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ABSTRACT

Semi-supervised anomaly detection plays a key role in diverse fields such as pro-
cess monitoring, healthcare, and finance. However, lightweight methods often
struggle with high-dimensional data and typically require careful tuning of mul-
tiple hyperparameters. Among existing approaches, Christoffel Function–based
methods are attractive due to their simplicity, requiring at most a single hyper-
parameter. They also benefit from a well-established theoretical foundation that
yields several interesting results for data science. Their main limitation, how-
ever, is poor scalability to high-dimensional settings. In this paper, we introduce
CLOE, a new method that combines an autoencoder for dimensionality reduc-
tion with a Christoffel Function–based detector applied in the latent space. To
better align representation learning with anomaly detection, we design a novel
loss function that leverages the Christoffel Function to guide the autoencoder to-
ward representations that better capture the support of the normal data distribu-
tion. We further propose a principled procedure to set the detection threshold and
an efficient strategy to tune the single remaining hyperparameter. Experiments
on multiple high-dimensional anomaly detection benchmarks demonstrate that
CLOE achieves superior performance compared to existing methods, while pre-
serving the lightweight and low-tuning advantages of Christoffel Function–based
approaches.

1 INTRODUCTION

The growth in sensor deployment for monitoring activities in health, industry, and other domains is
creating substantial amounts of high-dimensional data. A crucial application is anomaly detection
(AD), i.e., identifying abnormal or rare events, known as outliers. In semi-supervised learning, AD
methods are trained using samples known to be normal (inliers). These methods estimate the distri-
bution of the data and compute a score for each test sample. To detect outliers, the score is compared
to a threshold provided by the method (Platt et al., 2001). However, most classical AD methods are
challenged by the curse of dimensionality and do not consider the full complexity of data. The
time complexity to estimate a distribution is very high, not always suitable for non linear settings,
and cross-variable dependencies are not taken into account (Samariya & Thakkar, 2023) and (Pang
et al., 2021). Among the various methods, those based on the Christoffel Function (CF) have drawn
our attention (Ducharlet et al., 2024). Rooted in approximation theory and orthogonal polynomials,
the CF is grounded in a rigorous algebraic framework that addresses key requirements of data sci-
ence (Lasserre et al., 2022), particularly the need to be free from hyperparameter tuning (Ducharlet
et al., 2024).

Deep learning offers a solution to handle high-dimensional data. A neural network can reduce the
dimensionality of the data while considering cross-variable dependencies. Autoencoders (AE), a
class of neural networks, consist of an encoder and a decoder that are trained to reconstruct the
input data while reducing the data dimensionality in the latent space in a nonlinear way (Wang et al.,
2016). The encoder hence encodes data in a low-dimensional space so that a classical AD method
can be used to detect outliers using the latent space. However, the learned representations may not
optimally capture the support of the normal data for anomaly detection. To address this, the training
of the autoencoder can be guided by the anomaly detection method, ensuring that the latent space
provides more informative and discriminative representations. This principle is known as coupled
or joint training (Huang et al., 2025).
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In this paper, we propose CLOE (Christoffel LOss for autoEncoder), an efficient approach for high-
dimensional tabular anomaly detection in a one-class classification setting, i.e., only normal samples
are available during training. In CLOE, an AE reduces data dimensionality, and its latent space is
regularized using the empirical Christoffel Function (CF) (Lasserre & Pauwels, 2019), a concept
from approximation theory. By introducing CF-based loss, that is differentiable, during training,
CLOE learns representations tailored for defining compact normal data supports, enabling robust
outlier detection by the subsequent CF-based anomaly detection method applied to the latent space.
Moreover, a particular advantage of the CF method is that it only requires one hyperparameter to be
set. CLOE is computationally lightweight and designed to operate on CPUs, which is well-suited
for resource-constrained environments. This method has been developed in an industry context and
will be trained in a lot of different high-dimensional datasets. It requires the less computational
resources possible to be trained and inferred.

The main contributions of this paper are summarized as follows:

• We introduce the new method CLOE, which performs effective representation learning
in a lower-dimensional latent space guided by the empirical CF for tabular data, using a
lightweight computational approach that does not require GPU acceleration;

• We propose a process for selecting the single hyperparameter of the model, eliminating the
need for extensive hyperparameter tuning;

• We conduct comprehensive experiments on 15 high-dimensional tabular datasets from the
ADBench benchmark.

2 RELATED WORK

AD methods can be classified into two different types: classical and the deep learning AD methods.

A classic way to detect outliers in a cloud of points is to estimate density, like Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) (Ester et al., 1996), Kernel Density Estimation
(KDE) (Parzen, 1962), Histogram-Based Outlier Score (HBOS) (Goldstein & Dengel, 2012), or
Empirical Cumulative Distribution for Outlier Detection (ECOD) (Li et al., 2022). After density
estimation, data points within low density regions are considered outliers. Another approach is to
compute the distribution support used to define the boundary of normal data like One-Class Support
Vector Machine (OC-SVM) (Schölkopf et al., 1999), Support Vector Data Description (SVDD) (Tax
& Duin, 2004), and the empirical CF (Lasserre & Pauwels, 2019). After support computation, data
points lying outside the support are then considered as outliers. A simpler method can be to compute
the distance between the k-nearest neighbors (kNN) (Ramaswamy et al., 2000) of each sample and
consider those with largest distances as outliers. However, these classical AD methods do not scale
well with high-dimensional data. For example, the computation time can become prohibitively high
for the empirical CF (Ducharlet et al., 2024), or interdependencies between dimensions are lost in
HBOS and ECOD (Han et al., 2022).

To address these challenges, deep neural network (DNN) AD methods have been developed. Most
of these approaches are semi-supervised, trained only on normal samples. The DNN is trained to
reconstruct the input sample and the outlier score is computed as the difference between the input
and the reconstructed output. RCA (Liu et al., 2021) considers many AEs and uses the k samples
with the lowest reconstructed scores of an AE to train the other AEs. MCM (Yin et al., 2024) trains
a generator to mask inputs and trains an AE to reconstruct the masked inputs. These methods can
be more complex and train a neural network to reduce data dimensionality and then feed reduced
data into a classical AD method to identify the outliers. DeepSVDD (Ruff et al., 2018) extends
the SVDD method by learning useful data representations and optimizing the SVDD objective.
Latent Anomaly Detection through Density Matrices (LADDM) (Gallego-Mejia et al., 2024) builds
a density matrix with the encoded data transformed into a Hilbert space. Adaptations of Deep-
Clustering (DEC) (Xie et al., 2016) have led to deep clustering-based anomaly detection methods:
the AE is first pretrained with the reconstruction error, and training then continues with a clustering-
based loss. DEC proposes a k-means-based loss (Xie et al., 2016) while Deep-Clustering Compact
(DCC) (Arellano-Espitia et al., 2021) utilizes an OC-SVM-based loss. These methods construct new
representations of the data points and then fed into a classical AD method. However, these newly
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learned representations may lose information relevant for AD, making the classical AD method less
effective (Pang et al., 2021).

A solution is joint training, where the autoencoder is trained with a loss that combines the recon-
struction error and a loss term from the downstream classical AD method. This approach guides
representation learning and improves AD performance. The Deep Clustering Hierarchical AutoEn-
coder (DCVAE) and Deep Nested Clustering AutoEncoder (DNCAE) (Nguyen et al., 2024) extend
deep-clustering methods by using either a double autoencoder or different layers of the same au-
toencoder to produce multiple representations of the data. These representations are used to com-
pute a k-means clustering-based loss summed with the reconstruction error. The Deep Autoencoder
Gaussian Mixture Model (DAGMM) (Zong et al., 2018) combines the reconstruction error of the
autoencoder with the latent space representation to feed a neural network that outputs the mixture
membership predictions for each data point. The parameters of the GMM are then estimated, and
each sample’s energy is computed. The model is jointly trained by optimizing the reconstruction er-
ror and the sample energy. OCSVM-Guided representation learning (Og) (Pinon & Lartizien, 2025)
trains an autoencoder with a loss that combines the reconstruction error and an OC-SVM-based loss.
However, such losses are not always differentiable, as in Og, so training the model with backprop-
agation can assign arbitrary gradient values at the non-differentiable points of the losses (Paszke
et al., 2019). Finally, Decomposed Representation Learning (DRL) (Ye et al., 2025) proposes a low-
dimensional data representation where the representations of each normal sample are decomposed
into a weighted linear combination of randomly generated orthogonal basis vectors.

The central idea of this paper is to use a CF-based method as the downstream AD method because
it offers theoretical proofs for support estimation and outlier detection. However, this method does
not scale to high dimensional data. A deep neural network is used to reduce high-dimensional data,
with a joint training guided by the CF, to propose data representations adjusted for the CF-based
anomaly detection.

3 BACKGROUND

The CF is a well-known concept in approximation theory. Recent studies (Lasserre & Pauwels,
2019) and, (Lasserre et al., 2022) propose to adapt it to data analysis as a means to estimate the
support of a distribution, which may be highly nonlinear. This section resumes some important
definitions about the CF and its empirical counterpart from Lasserre & Pauwels (2019) and Lasserre
et al. (2022).

3.1 PRESENTATION OF THE CHRISTOFFEL FUNCTION

Let Ω ⊂ Rd be a compact set with non-empty interior. Let µ be a finite Borel measure supported
on Ω. µ is absolutely continuous w.r.t. Lebesgue measure on Ω, a set with non-empty interior and
positive density. Let vn(x) := (Pα)α∈Nd be the monomial basis of the vector space of R[x] of all
the monomials of degree less than or equal to n graded in the lexicographic order1. The size of the
vector vn(x), denoted as sd(n), is equal to

(
d+n
n

)
.

Definition 3.1 (The Christoffel Function) The Christoffel Function (CF) of degree n ∈ N associ-
ated with the measure µ, denoted by Λµ

n(x), is defined as

Λµ
n(x) = min

P∈Rn[x]

{∫
Ω

P 2(z) dµ(z), P (x) = 1

}
(1)

Let Mn(µ) be the moment matrix of Ω. Mn(µ) is a real symmetric matrix, Mn(µ) can be written
as

Mn(µ) =

∫
Rd

vn(x)vn(x)
T dµ(x) (2)

Mn(µ) is positive definite and is non-singular for all n .

1lexicographic order: monomial are first sorted by degree and then using lexicographic order on variables
considering X1 = a, X2 = b, etc.
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For our study, we will consider the inverse of the CF. Let us introduce the Christoffel-Darboux
kernel Kµ

n associated with µ. Given any basis of RN [x], orthonormal with respect to the inner
product induced by Mn(µ), (pi)

sd(n)
i=1 , Kµ

n is defined as:

(x, y) 7→ Kµ
n(x, y) :=

sd(n)∑
i=1

pi(x)pi(y). (3)

This kernel can also be computed from the moment matrix:

(x, y) 7→ Kµ
n(x, y) := vn(x)

TMn(µ)
−1vn(y). (4)

Let the polynomial Qµ,n be defined by

Qµ,n(x) = Kµ
n(x, x) = vn(x)

TMn(µ)
−1vn(x), x ∈ Rd. (5)

Qµ,n is a sum-of-squares polynomial of degree 2n, it is differentiable on Rd. Pauwels & Lasserre
(2016) showed that Qµ,n has higher value for data points which are isolated from the other points.
Lemma 4.3.1 (Lasserre et al., 2022) quantifies the exponential growth with n for data points outside
the support. Lemma 4.3.2 (Lasserre et al., 2022) quantifies the polynomial growth with n for data
points inside the support. The inverse of the CF is

Λµ
n(x)

−1 := Qµ,n(x),∀x ∈ Rd. (6)

3.2 THE EMPIRICAL CHRISTOFFEL FUNCTION FOR DATA ANALYSIS

Let X ⊂ RD be a finite set of data of size N , D > d. Let Xe ⊂ Rd be the encoded version of X in
the d dimension space. We consider the discrete measure µN whose support is Xe sampled from a
theoretical measure µ supported on Ω. The empirical version of the moment matrix can be written
as

Mn(µN ) =
1

N

∑
z∈Xe

vn(z)vn(z)
T . (7)

To guarantee the invertibility of the matrix Mn(µN ), the size of Xe must be greater than sd(n)
according to Lasserre et al. (2022), Corollary 6.3.5. Under the condition |Xe| = N > sd(n), the
inverse of the empirical CF is defined as:

ΛµN
n (z)−1 := vn(z)

TMn(µN )−1vn(z), z ∈ Xe. (8)

3.3 THRESHOLDING WITH THE EMPIRICAL CHRISTOFFEL FUNCTION

Outlier detection via the CF requires a thresholding policy. The CF is known to have theoretical
properties in the analysis of discrete data to define level sets that capture quite accurately the ge-
ometric shape of the support (Lasserre et al., 2022). Lasserre et al. (2022) consider a problem in
R2 in Chapter 7 and propose to fix the constant nN related to this problem introduced by Vu et al.
(2022) to nN := ⌊2N1/4⌋. Then the empirical CF is evaluated at each point and the smallest value
is chosen as threshold. This smallest value corresponds to the closest level set of the support of the
normal distribution.

Ducharlet et al. (2024) propose a method, named DyCF, to detect outliers in data streams. The
approach uses the Sherman-Morrison formula (Sherman & Morrison, 1950) to update the moment
matrix for each new data point, avoiding the need to recompute its inverse at every step. The DyCF
method requires only a single hyperparameter: the polynomial degree n. A scoring function is then
defined as:

Sn,d(x) =
ΛµN
n (x)−1

γn,d
, (9)

where γn,d = Cn3d/2. A point x is detected as an outlier if Sn,d ≥ 1.

A second method, named DyCG, proposes a solution free of hyperparameter tuning, that leverages
the growth property of the CF. In DyCG, the scoring function is derived from the DyCF computation
for n = 2 and n = 6.

All the above thresholding scheme are performed on a low-dimensional dataset.

4
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4 THE CLOE METHOD

Figure 1: (a) Graphical representation of the joint training step of CLOE. The autoencoder, fθe
and fθd , is trained with normal data (green samples in the figure) to minimize the reconstruction
error regularized by the inverse of the empirical CF computed on the latent space. The support of
the latent space distribution is estimated with the empirical CF for all data points. (b) Graphical
representation of the outlier detection step. Data points outside the support (in red) have CF values
that increase exponentially with the hyperparameter n, much higher than the threshold γ, they are
labeled as outliers.

CLOE (“Christoffel LOss for autoEncoder”) is proposed as a method to utilize the inverse of the
CF to detect outliers in high-dimensional datasets. CLOE jointly learns a new representation of the
dataset in a low-dimensional space with an AE, regularized using the empirical CF in latent space.
The proposed method has four different steps. The first three steps are dedicated to the training steps,
their pseudo-algorithms are detailed in Appendix 7, Algorithm 1. The last step corresponds to the
inference or anomaly detection step, its pseudo-algorithm is detailed in Appendix 7, Algorithm 2.

Let Xtrain be the training set, Xvalid be the validation set, and Xtest be the testing set. The training
and validation sets contain only normal samples (in green on Figure 1). Let fθe : X ⊂ RD →
Xe ⊂ Rd and fθd : Xe → RD be the encoder and the decoder neural networks, where θe and θd are
learnable parameters. Let Xetrain = fθe(Xtrain) be the encoded training set, Xevalid

= fθe(Xvalid)
be the encoded validation set, and Xetest = fθe(Xtest) be the encoded testing set.

The AE training is divided into two parts, corresponding to the first two parts of the three training
steps. Then the final training step corresponds to the support computation with the whole encoded
training dataset and the definition of a threshold.

Training part 1: pretraining. The AE is trained only for reconstruction to initialize the network
weights. The loss function is the Mean Square Error (MSE):

MSE :
1

N

N∑
j=1

∥xj − fθd (fθe (xj))∥22 =
1

N

N∑
j=1

∥∥xj − x′
j

∥∥2
2
. (10)

Training part 2: joint training. The joint training step of the model is illustrated in Figure 1 (a).
The training of the AE is completed with a regularized loss that combines the reconstruction loss

5
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with an empirical CF-based loss:

Loss :
1

N

N∑
j=1

(
∥xj − fθd (fθe (xj))∥22 + λ× ΛµN

n (fθe (xj))
−1

)
(11)

=
1

N

N∑
j=1

(∥∥xj − x′
j

∥∥2
2
+ λ× ΛµN

n (zj)
−1

)
, (12)

where λ is a dynamic regularization term that controls the strength of the Christoffel loss term. λ
is computed at each epoch as the quotient of the gradient norm of the MSE loss and the gradient
norm of the CF loss when this latter gradient is non-zero. The support of the training dataset is
computed using 80% of each batch training dataset, denoted Xetrain

. To obtain a good estimation
of the support, the number of data points to compute the support must be at least sd(n) (Lasserre
et al., 2022). After the support estimation, the CF is computed for all the training data and the mean
of these values is utilized in the loss. As only normal data are used for the training, the value of the
CF on those data should be close to 0. Adding this Christoffel-guided loss to the main loss of the
AE and minimizing it helps the AE to learn representations more suitable for support estimation.

To have lower computational complexity and more stability, the Cholesky inversion method is used
to invert the moment matrix. This matrix is positive definite, with the condition on n and the size
defined for the batch, singularity of this matrix does not need to be checked before inversion. To
avoid instability during this inversion due to large values in the Xe, data are normalized between
[−1, 1]d at the end of the encoder, Xe ⊆ [−1, 1]d.

Process to choose the hyperparameter n. A validation step is performed at the end of each epoch.
The support of the distribution is computed with all the training data, then the CF value of each
sample of the validation set is computed. The mean of all the CF values of the validation set is used
to compute the validation loss adding to the reconstruction loss. This validation loss is monitored
after the first five epochs, and the value of n is validated if the validation loss decreased during
training for the following epochs. If the loss does not decrease, the value of n should be changed to
n− 1.

Training part 3: Final support computing and threshold estimation. The last step of the training
step is to encode the full training set. Then, the support of the CF is computed. A new nsupport ≥ n
is chosen according to the condition that snsupport(d) < |Xetrain |. Then the threshold is set as:

γn = max{ΛµN
nsupport

(z)−1, z ∈ Xetrain
} (13)

Inference / anomaly detection. Figure 1 (b) proposes a graphical representation of this step. For
a new test sample xtest, compute its latent representation ztest = fθe(xtest) and Christoffel value
ΛµN
nsupport

(ztest)
−1. If ΛµN

nsupport
(ztest)

−1 ≤ γn, then xtest is an inlier; otherwise, xtest is an outlier.

5 EXPERIMENTS

5.1 DATASETS

To evaluate the CLOE method, we use several datasets from ADBench (Han et al., 2022). This
benchmark provides a diverse collection of datasets for anomaly detection with distinctive features.
As our focus is on high dimensional data and not only images, we selected 15 datasets, each with 9
or more dimensions. The number of data points per dataset varies between 80 and 299285. Detailed
characteristics of the selected datasets are presented in Appendix B, Table 6.

For each dataset, outliers are utilized exclusively during the testing step. The inlier dataset is split
into a training (70%), validation (20%) and testing (10%) set. To compare our results to different
baseline methods, we fix a random seed to produce identical splits across experiments.

5.2 BASELINE METHODS

Our method is compared to DAGMM (Zong et al., 2018), Og coupled version (Pinon & Lartizien,
2025), DRL (Ye et al., 2025), RCA (Liu et al., 2021), MCM (Yin et al., 2024), OC-SVM (Schölkopf
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et al., 1999), iForest (Liu et al., 2008), ECOD (Li et al., 2022), DeepSVDD (Ruff et al., 2018),
kNN (Ramaswamy et al., 2000) and KDE (Parzen, 1962). For DAGMM, we use the implemen-
tation proposed by Han et al. (2022). For Og, we use the implementation proposed in Pinon &
Lartizien (2025) with PyTorch for their experiment number one. The implementation of the AE is
modified with linear layers instead of two-dimensional convolutional layers. Models are trained for
400 epochs. For DRL, we use the implementation proposed by Ye et al. (2025). For RCA, we use
the implementation proposed by Liu et al. (2021). For MCM, we use the implementation proposed
by Yin et al. (2024). Then, for the last six models, we use the PyOD implementations (Zhao et al.,
2019). The hyperparameters of all baselines are set according to the corresponding original papers,
Appendix E Table 9 summarizes the hyperparameters for all the baseline methods.

DRL (Ye et al., 2025) is a state-of-the-art method for AD in high-dimensional tabular data. Unlike
AE-based approaches, it constructs a new representation for the data using a feature extractor and
uses a reconstruction loss to determine if the sample is an outlier.

MCM (Yin et al., 2024) learns intrinsic correlation in normal data, training a generator to mask the
input sample. Then using an AE, it learns to reconstruct the input sample from the masked input
sample. The model is trained with a reconstruction loss for the AE and with a diversity loss that
encourages the generator to create masks that focus on diverse correlations existing in normal data.

RCA (Liu et al., 2021) is an AE-based approach to learn a reconstruction error. Many AEs trained
with mini-batch are considered. For each mini-batch, the samples with the lowest reconstruction
error in an AE are selected and used in the back-propagation step of the other AEs. Then the means
of reconstructed errors of all the AEs are considered to determine if a sample is an outlier.

DAGMM (Zong et al., 2018) and Og (Pinon & Lartizien, 2025) are the methods most similar to
CLOE. However, DAGMM uses a neural network to predict the sample mixture membership. The
model is an adaptation of the mixture model. It differs from CLOE, which directly applies AD
methods instead of adapting them.

Og (Pinon & Lartizien, 2025) does not consider a minimal value for the batch size to ensure a correct
estimation of the support. Moreover, its non-differentiable loss can lead to gradient approximation
issues during backpropagation. The main difference between Og and CLOE is that Og relies on
OC-SVM to detect outliers from the support, whereas CLOE uses the empirical CF.

DeepSVDD (Ruff et al., 2018) is also a method with a deep neural network, similar to CLOE.
However, the AE and the AD model are trained separately. The representations of the data may not
be well-suited for SVDD.

OC-SCM (Schölkopf et al., 1999), iForest (Liu et al., 2008), ECOD (Li et al., 2022), kNN (Ra-
maswamy et al., 2000) and KDE (Parzen, 1962) are classical AD methods that do not rely on deep
neural networks. They are computationally efficient but may struggle to achieve high performance
on high-dimensional datasets.

5.3 EVALUATION METRICS

We evaluate our results using Area Under the Receiver Operating Characteristic curve (AU-ROC)
and Average Precision Area Under Curve (AP AUC), the same metrics used in the ADBench paper
(Han et al., 2022) to compare the different methods. Both metrics are computed using the implemen-
tation provided by the scikit-learn Python package (Pedregosa et al., 2011). The AU-ROC metric
reflects the trade-off between true positive and false positive rates. AP AUC combines precision
and recall metrics. It is particularly informative for imbalanced data, which is the case with all the
datasets, as there are few outliers.

5.4 IMPLEMENTATION

CLOE is implemented with PyTorch2. As in Xie et al. (2016), the AE has 3 hidden layers of
dimensions 500, 500, and 2000, using ReLU activation functions. The latent space dimension is set
to d = 8, chosen according to the complexity of computing the moment matrix of the training set
with 2 ≤ n ≤ 7. A dropout rate of 20% is applied for the pretraining step and no dropout is used

2The code source is available in: the joint zip file
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for the joint training step according to the configuration proposed in Xie et al. (2016). At the end of
the encoder, a batchnorm layer followed by a Hyperbolic Tangent (Tanh) activation layer is added to
ensure the encoded data lie within [−1; 1]. This condition is required to compute the moment matrix
and invert it using the Cholesky algorithm.

The pretraining phase is conducted for 10 epochs with an early stopping rule based on the value
of the validation loss. The joint training is conducted for 150 epochs with an early-stopping policy
of 10 epochs. The Adam optimizer is used with a learning rate of 1e − 4 for all datasets. All
experiments were conducted on a device with 8 CPUs and 32 GB RAM. The training and inference
times and the CPU memory required for training are detailed in Appendix C, Table 7.

The first two training steps are conducted in batches, with batch size set to sd(n), where n ∈ N
is chosen so that the batch size is smaller than the number of data points used to compute the
support in the training step: sn(d) < |Xetrain

| × 0.8. This ensures that at least one batch is large
enough to compute the support during the joint training step. In Appendix D, Table 8 details the
hyperparameter n for each dataset.

5.5 RESULTS

Table 1: AU-ROC for the different methods on the selected datasets

Dataset CLOE DAGMM Og DRL RCA MCM OC-SVM iForest ECOD Deep SVDD kNN KDE

ALOI 0.561 0.529 N/A 0.523 0.546 0.534 0.517 0.539 0.531 0.546 0.556 0.518
backdoor 0.944 0.619 N/A 0.927 0.855 0.891 0.865 0.750 0.846 0.553 0.938 0.915
breastw 0.994 N/A 0.367 0.990 0.995 0.995 0.997 0.994 0.994 0.988 0.995 0.998
campaign 0.610 0.603 N/A 0.745 0.689 0.686 0.689 0.721 0.772 0.710 0.725 0.699
cardio 0.979 0.527 N/A 0.915 0.954 0.913 0.957 0.951 0.946 0.953 0.933 0.977
census 0.629 0.605 N/A 0.664 0.605 0.624 0.553 0.611 0.659 0.702 0.661 0.662
fault 0.928 0.496 N/A 0.797 0.679 0.716 0.591 0.662 0.485 0.542 0.822 0.884
Hepatitis 0.938 0.589 0.625 0.702 0.754 0.555 0.855 0.816 0.786 0.789 0.639 0.855
InternetAds 0.878 N/A N/A 0.877 0.689 0.763 0.708 0.425 0.698 0.749 0.823 0.815
landsat 0.854 0.580 N/A 0.819 0.593 0.603 0.471 0.614 0.388 0.462 0.784 0.757
letter 0.943 0.391 N/A 0.762 0.757 0.501 0.977 0.639 0.579 0.523 0.917 0.980
mnist 0.750 0.615 N/A 0.974 0.892 0.936 0.789 0.860 0.768 0.834 0.937 0.920
musk 1.0 0.485 N/A 0.999 0.999 0.997 0.859 0.960 0.993 0.998 1.0 1.0
shuttle 0.998 0.991 N/A 0.994 0.992 0.992 0.997 0.996 0.993 0.994 0.995 0.997
speech 0.859 0.489 N/A 0.667 0.472 0.486 0.469 0.479 0.473 0.508 0.501 0.881
Mean 0.858 0.578 0.496 0.823 0.765 0.746 0.753 0.734 0.727 0.723 0.815 0.857
Rank 1 11 12 3 5 6 7 8 9 10 4 2

Table 2: AP AUC for the different methods on the selected datasets

Dataset CLOE DAGMM Og DRL RCA MCM OC-SVM iForest ECOD Deep SVDD kNN KDE

ALOI 0.044 0.041 N/A 0.038 0.023 0.042 0.041 0.033 0.032 0.037 0.049 0.042
backdoor 0.745 0.033 N/A 0.792 0.102 0.281 0.107 0.048 0.093 0.038 0.517 0.411
breastw 0.985 N/A 0.204 0.978 0.991 0.991 0.994 0.989 0.987 0.973 0.991 0.996
campaign 0.178 0.177 N/A 0.285 0.270 0.266 0.310 0.302 0.356 0.290 0.304 0.296
cardio 0.817 0.116 N/A 0.739 0.723 0.587 0.665 0.679 0.626 0.705 0.667 0.861
census 0.084 0.086 N/A 0.094 0.070 0.077 0.065 0.074 0.084 0.126 0.084 0.084
fault 0.828 0.365 N/A 0.700 0.494 0.588 0.458 0.495 0.337 0.419 0.668 0.825
Hepatitis 0.670 0.214 0.361 0.335 0.434 0.216 0.395 0.400 0.356 0.439 0.251 0.424
InternetAds 0.526 N/A N/A 0.668 0.501 0.596 0.578 0.155 0.552 0.495 0.692 0.747
landsat 0.739 0.267 N/A 0.637 0.246 0.272 0.199 0.273 0.172 0.195 0.473 0.499
letter 0.644 0.067 N/A 0.251 0.165 0.078 0.731 0.091 0.079 0.074 0.411 0.723
mnist 0.315 0.170 N/A 0.843 0.454 0.735 0.194 0.377 0.194 0.455 0.666 0.640
musk 0.999 0.048 N/A 0.990 0.982 0.978 0.104 0.472 0.855 0.941 0.999 0.999
shuttle 0.978 0.853 N/A 0.894 0.972 0.841 0.939 0.976 0.912 0.914 0.854 0.875
speech 0.068 0.016 N/A 0.044 0.019 0.024 0.019 0.079 0.020 0.017 0.020 0.118
Mean 0.575 0.189 0.283 0.553 0.429 0.438 0.387 0.363 0.377 0.408 0.510 0.569
Rank 1 12 11 3 6 5 8 10 9 7 4 2

Tables 1 and 2 show the results for the 15 selected datasets with the metric AU-ROC and AP AUC
for CLOE and its baselines. Experiments were repeated 5 times with different random seeds, and
the mean results are presented. The highest values are in bold and the second are underlined. Ap-
pendix J, Table 18, and Table 19 present the variances of the experiments. Entries marked as ’N/A’
indicate that the model could not be trained on the corresponding dataset.

Regarding the deep learning methods, DAGMM requires a matrix that is not always invertible, pre-
venting successful training on some datasets (marked as N/A in the tables). Training Og on datasets
with more than 100 samples requires GPU acceleration. For datasets larger than one thousand
samples, memory requirements exceed 30 GB, which is beyond our machine’s capacity, resulting
in additional ’N/A’ entries. DRL was trained with GPU acceleration using a 4-GPU device (15.3
GB memory per GPU), although it can also run on the same 8-CPU device as CLOE. Across the
test datasets, CLOE outperforms Og, DeepSVDD, RCA, MCM and DAGMM. Compared to DRL,
CLOE achieves better performance on 12 datasets for AU-ROC and 10 datasets for AP AUC. No-
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tably, no distance calculation is required to compute the anomaly score for CLOE, unlike DRL, and
only one hyperparameter is required to train the method, compared to five for DRL.

Regarding classical AD methods, CLOE outperforms in 9 datasets according to AU-ROC and in 6
according to AP AUC. CLOE is on average better than the other classical methods on all datasets for
both metrics. However, KDE and kNN obtain good performances on some datasets. As was shown
in Ducharlet et al. (2024), the visual analysis of the level sets produced by the CF-based AD method
and KDE shows that the level sets of the CF-based AD method are better fitted to data distribution.

5.6 ABLATION STUDIES

Table 3: AU-ROC for the ablation study

Dataset CLOE Without pretraining Without joint training Untrained AE

Mean 0.858(±0.021) 0.802(±0.032) 0.722(±0.018) 0.725(±0.026)

Table 4: AP AUC for the ablation study

Dataset CLOE Without pretraining Without joint training Untrained AE

Mean 0.575(±0.114) 0.504(±0.108) 0.369(±0.070) 0.394(±0.083)

To check the utility of each training step of the AE of our method, we performed an ablation study
using all datasets.

First, we removed the pretraining step. The weights of the AE are randomly initialized and the joint
training is performed until the validation loss stops improving. The joint training and the support
computation steps remain unchanged from the full method.

Second, we removed the joint training step. The AE is first trained for 10 epochs using only the
reconstruction loss (Equation 10). The CF support is then computed and the threshold defined in the
original method is used.

Then, (Ryu et al., 2024) raised a warning concerning good performance of untrained neural network.
To confirm the utility to train the AE in CLOE, an experiment with randomly initialized weights and
data encoded from the latent space of the untrained AE is conducted. The CF is trained with these
encoded data.

Results are presented in Tables 3 for the AU-ROC metric and 4 for AP AUC metric, detail results
for all the dataset are presented in Appendix G, Table 14 and Table 15. The study shows that
pretraining step and joint training are needed, as models without pretraining or without joint training
step underperform compared to CLOE. For datasets of dimension 9, the performance without the
joint training step is very close to CLOE performance. These results confirm that CLOE is designed
for high-dimensional tabular datasets. CLOE is recommended for dimensions higher than 10. For
lower dimensions, the recommendation is for CF-based AD method without AE (Ducharlet et al.,
2024). The untrained AE can obtain good performance on some datasets like shuttle or campaign. A
complete training strategy improves the mean AU-ROC and AP AUC scores by approximately 7%
to 16% and 12% to 36%, respectively. This highlights the importance of implementing the complete
training approach.

Finally, to confirm our thresholding scheme, an experiment has been conducted with different meth-
ods to determine the threshold, using the F1-score to compare the results (cf. Table 5). The results of
the ”Optimized” column are obtained with a threshold iteratively optimized on the F1-score. Those
of the ”Adjusted” column are obtained with a threshold adjusted on the outlier contamination ratio of
the test dataset. The ”CLOE” column reports the results with a threshold indicated by our method.
Finally, the other columns report the results for the thresholds set by quartiles of the training or
validation sets, specifically 50th (median), 75th, 90th, and 100th percentiles.
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Table 5: F1-score for different threshold

Dataset Optimized Adjusted CLOE 90th p train 75th p train 50th p train 100th p valid 90th p valid 75th p valid 50th p valid

ALOI 0.075 0.066 0.075 0.072 0.065 0.064 0.010 0.073 0.067 0.064
backdoor 0.413 0.334 0.262 0.233 0.138 0.083 0.411 0.241 0.147 0.083
breastw 0.949 0.941 0.937 0.880 0.793 0.670 0.222 0.950 0.871 0.710
campaign 0.248 0.194 0.231 0.245 0.236 0.223 0.008 0.186 0.233 0.246
cardio 0.681 0.681 0.432 0.377 0.315 0.25 0.390 0.690 0.636 0.553
census 0.170 0.098 0.119 0.143 0.157 0.167 0.007 0.125 0.155 0.167
fault 0.811 0.765 0.793 0.752 0.699 0.625 0.017 0.454 0.610 0.779
Hepatitis 0.720 0.692 0.565 0.520 0.448 0.388 0.133 0.571 0.440 0.667
InternetAds 0.632 0.522 0.621 0.562 0.500 0.418 0.016 0.393 0.496 0.549
landsat 0.741 0.708 0.732 0.652 0.562 0.461 0.178 0.585 0.688 0.728
letter 0.405 0.380 0.323 0.278 0.227 0.174 0.019 0.352 0.362 0.382
mnist 0.253 0.208 0.243 0.246 0.221 0.194 0.0 0.158 0.224 0.234
musk 1.0 1.0 0.951 0.381 0.206 0.115 0.979 0.421 0.207 0.114
shuttle 0.980 0.976 0.938 0.501 0.338 0.222 0.912 0.576 0.368 0.235
speech 0.107 0.032 0.107 0.087 0.068 0.049 0.0 0.044 0.068 0.096
Mean 0.546 0.506 0.488 0.395 0.332 0.380 0.220 0.349 0.385 0.374

On average across all datasets, the CLOE threshold achieves the best performance after the Adjusted
threshold. This study shows the robustness of CLOE to determine automatically the threshold.

6 CONCLUSION AND FUTURE WORKS

In this work, we propose CLOE, an empirical CF guided AE method, to detect outliers in high-
dimensional data. Importantly, CLOE requires tuning of only one single hyperparameter. One
limitation of CLOE is that it requires a reduced dimension of the latent space, set to 8 in this work,
due to the increasing size of the moment matrix to invert. The experiments show that CLOE obtains
outstanding results for most of the dataset. For the highest dimensional dataset, CLOE is the most
efficient AD method. In addition, CLOE comes with an automatic threshold scheme that provides a
robust way to detect outliers. Interestingly CLOE is designed to be trained without a GPU.

7 REPRODUCIBILITY STATEMENT

The code of the proposed methods is joined in a zip file, it will be available on GitLab after the
anonymous review step. All the tests conducted in this paper can be reproduced, with CLOE and
with the baseline methods. The READ ME file explains how to use the code.
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A ALGORITHM

Algorithm 1 Training of CLOE
Input: n, nsupport, Xtrain, Xvalid, epochpre, epochjoin

Output: Trained autoencoder fθe , trained CF ΛµN
n (.)−1, threshold γnsupport

d← dimension of the latent space
bs ≥

(
d+n
n

)
▷ Batch size

N ← |Xtrain| ▷ Size of the training set
Pretraining:
for each epochpre do

for every batch of training samples (xit)1≤i≤bs do
Compute the reconstruction of the sample: x′

it
= fθd(fθe(xit)),∀i ∈ [1, bs]

Compute the MSE loss (Equation 10)
Apply gradient step to fθe and fθd

end for
end for
Joint training:
for each epochjoin do

for every batch of training samples (xit)1≤i≤bs do
Compute the latent representation, zit = fθe(xit), ∀i ∈ [1, bs]
Compute the reconstruction of the latent space, x′

it
= fθd(zit), ∀i ∈ [1, bs]

Split the (zit)1≤i≤bs in 80% (z80it )1≤i≤0.8bs and 20% (z20it )1≤i≤0.2bs sets
Compute the support of the CF µ0.8bs with (z80it )1≤i≤0.8bs set
Compute the CF value (Λµ0.8bs

n (zit)
−1)1≤i≤bs for (zit)1≤i≤bs

Compute the loss (Equation 11) and apply gradient step to fθe and fθd
end for
Compute the latent representation of every training sample (zit)1≤i≤N , zit = fθe(xit),∀i ∈

[1, N ]
Compute the support of the CF µN with (zit)1≤i≤N

for each validation sample xv do
Compute the latent representation of xv , zv = fθe(xv)
Compute the reconstruction of latent representation of sample xv , x′

v = fθd(zv)
Compute the CF value of zv , ΛµN

n (zv)
−1

Compute the loss (Equation 11)
end for
Display the mean of all the validation loss

end for
if The validation does not decreased through the epochs then

Stop training
n←− n− 1
Start training again from pretraining step

end if
Final support computing and threshold estimation:
Compute the latent representation of each training sample (zit)1≤i≤N , zit = fθe(xit),∀i ∈ [1, N ]
Compute the support of the CF µN with (zit)1≤i≤N

Compute the CF value of each training sample (zt)1≤i≤N , (ΛµN
nsupport

(zit)
−1)1≤i≤N

γnsupport
← max1≤i≤N (ΛµN

nsupport
(zit)

−1)

return fθe , ΛµN
n (.)−1, γnsupport
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Algorithm 2 Inference and outlier detection with CLOE
Input: Trained autoencoder fθe , trained CF ΛµN

n (.)−1, threshold γnsupport
, test sample xtest

Output: 0 (inlier) or 1 (outlier)
Compute the CF value of each testing sample (ztest)1≤i≤N , (ΛµN

nsupport
(zit)

−1)1≤i≤N

if ΛµN
nsupport

(ztest)
−1 ≤ γnsupport

then
return 0 ▷ xtest is an inlier

else
return 1 ▷ xtest is an outlier

end if

B DATASETS DETAILS FOR THE EXPERIMENTS

Table 6: Details of the chosen datasets

Dataset Number data Number of Features % outlier Category

ALOI 49534 27 3.04 Image
backdoor 95329 196 2.44 Network
breastw 683 9 34.99 Healthcare
campaign 41188 62 11.27 Finance
cardio 1831 21 9.61 Healthcare
census 299285 500 6.2 Sociology
fault 1941 27 34.67 Physics
Hepatitis 80 19 16.25 Healthcare
InternetAds 1966 1555 18.72 Image
landsat 6435 36 20.71 Astronautics
letter 1600 32 6.25 Image
mnist 7603 100 9.21 Image
musk 3062 166 3.17 Chemistry
shuttle 49097 9 7.15 Astronautics
speech 3686 400 1.65 Linguistics

C MEMORY AND TIME FOR TRAINING AND INFERENCE ON A CPU

In this section, we provide for each dataset the training time of CLOE, the CPU memory usage, the
time needed to infer the whole dataset (Inference time), and the time needed to infer a single sample.

Table 7: Memory and time for training and inference on a CPU

Dataset Training time (s) CPU Memory for training (Mb) Inference time (s) Inference time for one sample (s)

ALOI 3213 1862 76 2e-5
backdoor 3075 2253 292 3e-3
breastw 158 828 4.7 6.8e-3
campaign 3216 1866 127 3e-3
cardio 731 1049 3.79 4.1e-3
census 2324 5229 921 3e-3
fault 514 1026 4.59 4.-3
Hepatitis 33 809 0.013 4e-3
InternetAds 549 1371 8.5 4e-3
landsat 3134 1207 124 1.9e-2
letter 660 1056 7.8 4e-3
mnist 3515 1232 167 2e-2
musk 1995 1171 14 4e-3
shuttle 2434 1911 162 3e-3
speech 720 1354 5.6 2e-3
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D TRAINING HYPERPARAMETERS FOR CLOE

In Table 8, the hyperparameter n is given for each dataset. The parameter nsupport is computed
according to the heuristic proposed by Vu et al. (2022) at Section 4.1.

Table 8: Training hyperparameters of CLOE for the different datasets

Dataset n (joint training step) Computed nsupport

ALOI 5 6
backdoor 5 6
breastw 4 5
campaign 5 6
cardio 4 5
census 5 5
fault 5 5
Hepatitis 2 2
InternetAds 4 5
landsat 4 6
letter 4 5
mnist 4 5
musk 4 5
shuttle 5 6
speech 4 6
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E DETAILS ABOUT HYPERPARAMETERS

Table 9: Hyperparameter values used for the baseline methods

Method Hyperparameters Values

Og

OC SVM coefficient 0.1
OC SVM ν coefficient 0.03
γ radial basis function coefficient scale
Learning rate 1e-3
Latent dimension 32
Epochs number 400

DAGMM

GMM number 5
Lambda cov 0.005
Learning rate 1e-4
Latent dimension 1
Epochs number 400

DRL

Diversity True
Plearn False
Input info ration 0.1
Cl ration 0.06
Basis vector num 5
Learning rate 0.05
Latent dimension 128
Epochs number 200

MCM

Mask number 15
λ 5
τ 0.1
Learning rate 0.05
Latent dimension 128
Epochs number 200

RCA

AEs number 2
Learning rate 3e-4
Latent dimension 256
Epochs number 200

OC-SVM
kernel radial basis function
ν coefficient 0.5
γ scale

iForest Estimators number 100
Maximum of features 1

Deep-SVDD

Deep SVDD center forward nn pass
Use AE False
Optimizer Adam
Hidden layer dimensions [64, 32]
Epochs number 100

kNN

Neighbor number 5
Method largest
Radius 1.0
Leaf size 30
Metric Minkowski
Parameter for Minkowski 2
Algorithm auto

KDE

Bandwidth 1.0
Algorithm Auto
Leaf size 30
Metric Minkowski
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F TEST PARAMETERS

In this section, we analyze the parameters of CLOE. Experiments were carried out on two datasets,
Hepatitis and letter. Several values were tested for the number of epochs used to pretrain the au-
toencoder (Tables 10 and 11) and for the learning rate (Tables 12 and 13). These tests validate the
parameter choices adopted for CLOE. The highest values are in bold.

Table 10: AU-ROC for different number of epochs to pretrain the autoencoder

Dataset 10 50 100 200 500

Hepatitis 0.938 0.927 0.902 0.925 0.931
letter 0.943 0.936 0.929 0.926 0.912

Table 11: AP AUC for different number of epochs to pretrain the autoencoder

Dataset 10 50 100 200 500

Hepatitis 0.670 0.608 0.492 0.611 0.648
letter 0.644 0.520 0.427 0.427 0.359

Table 12: AU-ROC for different learning rate values to train CLOE

Dataset 1e-2 1e-3 1e-4 1e-5

Hepatitis 0.912 0.920 0.938 0.891
letter 0.694 0.797 0.943 0.898

Table 13: AP AUC for different learning rate values to train CLOE

Dataset 1e-2 1e-3 1e-4 1e-5

Hepatitis 0.584 0.622 0.670 0.508
letter 0.0.187 0.291 0.644 0.603

G DETAILS OF THE RESULTS OF THE ABLATION STUDY ON ALL DATASETS

In this section, Table 14 and Table 15 present the detailed ablation study results for all the datasets
for the AU-ROC and AP AUC metrics. The highest values are in bold.
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Table 14: AU-ROC for the ablation study

Dataset CLOE Without pretraining Without joint training Untrained AE

ALOI 0.561 0.577 0.554 0.549
backdoor 0.944 0.922 0.851 0.826
breastw 0.994 0.994 0.929 0.986
campaign 0.610 0.439 0.561 0.604
cardio 0.979 0.904 0.785 0.874
census 0.629 0.544 0.624 0.611
fault 0.928 0.875 0.816 0.616
Hepatitis 0.938 0.901 0.618 0.802
InternetAds 0.878 0.862 0.725 0.625
landsat 0.854 0.812 0.780 0.608
letter 0.943 0.936 0.738 0.557
mnist 0.750 0.623 0.637 0.731
musk 1.0 1.0 0.856 0.929
shuttle 0.998 0.994 0.883 0.995
speech 0.859 0.650 0.463 0.508
Mean 0.858 0.802 0.722 0.725

Table 15: AP AUC for the ablation study

Dataset CLOE Without pretraining Without joint training Untrained AE

ALOI 0.044 0.040 0.039 0.038
backdoor 0.745 0.544 0.202 0.454
breastw 0.985 0.988 0.854 0.975
campaign 0.178 0.103 0.141 0.169
cardio 0.817 0.565 0.398 0.584
census 0.084 0.065 0.088 0.077
fault 0.828 0.792 0.728 0.478
Hepatitis 0.670 0.550 0.363 0.477
InternetAds 0.526 0.522 0.386 0.330
landsat 0.739 0.618 0.572 0.315
letter 0.644 0.512 0.234 0.114
mnist 0.315 0.261 0.192 0.329
musk 0.999 0.998 0.522 0.616
shuttle 0.978 0.956 0.794 0.938
speech 0.068 0.043 0.017 0.024
Mean 0.575 0.504 0.369 0.394
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H MONITORING OF TRAINING LOSSES

(a) Hepatitis dataset (b) letter dataset (c) InternetAds dataset

Figure 2: MSE loss (left) and CF loss (right) for different datasets

To confirm the impact of both losses during the joint training step, losses were monitored during
this step. This section shows the evolution of the MSE loss and the CF loss across epochs for three
datasets in Figure 2. Both losses decreased, indicating that each contributes effectively during the
joint training.

I EXPERIMENT ON REAL DATA

Table 16: AU-ROC for the different methods on real datasets

Dataset CLOE DRL RCA MCM OC-SVM iForest ECOD Deep SVDD kNN KDE

Dataset 1 1.0 0.997 0.627 0.992 0.998 0.998 0.983 0.999 0.998 0.998
Dataset 2 1.0 1.0 0.956 0.991 1.0 1.0 0.998 0.999 1.0 1.0
Dataset 3 1.0 1.0 0.975 0.992 1.0 0.998 0.996 1.0 1.0 1.0
Dataset 4 1.0 0.997 0.665 0.982 0.999 0.998 0.984 0.999 0.999 0.999
Dataset 5 1.0 1.0 0.656 0.995 1.0 1.0 0.998 1.0 1.0 1.0
Dataset 6 1.0 1.0 0.592 0.957 1.0 0.998 0.994 0.999 1.0 1.0
Mean 1 0.999 0.745 0.985 0.9995 0.9987 0.9925 0.9993 0.9995 0.9995

Table 17: AP AUC for the different methods on real datasets

Dataset CLOE DRL RCA MCM OC-SVM iForest ECOD Deep SVDD kNN KDE

Dataset 1 0.996 0.914 0.257 0.645 0.991 0.998 0.676 0.923 0.991 0.992
Dataset 2 1.0 0.999 0.749 0.753 0.999 0.995 0.998 0.999 1.0 0.999
Dataset 3 0.997 0.990 0.621 0.740 0.994 0.946 0.872 0.994 0.994 0.995
Dataset 4 0.998 0.988 0.570 0.698 0.987 0.938 0.787 0.982 0.983 0.984
Dataset 5 0.999 0.998 0.278 0.833 0.999 0.973 0.907 0.999 0.999 0.999
Dataset 6 0.999 0.993 0.229 0.524 0.998 0.943 0.793 0.997 0.998 0.998
Mean 0.998 0.980 0.451 0.699 0.995 0.966 0.839 0.982 0.994 0.996

An experiment was conducted on real data using six different tabular datasets. Each dataset has
dimension 824 and contains between 60000 and 85000 samples. The percentage of outliers is very
low, around 3% for each dataset. All datasets have been preprocessed before trainings to have zero
mean and unit variance. For both CLOE and the baseline models, 5000 samples from each dataset
have been used for training. The baseline implementations and hyperparameters are the same as in
Section 5. For CLOE, hyperparameter n is fixed to 4. Results are reported in Table 16 for AU-ROC
and in Table 17 for AP AUC. All the methods obtain very good performances, but CLOE is the only
one that reaches perfect AU-ROC on all datasets and obtains the best mean for the AP AUC.

J VARIANCE OF THE EXPERIMENTS

5 runs were conducted for each method on each public dataset. This appendix provides the complete
table with the detailed variances: Table 18 for AU-ROC in and Table 19 for the AP AUC.
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Table 18: AU-ROC for the different methods on the selected datasets, with variances
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Table 19: AP AUC for the different methods on the selected datasets, with variances
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