoboFlamingo [9]. RoboFlamingo++ is our reproduced RoboFlamingo.

4.1 Main Results

5.9 x
5.2 x

6.5 x

0 5 10 15 25 25 30
Maximal FLOPs for LLM (G)

RoboFla-

mingo++ 3B

DeeR-B
DeeR-S

2x
6x

0 2 4 6 8 10 12
GPU Memory for LLM (G)

2x
6x

Figure 3: Results atop OpenFlamingo 3B. Upper: Avg. successful len v.s. avg. LLM GFLOPs. Bottom:
Peak GLOPs and GPU memory for LLM. Different colors indicate different peak FLOPs and GPU memory
budgets, denoted as DeeR-S and DeeR-B (they share a fixed model). DeeR preserve all the architecture and
hyperparameters from RoboFlamingo++ for fair comparisons, except for our dynamic early-exit paradigm.

Results on Flamingo 3B are presented in Figure 3. We train just a single model in each CALVIN
setting. Given the predefined total computational budget B, the maximum FLOPs G, and the GPU
memory M , we adhere to these budgets by adjusting the termination thresholds, which are determined
by solving Equation (4) with the CALVIN dataset. Then we assess the average successful length of
DeeR under different thresholds to plot the curves. It can be observed that DeeR consistently reduces
the computational cost of the LLMs across all settings. For instance, in the setting D→D, DeeR
achieves an average successful length 2.71 with 5.9x fewer average FLOPs, 2x fewer maximum
FLOPs and 2x fewer GPU memory. Surprisingly, DeeR-S achieves relatively high performance with
only 2GB memory consumed by LLM, which is affordable to most users. Thus, DeeR demonstrates
the potential to enable a broader range of users to operate their own robots effectively with LLMs.

Comparison with SOTA baselines. In Table 2, we benchmark the DeeR model against recently
SOTA methods in the CALVIN benchmark. Our analysis reveals that DeeR achieves competitive
performance compared to the latest SOTA model GR-1 which uses additional proprioceptive informa-
tion. When compared with traditional imitation learning methods without foundation model, DeeR
demonstrates superior performance, particularly in generalization scenarios (ABC→D). Moreover,
DeeR slightly outperforms RoboFlamingo while requiring less computation.

8

Solve thresholds with online interaction. When interaction with the environment is feasible, we
utilize Bayesian Optimization to solve Equation (4) as we stated in Section 3.2. As shown in Table 2,
we discovered that finding thresholds via online interaction is particularly effective in challenging
scenarios such as low-data environments (D→D) and generalization to unseen situations (ABC→D).

Scalability of DeeR. We developed DeeR on top of OpenFlamingo 9B [61] to evaluate its efficiency
when scaling up the foundation model. The results, detailed in Figure 4, indicate that DeeR reduces
1.8-5.7x computation and 2.7x-4.0x peak FLOPs and memory for the same performance.

5.7 x

Figure 4: Results on the top of OpenFlamingo 9B. Left: Avg. successful len v.s. average LLM GFLOPs.
Right: Maxinum GLOPs and GPU memory budget for DeeR-S and DeeR-B. The activated LLM in DeeR-S and
DeeR-B consumes 12GB memory, whereas RoboFlamingo 9B requires 32GB.

4.2 Ablation Study

Table 3: Ablation study of auxil-
iary losses on ABCD→D.

GFLOPs avg. succss len
DeeR w.o. aux

4.9 3.94 2.64
10.0 4.13 2.71

Auxiliary losses. In this study, we explore the effect of auxiliary
losses using the ABCD→D setting as a representative scenario. As
shown in Table 3, the model trained without auxiliary losses demon-
strates much lower performance. The drop may stem from insuffi-
cient optimization for features across exits: The training paradigm
without auxiliary losses optimize only one feature from a single exit
at each timestep (chosen by sampling strategy) for action prediction.
We also observed that in smaller datasets, such as in the D→D setting, omitting auxiliary losses has
little to no impact on performance. This may be because smaller datasets are easier to fit, reducing
the necessity for auxiliary losses.

Table 4: Ablation study of exit criteria. Comparing
feature similarity, time, and action consistency.

Settings GFLOPs avg. succss len
feat. time action

D→D 4.9 2.52 2.35 2.65
9.1 2.62 2.82 2.83

ABCD→D 4.9 3.66 3.92 3.94
9.1 3.92 4.08 4.10

ABC→D 4.9 2.29 2.46 2.62
9.1 2.45 2.71 2.75

Early-termination criterion. Based on a fixed DeeR
model, we explore various criteria for adaptive infer-
ence. We consider using cosine similarity between
exit points to determine termination [55]. Specifi-
cally, if the similarity value exceeds a threshold, the
process is terminated. We introduce another met-
ric that progressively increases the size of the acti-
vated LLM as a task progresses, based on the obser-
vation that the initial stage of a task generally present
simpler scenarios. Our results, detailed in Table 4,
demonstrate that our straightforward yet effective ac-
tion consistency criterion outperforms other criteria across several average computational budgets.

Table 5: Comparison of real inference effi-
ciency on the ABCD→D dataset. The aver-
age LLM inference time is reported.

Model Len GFLOPs Time
Robo++ 4.07 31.2 55ms
DeeR 4.08 6.0 17.5ms

Real inference efficiency. We conducted evaluations of
real-world operational efficiency. Both RoboFlamingo++
and DeeR were tested on the same Nvidia V100 GPU.
As shown in Table 5, DeeR achieved a 68.1% reduction
in LLM inference time compared to RoboFlamingo++
(abbreviated as Robo++ in Table 5) when both models
achieved the same performance, which aligns with the
theoretical 80.7% reduction in FLOPs. This evaluation was performed without code optimizations for
early-exit implementation. We expect that with further optimizations, DeeR’s real-world operational
efficiency will improve, potentially aligning even more closely with the predicted FLOPs reduction.

9

Table 6: DeeR with quantization on
the ABCD→D setting.

DeeR Memory Avg Len
float32 6G 4.13
float16 3G 4.12
int4 1.7G 3.91

DeeR with Quantization. Model compression techniques, such
as quantization and pruning, along with efficient structural designs,
complement early-exit strategies like DeeR. These methods im-
prove efficiency from different perspectives: quantization reduces
memory usage by lowering parameter precision, while early-exit
strategies like DeeR reduce computational load by dynamically
skipping unnecessary layers. In Table 6, we present quantization as an example to illustrate how
DeeR can integrate with these techniques to reduce memory cost.

4.3 Visualization

6 1 1 2 4

Stack
block

1 5 5 4 3
Turn	on	
lightbulb

Move	
slider
left

1 1 3 4 3

Figure 5: Visualization of DeeR rollouts in the CALVIN
environment. Please zoom in to view details. The numbers
indicate the termination exit index. Situations with a lower
exit index are recognized as ‘easier’ ones.

Figure 5 displays rollouts of DeeR with the
termination points. Situations with a higher
exit index are considered "harder" by DeeR
and thus are allocated more computational
resources. One can observe that "hard"
situations often involve relatively complex
and delicate operations, while "easy" sit-
uations typically involve straightforward
movements toward target objects. For ex-
ample, in the task of stacking blocks (1st
row), lifting the blue block from the ta-
ble (1st image) and placing it down on the
pink block (images 4 and 5) are allocated
more computation, whereas simply mov-
ing towards the pink block (images 2 and
3)requires only the smallest LLM to han-
dle. Similar observations occur in the 2nd
and 3rd rows, where the stage of moving
toward the target object require minimal computation, while pushing the lightbulb switch or moving
the sliding door are sophisticated operations that necessitate more LLM processing.

5 Conclusion and Limitations
In this paper, we introduced the Dynamic Early-Exit for Robotic MLLM (DeeR) framework, aiming
to dynamically configure the size of MLLMs based on the specific requirements of each situation
encountered by a robotic agent. In specific, we proposed a novel MLLM architecture with multiple
intermediate exits. Further, we establish early-termination criteria for DeeR based on action con-
sistency and solve thresholds via a dataset or online interaction. Additionally, we crafted a tailored
training method that integrates temporal information within this multi-exit framework to enhance
robotic control. Extensive robotic experiments demonstrated that DeeR significantly reduces LLM
computational costs and GPU memory usage, highlighting its potential to empower a broader range
of users to manage their robots on resource-constrained platforms. While our study shows promising
results, it has some limitations. We focused on improving LLM efficiency for robotic execution
since LLMs account for most of the parameters and GFLOPs. However, the computational cost of
the visual encoder is also significant. We expect this limitation to be alleviated as more efficient,
lightweight visual encoders are developed. Besides, our experiments were limited to a simulated
benchmark. Future work will aim to improve the inference efficiency of the entire MLLM-based
robotic system in realistic environments.

6 Acknowledgement

The Tsinghua University team is supported in part by the National Key R&D Program of China
(2022ZD0114903).

10

References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni

Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023. 1

[2] Zhengyuan Yang, Linjie Li, Kevin Lin, Jianfeng Wang, Chung-Ching Lin, Zicheng Liu, and
Lijuan Wang. The dawn of lmms: Preliminary explorations with gpt-4v (ision). arXiv preprint
arXiv:2309.17421, 2023. 1

[3] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open
and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023. 1

[4] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. NeurIPS,
2024. 1, 3, 8

[5] Naoki Wake, Atsushi Kanehira, Kazuhiro Sasabuchi, Jun Takamatsu, and Katsushi Ikeuchi.
Gpt-4v (ision) for robotics: Multimodal task planning from human demonstration. arXiv
preprint arXiv:2311.12015, 2023. 2, 3

[6] Liang Chen, Yichi Zhang, Shuhuai Ren, Haozhe Zhao, Zefan Cai, Yuchi Wang, Peiyi Wang,
Tianyu Liu, and Baobao Chang. Towards end-to-end embodied decision making via multi-
modal large language model: Explorations with gpt4-vision and beyond. arXiv preprint
arXiv:2310.02071, 2023. 2

[7] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choro-
manski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2: Vision-language-
action models transfer web knowledge to robotic control. CoRL, 2023. 2, 3

[8] Abhishek Padalkar, Acorn Pooley, Ajinkya Jain, Alex Bewley, Alex Herzog, Alex Irpan,
Alexander Khazatsky, Anant Rai, Anikait Singh, Anthony Brohan, et al. Open x-embodiment:
Robotic learning datasets and rt-x models. arXiv preprint arXiv:2310.08864, 2023. 2, 3

[9] Xinghang Li, Minghuan Liu, Hanbo Zhang, Cunjun Yu, Jie Xu, Hongtao Wu, Chilam Cheang,
Ya Jing, Weinan Zhang, Huaping Liu, et al. Vision-language foundation models as effective
robot imitators. ICLR, 2024. 2, 3, 4, 7, 8

[10] Oier Mees, Lukas Hermann, Erick Rosete-Beas, and Wolfram Burgard. Calvin: A benchmark
for language-conditioned policy learning for long-horizon robot manipulation tasks. IEEE
Robotics and Automation Letters, 7(3):7327–7334, 2022. 2, 8

[11] Stefanie Tellex, Nakul Gopalan, Hadas Kress-Gazit, and Cynthia Matuszek. Robots that use
language. Annual Review of Control, Robotics, and Autonomous Systems, 2020. 3

[12] Corey Lynch and Pierre Sermanet. Language conditioned imitation learning over unstructured
data. arXiv preprint arXiv:2005.07648, 2020. 3, 8

[13] Oier Mees, Lukas Hermann, and Wolfram Burgard. What matters in language conditioned
robotic imitation learning over unstructured data. IEEE Robotics and Automation Letters,
7(4):11205–11212, 2022. 3, 7, 8

[14] Oier Mees, Jessica Borja-Diaz, and Wolfram Burgard. Grounding language with visual affor-
dances over unstructured data. In ICRA, 2023. 3, 8

[15] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
transformer for real-world control at scale. Proceedings of Robotics: Science and Systems, 2024.
3, 7, 8

[16] Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
Dasari, Joey Hejna, Charles Xu, Jianlan Luo, et al. Octo: An open-source generalist robot
policy. First Workshop on Vision-Language Models for Navigation and Manipulation at ICRA
2024, 2024. 3

11

[17] Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: An embodied
multimodal language model. ICML, 2023. 3

[18] Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David,
Chelsea Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as i can, not
as i say: Grounding language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022. 3

[19] Yao Mu, Qinglong Zhang, Mengkang Hu, Wenhai Wang, Mingyu Ding, Jun Jin, Bin Wang,
Jifeng Dai, Yu Qiao, and Ping Luo. Embodiedgpt: Vision-language pre-training via embodied
chain of thought. NeurIPS, 2023. 3

[20] Zhongwei Wan, Xin Wang, Che Liu, Samiul Alam, Yu Zheng, Zhongnan Qu, Shen Yan, Yi Zhu,
Quanlu Zhang, Mosharaf Chowdhury, et al. Efficient large language models: A survey. arXiv
preprint arXiv:2312.03863, 1, 2023. 3

[21] Siddharth Samsi, Dan Zhao, Joseph McDonald, Baolin Li, Adam Michaleas, Michael Jones,
William Bergeron, Jeremy Kepner, Devesh Tiwari, and Vijay Gadepally. From words to
watts: Benchmarking the energy costs of large language model inference. In 2023 IEEE High
Performance Extreme Computing Conference (HPEC), pages 1–9. IEEE, 2023. 3

[22] Zixuan Zhou, Xuefei Ning, Ke Hong, Tianyu Fu, Jiaming Xu, Shiyao Li, Yuming Lou, Luning
Wang, Zhihang Yuan, Xiuhong Li, et al. A survey on efficient inference for large language
models. arXiv preprint arXiv:2404.14294, 2024. 3

[23] Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebron, and
Sumit Sanghai. Gqa: Training generalized multi-query transformer models from multi-head
checkpoints. In EMNLP, 2023. 3

[24] Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces.
arXiv preprint arXiv:2312.00752, 2023. 3

[25] Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Huanqi Cao, Xin
Cheng, Michael Chung, Matteo Grella, Kranthi Kiran GV, et al. Rwkv: Reinventing rnns for
the transformer era. Findings of EMNLP, 2023. 3

[26] Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang,
and Furu Wei. Retentive network: A successor to transformer for large language models. arXiv
preprint arXiv:2307.08621, 2023. 3

[27] Dongchen Han, Xuran Pan, Yizeng Han, Shiji Song, and Gao Huang. Flatten transformer:
Vision transformer using focused linear attention. In ICCV, 2023. 3

[28] Zechun Liu, Changsheng Zhao, Forrest Iandola, Chen Lai, Yuandong Tian, Igor Fedorov,
Yunyang Xiong, Ernie Chang, Yangyang Shi, Raghuraman Krishnamoorthi, et al. Mobilellm:
Optimizing sub-billion parameter language models for on-device use cases. arXiv preprint
arXiv:2402.14905, 2024. 3

[29] Huanqian Wang, Yang Yue, Rui Lu, Jingxin Shi, Andrew Zhao, Shenzhi Wang, Shiji Song, and
Gao Huang. Model surgery: Modulating llm’s behavior via simple parameter editing. arXiv
preprint arXiv:2407.08770, 2024. 3

[30] Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned
in one-shot. In ICML, pages 10323–10337, 2023. 3

[31] Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning
approach for large language models. arXiv preprint arXiv:2306.11695, 2023. 3

[32] Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. NeurIPS, 36:21702–21720, 2023. 3

[33] Gunho Park, Minsub Kim, Sungjae Lee, Jeonghoon Kim, Beomseok Kwon, Se Jung Kwon,
Byeongwook Kim, Youngjoo Lee, Dongsoo Lee, et al. Lut-gemm: Quantized matrix multiplica-
tion based on luts for efficient inference in large-scale generative language models. In ICLR,
2023. 3

12

[34] Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher M De Sa. Quip: 2-bit quantiza-
tion of large language models with guarantees. NeurIPS, 2023. 3

[35] Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han.
Smoothquant: Accurate and efficient post-training quantization for large language models.
In ICML, pages 38087–38099, 2023. 3

[36] Shiyao Li, Xuefei Ning, Ke Hong, Tengxuan Liu, Luning Wang, Xiuhong Li, Kai Zhong,
Guohao Dai, Huazhong Yang, and Yu Wang. Llm-mq: Mixed-precision quantization for
efficient llm deployment. In The Efficient Natural Language and Speech Processing Workshop
with NeurIPS, volume 9, 2023. 3

[37] Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui Wang, and Yulin Wang. Dynamic
neural networks: A survey. TPAMI, 44(11):7436–7456, 2021. 3, 5

[38] Luciano Del Corro, Allie Del Giorno, Sahaj Agarwal, Bin Yu, Ahmed Awadallah, and Sub-
habrata Mukherjee. Skipdecode: Autoregressive skip decoding with batching and caching for
efficient llm inference. arXiv preprint arXiv:2307.02628, 2023. 3

[39] Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, Basil Hosmer, Bram Wasti, Liangzhen
Lai, Anas Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed Roman, et al. Layer skip: Enabling
early exit inference and self-speculative decoding. arXiv preprint arXiv:2404.16710, 2024. 3

[40] David Raposo, Sam Ritter, Blake Richards, Timothy Lillicrap, Peter Conway Humphreys,
and Adam Santoro. Mixture-of-depths: Dynamically allocating compute in transformer-based
language models. arXiv preprint arXiv:2404.02258, 2024. 3

[41] Yulin Wang, Rui Huang, Shiji Song, Zeyi Huang, and Gao Huang. Not all images are worth
16x16 words: Dynamic transformers for efficient image recognition. Advances in neural
information processing systems, 34:11960–11973, 2021. 3

[42] Tolga Bolukbasi, Joseph Wang, Ofer Dekel, and Venkatesh Saligrama. Adaptive neural networks
for efficient inference. In ICML, 2017. 3

[43] Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens Van Der Maaten, and Kilian Q
Weinberger. Multi-scale dense networks for resource efficient image classification. ICLR, 2018.
3, 5, 6

[44] Yizeng Han, Dongchen Han, Zeyu Liu, Yulin Wang, Xuran Pan, Yifan Pu, Chao Deng, Junlan
Feng, Shiji Song, and Gao Huang. Dynamic perceiver for efficient visual recognition. In ICCV,
2023. 3

[45] Le Yang, Haojun Jiang, Ruojin Cai, Yulin Wang, Shiji Song, Gao Huang, and Qi Tian. Con-
densenet v2: Sparse feature reactivation for deep networks. In CVPR, 2021. 3

[46] Yizeng Han, Zeyu Liu, Zhihang Yuan, Yifan Pu, Chaofei Wang, Shiji Song, and Gao Huang.
Latency-aware unified dynamic networks for efficient image recognition. IEEE Transactions on
Pattern Analysis and Machine Intelligence, pages 1–17, 2024. 3

[47] Maha Elbayad, Jiatao Gu, Edouard Grave, and Michael Auli. Depth-adaptive transformer. ICLR,
2020. 3

[48] Ji Xin, Raphael Tang, Yaoliang Yu, and Jimmy Lin. Berxit: Early exiting for bert with better
fine-tuning and extension to regression. In ACL, 2021. 3

[49] Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and Jimmy Lin. Deebert: Dynamic early exiting
for accelerating bert inference. arXiv preprint arXiv:2004.12993, 2020. 3, 5

[50] Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Haotang Deng, and Qi Ju. Fastbert: a
self-distilling bert with adaptive inference time. arXiv preprint arXiv:2004.02178, 2020. 3

[51] Sourab Mangrulkar, Ankith MS, and Vivek Sembium. Be3r: Bert based early-exit using expert
routing. In KDD, 2022. 3

13

[52] Yanxi Chen, Xuchen Pan, Yaliang Li, Bolin Ding, and Jingren Zhou. Ee-llm: Large-scale
training and inference of early-exit large language models with 3d parallelism. arXiv preprint
arXiv:2312.04916, 2023. 3

[53] Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, Dara Bahri, Vinh Tran, Yi Tay, and
Donald Metzler. Confident adaptive language modeling. NeurIPS, 2022. 3

[54] Zhengcong Fei, Xu Yan, Shuhui Wang, and Qi Tian. Deecap: Dynamic early exiting for efficient
image captioning. In CVPR, pages 12216–12226, 2022. 3

[55] Shengkun Tang, Yaqing Wang, Zhenglun Kong, Tianchi Zhang, Yao Li, Caiwen Ding, Yanzhi
Wang, Yi Liang, and Dongkuan Xu. You need multiple exiting: Dynamic early exiting for
accelerating unified vision language model. In CVPR, 2023. 3, 9

[56] Amir Ghodrati, Babak Ehteshami Bejnordi, and Amirhossein Habibian. Frameexit: Conditional
early exiting for efficient video recognition. In CVPR, 2021. 3

[57] Zanlin Ni, Yulin Wang, Renping Zhou, Rui Lu, Jiayi Guo, Jinyi Hu, Zhiyuan Liu, Yuan Yao,
and Gao Huang. Adanat: Exploring adaptive policy for token-based image generation. In
ECCV, 2024. 3

[58] Chengyu Fang, Chunming He, Fengyang Xiao, Yulun Zhang, Longxiang Tang, Yuelin Zhang,
Kai Li, and Xiu Li. Real-world image dehazing with coherence-based label generator and
cooperative unfolding network. arXiv preprint arXiv:2406.07966, 2024. 3

[59] Yang Yue, Bingyi Kang, Zhongwen Xu, Gao Huang, and Shuicheng Yan. Value-consistent
representation learning for data-efficient reinforcement learning. In AAAI, 2023. 4

[60] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson,
Karel Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual
language model for few-shot learning. NeurIPS, 2022. 4

[61] Anas Awadalla, Irena Gao, Josh Gardner, Jack Hessel, Yusuf Hanafy, Wanrong Zhu, Kalyani
Marathe, Yonatan Bitton, Samir Gadre, Shiori Sagawa, et al. Openflamingo: An open-
source framework for training large autoregressive vision-language models. arXiv preprint
arXiv:2308.01390, 2023. 4, 8, 9

[62] Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Zi-Hang Jiang, Francis EH Tay,
Jiashi Feng, and Shuicheng Yan. Tokens-to-token vit: Training vision transformers from scratch
on imagenet. In ICCV, 2021. 4

[63] Richard D Smallwood and Edward J Sondik. The optimal control of partially observable markov
processes over a finite horizon. Operations research, 1973. 5

[64] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 1997.
5

[65] Le Yang, Yizeng Han, Xi Chen, Shiji Song, Jifeng Dai, and Gao Huang. Resolution adaptive
networks for efficient inference. In CVPR, 2020. 5

[66] Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung. Branchynet: Fast inference
via early exiting from deep neural networks. ICPR, 2016. 5

[67] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas. Taking the
human out of the loop: A review of bayesian optimization. Proceedings of the IEEE, 2015. 6

[68] Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction. 1998. 6

[69] Hongtao Wu, Ya Jing, Chilam Cheang, Guangzeng Chen, Jiafeng Xu, Xinghang Li, Minghuan
Liu, Hang Li, and Tao Kong. Unleashing large-scale video generative pre-training for visual
robot manipulation, 2023. 7, 8

[70] Hongkuan Zhou, Zhenshan Bing, Xiangtong Yao, Xiaojie Su, Chenguang Yang, Kai Huang, and
Alois Knoll. Language-conditioned imitation learning with base skill priors under unstructured
data. ICML, 2024. 7, 8

14

[71] Kevin Black, Mitsuhiko Nakamoto, Pranav Atreya, Homer Walke, Chelsea Finn, Aviral Kumar,
and Sergey Levine. Zero-shot robotic manipulation with pretrained image-editing diffusion
models. ICLR, 2024. 7, 8

[72] Tim Brooks, Aleksander Holynski, and Alexei A Efros. Instructpix2pix: Learning to follow
image editing instructions. In CVPR, 2023. 7

[73] Edwin Zhang, Yujie Lu, William Wang, and Amy Zhang. Language control diffusion: Efficiently
scaling through space, time, and tasks. arXiv preprint arXiv:2210.15629, 2022. 8

[74] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016. 16

[75] Yang Yue, Rui Lu, Bingyi Kang, Shiji Song, and Gao Huang. Understanding, predicting and
better resolving q-value divergence in offline-rl. Advances in Neural Information Processing
Systems, 36, 2024. 16

[76] MosaicML NLP Team. Introducing mpt-7b: A new standard for open-source, commercially
usable llms, 2023. Accessed: 2023-05-05. 16

15

A Implementation Details

We developed DeeR based on our reproduced RoboFlamingo++ codebase, maintaining all hyper-
parameters for a fair comparison, except for the number of LLM layers and our proposed dynamic
early-exit paradigm. Below, we detail the implementations of RoboFlamingo++ and DeeR.

A.1 Network Architecture

For the MLLM, we utilize the pretrained model OpenFlamingo, which includes a frozen LLM and
vision encoder. The vision-language fusion modules, specifically a perceiver sampler and cross-
attention, are trained using the web-scraped image-text datasets LAION-2B and Multimodal C4.
The architecture specifics are outlined in Table 7. For the action head, which integrates temporal
information for action prediction, we employ a 4-layer LSTM to process temporal information and a
3-layer MLP for predicting actions. To mitigate overfitting, we implement dropout for the LSTM and
MLP. Additionally, LayerNorm [74, 75] is applied prior to activation functions.

We configured exit points after every two self-attention layers in all MLLM models. To conserve
training resources, we employed a subset of the OpenFlamingo model as our backbone. Specifically,
for OpenFlamingo3B (which has 24 LLM layers) and OpenFlamingo9B (which has 32 LLM layers),
we used only the first 12 layers for DeeR multiexit architecture, resulting in 6 exit points. For
RoboFlamingo++, we utilize 6/12/24 LLM layers from OpenFlamingo3B and 8/16/32 LLM layers
from OpenFlamingo9B to create a range of model sizes for comparing budget versus performance
curve with DeeR.

Table 7: Architecture details of the OpenFlamingo models. ‘xattn interval’ means cross-attention interval.

Model Lanugage Model VIsion Encoder # LLM Layers xattn interval

OpenFlamingo 3B MPT-1B (Instruct) [76] CLIP ViT-L/14 428M 24 1
OpenFlamingo 9B MPT-7B [76] CLIP ViT-L/14 428M 32 4

A.2 Inference Details

After training, we obtain a multiexit model. During inference, the model remains fixed, but the
computational cost of DeeR can be adjusted dynamically based on computational constraints, without
modifying the multiexit model. For the 12-layer multiexit model built on top of OpenFlamingo
3B, each LLM layer consumes approximately 0.5GB of memory and requires 1.3G FLOPs during
inference (with a batch size of 1, excluding the vision encoder). Given a GPU memory limit of
6GB and a maximum of 15.6G FLOPs, DeeR-B loads all 12 LLM layers, offering 6 exit points. For
more resource-constrained scenarios, DeeR-S loads only the first 4 LLM layers, with 2 exit points.
For the OpenFlamingo 9B model, each LLM layer consumes approximately 1.0GB of memory and
requires 2.85G FLOPs. DeeR-B loads 12 LLM layers with 6 exit points, requiring about 12GB of
GPU memory, while DeeR-S loads 8 LLM layers with 4 exit points, using around 8GB of memory.
Crucially, users have the flexibility to define custom inference-time models beyond DeeR-S and
DeeR-B by selecting the number of LLM layers to load, based on memory or FLOPs constraints.

After determining the number of LLM layers and exit points, the average FLOPs per action can be
further dynamically adjusted by adjusting the exit thresholds based on the criteria in Equation (5)
or Equation (6). We compute the thresholds using the validation set from environment D. However,
we found that thresholds computed using just 1% of the training set achieve similar performance,
demonstrating that these thresholds effectively generalize and are robust enough.

A.3 Training Details

For both RoboFlamingo++ and the multiexit model for DeeR, we employ a two-phase training
schedule. Initially, we jointly train the trainable components of the MLLM (the perceiver sampler
and cross-attention layers) alongside the action head. Since the backbone MLLM is pretrained and
converges more rapidly, we later freeze the MLLM and finetune only the action head, which we refer
to as post-training for the action head. Our experiments indicate that this additional finetuning step
for the action head results in slightly better performance. The hyperparameters used during training
are detailed in Table 8. Note that the dropout rates for LSTM and MLP are 0.3 and 0.4, respectively,

16

except during post-training for ABCD→D, where slightly higher values of 0.4 and 0.5 are used. We
report the results based on the final epoch’s checkpoint, rather than selecting the best-performing
checkpoint.

Table 8: Training hyper-parameters for setting D→D/ABC→D/ABCD→D.

Hyper-parameters Values

batch size 4*8
optimizer AdamW

MLLM learning rate 1e-4
action head learning rate 2.5e-5
learninrg rate schedule constant

warmup steps 2500
LSTM dropout 0.3
MLP dropout 0.4

jointly-train epochs 4 / 4 / 3
post-train epochs 4 / 1 / 1

λ 0.01
LSTM window size 12

A.4 Training Cost

We leverage PyTorch’s Automatic Mixed Precision (AMP) acceleration to optimize training efficiency.
For DeeR using the OpenFlamingo 3B model, training is conducted on 8 NVIDIA V100 32G GPUs,
taking approximately 14 hours for 4+4 epochs on Dataset D, 24 hours for 4+1 epochs on Dataset
ABC, and 25 hours for 3+1 epochs on Dataset ABCD. When scaling DeeR to the OpenFlamingo 9B,
the model is trained on 8 NVIDIA A100 80G GPUs. The training for 4+4 epochs on Dataset D takes
around 24 hours. Multi-node parallel training support is included in the code, offering faster training.

B More Experimental Results

B.1 Quantative Results

The successful rate for the 1st to 5th tasks in a task chain is shown in Table 9, Table 10, and Table 11.

B.2 Rollout Visualization

In Figure 6, we present a rollout visualization of DeeR successfully completing all five consecutive
subtasks in a task chain.

Table 9: Detailed results in the setting D→D.

Method Only RGB
Input Data No. Instructions in a Row (1000 chains)

1 2 3 4 5 Avg. len (LLM GFLOPs)

HULC ✓ ALL 82.7% 64.9% 50.4% 38.5% 28.3% 2.64
SPIL ✓ ALL 84.6% 65.1% 50.8% 38.0% 28.6% 2.67

RoboFlamingo ✓ LANG 83.9% 64.3% 42.9% 35.7% 19.6% 2.46 (31.2)

RoboFlamingo++ ✓ LANG 87.1% 69.6% 49.6% 37.1% 27.2% 2.71 (31.2)

DeeR (ours) ✓ LANG 85.3% 69.6% 54.9% 42.0% 31.2% 2.83 (8.6)

DeeR w. online (ours) ✓ LANG 89.7% 70.5% 51.8% 44.2% 35.3% 2.92 (8.5)

C Broader Impacts

The potential negative societal impacts of our method align with those typically associated with
general robotic technologies. We emphasize the importance of adhering to fair and safe deployment
principles in robotic systems.

17

Table 10: Detailed results in the setting ABCD→D.

Method Only RGB
Input Data No. Instructions in a Row (1000 chains)

1 2 3 4 5 Avg. len (LLM GFLOPs)

GR-1 ✗ LANG 94.9% 89.6% 84.4% 78.9% 73.10% 4.21

HULC ✓ ALL 88.9% 73.3% 58.7% 47.5% 38.3% 3.06
RT-1 ✓ LANG 84.4% 61.7% 43.8% 32.3% 22.7% 2.45

RoboFlamingo ✓ LANG 96.4% 89.6% 82.4% 74.0% 66.0% 4.08 (31.2)

RoboFlamingo++ ✓ LANG 98.2% 87.5% 81.8% 73.2% 65.5% 4.07 (31.2)

DeeR (ours) ✓ LANG 98.2% 90.2% 82.1% 75.9% 67.0% 4.13 (10.0)

DeeR w. online (ours) ✓ LANG 99.1% 93.3% 82.1% 74.6% 63.8% 4.13 (9.7)

Table 11: Detailed results in the setting ABC→D.

Method Only RGB
Input Data No. Instructions in a Row (1000 chains)

1 2 3 4 5 Avg. len (LLM GFLOPs)

GR-1 ✗ LANG 85.4% 71.2% 59.6% 49.7% 40.1% 3.06

HULC ✓ ALL 41.8% 16.5% 5.7% 1.9% 1.1% 0.67
RT-1 ✓ LANG 53.3% 22.2% 9.4% 3.8% 1.3% 0.9
SPIL ✓ ALL 74.2% 46.3% 27.6% 14.7% 8.0% 1.71

SuSIE ✓ ALL 87.0% 69.0% 49.0% 38.0% 26.0% 2.69
RoboFlamingo ✓ LANG 82.4% 61.9% 46.6% 33.1% 23.5% 2.47 (31.2)

RoboFlamingo++ ✓ LANG 85.9% 67.4% 48.7% 31.7% 25.0% 2.59 (31.2)

DeeR (ours) ✓ LANG 86.2% 70.1% 51.8% 41.5% 30.4% 2.82 (12.5)

DeeR w. online (ours) ✓ LANG 84.8% 72.3% 54.9% 44.6% 33.5% 2.90 (9.5)

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations of the work in the section of conclusion and
limitation.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

18

Instruction1: take	the	blue	block	and	rotate	it	to	the	right

Instruction2:	push	the	sliding	door	to	the	right	side

Instruction3: lift	the	red	block	from	the	sliding	cabinet

Instruction4:	store	the	grasped	block	in	the	sliding	cabinet

Instruction5:	use	the	switch	to	turn	off	the	light	bulb

Figure 6: Visualization of DeeR rollouts of five subtasks in a task chain.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-

19

tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This paper does not involves theoretical result.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide detailed information about experiments in the appendix and provide
the source code that can reproduce reported results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

20

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will release of code and data.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify all the training and test details in the main text, appendix, and
source code.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We repeated experiments with several runnings and found error bar is relatively
small.

Guidelines:

21

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provided sufficient information on the computer resources in the main text
and appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: the research conducted in the paper conformed, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]

22

https://neurips.cc/public/EthicsGuidelines

Justification: discuss both potential positive societal impacts and negative societal impacts
of the work in the appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: We describe safeguards for responsible release of models in the social impacts
section.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We properly credited the creators or original owners of assets (e.g., code, data,
models), used in the paper and conformed the license and terms.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.

23

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We communicated the details of the dataset/code/model as part of their
submission.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve study participants.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve study participants.
Guidelines:

24

paperswithcode.com/datasets

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

25

	Introduction
	Related Works
	Dynamic Early-Exit for Robotic MLLM
	Multi-exit Architecture for Robot
	Adaptive Inference
	Training Algorithm

	Experiments
	Main Results
	Ablation Study
	Visualization

	Conclusion and Limitations
	Acknowledgement
	Implementation Details
	Network Architecture
	Inference Details
	Training Details
	Training Cost

	More Experimental Results
	Quantative Results
	Rollout Visualization

	Broader Impacts

