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ABSTRACT
Structure-informed protein representation learning is essential for effective protein
function annotation and de novo design. However, the presence of inherent noise
in both crystal and AlphaFold-predicted structures poses significant challenges for
existing methods in learning robust protein representations. To address these is-
sues, we propose a novel equivariant Transformer-State Space Model(SSM) hybrid
framework, termed E3former, designed for efficient protein representation. Our
approach leverages energy function-based receptive fields to construct proximity
graphs and incorporates an equivariant high-tensor-elastic selective SSM within
the transformer architecture. These components enable the model to adapt to com-
plex atom interactions and extract geometric features with higher signal-to-noise
ratios. Empirical results demonstrate that our model outperforms existing methods
in structure-intensive tasks, such as inverse folding and binding site prediction,
particularly when using predicted structures, owing to its enhanced tolerance to
data deviation and noise. Our approach offers a novel perspective for conducting
biological function research and drug discovery using noisy protein structure data.
Our code is available on https://anonymous.4open.science/r/E3former-207E.

1 INTRODUCTION
Protein representation learning plays a crucial role in advancing our understanding and application
of the structural and biological functions of proteins. A wide array of protein-related tasks, such as
predicting interactions, annotating functions, and designing protein binders, depend heavily on the
development of robust protein representations. (Tubiana et al., 2022) (Bushuiev et al., 2023) (Lisanza
et al., 2023) (Gligorijević et al., 2021).

Figure 1: Noise mechanism in equivari-
ant GNN based on cut-off radius graph.

The recent advancements in experimental technologies,
coupled with the groundbreaking development of protein
structure prediction models like AlphaFold (Jumper et al.,
2021), have significantly increased the availability of de-
tailed protein structural data. This surge in data has shifted
the focus of protein representation learning towards effec-
tively harnessing this rich structural information. However,
the existence of inherent noise in crystal and AlphaFold-
predicted structures (Acharya & Lloyd, 2005; Moore et al.,
2022) presents substantial challenges for current methods
in learning robust protein representations. In response to these challenges, the development of
geometric deep learning approaches that are tolerant to noise or the deviations in protein structures
data has become crucial.

Since the latest progress in equivariant neural networks has demonstrated their good ability in
handling diverse protein structure data (Duval et al., 2023), exploring the robustness representation
learning of structural information based on this framework has emerged as a pivotal breakthrough.
Although existing equivariant deep learning models like EGNN (Satorras et al., 2021), GearNet
(Zhang et al., 2022), spherical harmonics-based models (Liao & Smidt, 2022) and protein specific
model GCPNet (Morehead & Cheng, 2024) architectures exhibit strong performance, they still show
high sensitive to data bias or noise (Joshi et al., 2023). This paper aims to develop a model tailored
for representing protein macromolecular data within the equivariant neural network framework. The
model can adaptively alleviate the effects of noise and data bias, while also tackling the dynamic of
macromolecules.

The primary factor contributing to model sensitivity to noise is the offset of atomic positions in
3D Euclidean space. On the one hand, the model’s estimation of node attributes is significantly
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influenced by its neighboring nodes chosen, and perturbation in node coordinates may affect the
model’s selection of these. On the other hand, unlike invariant methods, models incorporating prior
knowledge of geometric equivariance are more susceptible to rotation (Li et al., 2024). Further
explanation on this topic is provided in Figure 1.

Herein, we introduce E3former, an Equivariant Transformer-SSM hybrid architecture that incorpo-
rates an Energy-aware radius graph and an Elastic selective mechanism. And we applied our model to
two types of datasets with different structural sources: one predicted by AlphaFold2 and the other de-
rived from experimental crystal structures, in order to assess whether our model can robustly tolerate
noise in protein structure data. These datasets encompass two structure-sensitive tasks—Protein-
Protein Interaction(PPI) tasks (Gainza et al., 2020) and inverse folding tasks (Ingraham et al., 2019)
to evaluate the model’s effectiveness in tasks that rely on geometric features.

Our contribution can be summarized as follows: (1) Inspired by molecular dynamics (Geada et al.,
2018), E3former leverages an energy-aware radius function and radius sampler to adaptively
modify the receptive field based on the atoms environment in 3D Euclidean space, thereby mitigating
the effects of data biases on constructing protein proximity graphs. (2) A novel equivariant elastic
selective SSM is proposed to extract and compress high-order tensors that are particularly sensitive
to rotations. We use the parameter-sharing SSM module as the sparse representation of Transformer
(Behrouz & Hashemi, 2024), and utilize spherical harmonics-based models to handle irreducible
representations in tensors of various orders. By performing a separate sparse representation of the
high-dimensional tensor and processing it with a parameter-sharing matrix, the model can enhance
the information encoding of biased data with a heightened signal-to-noise ratio. (3) Creating a new
dataset version based on the Alphafold structure for established public tasks to systematically
assess the tolerance of each model to data bias and noise. (4) Empirical results demonstrate that our
model achieves overall better results across all tasks compared to previous state-of-the-art methods
on the Alphafold-predicted datasets (Table 2). Benefiting from its anti-noise capabilities, the model
outperformed the state-of-the-art(SOTA) methods by 11.2% in the inverse folding task. In the
experimental data, E3former continues to maintain SOTA performance in various tasks owing to its
enhanced information extraction capabilities. These outcomes showcase that our approach learns
robust protein representations that can address biases in prediction data and inherent noise present in
crystal structures.

2 RELATED WORK

2.1 STRUCTURED-BASED PROTEIN REPRESENTATION LEARNING

With advancements in experimental and structure prediction technologies, the availability of protein
structure data has significantly expanded (Jumper et al., 2021) (wwPDB consortium, 2018) (Baek
et al., 2021). A range of representation learning approaches for protein structures have emerged.
Voxelized representation-based methods map the three-dimensional structure of proteins into
voxelized 3D volumes and encode the atomic system using techniques such as 3D convolutional
neural networks(3DCNNS). For instance, a series of methods like (Pagès et al., 2019) (Anand et al.,
2022) (Liu et al., 2021)leverage 3DCNNs to encode protein structures, demonstrating the efficacy of
this representation and encoding approach across diverse tasks. Furthermore, Metal3D (Dürr et al.,
2023) integrates multiple physical and chemical properties as inputs based on this representation,
enriching the environmental information within the framework of 3DCNNs. On the other line, Graph-
structured representations-based methods for protein structure involve mapping the structure of
proteins as a proximity graph over amino acid nodes, leveraging Graph Neural Networks (GNNs)
to capture intricate interactions among nodes (Han et al., 2024). GVP Jing et al. (2020) employing
equivariant GNNs for computational protein design and model quality assessment. Methods like
Schnet (Schütt et al., 2018) and Scannet (Tubiana et al., 2022)integrate 3D spatial information and
chemical features of atoms within GNN frameworks, applying these models to tasks such as protein
binding site prediction. EGNN (Satorras et al., 2021), GearNet-Edge (Zhang et al., 2022), GCPNet
(Morehead & Cheng, 2024), and other methods have also made significant architectural advancements
in GNNs, enhancing their capabilities in modeling complex relationships within protein structures.
Although powerful, these models are mainly designed for rigid experimental structures and struggle
with the inherent noise present in real-world protein applications.

2.2 EQUIVARIANT NEURAL NETWORKS

Equivariant neural networks have recently demonstrated remarkable success in modeling 3D atomic
systems, encompassing chemical small molecules and biological macromolecules (Fuchs et al., 2020)
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Figure 2: Overview of E3former. (a) Energy-Aware Radius Graph, for nodes unexpectedly leave
or enter the receptive field due to structural noise, model adjusts the radius to correct the adjacency
relationships. (b) Equivariant Elastic-SSM Block, high tensor-leaky module is designed to filter high-
order tensors. (c) E3former architecture, consisting of an energy-based receptive radius graph and a
hybrid Transformer-SSM module, designed to learn representations of protein structural information.

(Batzner et al., 2022) (Liao & Smidt, 2022) (Liao et al., 2023) (Townshend et al., 2021) (Bushuiev
et al., 2023). Among these, Cartesian-based equivariant neural networks focus on modeling 3D
molecular graphs in Cartesian coordinates (Xu et al., 2021). This approach involves updating and
exchanging messages between scalars and vectors concurrently, transforming vectors into Cartesian
tensors, and confining operations within these tensors to maintain equivariance. For example, the
GVP method (Jing et al., 2020) segregates atomic features within protein data into scalars and vectors,
executing equivariant message passing. TorchMD-Net (Thölke & De Fabritiis, 2022), an equivariant
transformer-based Graph Neural Network (GNN), employs an attention mechanism for weighted
message propagation. TensorNet model (Simeon & De Fabritiis, 2024) Cartesian tensors to higher
ranks, enhancing the expressive power of the model for equivariant message passing tasks.

Spherical harmonics-based models, on the other hand, leverage spherical harmonics functions and
irreducible representations to flexibly process data while maintaining equivariance. These models
decompose spherical tensors into different degrees, showcasing robust fitting capabilities in 3D
molecular datasets (Thomas et al., 2018) (Brandstetter et al., 2021).The classical TFN (Thomas et al.,
2018) method harnesses filters constructed from spherical harmonics, enabling the conversion of data
into versatile higher-order tensors. A SE(3)-Transformers method is proposed (Fuchs et al., 2020)
to adapt the TFN framework to the self-attention operation during aggregation. Equiformer (Liao
& Smidt, 2022) and Equiformerv2 (Liao et al., 2023) integrates equivariant graph attention neural
networks into Transformer-style blocks.

While the aforementioned equivariant methods enhance the model’s applicability to 3D atom systems,
some struggle to capture more intricate interactions due to the lack of utilization of high-order tensors,
while others exhibit high sensitivity to noise when employing these high-order tensors.

3 E3FORMER

In this section, we introduce an adaptive Energy-aware Elastic Equivariant Transformer-SSM hybrid
architecture, termed E3former. The energy-aware radius graph module will be detailed in Section 3.1
, while the high-order tensor elastic compression SSM module and the discussion of equivariance
will be described in Section 3.2. The overall architecture and designed equivariant operations will
be discussed in Section 3.3. The E3former method, incorporating these two innovative modules, is
illustrated in Figure 2.

3.1 ENERGY-AWARE PROTEIN GRAPH

We represent the 3D protein structures as a connected graph at the residue-level, denoted as graph
G = (V,E), where nodes V represent the amino acids within the protein graph, and edges E signify
the interactions among them. Typically, protein graphs employ a local radius cut-off with k-nearest
neighbors. Given a preset distance cutoff rc, the edge set is:

E = {ej→i}i̸=j,j∈Nc(i),Nc(i) = dij ≤ rc and j ∈ Ntop-k(i), (1)

3
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where dij denoting the distance between nodes i and j, Ntop-k(i) represents the top K nodes closest
to node i, Nc(i) means the chosen neighbors of node i In this context, the strong inductive bias of
locality opts for a restricted and typically more relevant neighbor for the node. However, within the
structure predicted by AlphaFold, the data noise and protein flexibility can induce perturbation in
node coordinates, potentially leading to the neglect of crucial edges in the local radius cut-off graph,
as illustrated in Figure 2(a).

Energy-aware radius function To solve the above problems, we proposed an energy-aware radius
graph module for adaptively adjusting the receptive field of protein graphs based on energy. This
allows the model to expand the receptive field when important neighbor nodes are far away due to
noise or flexibility, and shrink the receptive field when their neighbor nodes are too dense, thereby
helping the model to model locality more reasonably under noisy conditions. We used the commonly
used Lennard-Jones potential function to describe the main interactions between molecules, which
are:

Ei = ϵc

[(
σ

dij

)12

−
(
σ

dij

)6
]
, (2)

where ei is the sum of the L-J potential energy of node i. In order to reflect the model’s insensitivity
to this parameter, we set the potential energy parameters ϵ and σ to fixed constants in all tasks. dij
represents the distance between nodes. After calculating the sum of the potential energy ei of node i,
its adaptive radius is positively correlated with ei, as follows:

rfieldi ∝ Ei. (3)

Energy-based radius sampler. If we were to assign a static radius to individual nodes, the charac-
teristic of ”the presence of a distant neighbor” would be conveyed to the node via the radial basis
function in the model, imparting an excessively robust inductive bias. To mitigate this issue, we have
introduced an energy-driven radius sampler. Initially, we calculate the normalized potential energy of
each node Enorm:

Enormi =
log (Ei − Emin + 1)

log (Emax − Ei + 1)
, (4)

among them, Emin, Emax is the minimum or maximum value of the node potential energy in the
entire protein, and the logarithmic operation is used to smooth the radius distribution of different
nodes.

Based on the normalized potential energy Enorm, the sampling function is:

rEi ∈ Beta(α+ βEnormi , α− βEnormi ). (5)

To constrain the model’s sampling radius within a predetermined range, we leverage the Beta
distribution, ensuring that nodes with lower normalized potential energy are more likely to possess
a larger receptive field. Here, α and β are constants, both set to identical values across all tasks to
demonstrate the model’s resilience to this parameter.

Algorithm 1 Energy-based radius sampling process
input: coordinate set X = {x1, x2, ..., xN}, cut-off radius rc, max neighbors number k
Initialize energy set E ← ∅
Initialize energy radius setR ← ∅
for i = 1 to N do
Nc(i) = dij ≤ rc and j ∈ Ntop-k(i).

Ei = ϵc

[(
σ
dij

)12

−
(

σ
dij

)6
]

and j ∈ Nc(i).

E ← E ∪ {Ei}.
end for
for i = 1 to N do
Enormi = log(Ei−Emin+1)

log(Emax−Ei+1) .

rEi ∈ Beta(α+ βEnormi , α− βEnormi ).
R ← R∪ {rEi }.

end for
returnR

4
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3.2 EQUIVARIANT HIGH-TENSOR-ELASTIC SELECTIVE SSM
In equivariant method based on irreducible representation, the sensitivity to geometric coordinate
rotation increases with the degree L of the tensor (Liao & Smidt, 2022). For type-L vectors, L = 0
denotes a scalar while L = 1 signifies Euclidean vectors. To mitigate the amplification of geometric
feature noise in the high-order channels of the equivariant transformer, drawing inspiration from
the chosen space state model, we introduce an equivariant elastic high-tensor SSM block. This
block, utilized in conjunction with the equivariant transformer module, aims to extract the high-order
tensor in the irreducible representation and integrate it into the equivariant elastic-SSM module. This
integration replaces the fully-connected equivariant Transformer attention with its sparse alternatives
(Behrouz & Hashemi, 2024). The interplay between these two blocks is illustrated in Figure 2(c).

High-tensor leaky layers. In an N-layer equivariant transformer neural network, the output of each
layer is denoted as Tkout. These outputs collectively create a sequence {T out

k |k = 1, 2, ..., N} which
subsequently serves as the input xkin for the Elastic SSM after traversing through a high-tensor leaky
layer:

Xin
k = Lleaky

(Lmin,Lmax)(T
out
k ). (6)

Lleaky
(Lmin,Lmax)

signifies that following the depth-wise tensor product operation with the learnable
parameter layer, solely the tensors ranging from degree Lmin to Lmax are preserved.

Equivariant elastic selective SSM. SSM is a model that employs a linear Ordinary Differential
Equation (ODE) to map the input sequence x(t) combined with the hidden state vector h(t) to the
output y(t) Its basic form is:

h′(t) = Ah(t) +Bx(t),

y(t) = Ch(t),
(7)

Where A, B, and C represent the state matrix, input matrix, and output matrix, respectively.
In the elastic-SSM module, we substitute the input of the discretized time with the model input
{Xout

k |k = 1, 2, ..., N}:
ht = hk = Āhk−1 + B̄xk−1,

yt = yk = C̄hk,
(8)

Furthermore, we utilize the matrices WA, WB , WC that share learnable parameters to replace
A,B,C, thereby introducing a selection mechanism. This allows the model to dynamically extract
essential information from the tensor.

hk = (WA ⊗dtp hk−1)⊗dtp (WB ⊗dtp X
out
k ),

yk = Lleaky
(0,0) (WC ⊗dtp hk−1),

(9)

The Depth-wise tensor product ⊗dtp is utilized to define the number of output channels and keep the
equivariance of the operation (Liao & Smidt, 2022). The Lleaky

(0,0) operation is employed to condense
the output of the SSM module into a scalar, enabling the extraction of stable signals from noise. The
results of several elastic-SSM blocks will be concatenated and employed in conjunction with the
output of the Transformer block as the ultimate output:

Y = (y1||y2||...||yk),Z = (Y ||Tk), (10)
where (·∥·) is the concatenation operation and equivariant elastic-high-tensor SSM block as illustrated
in Figure 2(b)

Proof of Equivariance. For function tensor leaky f with input x, we need prove that: for F : X → Y
mapping between tensor spaces X and Y . Given a group G and group representations Dx(g) and
Dy(g), we have DY (g)f(X) = f(DX(g)x), for any x ∈ X, y ∈ Y, g ∈ G. And for f(X):

f(x) = Lleaky
(L1,L2)

(WC ⊗dtp X) (11)
according to the definition of flexible tensor product for irreps in e3nn library (Geiger & Smidt, 2022)
and equivariance proven by tensor product, we have:

WC ⊗dtp DX(g)x = DY (g)y
′. (12)

For Lleaky
(L1,L2)

operation, it preserves the selected tensor channels from L1 to L2. Because addition
and deletion operations on tensors from different channels are rotation- and translation-independent,
they will not break the equivariance:

Lleaky
(L1,L2)

(DY (g)y
′) = DY (g)y (13)

Besides, by utilizing other operation proven to equivariance, E3former demonstrates invariance for
node representations in scalar type and E(3)-equivariance for 3D coordinates in vector type. For
further exploration of the properties of the E3former, please refer to the Appendix B for a detailed
proof.
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3.3 ARCHITECTURE OF E3FORMER

The E3former architecture comprises an energy graph module (Section 3.1), an equivariant SSM
(Section 3.2), and a SE(3)-equivariant transformer module(Equiformer) (Liao & Smidt, 2022). In the
context of a protein graph G = (V,E), each node vi ∈ V corresponds to an amino acid. To mitigate
computational complexity, we adopt a Cα-based graph representation method as the foundation and
integrate various featurization strategies to incorporate additional structural insights (Jamasb et al.,
2024). The node vi possesses a feature encoding hiv and the following features include:

• Residue Type (not used in inverse folding task), a 16-dimensional transformer-like positional
Encoding (Vaswani, 2017).

• Backbone dihedral angles ϕ, ψ, ω ∈ R6.

• Virtual torsion and bond angles κ, α ∈ R4 defined over Cα atoms.

• Feature r⃗ between nodes representing the displacement vector between nodes.

During each training or inference stage, the energy-driven radius sampler establishes the adjacency
relationship E between nodes. Subsequently, it encapsulates the aforementioned protein features
and inputs them into the kth layer of the equivariant transformer block to derive the feature matrix
Tk. This Tk matrix undergoes a high-tensor leaky operation to generate the input Xkin in the kth
layer of the equivariant-elastic-SSM block. The final step involves concatenating the output of the
multi-layer SSM block {yk|k = 1, 2, ..., N} with the output of the last layer of the transformer block
Tk, followed by mapping them into the final node output matrix Hout.

4 EXPERIMENT

In this section, we present two Alphafold-predicted datasets and three experimental datasets to evalu-
ate the performance and noise tolerance of E3former. Further details are available in Appendix C.1.

4.1 DATASET

CATH We provide the dataset derived from CATH 4.2 (Ingraham et al., 2019), in which all protein
structures with 40% nonredudancy are partitioned by their CATH (class, architecture, topology/fold,
homologous superfamily) and kept the same data settings as a benchmark of protein representation
learning (Jamasb et al., 2024). These data are split based on random assignment of the CATH
topology classifications based on an 80/10/10 split.

CATH-AF Based on the above CATH data, we employed AlphaFold2 to predict and substitute the
atomic coordinates with the predicted results, more details are illustrated in Appendix A.1.

Both CATH and CATH-AF will be utilized to evaluate in inverse folding task, a crucial step in protein
design process (Dauparas et al., 2022).inverse folding involves predicting the amino acid sequence
that will fold into given protein structure.

PPBS We provide the dataset derived from PPBS (prediction of protein–protein binding sites dataset)
curated by ScanNet (Tubiana et al., 2022), which constructed a nonredundant dataset of 20K rep-
resentative protein chains with annotated binding sites derived from the Dockground database of
protein complexes (Kundrotas et al., 2018).

PPBS-AF Based on the above PPBS data, we employed AlphaFold2 to predict and substitute the
atomic coordinates with the predicted results. Details about data process is provided in A.1.

Both PPBS and PPBS-AF will be utilized to evaluate in binding site prediction task. Predicting
protein–protein binding sites involves identifying the residues directly involved in one or more
native, high affinity PPIs. Understanding a protein’s PPBS can guide docking algorithms and provide
valuable insights into its in vivo behavior when its partners are unknown.

MASIF-SITE We utilize the experimental structures dataset sourced from the PDB by Gainza et al.
(2020) and maintain the original splits. Following the pipelines described by (Jamasb et al., 2024),
we label based on inter-atomic proximity (3.5 Å).

4.2 ALPHAFOLD-PREDICTED DATASET TASKS

We compare E3former with state-of-the-arts baselines about representation learning of proteins at
different levels of structural granularity (Cα, backbones, sidechain), including SchNet (Schütt et al.,
2018), TFN (Thomas et al., 2018), EGNN (Satorras et al., 2021), Equiformer (Liao & Smidt, 2022),

6
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Table 1: The overview of tasks and and datasets.

TASK Structures type Dataset Origin #Train #Valid #Test Metric
Inverse Folding Experimental (Ingraham et al., 2019) 18,024 608 1,120 Perplexity
Binding Site Prediction Experimental (Tubiana et al., 2022) 12,577 3,178 3,984 AUPRC
PPI Site Prediction Experimental (Gainza et al., 2020) 2,436 271 334 AUPRC
Inverse Folding AF-predicted This work 16,468 559 1,015 Perplexity
Binding Site Prediction AF-predicted This work 11,345 2,876 3,636 AUPRC

Table 2: Comparing different models for structure-intensive task on Alphafold-predicted datasets, -
denote runs that did not converge. The decimals in the subscript represent the experimental variance.
PPBS-AF All represents the combined set of all other data partitions within PPBS-AF.

Features SchNet TFN EGNN Equiformer GearNet GCPNet E3former

CATH-AF(↓)
+Seq 9.80.09 7.30.04 8.32.05 6.09.04 - 6.20.08 5.50.05

+κ, α 8.71.07 7.28.04 7.72.06 5.62.03 - 6.19.09 5.44.04

+ϕ, ψ, ω 7.32.08 5.11.02 6.07.05 3.64.03 - 3.91.07 3.54.04

PPBS-AF(↑) +Seq 0.520.01 0.507.01 0.526.00 0.596.02 0.597.02 0.554.02 0.607.01

70 +κ, α 0.532.02 0.574.01 0.557.00 0.573.00 0.607.02 0.567.00 0.560.00
+ϕ, ψ, ω 0.554.01 0.591.01 0.569.01 0.592.01 0.591.01 0.549.02 0.598.01

PPBS-AF(↑) +Seq 0.398.03 0.487.01 0.483.00 0.537.00 0.538.02 0.422.03 0.546.01

Homology +κ, α 0.403.00 0.507.02 0.503.04 0.547.03 0.536.02 0.419.01 0.525.01
+ϕ, ψ, ω 0.428.01 0.516.00 0.518.00 0.547.04 0.541.00 0.425.02 0.551.02

PPBS-AF(↑) +Seq 0.408.02 0.547.00 0.570.00 0.595.01 0.520.00 0.403.03 0.599.00

Topology +κ, α 0.410.03 0.566.00 0.574.00 0.590.00 0.530.00 0.411.00 0.598.01

+ϕ, ψ, ω 0.416.01 0.542.00 0.602.02 0.588.00 0.525.01 0.406.01 0.602.00

PPBS-AF(↑) +Seq 0.269.00 0.383.01 0.392.00 0.394.00 0.366.00 0.269.00 0.405.01

None +κ, α 0.264.00 0.371.00 0.384.00 0.385.00 0.357.00 0.263.00 0.409.01

+ϕ, ψ, ω 0.274.01 0.357.00 0.407.01 0.394.01 0.366.00 0.271.00 0.412.00

PPBS-AF(↑) +Seq 0.390.02 0.483.03 0.494.01 0.531.01 0.509.01 0.399.02 0.541.01

All +κ, α 0.390.02 0.503.03 0.504.01 0.520.01 0.509.02 0.401.03 0.525.03

+ϕ, ψ, ω 0.410.03 0.504.01 0.526.03 0.533.00 0.513.03 0.406.02 0.541.02

GearNet (Zhang et al., 2022), and GCPNet (Morehead & Cheng, 2024). Most of them have been
mentioned in a protein representation benchmark (Jamasb et al., 2024) and commonly employed in
protein datasets. Some, like equiformer, have demonstrated good performance in 3D atom systems.

To comprehensively evaluate the performance and robustness, we conduct a comparison experiment
on an AlphaFold-predicted dataset. In the inverse folding task, we utilize perplexity as the evaluation
metric (Jing et al., 2020). In the binding site prediction task, we employ AUPRC due to label
imbalances.

As illustrated in Table 2, E3former outperforms other baselines by over 6% on average in the inverse
folding task and by over 6% in the binding site prediction-PPBS-none task. Besides, at the feature
level, E3former demonstrates the most substantial enhancement over the baselines(11% on inverse
folding task) when only Seq features are incorporated. This improvement is attributed to the increase
in prediction difficulty for each model as the number of available features decreases. Similarly,
E3former demonstrates strong performance in the PPBS-AF-None dataset, which has a lower
similarity to the training set. This difference highlights the model’s ability to learn more complex
interactions between amino acids with a high signal-to-noise ratio, showcasing its generalizability in
difficult samples and tolerance to data deviation and noise.

4.3 EXPERIMENTAL DATASET TASKS

Following the experimental settings in Section 4.2, we further evaluate the model on experimental
datasets. As shown in Table 3, although we replace the predicted dataset with experimental dataset,
E3former also leverages the inherent noise in crystal structures to enhance its performance in the
comparison. The model outperforms all baseline models in datasets in most structural information
intensive dataset, showing a 4% improvement in AUPRC performance in PPBS-Topology. Addition-
ally, it consistently exhibits performance gains of over 3.5% in the inverse folding task. It is worth
noting that the additional κ, α features may sometimes result in a performance decrease for each
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Table 3: Comparing different models for structure-intensive task on Experimental datasets.
Features SchNet TFN EGNN Equiformer GearNet GCPNet E3former

CATH(↓)
+Seq 11.78.08 10.34.03 10.28.04 7.80.03 12.79.17 8.35.08 7.53.02

+κ, α 11.03.03 10.02.05 9.84.07 8.09.00 12.35.05 8.80.09 7.97.02

+ϕ, ψ, ω 9.97.09 8.73.02 8.89.04 6.91.04 11.61.12 7.56.11 6.64.03

PPBS(↑) +Seq 0.648.01 0.781.01 0.721.00 0.766.01 0.768.01 0.741.02 0.777.01

70 +κ, α 0.660.00 0.783.00 0.739.01 0.771.03 0.765.03 0.739.00 0.775.01
+ϕ, ψ, ω 0.658.01 0.783.02 0.752.02 0.780.02 0.787.02 0.747.01 0.783.01

PPBS(↑) +Seq 0.552.03 0.674.01 0.680.02 0.724.02 0.688.00 0.692.03 0.732.02

Homology +κ, α 0.569.00 0.697.02 0.690.01 0.721.00 0.688.01 0.691.02 0.727.02

+ϕ, ψ, ω 0.568.03 0.694.00 0.702.02 0.727.03 0.692.01 0.702.00 0.732.01

PPBS(↑) +Seq 0.532.03 0.651.03 0.716.02 0.725.01 0.636.00 0.713.01 0.743.02

Topology +κ, α 0.530.02 0.675.00 0.718.03 0.716.02 0.642.01 0.716.03 0.745.00

+ϕ, ψ, ω 0.519.01 0.668.00 0.733.02 0.728.01 0.640.03 0.721.02 0.743.03

PPBS(↑) +Seq 0.455.02 0.542.04 0.596.05 0.618.04 0.540.01 0.588.04 0.637.03

None +κ, α 0.464.01 0.567.04 0.602.04 0.604.04 0.540.03 0.581.00 0.628.02

+ϕ, ψ, ω 0.448.03 0.564.02 0.598.01 0.615.02 0.548.03 0.589.00 0.631.01

PPBS(↑) +Seq 0.537.02 0.654.01 0.674.04 0.708.03 0.656.00 0.676.02 0.724.02

All +κ, α 0.546.02 0.674.00 0.684.03 0.703.01 0.658.01 0.669.04 0.719.02

+ϕ, ψ, ω 0.539.00 0.672.00 0.692.01 0.712.03 0.660.01 0.685.01 0.726.02

MASIF(↑)
+Seq 0.953.00 0.968.00 0.962.00 0.966.00 0.956.00 0.968.00 0.968.00

+κ, α 0.953.00 0.966.00 0.965.00 0.967.00 0.958.00 0.966.00 0.968.00

+ϕ, ψ, ω 0.954.00 0.967.00 0.964.00 0.967.00 0.954.01 0.967.00 0.968.00

model, as observed in the benchmark (Jamasb et al., 2024). This effect persists even after accounting
for experimental randomness and parameter influences. We attribute this to potential information
redundancy with the three-dimensional atom coordinates.

Figure 3: Comparing different models on different Alphafold-predicted confidence settings, higher
confidence levels indicate that AlphaFold is more confident to its predictions accuracy. Left: CATH-
AF dataset (perplexity↓), Right: PPBS-AF All dataset (AUPRC↑).
4.4 NOISE TOLERANCE EVALUATION

In order to further evaluate our model’s tolerance to noise and deviation, we conducted fine-grained
analysis on Alphafold-predicted and experimental data separately. First, the test set is split and com-
pared based on AlphaFold’s predicted confidence. As illustrated in Figure 3, our model demonstrates
a more substantial performance enhancement when the confidence is reduced.

Similarly, we divided the experimental test set based on the structural resolution provided by RCSB
(Burley et al., 2019). As shown in Figure 4, E3former demonstrates competitive outcomes with
low resolution dataset. These experiments collectively indicate that our model has acquired a robust
representation.

4.5 ABLATION STUDY

In this section, ablation experiments are conducted to investigate the impact of core modules on the
E3former. Two modules are disabled individually: Replacing the Energy-aware protein graph module
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Figure 4: Comparing different on different resolution settings, a value of 0 indicates no resolution
error, while a value of 3 represents a resolution error of 3Å. Left: CATH dataset (perplexity↓), Right:
PPBS All dataset (AUPRC↑).

with a local radius cut-off using a k-nearest neighbors proximity graph. Removing the Equivariant
high-tensor-elastic selective SSM module and simply employing an equivariant transformer architec-
ture. Ablation experiments will be performed on both Alphafold-predicted datasets and additional
experiments are provided in Appendix C.3. The results presented in Table 5 demonstrate that remov-
ing any core module will leads to a significant decrease in model performance. In CATH-AF, which
partially relies on locality assumptions, eliminating the Energy module has a more significant impact
on the model, while the Elastic module brings more stable improvements to the model. Only in rare
cases (homology, +κ, α), there has been a slight decline in our module’s performance, possibly due
to the feature introducing redundant information that interferes with the model’s training.

Table 4: Ablation studies for key components in Alphafold-predicted dataset.

Method Features CATH-AF(↓)
PPBS-AF(↑)

70 Homology Topology None All

E3former
+Seq 5.5005 0.60701 0.54601 0.59900 0.40501 0.54101

+κ, α 5.4404 0.56000 0.52501 0.59801 0.40901 0.52503

+ϕ, ψ, ω 3.5404 0.59801 0.55102 0.60200 0.41200 0.54102

w/o Energy
+Seq 5.8206 0.60302 0.54203 0.59701 0.39902 0.53303
+κ, α 5.6103 0.57101 0.52802 0.59303 0.40201 0.52302

+ϕ, ψ, ω 3.5803 0.59702 0.54901 0.59802 0.40401 0.53603

w/o Elastic
+Seq 5.7104 0.60102 0.54303 0.59601 0.40302 0.53602
+κ, α 5.5204 0.56301 0.54102 0.59603 0.40501 0.52502

+ϕ, ψ, ω 3.5402 0.59302 0.54901 0.59502 0.40702 0.53903

w/o EE
+Seq 6.0901 0.59602 0.53703 0.59501 0.39402 0.53102
+κ, α 5.6205 0.57301 0.54702 0.59003 0.38501 0.52002

+ϕ, ψ, ω 3.6405 0.59202 0.54701 0.58802 0.39401 0.53303

5 CONCLUSION AND LIMITATION

In this work, we proposed an Energy-aware Elastic Equivariant Transformer-SSM hybrid architecture
for 3D macromolecular structure representation learning. The core of the model is to adaptively
utilize the energy-aware module to bulid proximity graph and use the equivariant SSM module to
express high-order features sparsely. The above improvements enable model more tolerant to data
deviation and noise. The experimental results demonstrate the superior performance of E3former on
inverse folding, binding sites prediction, and protein-protein interaction tasks.

Limitation E3former mainly performing operations on the 3D atom system derived from protein
structures, neglecting the comprehensive utilization of others modal information (such as sequential
information, chemical bond specifics, protein functional annotations, etc.), which may limits the
performance of the method.
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A EXPERIMENTAL DETAILS

A.1 DETAILS OF DATASET

CATH The CATH dataset is a collection of protein structures curated by (Ingraham et al., 2019).
In the CATH 4.2 40% non-redundant set of proteins, only chains up to a length of 500 are retained.
Any chains from test set with CATH topology classifications overlap(CAT) with train are excluded.
Consequently, the training, validation, and test splits consist of 18204, 608, and 1120 structures,
respectively. CATH or their Alphafold-predicted version are utilized to Inverse folding task. In this
node classification task, the model is trained to learn a mapping function for each residue to an amino
acid type y ∈ {1, ..., n}, where the vocabulary size is n = 20, representing the 20 common amino
acids.

PPBS We utilized the PPBS dataset as compiled by (Tubiana et al., 2022) following the data division
method they outlined. Based on the Dockground database of protein-protein interfaces (Kundrotas
et al., 2018), each unique PDB chain involved in one or more interfaces is considered a single example.
Chains with a sequence length of less than 10 or involved in designed proteins are excluded from the
dataset.In particular, the validation set and test set in PPBS are divided according to the following
criteria:

• 70%: at least 70% sequence similarity to one sample in the training set.

• Homology: at most 70% sequence similarity with any sample in the training set and belong to the
same protein superfamily with at least one training sample.

• Topology: sharing a similar topological structure (T level of CATH classification (Sillitoe et al.,
2021)) with at least one training sample and do not belong to the 70% dataset or the Homology
dataset.

• None: none of the above.

• All: the combination of the divisions mentioned above.

In this node-level binary classification task, the model is trained to learn a mapping function for
each residue to 0/1 types, in order to discover potential protein-protein interfaces between the target
protein and other proteins.

Table 5: Overviews of PPBS data partitions.

Split type Structures Description
70% 554 Seq.identity

Homology 1485 same superfamliy
Topology 915 similar topology

None 1077 none of above
all 4031 all of above

MASIF-SITE is a dataset proposed by (Gainza et al., 2020), sourced from the PRISM list of
nonredundant proteins (Baspinar et al., 2014), the ZDock benchmark (Liu et al., 2015), and SabDab
(Dunbar et al., 2014). To ensure a fair comparison within the benchmark framework, we adopted
the data labeling methodology outlined by (Jamasb et al., 2024) and set the binding threshold at
3.5Å. Since the labels of the corresponding Alphafold predicted version are difficult to align with the
original dataset, only original dataset utilized for the experiments. The primary challenge in mapping
the MASIF dataset to AlphaFold-predicted structures arose during sequence alignment using the
BLOSUM62 global alignment algorithm. We observed that the resulting alignments were highly
fragmented, resulting in short, disconnected segments rather than continuous regions. Given these
difficulties in obtaining reliable results, we made the decision to exclude the AlphaFold-predicted
dataset from our benchmark experiments.

This dataset is used to evaluate protein–protein interaction site prediction in protein surfaces, and in
this node-level binary classification task, models are trained to map each residue into 0/1 type for
detecting the PPI sites.
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CATH-AF The CATH-AF dataset is created by mapping CATH entries to UniProt IDs within
the AlphaFold Protein Structure Database 1. Since the original CATH dataset only includes index
information as PDB IDs, we used the PDBe REST API2 to convert these PDB IDs into the UniProt
IDs required by the AlphaFold database. All predicted protein structures are retrieved from the
AlphaFold V4 protein structure database. However, some PDB IDs could not be matched to UniProt
IDs during the conversion process, and due to limitations of the AlphaFold model3, predictions
for certain proteins could not be generated. Consequently, the CATH-AF dataset contains fewer
structures than the original CATH dataset, with 16,468 files in the training set, 559 in the validation
set, and 1,015 in the test set. Additionally, the CATH-AF dataset is proposed as a resource for
protein inverse folding tasks, particularly for evaluating the protein design capabilities of models
using AlphaFold-predicted structures.

PPBS-AF We construct a new dataset based on the PPBS dataset using structures predicted by
AlphaFold. Following a similar approach to that used in CATH-AF, we employ the PDBe REST API
to convert the data into the UniProt IDs required by the AlphaFold database. With pre-calculated
protein binding sites provided by (Kundrotas et al., 2018), we apply the BLOSUM62 global alignment
algorithm (Styczynski et al., 2008) to align the sequences of the AlphaFold-predicted structures with
those of the corresponding experimental structures. This allows us to map the active sites from the
reference structures onto the predicted structures. After excluding protein chains for which predicted
structures are unavailable, we ultimately obtain a training set with 11,345 structures, a validation set
with 2,876 structures, and a test set with 3,636 structures.

A.2 TRAINING AND HYPERPARAMETERS

To train the model for the inverse folding task (CATH, CATH-AF), we use cross entropy Loss:

L = −
K∑
i=1

yi log(ŷi)

To train the model for the binding sites prediction(PPBS, PPBS-AF) and Protein Protein
Interaction(MASIF-SITE) tasks, we used BCE Loss function:

L = −y log ŷ − (1− y) log(1− ŷ)

We used the same parameters for all the above tasks. We set the maximum epochs as 50 and employed
early stopping based on the validation set performance. For the E3former, the hyperparameters in the
Energy-Aware Protein Graph 3.1 in all tasks are set to ϵ = 1.0, σ = 3.8, α = 1, β = 8 to reflect the
model’s robustness to hyperparameters. For transformer blocks, we set the number of blocks as 6
and only keep the tensor with Lmax = 2 as the input of the next block. For equivariant elastic SSM
blocks, we extracted the high-order tensor of L3 ∼ L5 from the upper transformer blocks as input
and set the output tensor to the scalar L = 0. For other general settings, we set the parameters of all
models according to the default configuration on a protein benchmark (Jamasb et al., 2024). Learning
rate is set to 0.001, batch size is set to 16 or 32, dropout is set to 0, and a unified output head with the
decoder consisting of two layers of 128 hidden units.

B PROPERTY OF E3FORMER

B.1 APPROXIMATION OF ROTATION AND TRANSLATION NOISE

Description. Suppose an input vector X is subject to rotation and translation noise, denoted as σr
and σt respectively. Deep tensor product is defined as:

h(L3)
m3

=

L1∑
m1=−L1

L2∑
m2=−L2

C
(L3,m3)
(L1,m1)(L2,m2)

f (L1)
m1

g(L2)
m2

,

1https://alphafold.ebi.ac.uk
2https://www.ebi.ac.uk/pdbe/api/doc/sifts.html
3https://alphafold.ebi.ac.uk/faq
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Here, C is the Clebsch-Gordan coefficient. Type-0 tensors are invariant to rotation groups and solely
influenced by translations and are only affected by translations.Considering the following two network
structures:

• Structure 1: Utilizes distinct learnable weight matrices WT
1 , ...,W

T
N for continuous deep tensor

products.

• Structure 2: Employs a singular shared learnable weight matrix WH for deep tensor product,
retaining only Type-0 tensors.

We will now analyze and compare how input noise affects the output in these two different structures.

Theorem. For the angle perturbation δθ, the corresponding rotation matrix is denoted as R(δθ),
satisfying ||R(δθ) − I|| ≤ σr. For the translation noise, represented by the vector δθ, satisfying
||R(δθ) − I|| ≤ σt. The structure 1 noise δY s1 satisfies ∥δY s1∥ ≤ ∥WT

N∥...∥WT
1 ∥(σr∥X∥ + σt),

the structure 2 noise δY s2 satisfies ∥δY s2∥ ≤ Cσt where C is a constant.

Proof. For Z1 = f(WT1, X̃), the noise of structure 1 can be expressed as:

δZ1 = f(WT1, X̃)− f(WT1, X) =WT1(R(δθ)X + δt−X),

R(δθ) ≈ I + [δθ] ∗ ×,

where [δθ] ∗ × is an antisymmetric matrix, so we can approximate that:

δZ1 ≈WT1([δθ]×X + δt).

Finally, the noise of Structure 1 can be expressed as:

∥δYS1∥ ≤ ∥WTN
∥∥δZN−1∥ ≤ ∥WTN

∥...∥WT1
∥(σr∥X∥+ σt).

For the noise of Structure 2, we have:

Z1 = Lleaky
(0,0) [f(WH , X̃)].

Since only type-0 tensors are reserved, the impact of rotation noise on Z can be ignored, and the
effect of translation noise is:

δZ1 = Lleaky
(0,0) [f(WH , δt)],

so we have ∥δZ0∥ ≤ C1σt, where C1 is a constant related to WH .

Similarly:
ZN = Lleaky

(0,0) [f(WH , ZN−1)],

∥δYS2∥ ≤ CN∥δZN−1∥ ≤ CN ...C1σt.

For the noise of structure 2, we have: Z1 = Lleaky
(0,0) [f(WH , X̃)]. Since only Type-0 tensors are

retained, the effect of rotation noise on Z can be ignored, and the effect of translation noise is:

δZ1 = Lleaky
(0,0) [f(WH , δt)],

so we have ∥δZ0∥ ≤ C1σt, where C1 is a constant related to WH . Similarly:

ZN = Lleaky
(0,0) [f(WH , ZN−1)], ∥δYS2∥ ≤ CN∥δZN−1∥ ≤ CN ...C1σt.

In Structure 1, the noise is amplified by a factor of ∥WTN
∥...∥W1∥, and the rotation noise σr

significantly affects the output.

In Structure 2, since only Type-0 tensors are retained each step and the impact of rotation noise σr is
minimal, the effect of translation noise is also limited to a constant multiple C. Consequently, the
Equivariant Elastic High-tensor leaky SSM architecture can effectively reduce the impact of noise on
the output.
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Table 6: Comparing different models for structure-intensive task on Alphafold-predicted datasets
under different confidence cutoffs(0-80%/80-85%/85-90%/90-95%/95-100%), highlighting denotes
the best performance among all compared methods under different confidence interval.

Features SchNet TFN EGNN Equiformer GearNet E3former

CATH-AF(↓)
+Seq 9.11/10.05/9.40/9.46/9.72 7.50/7.74/6.87/6.91/7.20 9.18/8.02/7.91/7.81/7.97 7.26/6.01/5.65/5.47/5.48 16.29/38.54/-/34.16/42.03 6.48 / 5.48 / 5.09 / 4.93 / 4.90
+κ, α 8.81/8.98/8.59/8.43/8.82 7.31/7.39/7.08/6.99/7.33 8.40/7.85/7.33/7.32/7.41 6.54 / 5.53 /5.23/5.08/5.07 12.11/18.81/18.31/18.99/22.87 6.63/5.61/ 5.18 / 5.06 / 5.07

+ϕ, ψ, ω 7.57/7.62/7.14/7.02/7.51 5.18/5.73/4.87/4.96/5.23 6.37/6.22/5.86/5.84/5.91 4.10/3.69/3.43/3.34/3.38 8.00/9.45/8.63/8.98/9.89 4.01 / 3.54 / 3.29 / 3.23 / 3.28

PPBS-AF(↑) +Seq 0.292/-/0.374/0.453/0.618 0.266/-/0.364/0.436/0.596 0.269/-/0.397/0.511/0.640 0.301/-/0.450/0.556/0.674 0.343/-/ 0.509 / 0.598 / 0.703 0.366 /-/ 0.458/ 0.582/0.678

70
+κ, α 0.234/-/0.370/0.497/0.599 0.255/-/0.486/0.504/0.652 0.253/-/0.422/0.523/0.628 0.314/-/ 0.532 /0.546/0.653 0.325 /-/0.513/ 0.591 / 0.710 0.317/-/0.490/0.545/0.644

+ϕ, ψ, ω 0.266/-/0.467/0.512/0.660 0.287/-/0.419/0.553/ 0.711 0.349 /-/0.412/0.566/0.642 0.329/-/0.527/0.568/0.661 0.320/-/ 0.589 / 0.579 /0.677 0.323/-/0.533/0.578/0.664

PPBS-AF(↑) +Seq 0.120/0.212/0.315/0.398/0.463 0.223 /0.267/0.371/0.474/0.554 0.130/0.225/0.369/0.489/0.569 0.185/0.278/0.399/0.541/0.614 0.118/0.324/0.421/0.539/0.602 0.152/ 0.340 / 0.425 / 0.544 / 0.624

Homology
+κ, α 0.178/0.224/0.311/0.402/0.465 0.145/0.300/0.419/0.512/0.577 0.198/0.262/0.398/0.496/0.575 0.194/0.321/0.424/ 0.547 / 0.612 0.214 / 0.339 / 0.451 /0.535/0.606 0.186/0.328/0.411/0.530/0.603

+ϕ, ψ, ω 0.104/0.264/0.328/0.429/0.493 0.142/0.295/0.413/0.511/0.587 0.189/0.278/0.397/0.515/0.583 0.136/0.271/0.446/ 0.555 /0.615 0.179/0.299/0.460/0.538/0.607 0.234 / 0.306 / 0.465 /0.546/ 0.620

PPBS-AF(↑) +Seq 0.058/-/0.214/0.429/0.472 0.084 /-/0.355/0.548/0.598 0.055/-/0.364/0.592/0.626 0.074/-/0.380/0.600/0.659 0.073/-/0.300/0.502/0.586 0.071/-/ 0.389 / 0.608 / 0.662

Topology
+κ, α 0.063/-/0.242/0.396/0.464 0.053/-/0.303/0.560/0.621 0.057/-/0.259/0.569/0.624 0.055/-/0.328/0.584/0.647 0.088 /-/0.281/0.522/0.588 0.032/-/ 0.360 / 0.605 / 0.654

+ϕ, ψ, ω 0.050/-/0.217/0.391/0.482 0.077 /-/0.294/0.528/0.594 0.053/-/0.381/ 0.607 /0.652 0.072/-/0.342/0.581/0.640 0.043/-/0.250/0.491/0.585 0.070/-/ 0.401 /0.594/ 0.654

PPBS-AF(↑) +Seq 0.109/0.145/0.225/0.311/0.342 0.116/ 0.205 /0.290/0.424/0.465 0.115/0.174/ 0.322 /0.460/0.493 0.152 /0.159/0.261/ 0.460 /0.507 0.106/0.152/0.296/0.411/0.473 0.145/0.178/0.315/0.459/ 0.513

None
+κ, α 0.111/0.148/0.219/0.300/0.327 0.117/0.134/ 0.332 /0.434/0.486 0.129/0.146/0.287/0.443/0.481 0.149 /0.169/0.317/0.449/0.515 0.138/0.151/0.291/0.396/0.463 0.121/ 0.173 /0.298/ 0.466 / 0.523

+ϕ, ψ, ω 0.105/0.132/0.234/0.330/0.349 0.113/0.142/0.279/0.406/0.461 0.125/0.169/0.264/ 0.460 / 0.516 0.134/0.169/0.295/0.443/0.512 0.113/0.155/0.291/0.414/0.488 0.156 / 0.180 / 0.305 /0.459/0.513

PPBS-AF(↑) +Seq 0.121/0.208/0.289/0.385/0.474 0.144/0.252/0.329/0.473/0.565 0.123/0.229/0.345/0.497/0.587 0.158/0.255/0.371/0.525/0.623 0.149/0.262/ 0.395 /0.505/0.594 0.174 / 0.279 /0.383/ 0.535 / 0.634

All
+κ, α 0.125/0.215/0.279/0.380/0.469 0.122/0.223/0.376/0.499/0.593 0.139/0.223/0.364/0.497/0.590 0.159/ 0.265 /0.380/ 0.528 /0.622 0.166 /0.251/0.384/0.497/0.590 0.162/0.259/ 0.390 /0.521/ 0.627

+ϕ, ψ, ω 0.108/0.233/0.295/0.400/0.490 0.135/0.253/0.379/0.494/0.596 0.153/0.257/0.363/0.516/0.613 0.156/0.257/ 0.398 /0.523/0.622 0.146/0.253/0.394/0.503/0.595 0.172 / 0.271 /0.397/ 0.534 / 0.633

C ADDITIONAL RESULTS

C.1 NOISE TOLERANCE EVALUATION

We added more details about the Noise Tolerance Evaluation experiment 4.4, which involves noise
tolerance evaluation under various features and data partitions. As shown in Tables 6. E3former
shows more robustness in various tasks under low confidence. Methods based on invariance, such as
SchNet and GearNet, also demonstrate notable noise tolerance.

C.2 CASE STUDY

Two protein complexes with experimental resolutions of 3.5Å are provided in Figure 5. Figure (a)
shows the interactions of chain A with other chains in 1KPK, while Figure (b) shows the interactions
of chain E with other chains in 3DXA. This visualization demonstrates the details of E3former. It
can be observed that even at lower structural resolutions, our model tends to assign high prediction
probabilities to the binding regions of proteins and significantly low probabilities to nodes far from
these regions.

(a) (b)𝑚𝑖𝑛 𝑚𝑎𝑥

Figure 5: Visualization of protein binding sites predition. The predicted probability of amino acid
binding sites is depicted using varying color intensities. (a) 1KPK (b) 3DXA

C.3 ABLATION STUDY

As an supplement to Section 4.5, we performed ablation experiments on the experimental dataset. In
comparison to the findings in the AlphaFold-predicted dataset (Table 5), the removal of the Energy
module has a more pronounced effect on the outcomes than excluding the Elastic module. This
is because the Elastic module tends to benefit from substantial more significant noise or data bias,
while the Energy module is not only aids in learning a more robust representation, but also adaptively
modeling structural data with different distributions.
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Table 7: Ablation studies for key components in Experimental dataset.

Method Features CATH(↓)
PPBS(↑)

MASIF((↑)
70 Homology Topology None All

E3former
+Seq 7.53.02 0.777.01 0.732.02 0.743.02 0.637.03 0.724.02 0.968.00

+κ, α 7.97.02 0.775.01 0.727.02 0.745.00 0.628.02 0.719.02 0.968.00

+ϕ, ψ, ω 6.64.03 0.783.01 0.732.01 0.743.03 0.631.01 0.726.02 0.968.00

w/o Energy
+Seq 7.61.02 0.771.01 0.725.03 0.729.02 0.625.04 0.711.03 0.967.00
+κ, α 8.07.01 0.773.00 0.724.03 0.732.00 0.613.02 0.709.01 0.967.00

+ϕ, ψ, ω 6.76.01 0.779.01 0.727.02 0.734.00 0.623.01 0.719.03 0.968.00

w/o Elastic
+Seq 7.68.02 0.773.03 0.728.00 0.735.01 0.631.00 0.715.01 0.967.00
+κ, α 8.03.00 0.772.00 0.723.00 0.729.02 0.619.03 0.712.00 0.967.03

+ϕ, ψ, ω 6.79.00 0.782.00 0.729.01 0.739.02 0.627.03 0.722.01 0.967.00

w/o EE
+Seq 7.80.00 0.765.00 0.722.00 0.723.02 0.615.00 0.703.02 0.966.00
+κ, α 8.12.03 0.771.00 0.719.00 0.713.00 0.602.01 0.701.00 0.967.00

+ϕ, ψ, ω 6.89.01 0.778.02 0.726.01 0.725.03 0.617.00 0.711.02 0.967.00

C.4 CONVERGENCE ANALYSIS
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Figure 6: Validation loss values over epochs in Alphafold-predicted data, (cross mark: loss changes
abnormally, star mark: early stop.
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Figure 7: Validation loss values over epochs in experimental data, (cross mark: loss changes
abnormally, star mark: early stop.

We conducts the convergence speeds comparison experiment of the models across various datasets.
Figure 6 and Figure 7 demonstrate that all the models eventually converged, with both E3former
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and Equiformer achieving convergence relatively early. This rapid convergence could be attributed
to their utilization of the equivariant Transformer architecture based on irreducible representations,
which inherently enables fast fitting.

D BOARDER IMPACT

In this work, we propose an adaptive energy-aware elastic equivariant Transformer model for learning
protein representations. Additionally, we introduce two datasets based on Alphafold-predicted protein
structures, specifically designed to tackle challenges in protein design and function prediction in
the post-Alphafold era. Our model effectively addresses the noise introduced by low-resolution in
experimentally determined protein structures, as well as the systematic errors inherent in Alphafold-
predicted structures.

We strongly believe that computational biology tools like Alphafold will profoundly reshape our
understanding and exploration of structural biology, drug discovery, and other natural sciences in the
future. Therefore, this work aims to provide new insights for protein design and drug discovery in the
context of structural biology models driven by such computational tools. Developing more robust
and noise-resistant protein representations will also enable better predictions of protein functions
and physicochemical properties under extreme conditions, pushing the boundaries of life science
research.
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