
000 CLOE: CHRISTOFFEL LOSS AUTOENCODER FOR 001 002 ANOMALY DETECTION 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 009 ABSTRACT 010

011 Semi-supervised anomaly detection plays a key role in diverse fields such as pro-
012 cess monitoring, healthcare, and finance. However, lightweight methods often
013 struggle with high-dimensional data and typically require careful tuning of mul-
014 tiple hyperparameters. Among existing approaches, Christoffel Function-based
015 methods are attractive due to their simplicity, requiring at most a single hyper-
016 parameter. They also benefit from a well-established theoretical foundation that
017 yields several interesting results for data science. Their main limitation, how-
018 ever, is poor scalability to high-dimensional settings. In this paper, we introduce
019 CLOE, a new method that combines an autoencoder for dimensionality reduc-
020 tion with a Christoffel Function-based detector applied in the latent space. To
021 better align representation learning with anomaly detection, we design a novel
022 loss function that leverages the Christoffel Function to guide the autoencoder to-
023 ward representations that better capture the support of the normal data distribu-
024 tion. We further propose a principled procedure to set the detection threshold and
025 an efficient strategy to tune the single remaining hyperparameter. Experiments
026 on multiple high-dimensional anomaly detection benchmarks demonstrate that
027 CLOE achieves superior performance compared to existing methods, while pre-
028 serving the lightweight and low-tuning advantages of Christoffel Function-based
029 approaches.

030 1 INTRODUCTION 031

032 The growth in sensor deployment for monitoring activities in health, industry, and other domains is
033 creating substantial amounts of high-dimensional data. A crucial application is anomaly detection
034 (AD), i.e., identifying abnormal or rare events, known as outliers. In semi-supervised learning, AD
035 methods are trained using samples known to be normal (inliers). These methods estimate the distri-
036 bution of the data and compute a score for each test sample. To detect outliers, the score is compared
037 to a threshold provided by the method (Platt et al., 2001). However, most classical AD methods are
038 challenged by the curse of dimensionality and do not consider the full complexity of data. The
039 time complexity to estimate a distribution is very high, not always suitable for non linear settings,
040 and cross-variable dependencies are not taken into account (Samariya & Thakkar, 2023) and (Pang
041 et al., 2021). Among the various methods, those based on the Christoffel Function (CF) have drawn
042 our attention (Ducharlet et al., 2024). Rooted in approximation theory and orthogonal polynomials,
043 the CF is grounded in a rigorous algebraic framework that addresses key requirements of data sci-
044 ence (Lasserre et al., 2022), particularly the need to be free from hyperparameter tuning (Ducharlet
045 et al., 2024).

046 Deep learning offers a solution to handle high-dimensional data. A neural network can reduce the
047 dimensionality of the data while considering cross-variable dependencies. Autoencoders (AE), a
048 class of neural networks, consist of an encoder and a decoder that are trained to reconstruct the
049 input data while reducing the data dimensionality in the latent space in a nonlinear way (Wang et al.,
050 2016). The encoder hence encodes data in a low-dimensional space so that a classical AD method
051 can be used to detect outliers using the latent space. However, the learned representations may not
052 optimally capture the support of the normal data for anomaly detection. To address this, the training
053 of the autoencoder can be guided by the anomaly detection method, ensuring that the latent space
provides more informative and discriminative representations. This principle is known as coupled
or joint training (Huang et al., 2025).

054 In this paper, we propose CLOE (Christoffel LOss for autoEncoder), an efficient approach for high-
055 dimensional tabular anomaly detection in a one-class classification setting, i.e., only normal samples
056 are available during training. In CLOE, an AE reduces data dimensionality, and its latent space is
057 regularized using the empirical Christoffel Function (CF) (Lasserre & Pauwels, 2019), a concept
058 from approximation theory. By introducing CF-based loss, that is differentiable, during training,
059 CLOE learns representations tailored for defining compact normal data supports, enabling robust
060 outlier detection by the subsequent CF-based anomaly detection method applied to the latent space.
061 Moreover, a particular advantage of the CF method is that it only requires one hyperparameter to be
062 set. CLOE is computationally lightweight and designed to operate on CPUs, which is well-suited
063 for resource-constrained environments. This method has been developed in an industry context and
064 will be trained in a lot of different high-dimensional datasets. It requires the less computational
065 resources possible to be trained and inferred.
066

The main contributions of this paper are summarized as follows:

- 068 • We introduce the new method CLOE, which performs effective representation learning
069 in a lower-dimensional latent space guided by the empirical CF for tabular data, using a
070 lightweight computational approach that does not require GPU acceleration;
- 071 • We propose a process for selecting the single hyperparameter of the model, eliminating the
072 need for extensive hyperparameter tuning;
- 073 • We conduct comprehensive experiments on 15 high-dimensional tabular datasets from the
074 ADBench benchmark.

076 2 RELATED WORK

079 AD methods can be classified into two different types: classical and the deep learning AD methods.
080 A classic way to detect outliers in a cloud of points is to estimate density, like Density-Based Spatial
081 Clustering of Applications with Noise (DBSCAN) (Ester et al., 1996), **Kernel Density Estimation**
082 (**KDE**) (Parzen, 1962), Histogram-Based Outlier Score (HBOS) (Goldstein & Dengel, 2012), or
083 Empirical Cumulative Distribution for Outlier Detection (ECOD) (Li et al., 2022). After density
084 estimation, data points within low density regions are considered outliers. Another approach is to
085 compute the distribution support used to define the boundary of normal data like One-Class Support
086 Vector Machine (OC-SVM) (Schölkopf et al., 1999), Support Vector Data Description (SVDD) (Tax
087 & Duin, 2004), and the empirical CF (Lasserre & Pauwels, 2019). After support computation, data
088 points lying outside the support are then considered as outliers. **A simpler method can be to compute**
089 **the distance between the k-nearest neighbors (kNN)** (Ramaswamy et al., 2000) **of each sample and**
090 **consider those with largest distances as outliers.** However, these classical AD methods do not scale
091 well with high-dimensional data. For example, the computation time can become prohibitively high
092 for the empirical CF (Ducharlet et al., 2024), or interdependencies between dimensions are lost in
093 HBOS and ECOD (Han et al., 2022).

094 To address these challenges, deep neural network (DNN) AD methods have been developed. Most
095 of these approaches are semi-supervised, trained only on normal samples. **The DNN is trained to**
096 **reconstruct the input sample and the outlier score is computed as the difference between the input**
097 **and the reconstructed output.** **RCA** (Liu et al., 2021) considers many AEs and uses the k samples
098 with the lowest reconstructed scores of an AE to train the other AEs. **MCM** (Yin et al., 2024) trains
099 a generator to mask inputs and trains an AE to reconstruct the masked inputs. These methods can
100 be more complex and train a neural network to reduce data dimensionality and then feed reduced
101 data into a classical AD method to identify the outliers. DeepSVDD (Ruff et al., 2018) extends
102 the SVDD method by learning useful data representations and optimizing the SVDD objective.
103 Latent Anomaly Detection through Density Matrices (LADDM) (Gallego-Mejia et al., 2024) builds
104 a density matrix with the encoded data transformed into a Hilbert space. Adaptations of Deep-
105 Clustering (DEC) (Xie et al., 2016) have led to deep clustering-based anomaly detection methods:
106 the AE is first pretrained with the reconstruction error, and training then continues with a clustering-
107 based loss. DEC proposes a k-means-based loss (Xie et al., 2016) while Deep-Clustering Compact
108 (DCC) (Arellano-Espitia et al., 2021) utilizes an OC-SVM-based loss. These methods construct new
109 representations of the data points and then fed into a classical AD method. However, these newly

108 learned representations may lose information relevant for AD, making the classical AD method less
109 effective (Pang et al., 2021).

110 A solution is joint training, where the autoencoder is trained with a loss that combines the recon-
111 struction error and a loss term from the downstream classical AD method. This approach guides
112 representation learning and improves AD performance. The Deep Clustering Hierarchical AutoEn-
113 coder (DCVAE) and Deep Nested Clustering AutoEncoder (DNCAE) (Nguyen et al., 2024) extend
114 deep-clustering methods by using either a double autoencoder or different layers of the same au-
115 toencoder to produce multiple representations of the data. These representations are used to com-
116 pute a k-means clustering-based loss summed with the reconstruction error. The Deep Autoencoder
117 Gaussian Mixture Model (DAGMM) (Zong et al., 2018) combines the reconstruction error of the
118 autoencoder with the latent space representation to feed a neural network that outputs the mixture
119 membership predictions for each data point. The parameters of the GMM are then estimated, and
120 each sample’s energy is computed. The model is jointly trained by optimizing the reconstruction er-
121 ror and the sample energy. OCSVM-Guided representation learning (Og) (Pinon & Lartizien, 2025)
122 trains an autoencoder with a loss that combines the reconstruction error and an OC-SVM-based loss.
123 However, such losses are not always differentiable, as in Og, so training the model with backprop-
124 agation can assign arbitrary gradient values at the non-differentiable points of the losses (Paszke
125 et al., 2019). Finally, Decomposed Representation Learning (DRL) (Ye et al., 2025) proposes a low-
126 dimensional data representation where the representations of each normal sample are decomposed
127 into a weighted linear combination of randomly generated orthogonal basis vectors.

128 The central idea of this paper is to use a CF-based method as the downstream AD method because
129 it offers theoretical proofs for support estimation and outlier detection. However, this method does
130 not scale to high dimensional data. A deep neural network is used to reduce high-dimensional data,
131 with a joint training guided by the CF, to propose data representations adjusted for the CF-based
132 anomaly detection.

133 3 BACKGROUND

136 The CF is a well-known concept in approximation theory. Recent studies (Lasserre & Pauwels,
137 2019) and, (Lasserre et al., 2022) propose to adapt it to data analysis as a means to estimate the
138 support of a distribution, which may be highly nonlinear. This section resumes some important
139 definitions about the CF and its empirical counterpart from Lasserre & Pauwels (2019) and Lasserre
140 et al. (2022).

141 3.1 PRESENTATION OF THE CHRISTOFFEL FUNCTION

142 Let $\Omega \subset \mathbb{R}^d$ be a compact set with non-empty interior. Let μ be a finite Borel measure supported
143 on Ω . μ is absolutely continuous w.r.t. Lebesgue measure on Ω , a set with non-empty interior and
144 positive density. Let $\mathbf{v}_n(x) := (P^\alpha)_{\alpha \in \mathbb{N}^d}$ be the monomial basis of the vector space of $\mathbb{R}[x]$ of all
145 the monomials of degree less than or equal to n graded in the lexicographic order¹. The size of the
146 vector $\mathbf{v}_n(x)$, denoted as $s_d(n)$, is equal to $\binom{d+n}{n}$.

147 **Definition 3.1 (The Christoffel Function)** *The Christoffel Function (CF) of degree $n \in \mathbb{N}$ associ-
148 ated with the measure μ , denoted by $\Lambda_n^\mu(x)$, is defined as*

$$149 \Lambda_n^\mu(x) = \min_{P \in \mathbb{R}_n[x]} \left\{ \int_{\Omega} P^2(z) d\mu(z), P(x) = 1 \right\} \quad (1)$$

150 Let $\mathbf{M}_n(\mu)$ be the moment matrix of Ω . $\mathbf{M}_n(\mu)$ is a real symmetric matrix, $M_n(\mu)$ can be written
151 as

$$152 \mathbf{M}_n(\mu) = \int_{\mathbb{R}^d} \mathbf{v}_n(x) \mathbf{v}_n(x)^T d\mu(x) \quad (2)$$

153 $\mathbf{M}_n(\mu)$ is positive definite and is non-singular for all n .

154 ¹lexicographic order: monomial are first sorted by degree and then using lexicographic order on variables
155 considering $X_1 = a, X_2 = b$, etc.

162 For our study, we will consider the inverse of the CF. Let us introduce the Christoffel-Darboux
 163 kernel K_n^μ associated with μ . Given any basis of $\mathbb{R}_N[x]$, orthonormal with respect to the inner
 164 product induced by $\mathbf{M}_n(\mu)$, $(p_i)_{i=1}^{s_d(n)}$, K_n^μ is defined as:
 165

$$166 \quad (x, y) \mapsto K_n^\mu(x, y) := \sum_{i=1}^{s_d(n)} p_i(x)p_i(y). \quad (3)$$

168 This kernel can also be computed from the moment matrix:
 169

$$170 \quad (x, y) \mapsto K_n^\mu(x, y) := \mathbf{v}_n(x)^T \mathbf{M}_n(\mu)^{-1} \mathbf{v}_n(y). \quad (4)$$

171 Let the polynomial $Q_{\mu,n}$ be defined by
 172

$$173 \quad Q_{\mu,n}(x) = K_n^\mu(x, x) = \mathbf{v}_n(x)^T \mathbf{M}_n(\mu)^{-1} \mathbf{v}_n(x), x \in \mathbb{R}^d. \quad (5)$$

174 $Q_{\mu,n}$ is a sum-of-squares polynomial of degree $2n$, it is differentiable on \mathbb{R}^d . Pauwels & Lasserre
 175 (2016) showed that $Q_{\mu,n}$ has higher value for data points which are isolated from the other points.
 176 Lemma 4.3.1 (Lasserre et al., 2022) quantifies the exponential growth with n for data points outside
 177 the support. Lemma 4.3.2 (Lasserre et al., 2022) quantifies the polynomial growth with n for data
 178 points inside the support. The inverse of the CF is

$$179 \quad \Lambda_n^\mu(x)^{-1} := Q_{\mu,n}(x), \forall x \in \mathbb{R}^d. \quad (6)$$

181 3.2 THE EMPIRICAL CHRISTOFFEL FUNCTION FOR DATA ANALYSIS

183 Let $\mathbb{X} \subset \mathbb{R}^D$ be a finite set of data of size N , $D > d$. Let $\mathbb{X}_e \subset \mathbb{R}^d$ be the encoded version of \mathbb{X} in
 184 the d dimension space. We consider the discrete measure μ_N whose support is \mathbb{X}_e sampled from a
 185 theoretical measure μ supported on Ω . The empirical version of the moment matrix can be written
 186 as

$$187 \quad \mathbf{M}_n(\mu_N) = \frac{1}{N} \sum_{z \in \mathbb{X}_e} \mathbf{v}_n(z) \mathbf{v}_n(z)^T. \quad (7)$$

189 To guarantee the invertibility of the matrix $\mathbf{M}_n(\mu_N)$, the size of \mathbb{X}_e must be greater than $s_d(n)$
 190 according to Lasserre et al. (2022), Corollary 6.3.5. Under the condition $|\mathbb{X}_e| = N > s_d(n)$, the
 191 inverse of the empirical CF is defined as:
 192

$$193 \quad \Lambda_n^{\mu_N}(z)^{-1} := \mathbf{v}_n(z)^T \mathbf{M}_n(\mu_N)^{-1} \mathbf{v}_n(z), z \in \mathbb{X}_e. \quad (8)$$

195 3.3 THRESHOLDING WITH THE EMPIRICAL CHRISTOFFEL FUNCTION

197 Outlier detection via the CF requires a thresholding policy. The CF is known to have theoretical
 198 properties in the analysis of discrete data to define level sets that capture quite accurately the geo-
 199 metric shape of the support (Lasserre et al., 2022). Lasserre et al. (2022) consider a problem in
 200 \mathbb{R}^2 in Chapter 7 and propose to fix the constant n_N related to this problem introduced by Vu et al.
 201 (2022) to $n_N := \lfloor 2N^{1/4} \rfloor$. Then the empirical CF is evaluated at each point and the smallest value
 202 is chosen as threshold. This smallest value corresponds to the closest level set of the support of the
 203 normal distribution.

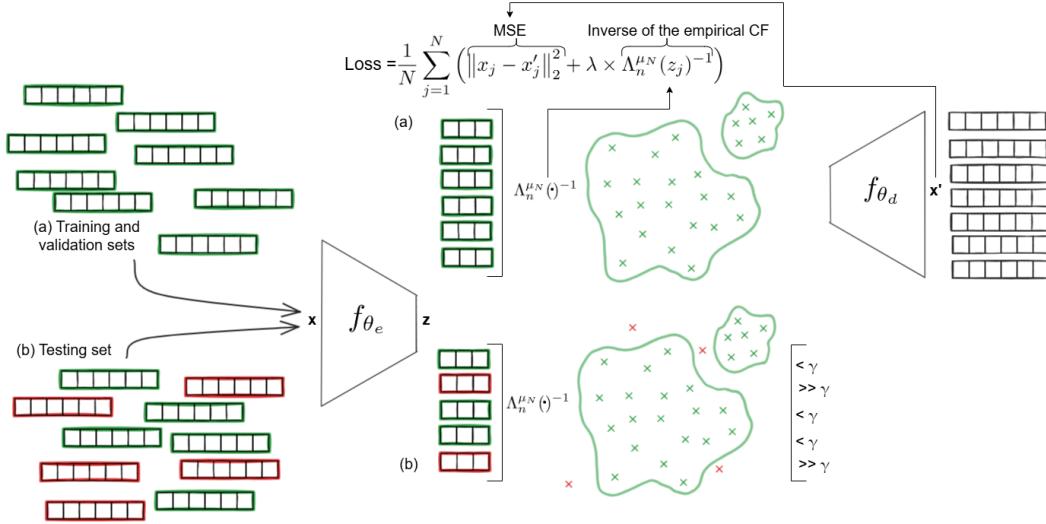
204 Ducharet et al. (2024) propose a method, named DyCF, to detect outliers in data streams. The
 205 approach uses the Sherman-Morrison formula (Sherman & Morrison, 1950) to update the moment
 206 matrix for each new data point, avoiding the need to recompute its inverse at every step. The DyCF
 207 method requires only a single hyperparameter: the polynomial degree n . A scoring function is then
 208 defined as:

$$209 \quad S_{n,d}(x) = \frac{\Lambda_n^{\mu_N}(x)^{-1}}{\gamma_{n,d}}, \quad (9)$$

211 where $\gamma_{n,d} = Cn^{3d/2}$. A point x is detected as an outlier if $S_{n,d} \geq 1$.

212 A second method, named DyCG, proposes a solution free of hyperparameter tuning, that leverages
 213 the growth property of the CF. In DyCG, the scoring function is derived from the DyCF computation
 214 for $n = 2$ and $n = 6$.

215 All the above thresholding scheme are performed on a low-dimensional dataset.

216 4 THE CLOE METHOD
217
218
219
220

238 Figure 1: (a) Graphical representation of the joint training step of CLOE. The autoencoder, f_{θ_e}
239 and f_{θ_d} , is trained with normal data (green samples in the figure) to minimize the reconstruction
240 error regularized by the inverse of the empirical CF computed on the latent space. The support of
241 the latent space distribution is estimated with the empirical CF for all data points. (b) Graphical
242 representation of the outlier detection step. Data points outside the support (in red) have CF values
243 that increase exponentially with the hyperparameter n , much higher than the threshold γ , they are
244 labeled as outliers.

245
246 CLOE (“Christoffel LOss for autoEncoder”) is proposed as a method to utilize the inverse of the
247 CF to detect outliers in high-dimensional datasets. CLOE jointly learns a new representation of the
248 dataset in a low-dimensional space with an AE, regularized using the empirical CF in latent space.
249 The proposed method has four different steps. The first three steps are dedicated to the training steps,
250 their pseudo-algorithms are detailed in Appendix 7, Algorithm 1. The last step corresponds to the
251 inference or anomaly detection step, its pseudo-algorithm is detailed in Appendix 7, Algorithm 2.

252 Let \mathbb{X}_{train} be the training set, \mathbb{X}_{valid} be the validation set, and \mathbb{X}_{test} be the testing set. The training
253 and validation sets contain only normal samples (in green on Figure 1). Let $f_{\theta_e} : \mathbb{X} \subset \mathbb{R}^D \rightarrow$
254 $\mathbb{X}_e \subset \mathbb{R}^d$ and $f_{\theta_d} : \mathbb{X}_e \rightarrow \mathbb{R}^D$ be the encoder and the decoder neural networks, where θ_e and θ_d are
255 learnable parameters. Let $\mathbb{X}_{e_{train}} = f_{\theta_e}(\mathbb{X}_{train})$ be the encoded training set, $\mathbb{X}_{e_{valid}} = f_{\theta_e}(\mathbb{X}_{valid})$ be
256 the encoded validation set, and $\mathbb{X}_{e_{test}} = f_{\theta_e}(\mathbb{X}_{test})$ be the encoded testing set.

257 The AE training is divided into two parts, corresponding to the first two parts of the three training
258 steps. Then the final training step corresponds to the support computation with the whole encoded
259 training dataset and the definition of a threshold.

260 **Training part 1: pretraining.** The AE is trained only for reconstruction to initialize the network
261 weights. The loss function is the Mean Square Error (MSE):

262
263
264
$$MSE : \frac{1}{N} \sum_{j=1}^N \|x_j - f_{\theta_d}(f_{\theta_e}(x_j))\|_2^2 = \frac{1}{N} \sum_{j=1}^N \|x_j - x'_j\|_2^2. \quad (10)$$
265
266

267
268 **Training part 2: joint training.** The joint training step of the model is illustrated in Figure 1 (a).
269 The training of the AE is completed with a regularized loss that combines the reconstruction loss

270 with an empirical CF-based loss:
271

$$272 \quad Loss : \frac{1}{N} \sum_{j=1}^N \left(\|x_j - f_{\theta_d}(f_{\theta_e}(x_j))\|_2^2 + \lambda \times \Lambda_n^{\mu_N}(f_{\theta_e}(x_j))^{-1} \right) \quad (11)$$

$$273 \quad = \frac{1}{N} \sum_{j=1}^N \left(\|x_j - x'_j\|_2^2 + \lambda \times \Lambda_n^{\mu_N}(z_j)^{-1} \right), \quad (12)$$

274 where λ is a [dynamic regularization term](#) that controls the strength of the Christoffel loss term. λ is computed at each epoch as the quotient of the gradient norm of the MSE loss and the gradient norm of the CF loss when this latter gradient is non-zero. The support of the training dataset is computed using 80% of each batch training dataset, denoted $\mathbb{X}_{e_{train}}$. To obtain a good estimation of the support, the number of data points to compute the support must be at least $s_d(n)$ (Lasserre et al., 2022). After the support estimation, the CF is computed for all the training data and the mean of these values is utilized in the loss. As only normal data are used for the training, the value of the CF on those data should be close to 0. Adding this Christoffel-guided loss to the main loss of the AE and minimizing it helps the AE to learn representations more suitable for support estimation.

275 To have lower computational complexity and more stability, the Cholesky inversion method is used
276 to invert the moment matrix. This matrix is positive definite, with the condition on n and the size
277 defined for the batch, singularity of this matrix does not need to be checked before inversion. To
278 avoid instability during this inversion due to large values in the \mathbb{X}_e , data are normalized between
279 $[-1, 1]^d$ at the end of the encoder, $\mathbb{X}_e \subseteq [-1, 1]^d$.

280 **Process to choose the hyperparameter n .** A validation step is performed at the end of each epoch.
281 The support of the distribution is computed with all the training data, then the CF value of each
282 sample of the validation set is computed. The mean of all the CF values of the validation set is used
283 to compute the validation loss adding to the reconstruction loss. This validation loss is monitored
284 after the first five epochs, and the value of n is validated if the validation loss decreased during
285 training for the following epochs. If the loss does not decrease, the value of n should be changed to
286 $n - 1$.

287 **Training part 3: Final support computing and threshold estimation.** The last step of the training
288 step is to encode the full training set. Then, the support of the CF is computed. A new $n_{support} \geq n$
289 is chosen according to the condition that $s_{n_{support}}(d) < |\mathbb{X}_{e_{train}}|$. Then the threshold is set as:

$$290 \quad \gamma_n = \max\{\Lambda_{n_{support}}^{\mu_N}(z)^{-1}, z \in \mathbb{X}_{e_{train}}\} \quad (13)$$

301 **Inference / anomaly detection.** Figure 1 (b) proposes a graphical representation of this step. For
302 a new test sample x_{test} , compute its latent representation $z_{test} = f_{\theta_e}(x_{test})$ and Christoffel value
303 $\Lambda_{n_{support}}^{\mu_N}(z_{test})^{-1}$. If $\Lambda_{n_{support}}^{\mu_N}(z_{test})^{-1} \leq \gamma_n$, then x_{test} is an inlier; otherwise, x_{test} is an outlier.

308 5 EXPERIMENTS

310 5.1 DATASETS

312 To evaluate the CLOE method, we use several datasets from ADBench (Han et al., 2022). This
313 benchmark provides a diverse collection of datasets for anomaly detection with distinctive features.
314 As our focus is on high dimensional data and not only images, we selected [15 datasets](#), each with 9
315 or more dimensions. The number of data points per dataset varies between 80 and [299285](#). Detailed
316 characteristics of the selected datasets are presented in Appendix B, Table 6.

317 For each dataset, outliers are utilized exclusively during the testing step. The inlier dataset is split
318 into a training (70%), validation (20%) and testing (10%) set. To compare our results to different
319 baseline methods, we fix a random seed to produce identical splits across experiments.

321 5.2 BASELINE METHODS

323 Our method is compared to DAGMM (Zong et al., 2018), Og coupled version (Pinon & Lartizien,
324 2025), DRL (Ye et al., 2025), [RCA](#) (Liu et al., 2021), [MCM](#) (Yin et al., 2024), OC-SVM (Schölkopf

324 et al., 1999), iForest (Liu et al., 2008), ECOD (Li et al., 2022), DeepSVDD (Ruff et al., 2018),
325 **kNN** (Ramaswamy et al., 2000) and **KDE** (Parzen, 1962). For DAGMM, we use the implemen-
326 tation proposed by Han et al. (2022). For Og, we use the implementation proposed in Pinon &
327 Lartizien (2025) with PyTorch for their experiment number one. The implementation of the AE is
328 modified with linear layers instead of two-dimensional convolutional layers. Models are trained for
329 400 epochs. For DRL, we use the implementation proposed by Ye et al. (2025). For RCA, we use
330 the implementation proposed by Liu et al. (2021). For MCM, we use the implementation proposed
331 by Yin et al. (2024). Then, for the last six models, we use the PyOD implementations (Zhao et al.,
332 2019). The hyperparameters of all baselines are set according to the corresponding original papers,
333 [Appendix E Table 9 summarizes the hyperparameters for all the baseline methods](#).

334 DRL (Ye et al., 2025) is a state-of-the-art method for AD in high-dimensional tabular data. Unlike
335 AE-based approaches, it constructs a new representation for the data using a feature extractor and
336 uses a reconstruction loss to determine if the sample is an outlier.

337 **MCM** (Yin et al., 2024) learns intrinsic correlation in normal data, training a generator to mask the
338 input sample. Then using an AE, it learns to reconstruct the input sample from the masked input
339 sample. The model is trained with a reconstruction loss for the AE and with a diversity loss that
340 encourages the generator to create masks that focus on diverse correlations existing in normal data.

341 **RCA** (Liu et al., 2021) is an AE-based approach to learn a reconstruction error. Many AEs trained
342 with mini-batch are considered. For each mini-batch, the samples with the lowest reconstruction
343 error in an AE are selected and used in the back-propagation step of the other AEs. Then the means
344 of reconstructed errors of all the AEs are considered to determine if a sample is an outlier.

345 DAGMM (Zong et al., 2018) and Og (Pinon & Lartizien, 2025) are the methods most similar to
346 CLOE. However, DAGMM uses a neural network to predict the sample mixture membership. The
347 model is an adaptation of the mixture model. It differs from CLOE, which directly applies AD
348 methods instead of adapting them.

349 Og (Pinon & Lartizien, 2025) does not consider a minimal value for the batch size to ensure a correct
350 estimation of the support. Moreover, its non-differentiable loss can lead to gradient approximation
351 issues during backpropagation. The main difference between Og and CLOE is that Og relies on
352 OC-SVM to detect outliers from the support, whereas CLOE uses the empirical CF.

353 DeepSVDD (Ruff et al., 2018) is also a method with a deep neural network, similar to CLOE.
354 However, the AE and the AD model are trained separately. The representations of the data may not
355 be well-suited for SVDD.

356 OC-SCM (Schölkopf et al., 1999), iForest (Liu et al., 2008), ECOD (Li et al., 2022), **kNN** (Ra-
357 maswamy et al., 2000) and **KDE** (Parzen, 1962) are classical AD methods that do not rely on deep
358 neural networks. They are computationally efficient but may struggle to achieve high performance
359 on high-dimensional datasets.

360

362 5.3 EVALUATION METRICS

363

364 We evaluate our results using Area Under the Receiver Operating Characteristic curve (AU-ROC)
365 and Average Precision Area Under Curve (AP AUC), the same metrics used in the ADBench paper
366 (Han et al., 2022) to compare the different methods. Both metrics are computed using the implemen-
367 tation provided by the scikit-learn Python package (Pedregosa et al., 2011). The AU-ROC metric
368 reflects the trade-off between true positive and false positive rates. AP AUC combines precision
369 and recall metrics. It is particularly informative for imbalanced data, which is the case with all the
370 datasets, as there are few outliers.

371

372

5.4 IMPLEMENTATION

373

374

375

376

377

CLOE is implemented with PyTorch². As in Xie et al. (2016), the AE has 3 hidden layers of
dimensions 500, 500, and 2000, using ReLU activation functions. The latent space dimension is set
to $d = 8$, chosen according to the complexity of computing the moment matrix of the training set
with $2 \leq n \leq 7$. A dropout rate of 20% is applied for the pretraining step and no dropout is used

²The code source is available in: the joint zip file

378 for the joint training step according to the configuration proposed in Xie et al. (2016). At the end of
379 the encoder, a batchnorm layer followed by a Hyperbolic Tangent (Tanh) activation layer is added to
380 ensure the encoded data lie within $[-1; 1]$. This condition is required to compute the moment matrix
381 and invert it using the Cholesky algorithm.

382 The pretraining phase is conducted for **10** epochs with an early stopping rule based on the value
383 of the validation loss. The joint training is conducted for **150** epochs with an early-stopping policy
384 of 10 epochs. The Adam optimizer is used with a learning rate of $1e - 4$ for all datasets. All
385 experiments were conducted on a device with 8 CPUs and 32 GB RAM. [The training and inference](#)
386 [times and the CPU memory required for training are detailed in Appendix C, Table 7.](#)

388 The first two training steps are conducted in batches, with batch size set to $s_d(n)$, where $n \in \mathbb{N}$
389 is chosen so that the batch size is smaller than the number of data points used to compute the
390 support in the training step: $s_n(d) < |\mathbb{X}_{e_{train}}| \times 0.8$. This ensures that at least one batch is large
391 enough to compute the support during the joint training step. In Appendix D, Table 8 details the
392 hyperparameter n for each dataset.

393 5.5 RESULTS

395 Table 1: AU-ROC for the different methods on the selected datasets

Dataset	CLOE	DAGMM	Og	DRL	RCA	MCM	OC-SVM	iForest	ECOD	Deep SVDD	kNN	KDE
<i>ALOI</i>	0.561	0.529	N/A	0.523	0.546	0.534	0.517	0.539	0.531	0.546	<u>0.556</u>	0.518
<i>backdoor</i>	0.944	0.619	N/A	0.927	0.855	0.891	0.865	0.750	0.846	0.553	<u>0.938</u>	0.915
<i>breastw</i>	0.994	N/A	0.367	0.990	0.995	0.995	0.997	0.994	0.994	0.988	0.995	0.998
<i>campaign</i>	0.610	0.603	N/A	0.745	0.689	0.686	0.689	0.721	<u>0.772</u>	0.710	0.725	0.699
<i>cardio</i>	0.979	0.527	N/A	0.915	0.954	0.913	0.957	0.951	0.946	0.953	0.933	0.977
<i>census</i>	0.629	0.605	N/A	0.664	0.605	0.624	0.553	0.611	0.659	0.702	<u>0.661</u>	0.662
<i>fault</i>	0.928	0.496	N/A	0.797	0.679	0.716	0.591	0.662	0.485	0.542	0.822	0.884
<i>Hepatitis</i>	0.938	0.589	0.625	0.702	0.754	0.555	0.855	0.816	0.786	0.789	0.639	0.855
<i>InternetAds</i>	0.678	N/A	N/A	0.877	0.769	0.763	0.708	0.425	0.698	0.749	0.823	0.815
<i>landsat</i>	0.854	0.580	N/A	0.819	0.593	0.603	0.471	0.614	0.388	0.462	0.784	0.757
<i>letter</i>	0.573	0.391	N/A	0.623	0.557	0.501	0.577	0.529	0.529	0.523	0.517	0.800
<i>mnist</i>	0.750	0.615	N/A	0.974	0.892	0.936	0.789	0.860	0.768	0.834	0.937	0.920
<i>musik</i>	1.0	0.485	N/A	0.999	0.999	0.997	0.859	0.960	0.993	0.998	1.0	1.0
<i>shuttle</i>	0.998	0.991	N/A	0.994	0.992	0.992	0.997	0.996	0.993	0.994	0.995	0.997
<i>speech</i>	0.859	0.489	N/A	0.667	0.472	0.486	0.469	0.479	0.473	0.508	0.501	0.881
Mean	0.558	0.578	0.496	0.823	0.765	0.746	0.753	0.734	0.727	0.723	0.815	0.857
Rank	1	11	12	3	5	6	7	8	9	10	4	2

408 Table 2: AP AUC for the different methods on the selected datasets

Dataset	CLOE	DAGMM	Og	DRL	RCA	MCM	OC-SVM	iForest	ECOD	Deep SVDD	kNN	KDE
<i>ALOI</i>	0.044	0.041	N/A	0.038	0.023	0.042	0.041	0.033	0.032	0.037	0.049	0.042
<i>backdoor</i>	0.745	0.033	N/A	0.792	0.102	0.281	0.107	0.048	0.093	0.038	0.517	0.411
<i>breastw</i>	0.985	N/A	0.204	0.978	0.991	0.991	0.994	0.989	0.987	0.973	0.991	0.996
<i>campaign</i>	0.178	0.177	N/A	0.285	0.270	0.266	<u>0.310</u>	0.302	0.356	0.290	0.304	0.296
<i>cardio</i>	0.817	0.116	N/A	0.739	0.723	0.587	0.665	0.679	0.626	0.705	0.667	0.861
<i>census</i>	0.084	0.086	N/A	0.094	0.070	0.077	0.065	0.074	0.084	0.126	0.084	0.084
<i>fault</i>	0.828	0.365	N/A	0.700	0.494	0.588	0.458	0.495	0.337	0.419	0.668	0.825
<i>Hepatitis</i>	0.670	0.214	0.361	0.335	0.434	0.216	0.395	0.400	0.356	<u>0.439</u>	0.251	0.424
<i>InternetAds</i>	0.526	N/A	N/A	0.665	0.501	0.596	0.578	0.155	0.552	0.495	0.692	0.747
<i>landsat</i>	0.739	0.267	N/A	0.637	0.246	0.272	0.199	0.273	0.172	0.195	0.473	0.499
<i>letter</i>	0.644	0.067	N/A	0.251	0.105	0.078	0.731	0.091	0.070	0.074	0.411	0.723
<i>mnist</i>	0.515	0.10	N/A	0.643	0.454	0.545	0.394	0.377	0.194	0.455	0.566	0.640
<i>musik</i>	0.999	0.048	N/A	0.990	0.982	0.978	0.104	0.472	0.855	0.941	0.999	0.999
<i>shuttle</i>	0.978	0.853	N/A	0.894	0.972	0.841	0.939	0.076	0.012	0.014	0.854	0.875
<i>speech</i>	0.068	0.016	N/A	0.044	0.019	0.024	0.019	0.079	0.020	0.017	0.020	0.118
Mean	0.575	0.189	0.283	0.353	0.429	0.438	0.387	0.363	0.377	0.408	0.310	0.569
Rank	1	12	11	3	6	5	8	10	9	7	4	2

420 Tables 1 and 2 show the results for the 15 selected datasets with the metric AU-ROC and AP AUC
421 for CLOE and its baselines. Experiments were repeated 5 times with different random seeds, and
422 the mean results are presented. [The highest values are in bold and the second are underlined.](#) [Ap-](#)
423 [pendix J, Table 18, and Table 19 present the variances of the experiments.](#) Entries marked as 'N/A'
424 indicate that the model could not be trained on the corresponding dataset.

425 Regarding the deep learning methods, DAGMM requires a matrix that is not always invertible, pre-
426 venting successful training on some datasets (marked as N/A in the tables). Training Og on datasets
427 with more than 100 samples requires GPU acceleration. For datasets larger than one thousand
428 samples, memory requirements exceed 30 GB, which is beyond our machine's capacity, resulting
429 in additional 'N/A' entries. DRL was trained with GPU acceleration using a 4-GPU device (15.3
430 GB memory per GPU), although it can also run on the same 8-CPU device as CLOE. [Across the](#)
431 [test datasets, CLOE outperforms Og, DeepSVDD, RCA, MCM and DAGMM. Compared to DRL,](#)
432 [CLOE achieves better performance on 12 datasets for AU-ROC and 10 datasets for AP AUC. No-](#)

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2

Table 5: F1-score for different threshold

Dataset	Optimized	Adjusted	CLOE	90th p train	75th p train	50th p train	100th p valid	90th p valid	75th p valid	50th p valid
<i>ALOI</i>	0.075	0.066	0.075	0.072	0.065	0.064	0.010	0.073	0.067	0.064
<i>backdoor</i>	0.413	0.334	0.262	0.233	0.138	0.083	0.411	0.241	0.147	0.083
<i>breastw</i>	0.949	0.941	0.937	0.880	0.793	0.670	0.222	0.950	0.871	0.710
<i>campaign</i>	0.248	0.194	0.231	0.245	0.236	0.223	0.008	0.186	0.233	0.246
<i>cardio</i>	0.681	0.681	0.432	0.377	0.315	0.25	0.390	0.690	0.636	0.553
<i>census</i>	0.170	0.098	0.119	0.143	0.157	0.167	0.007	0.125	0.155	0.167
<i>fault</i>	0.811	0.765	0.793	0.752	0.699	0.625	0.017	0.454	0.610	0.779
<i>Hepatitis</i>	0.720	0.692	0.565	0.520	0.448	0.388	0.133	0.571	0.440	0.667
<i>InternetTds</i>	0.632	0.522	0.621	0.562	0.500	0.418	0.016	0.393	0.496	0.549
<i>landsat</i>	0.741	0.708	0.732	0.652	0.562	0.461	0.178	0.585	0.688	0.728
<i>letter</i>	0.405	0.380	0.323	0.278	0.227	0.174	0.019	0.352	0.362	0.382
<i>mnist</i>	0.253	0.208	0.243	0.246	0.221	0.194	0.0	0.158	0.224	0.234
<i>musk</i>	1.0	1.0	0.951	0.381	0.206	0.115	0.979	0.421	0.207	0.114
<i>shuttle</i>	0.980	0.976	0.938	0.501	0.338	0.222	0.912	0.576	0.368	0.235
<i>speech</i>	0.107	0.032	0.107	0.087	0.068	0.049	0.0	0.044	0.068	0.096
Mean	0.546	0.506	0.488	0.395	0.332	0.380	0.220	0.349	0.385	0.374

On average across all datasets, the CLOE threshold achieves the best performance after the Adjusted threshold. This study shows the robustness of CLOE to determine automatically the threshold.

6 CONCLUSION AND FUTURE WORKS

In this work, we propose CLOE, an empirical CF guided AE method, to detect outliers in high-dimensional data. Importantly, CLOE requires tuning of only one single hyperparameter. One limitation of CLOE is that it requires a reduced dimension of the latent space, set to 8 in this work, due to the increasing size of the moment matrix to invert. The experiments show that CLOE obtains outstanding results for most of the dataset. For the highest dimensional dataset, CLOE is the most efficient AD method. In addition, CLOE comes with an automatic threshold scheme that provides a robust way to detect outliers. Interestingly CLOE is designed to be trained without a GPU.

7 REPRODUCIBILITY STATEMENT

The code of the proposed methods is joined in a zip file, it will be available on GitLab after the anonymous review step. All the tests conducted in this paper can be reproduced, with CLOE and with the baseline methods. The READ ME file explains how to use the code.

REFERENCES

Francisco Arellano-Espitia, Miguel Delgado-Prieto, Artvin-Darien Gonzalez-Abreu, Juan Jose Saucedo-Dorantes, and Roque Alfredo Osornio-Rios. Deep-compact-clustering based anomaly detection applied to electromechanical industrial systems. *Sensors*, 21(17):5830, 2021.

Kévin Ducharlet, Louise Travé-Massuyès, Jean-Bernard Lasserre, Marie-Véronique Le Lann, and Youssef Miloudi. Leveraging the christoffel function for outlier detection in data streams. *International Journal of Data Science and Analytics*, pp. 1–17, 2024.

Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-based algorithm for discovering clusters in large spatial databases with noise. In *kdd*, volume 96, pp. 226–231, 1996.

Joseph Gallego-Mejia, Oscar Bustos-Brinez, and Fabio A González. Latent anomaly detection through density matrices. *arXiv preprint arXiv:2408.07623*, 2024.

Markus Goldstein and Andreas Dengel. Histogram-based outlier score (hbos): A fast unsupervised anomaly detection algorithm. *KI-2012: poster and demo track*, 1:59–63, 2012.

Songqiao Han, Xiyang Hu, Hailiang Huang, Minqi Jiang, and Yue Zhao. Adbench: Anomaly detection benchmark. *Advances in neural information processing systems*, 35:32142–32159, 2022.

Haoqi Huang, Ping Wang, Jianhua Pei, Jiacheng Wang, Shahen Alexanian, and Dusit Niyato. Deep learning advancements in anomaly detection: A comprehensive survey. *IEEE Internet of Things Journal*, 2025.

540 Jean B Lasserre and Edouard Pauwels. The empirical christoffel function with applications in data
541 analysis. *Advances in Computational Mathematics*, 45(3):1439–1468, 2019.
542

543 Jean Bernard Lasserre, Edouard Pauwels, and Mihai Putinar. *The Christoffel–Darboux kernel for*
544 *data analysis*, volume 38. Cambridge University Press, 2022.

545 Zheng Li, Yue Zhao, Xiyang Hu, Nicola Botta, Cezar Ionescu, and George H Chen. Ecod: Unsu-
546 pervised outlier detection using empirical cumulative distribution functions. *IEEE Transactions*
547 *on Knowledge and Data Engineering*, 35(12):12181–12193, 2022.

548 Boyang Liu, Ding Wang, Kaixiang Lin, Pang-Ning Tan, and Jiayu Zhou. RCA: A deep collaborative
549 autoencoder approach for anomaly detection. In *IJCAI: proceedings of the conference*, volume
550 2021, pp. 1505, 2021.

551

552 Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In *2008 eighth ieee international*
553 *conference on data mining*, pp. 413–422. IEEE, 2008.

554

555 Van Quan Nguyen, Long Thanh Ngo, Viet Hung Nguyen, Nathan Shone, et al. Deep clustering
556 hierarchical latent representation for anomaly-based cyber-attack detection. *Knowledge-Based*
557 *Systems*, 301:112366, 2024.

558

559 Guansong Pang, Chunhua Shen, Longbing Cao, and Anton Van Den Hengel. Deep learning for
560 anomaly detection: A review. *ACM computing surveys (CSUR)*, 54(2):1–38, 2021.

561

562 Emanuel Parzen. On estimation of a probability density function and mode. *The annals of mathe-*
563 *matical statistics*, 33(3):1065–1076, 1962.

564

565 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
566 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
567 performance deep learning library. *Advances in neural information processing systems*, 32, 2019.

568

569 Edouard Pauwels and Jean B Lasserre. Sorting out typicality with the inverse moment matrix sos
570 polynomial. *Advances in Neural Information Processing Systems*, 29, 2016.

571

572 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
573 hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
574 E. Duchesnay. Scikit-learn: Machine learning in Python. *Journal of Machine Learning Research*,
575 12:2825–2830, 2011.

576

577 Nicolas Pinon and Carole Lartizien. OCSVM-guided representation learning for unsupervised
578 anomaly detection. *arXiv preprint arXiv:2507.21164*, 2025.

579

580 John C Platt, JS Shawe-Taylor, Alex J Smola, Robert C Williamson, et al. Estimating the support of
581 a high-dimensional distribution. *Neural computation*, 13(7):1443–1471, 2001.

582

583 Sridhar Ramaswamy, Rajeev Rastogi, and Kyuseok Shim. Efficient algorithms for mining outliers
584 from large data sets. In *Proceedings of the 2000 ACM SIGMOD international conference on*
585 *Management of data*, pp. 427–438, 2000.

586

587 Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas Deecke, Shoaib Ahmed Siddiqui, Alexan-
588 der Binder, Emmanuel Müller, and Marius Kloft. Deep one-class classification. In *International*
589 *conference on machine learning*, pp. 4393–4402. PMLR, 2018.

590

591 Seunghyoung Ryu, Yongyun Yu, and Hogeon Seo. Can untrained neural networks detect anom-
592 alyes? *IEEE Transactions on Industrial Informatics*, 20(4):6477–6488, 2024.

593

594 Durgesh Samariya and Amit Thakkar. A comprehensive survey of anomaly detection algorithms.
595 *Annals of Data Science*, 10(3):829–850, 2023.

596

597 Bernhard Schölkopf, Robert C Williamson, Alex Smola, John Shawe-Taylor, and John Platt. Support
598 vector method for novelty detection. *Advances in neural information processing systems*, 12,
599 1999.

600

601 Jack Sherman and Winifred J Morrison. Adjustment of an inverse matrix corresponding to a change
602 in one element of a given matrix. *The Annals of Mathematical Statistics*, 21(1):124–127, 1950.

594 David MJ Tax and Robert PW Duin. Support vector data description. *Machine learning*, 54(1):
595 45–66, 2004.
596

597 Mai Trang Vu, François Bachoc, and Edouard Pauwels. Rate of convergence for geometric inference
598 based on the empirical christoffel function. *ESAIM: Probability and Statistics*, 26:171–207, 2022.

599 Yasi Wang, Hongxun Yao, and Sicheng Zhao. Auto-encoder based dimensionality reduction. *Neu-
600 rocomputing*, 184:232–242, 2016.
601

602 Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised deep embedding for clustering analysis.
603 In *International conference on machine learning*, pp. 478–487. PMLR, 2016.

604 Hangting Ye, He Zhao, Wei Fan, Mingyuan Zhou, Dan dan Guo, and Yi Chang. DRL: Decomposed
605 representation learning for tabular anomaly detection. In *The Thirteenth International Confer-
606 ence on Learning Representations*, 2025. URL <https://openreview.net/forum?id=CJnceDksRd>.
607

608 Jiaxin Yin, Yuanyuan Qiao, Zitang Zhou, Xiangchao Wang, and Jie Yang. MCM: Masked cell
609 modeling for anomaly detection in tabular data. In *The Twelfth International Conference on
610 Learning Representations*, 2024.

611

612 Yue Zhao, Zain Nasrullah, and Zheng Li. PyOD: A python toolbox for scalable outlier detec-
613 tion. *Journal of Machine Learning Research*, 20(96):1–7, 2019. URL <http://jmlr.org/papers/v20/19-011.html>.
614

615 Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng, Cristian Lumezanu, Daeki Cho, and Haifeng
616 Chen. Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In *Inter-
617 national conference on learning representations*, 2018.
618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

651 **Algorithm 1** Training of CLOE

652 **Input:** $n, n_{support}, \mathbb{X}_{train}, \mathbb{X}_{valid}, epoch_{pre}, epoch_{join}$
 653 **Output:** Trained autoencoder f_{θ_e} , trained CF $\Lambda_n^{\mu_N}(\cdot)^{-1}$, threshold $\gamma_{n_{support}}$

654 $d \leftarrow$ dimension of the latent space
 655 $bs \geq \binom{d+n}{n}$ ▷ Batch size
 656 $N \leftarrow |\mathbb{X}_{train}|$ ▷ Size of the training set

657 **Pretraining:**

658 **for** each $epoch_{pre}$ **do**

659 **for** every batch of training samples $(x_{i_t})_{1 \leq i \leq bs}$ **do**

660 Compute the reconstruction of the sample: $x'_{i_t} = f_{\theta_d}(f_{\theta_e}(x_{i_t})), \forall i \in [1, bs]$

661 Compute the MSE loss (Equation 10)

662 Apply gradient step to f_{θ_e} and f_{θ_d}

663 **end for**

664 **end for**

665 **Joint training:**

666 **for** each $epoch_{join}$ **do**

667 **for** every batch of training samples $(x_{i_t})_{1 \leq i \leq bs}$ **do**

668 Compute the latent representation, $z_{i_t} = f_{\theta_e}(x_{i_t}), \forall i \in [1, bs]$

669 Compute the reconstruction of the latent space, $x'_{i_t} = f_{\theta_d}(z_{i_t}), \forall i \in [1, bs]$

670 Split the $(z_{i_t})_{1 \leq i \leq bs}$ in 80% $(z_{i_t}^{80})_{1 \leq i \leq 0.8bs}$ and 20% $(z_{i_t}^{20})_{1 \leq i \leq 0.2bs}$ sets

671 Compute the support of the CF $\mu_{0.8bs}$ with $(z_{i_t}^{80})_{1 \leq i \leq 0.8bs}$ set

672 Compute the CF value $(\Lambda_n^{\mu_{0.8bs}}(z_{i_t})^{-1})_{1 \leq i \leq bs}$ for $(z_{i_t})_{1 \leq i \leq bs}$

673 Compute the loss (Equation 11) and apply gradient step to f_{θ_e} and f_{θ_d}

674 **end for**

675 Compute the latent representation of every training sample $(z_{i_t})_{1 \leq i \leq N}, z_{i_t} = f_{\theta_e}(x_{i_t}), \forall i \in [1, N]$

676 Compute the support of the CF μ_N with $(z_{i_t})_{1 \leq i \leq N}$

677 **for** each validation sample x_v **do**

678 Compute the latent representation of $x_v, z_v = f_{\theta_e}(x_v)$

679 Compute the reconstruction of latent representation of sample $x_v, x'_v = f_{\theta_d}(z_v)$

680 Compute the CF value of $z_v, \Lambda_n^{\mu_N}(z_v)^{-1}$

681 Compute the loss (Equation 11)

682 **end for**

683 Display the mean of all the validation loss

684 **end for**

685 **if** The validation does not decreased through the epochs **then**

686 Stop training

687 $n \leftarrow n - 1$

688 Start training again from pretraining step

689 **end if**

690 **Final support computing and threshold estimation:**

691 Compute the latent representation of each training sample $(z_{i_t})_{1 \leq i \leq N}, z_{i_t} = f_{\theta_e}(x_{i_t}), \forall i \in [1, N]$

692 Compute the support of the CF μ_N with $(z_{i_t})_{1 \leq i \leq N}$

693 Compute the CF value of each training sample $(z_{i_t})_{1 \leq i \leq N}, (\Lambda_n^{\mu_N}(z_{i_t})^{-1})_{1 \leq i \leq N}$

694 $\gamma_{n_{support}} \leftarrow \max_{1 \leq i \leq N} (\Lambda_n^{\mu_N}(z_{i_t})^{-1})$

695 **return** $f_{\theta_e}, \Lambda_n^{\mu_N}(\cdot)^{-1}, \gamma_{n_{support}}$

696
697
698
699
700
701

Algorithm 2 Inference and outlier detection with CLOE

Input: Trained autoencoder f_{θ_e} , trained CF $\Lambda_n^{\mu_N}(\cdot)^{-1}$, threshold $\gamma_{n_{support}}$, test sample x_{test}

Output: 0 (inlier) or 1 (outlier)

Compute the CF value of each testing sample $(z_{test})_{1 \leq i \leq N}, (\Lambda_{n_{support}}^{\mu_N}(z_{i test})^{-1})_{1 \leq i \leq N}$

if $\Lambda_{n_{support}}^{\mu_N}(z_{test})^{-1} \leq \gamma_{n_{support}}$ **then**

return 0 $\triangleright x_{test}$ is an inlier

else

return 1 $\triangleright x_{test}$ is an outlier

end if

B DATASETS DETAILS FOR THE EXPERIMENTS

Table 6: Details of the chosen datasets

Dataset	Number data	Number of Features	% outlier	Category
<i>ALOI</i>	49534	27	3.04	Image
<i>backdoor</i>	95329	196	2.44	Network
<i>breastw</i>	683	9	34.99	Healthcare
<i>campaign</i>	41188	62	11.27	Finance
<i>cardio</i>	1831	21	9.61	Healthcare
<i>census</i>	299285	500	6.2	Sociology
<i>fault</i>	1941	27	34.67	Physics
<i>Hepatitis</i>	80	19	16.25	Healthcare
<i>InternetAds</i>	1966	1555	18.72	Image
<i>landsat</i>	6435	36	20.71	Astronautics
<i>letter</i>	1600	32	6.25	Image
<i>mnist</i>	7603	100	9.21	Image
<i>musk</i>	3062	166	3.17	Chemistry
<i>shuttle</i>	49097	9	7.15	Astronautics
<i>speech</i>	3686	400	1.65	Linguistics

C MEMORY AND TIME FOR TRAINING AND INFERENCE ON A CPU

In this section, we provide for each dataset the training time of CLOE, the CPU memory usage, the time needed to infer the whole dataset (Inference time), and the time needed to infer a single sample.

Table 7: Memory and time for training and inference on a CPU

Dataset	Training time (s)	CPU Memory for training (Mb)	Inference time (s)	Inference time for one sample (s)
<i>ALOI</i>	3213	1862	76	2e-5
<i>backdoor</i>	3075	2253	292	3e-3
<i>breastw</i>	158	828	4.7	6.8e-3
<i>campaign</i>	3216	1866	127	3e-3
<i>cardio</i>	731	1049	3.79	4.1e-3
<i>census</i>	2324	5229	921	3e-3
<i>fault</i>	514	1026	4.59	4.-3
<i>Hepatitis</i>	33	809	0.013	4e-3
<i>InternetAds</i>	549	1371	8.5	4e-3
<i>landsat</i>	3134	1207	124	1.9e-2
<i>letter</i>	660	1056	7.8	4e-3
<i>mnist</i>	3515	1232	167	2e-2
<i>musk</i>	1995	1171	14	4e-3
<i>shuttle</i>	2434	1911	162	3e-3
<i>speech</i>	720	1354	5.6	2e-3

756 **D TRAINING HYPERPARAMETERS FOR CLOE**
757

758 In Table 8, the hyperparameter n is given for each dataset. The parameter $n_{support}$ is computed
759 according to the heuristic proposed by Vu et al. (2022) at Section 4.1.
760

761 Table 8: Training hyperparameters of CLOE for the different datasets
762

763

Dataset	n (joint training step)	Computed $n_{support}$
<i>ALOI</i>	5	6
<i>backdoor</i>	5	6
<i>breastw</i>	4	5
<i>campaign</i>	5	6
<i>cardio</i>	4	5
<i>census</i>	5	5
<i>fault</i>	5	5
<i>Hepatitis</i>	2	2
<i>InternetAds</i>	4	5
<i>landsat</i>	4	6
<i>letter</i>	4	5
<i>mnist</i>	4	5
<i>musk</i>	4	5
<i>shuttle</i>	5	6
<i>speech</i>	4	6

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 E DETAILS ABOUT HYPERPARAMETERS

811
812 Table 9: Hyperparameter values used for the baseline methods
813
814

815	Method	Hyperparameters	Values
816	Og	OC SVM coefficient	0.1
817		OC SVM ν coefficient	0.03
818		γ radial basis function coefficient	scale
819		Learning rate	1e-3
820		Latent dimension	32
821	DAGMM	Epochs number	400
822		GMM number	5
823		Lambda cov	0.005
824		Learning rate	1e-4
825		Latent dimension	1
826		Epochs number	400
827	DRL	Diversity	True
828		Plearn	False
829		Input info ration	0.1
830		Cl ration	0.06
831		Basis vector num	5
832	MCM	Learning rate	0.05
833		Latent dimension	128
834		Epochs number	200
835		Mask number	15
836		λ	5
837	MCM	τ	0.1
838		Learning rate	0.05
839		Latent dimension	128
840		Epochs number	200
841		AEs number	2
842	RCA	Learning rate	3e-4
843		Latent dimension	256
844		Epochs number	200
845		kernel	radial basis function
846	OC-SVM	ν coefficient	0.5
847		γ	scale
848		Estimators number	100
849	iForest	Maximum of features	1
850		Deep SVDD center	forward_nn_pass
851	Deep-SVDD	Use AE	False
852		Optimizer	Adam
853		Hidden layer dimensions	[64, 32]
854		Epochs number	100
855		Neighbor number	5
856	kNN	Method	largest
857		Radius	1.0
858		Leaf size	30
859		Metric	Minkowski
860		Parameter for Minkowski	2
861	KDE	Algorithm	auto
862		Bandwidth	1.0
863		Algorithm	Auto
864		Leaf size	30
865		Metric	Minkowski

864 **F TEST PARAMETERS**
865

866 In this section, we analyze the parameters of CLOE. Experiments were carried out on two datasets,
867 *Hepatitis* and *letter*. Several values were tested for the number of epochs used to pretrain the au-
868 toencoder (Tables 10 and 11) and for the learning rate (Tables 12 and 13). These tests validate the
869 parameter choices adopted for CLOE. The highest values are in bold.
870

871 Table 10: AU-ROC for different number of epochs to pretrain the autoencoder
872

Dataset	10	50	100	200	500
<i>Hepatitis</i>	0.938	0.927	0.902	0.925	0.931
<i>letter</i>	0.943	0.936	0.929	0.926	0.912

873 Table 11: AP AUC for different number of epochs to pretrain the autoencoder
874

Dataset	10	50	100	200	500
<i>Hepatitis</i>	0.670	0.608	0.492	0.611	0.648
<i>letter</i>	0.644	0.520	0.427	0.427	0.359

875 Table 12: AU-ROC for different learning rate values to train CLOE
876

Dataset	1e-2	1e-3	1e-4	1e-5
<i>Hepatitis</i>	0.912	0.920	0.938	0.891
<i>letter</i>	0.694	0.797	0.943	0.898

877 Table 13: AP AUC for different learning rate values to train CLOE
878

Dataset	1e-2	1e-3	1e-4	1e-5
<i>Hepatitis</i>	0.584	0.622	0.670	0.508
<i>letter</i>	0.0187	0.291	0.644	0.603

904 **G DETAILS OF THE RESULTS OF THE ABLATION STUDY ON ALL DATASETS**
905

906 In this section, Table 14 and Table 15 present the detailed ablation study results for all the datasets
907 for the AU-ROC and AP AUC metrics. The highest values are in bold.
908

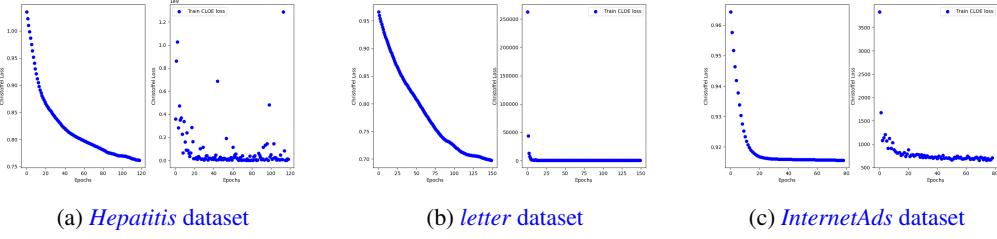
Table 14: AU-ROC for the ablation study

Dataset	CLOE	Without pretraining	Without joint training	Untrained AE
<i>ALOI</i>	0.561	0.577	0.554	0.549
<i>backdoor</i>	0.944	0.922	0.851	0.826
<i>breastw</i>	0.994	0.994	0.929	0.986
<i>campaign</i>	0.610	0.439	0.561	0.604
<i>cardio</i>	0.979	0.904	0.785	0.874
<i>census</i>	0.629	0.544	0.624	0.611
<i>fault</i>	0.928	0.875	0.816	0.616
<i>Hepatitis</i>	0.938	0.901	0.618	0.802
<i>InternetAds</i>	0.878	0.862	0.725	0.625
<i>landsat</i>	0.854	0.812	0.780	0.608
<i>letter</i>	0.943	0.936	0.738	0.557
<i>mnist</i>	0.750	0.623	0.637	0.731
<i>musk</i>	1.0	1.0	0.856	0.929
<i>shuttle</i>	0.998	0.994	0.883	0.995
<i>speech</i>	0.859	0.650	0.463	0.508
Mean	0.858	0.802	0.722	0.725

Table 15: AP AUC for the ablation study

Dataset	CLOE	Without pretraining	Without joint training	Untrained AE
<i>ALOI</i>	0.044	0.040	0.039	0.038
<i>backdoor</i>	0.745	0.544	0.202	0.454
<i>breastw</i>	0.985	0.988	0.854	0.975
<i>campaign</i>	0.178	0.103	0.141	0.169
<i>cardio</i>	0.817	0.565	0.398	0.584
<i>census</i>	0.084	0.065	0.088	0.077
<i>fault</i>	0.828	0.792	0.728	0.478
<i>Hepatitis</i>	0.670	0.550	0.363	0.477
<i>InternetAds</i>	0.526	0.522	0.386	0.330
<i>landsat</i>	0.739	0.618	0.572	0.315
<i>letter</i>	0.644	0.512	0.234	0.114
<i>mnist</i>	0.315	0.261	0.192	0.329
<i>musk</i>	0.999	0.998	0.522	0.616
<i>shuttle</i>	0.978	0.956	0.794	0.938
<i>speech</i>	0.068	0.043	0.017	0.024
Mean	0.575	0.504	0.369	0.394

972 H MONITORING OF TRAINING LOSSES



983 Figure 2: MSE loss (left) and CF loss (right) for different datasets

985 To confirm the impact of both losses during the joint training step, losses were monitored during
986 this step. This section shows the evolution of the MSE loss and the CF loss across epochs for three
987 datasets in Figure 2. Both losses decreased, indicating that each contributes effectively during the
988 joint training.

990 I EXPERIMENT ON REAL DATA

993 Table 16: AU-ROC for the different methods on real datasets

995 Dataset	CLOE	DRL	RCA	MCM	OC-SVM	iForest	ECOD	Deep SVDD	kNN	KDE
996 Dataset 1	1.0	0.997	0.627	0.992	0.998	0.998	0.983	0.999	0.998	0.998
997 Dataset 2	1.0	1.0	0.956	0.991	1.0	1.0	0.998	0.999	1.0	1.0
998 Dataset 3	1.0	1.0	0.975	0.992	1.0	0.998	0.996	1.0	1.0	1.0
999 Dataset 4	1.0	0.997	0.665	0.982	0.999	0.998	0.984	0.999	0.999	0.999
1000 Dataset 5	1.0	1.0	0.656	0.995	1.0	1.0	0.998	1.0	1.0	1.0
1001 Dataset 6	1.0	1.0	0.592	0.957	1.0	0.998	0.994	0.999	1.0	1.0
1002 Mean	1	0.999	0.745	0.985	0.9995	0.9987	0.9925	0.9993	<u>0.9995</u>	<u>0.9995</u>

1003 Table 17: AP AUC for the different methods on real datasets

1005 Dataset	CLOE	DRL	RCA	MCM	OC-SVM	iForest	ECOD	Deep SVDD	kNN	KDE
1006 Dataset 1	0.996	0.914	0.257	0.645	0.991	0.998	0.676	0.923	0.991	0.992
1007 Dataset 2	1.0	0.999	0.749	0.753	0.999	0.995	0.998	0.999	1.0	0.999
1008 Dataset 3	0.997	0.990	0.621	0.740	0.994	0.946	0.872	0.994	0.994	0.995
1009 Dataset 4	0.998	0.988	0.570	0.698	0.987	0.938	0.787	0.982	0.983	0.984
1010 Dataset 5	0.999	0.998	0.278	0.833	0.999	0.973	0.907	0.999	0.999	0.999
1011 Dataset 6	0.999	0.993	0.229	0.524	0.998	0.943	0.793	0.997	0.998	0.998
1012 Mean	0.998	0.980	0.451	0.699	0.995	0.966	0.839	0.982	0.994	<u>0.996</u>

1013 An experiment was conducted on real data using six different tabular datasets. Each dataset has
1014 dimension 824 and contains between 60000 and 85000 samples. The percentage of outliers is very
1015 low, around 3% for each dataset. All datasets have been preprocessed before trainings to have zero
1016 mean and unit variance. For both CLOE and the baseline models, 5000 samples from each dataset
1017 have been used for training. The baseline implementations and hyperparameters are the same as in
1018 Section 5. For CLOE, hyperparameter n is fixed to 4. Results are reported in Table 16 for AU-ROC
1019 and in Table 17 for AP AUC. All the methods obtain very good performances, but CLOE is the only
1020 one that reaches perfect AU-ROC on all datasets and obtains the best mean for the AP AUC.

1021 J VARIANCE OF THE EXPERIMENTS

1023 5 runs were conducted for each method on each public dataset. This appendix provides the complete
1024 table with the detailed variances: Table 18 for AU-ROC in and Table 19 for the AP AUC.

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Table 18: AU-ROC for the different methods on the selected datasets, with variances

Dataset	CLQE	DAGMM	Og	DEI	RCA	MCM	QC-SVM	Forest	ECOD	Deep SVDD	KNN	KDE
<i>ALOI</i>	0.561 (±3e-5)	0.529 (±1e-4)	N/A	0.521 (±4e-5)	0.534 (±2e-4)	0.517 (±2e-8)	0.539 (±6e-6)	0.531 (±1e-9)	0.546 (±1e-4)	0.556 (±4e-6)	0.518 (±1e-8)	0.518 (±1e-8)
<i>balance</i>	0.944 (±4e-2)	0.619 (±3e-3)	N/A	0.855 (±2e-5)	0.891 (±6e-3)	0.865 (±3e-6)	0.750 (±6e-9)	0.553 (±1e-3)	0.938 (±7e-7)	0.915 (±2e-6)	0.915 (±7e-7)	0.915 (±2e-6)
<i>bank</i>	0.904 (±5e-9)	N/A	0.367 (±1e-4)	0.900 (±6e-6)	0.905 (±2e-5)	0.897 (±2e-7)	0.904 (±5e-7)	0.904 (±5e-10)	0.988 (±2e-5)	0.995 (±3e-7)	0.998 (±3e-7)	0.998 (±3e-7)
<i>cardigan</i>	0.610 (±3e-9)	0.603 (±8e-4)	N/A	0.745 (±2e-4)	0.680 (±5e-4)	0.689 (±6e-3)	0.721 (±5e-5)	0.722 (±5e-8)	0.710 (±5e-3)	0.725 (±3e-9)	0.699 (±2e-7)	0.699 (±2e-7)
<i>condig</i>	0.970 (±1e-5)	0.527 (±8e-4)	N/A	0.915 (±5e-4)	0.954 (±5e-6)	0.961 (±3e-4)	0.957 (±2e-7)	0.951 (±6e-5)	0.946 (±3e-7)	0.953 (±2e-3)	0.933 (±8e-9)	0.977 (±3e-6)
<i>census</i>	0.629 (±2e-3)	0.605 (±2e-4)	N/A	0.664 (±2e-4)	0.605 (±4e-7)	0.624 (±5e-5)	0.553 (±2e-5)	0.611 (±9e-9)	0.659 (±4e-10)	0.705 (±2e-4)	0.662 (±8e-9)	0.662 (±8e-9)
<i>fault</i>	0.928 (±9e-9)	0.496 (±2e-3)	N/A	0.707 (±4e-5)	0.670 (±4e-5)	0.716 (±4e-5)	0.591 (±3e-6)	0.662 (±9e-5)	0.542 (±3e-4)	0.822 (±4e-6)	0.884 (±4e-6)	0.884 (±4e-6)
<i>Hepatitis</i>	0.938 (±2e-4)	0.589 (±6e-3)	0.625 (±6e-3)	0.754 (±1e-3)	0.702 (±1e-3)	0.555 (±7e-4)	0.855 (±7e-4)	0.816 (±1e-3)	0.786 (±3e-5)	0.786 (±3e-5)	0.835 (±8e-5)	0.835 (±8e-5)
<i>Imageoids</i>	0.878	0.580 (±8e-3)	N/A	0.877 (±2e-4)	0.680 (±6e-6)	0.763 (±5e-6)	0.708 (±6e-7)	0.425 (±7e-4)	0.749 (±1e-3)	0.823 (±2e-5)	0.815 (±1e-6)	0.815 (±1e-6)
<i>letter</i>	0.854 (±8e-4)	0.580 (±8e-3)	N/A	0.819 (±8e-4)	0.593 (±2e-5)	0.603 (±8e-3)	0.471 (±9e-7)	0.642 (±1e-3)	0.784 (±3e-7)	0.737 (±2e-6)	0.737 (±2e-6)	0.737 (±2e-6)
<i>mnist</i>	0.750 (±4e-5)	0.391 (±8e-5)	N/A	0.757 (±6e-5)	0.762 (±2e-3)	0.757 (±6e-5)	0.501 (±5e-6)	0.639 (±7e-5)	0.579 (±4e-7)	0.523 (±2e-3)	0.917 (±9e-9)	0.980 (±7e-6)
<i>mnist</i>	1.0 (±1e-0)	0.485 (±2e-2)	N/A	0.999 (±1e-8)	0.892 (±5e-5)	0.936 (±2e-5)	0.789 (±1e-0)	0.860 (±4e-4)	0.768 (±3e-7)	0.834 (±2e-3)	0.937 (±9e-9)	0.970 (±2e-5)
<i>shuttle</i>	0.998 (±5e-3)	0.901 (±2e-3)	N/A	0.994 (±1e-5)	0.992 (±1e-7)	0.992 (±2e-5)	0.997 (±6e-9)	0.996 (±8e-9)	0.993 (±1e-9)	0.994 (±6e-9)	0.995 (±6e-9)	1.0 (±0)
<i>splice</i>	0.859 (±1e-4)	0.489 (±2e-4)	N/A	0.667 (±1e-3)	0.472 (±7e-7)	0.486 (±1e-4)	0.469 (±5e-7)	0.470 (±2e-4)	0.473 (±3e-9)	0.508 (±3e-9)	0.501 (±1e-5)	0.881 (±1e-4)

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Table 19: AP AUC for the different methods on the selected datasets, with variances

Dataset	CLOE	DAGMM	O ₂	DRL	RC _A	MCM	QC-SYM	Forest	FCOD	DeepSVD	KNN	KDE
<i>ALOI</i>	0.044 (±9e-6)	0.041 (±2e-5)	N/A	0.038 (±2e-6)	0.023 (±1e-4)	0.042 (±7e-6)	0.041 (±2e-9)	0.033 (±9e-8)	0.032 (±4e-11)	0.049 (±7e-6)	0.042 (±5e-10)	
<i>balance-scale</i>	0.745 (±2e-2)	0.733 (±5e-4)	N/A	0.792 (±4e-3)	0.102 (±1e-4)	0.281 (±0.08)	0.107 (±1e-5)	0.048 (±6e-5)	0.038 (±1e-4)	0.517 (±6e-6)	0.411 (±4e-6)	
<i>balance-scale</i>	0.985 (±6e-5)	0.985 (±5e-4)	N/A	0.204 (±6e-3)	0.978 (±4e-3)	0.991 (±6e-8)	0.994 (±6e-9)	0.980 (±6e-7)	0.987 (±6e-9)	0.991 (±6e-9)	0.996 (±6e-9)	
<i>balance-scale</i>	0.178 (±3e-6)	0.177 (±2e-4)	N/A	0.270 (±5e-3)	0.285 (±1e-4)	0.270 (±7e-4)	0.266 (±2e-3)	0.310 (±9e-6)	0.302 (±6e-4)	0.290 (±6e-4)	0.296 (±2e-6)	
<i>balance-scale</i>	0.817 (±4e-2)	0.816 (±4e-3)	N/A	0.739 (±2e-4)	0.725 (±2e-4)	0.723 (±7e-3)	0.587 (±2e-3)	0.665 (±3e-5)	0.679 (±2e-3)	0.676 (±2e-5)	0.705 (±6e-3)	
<i>balance-scale</i>	0.084 (±1e-5)	0.086 (±1e-4)	N/A	0.094 (±1e-4)	0.070 (±3e-7)	0.077 (±5e-6)	0.065 (±3e-7)	0.074 (±3e-5)	0.074 (±3e-5)	0.126 (±5e-4)	0.084 (±2e-7)	
<i>balance-scale</i>	0.828 (±8e-5)	0.365 (±1e-3)	N/A	0.700 (±2e-4)	0.494 (±7e-6)	0.588 (±9e-6)	0.458 (±2e-7)	0.495 (±8e-5)	0.337 (±3e-7)	0.410 (±2e-3)	0.668 (±9e-5)	
<i>balance-scale</i>	0.670 (±1e-3)	0.214 (±6e-3)	N/A	0.361 (±9e-4)	0.335 (±6e-3)	0.434 (±1e-3)	0.216 (±2e-4)	0.395 (±3e-4)	0.400 (±2e-4)	0.356 (±9e-5)	0.425 (±2e-3)	
<i>Hepatitis</i>	0.526 (±4e-3)	0.739 (±4e-4)	N/A	0.668 (±4e-3)	0.668 (±4e-3)	0.501 (±7e-8)	0.596 (±6e-4)	0.578 (±2e-6)	0.400 (±2e-4)	0.552 (±6e-3)	0.251 (±4e-9)	
<i>Ionosphere</i>	0.739 (±4e-4)	0.267 (±5e-4)	N/A	0.637 (±1e-3)	0.246 (±4e-6)	0.272 (±8e-3)	0.199 (±2e-6)	0.155 (±1e-4)	0.172 (±2e-6)	0.195 (±4e-3)	0.499 (±3e-5)	
<i>liver-disorders</i>	0.644 (±2e-3)	0.067 (±1e-4)	N/A	0.251 (±4e-3)	0.165 (±1e-4)	0.078 (±3e-4)	0.194 (±3e-3)	0.273 (±3e-3)	0.273 (±3e-3)	0.172 (±2e-8)	0.473 (±3e-5)	
<i>letter</i>	0.315 (±1e-3)	0.170 (±6e-4)	N/A	0.843 (±6e-5)	0.454 (±1e-4)	0.735 (±6e-4)	0.194 (±1e-4)	0.377 (±2e-7)	0.194 (±1e-4)	0.194 (±2e-3)	0.411 (±2e-4)	
<i>mnist</i>	0.999 (±3e-3)	0.048 (±1e-3)	N/A	0.980 (±3e-4)	0.982 (±1e-4)	0.078 (±2e-4)	0.104 (±1e-4)	0.427 (±5e-2)	0.194 (±1e-5)	0.855 (±2e-7)	0.666 (±5e-4)	
<i>mnist</i>	0.978 (±2e-2)	0.853 (±2e-3)	N/A	0.894 (±1e-3)	0.972 (±4e-6)	0.841 (±2e-3)	0.939 (±3e-6)	0.976 (±1e-5)	0.912 (±2e-7)	0.914 (±2e-9)	0.854 (±6e-5)	
<i>shuttle</i>	0.068 (±3e-4)	0.016 (±3e-4)	N/A	0.044 (±1e-4)	0.019 (±6e-11)	0.024 (±6e-5)	0.019 (±2e-7)	0.079 (±3e-4)	0.020 (±4e-10)	0.017 (±3e-7)	0.020 (±2e-8)	
<i>speech</i>											0.118 (±7e-4)	

1134 K LLM USAGE

1135

1136 A LLM was used to check the grammar in the article.

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187