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ABSTRACT

Collaborative filtering builds personalized models from the collected user feedback.
However, the collected data is observational rather than experimental, leading to
various biases in the data, which can significantly affect the learned model. To
address this issue, many studies have focused on propensity-based methods to
combat the selection bias by reweighting the sample loss, and demonstrate that
balancing is important for debiasing both theoretically and empirically. However,
two fundamental questions remain: which function class should be balanced, and
how can this balance be effectively achieved? In this paper, we first perform
theoretical analysis to show the effect of balancing finite-dimensional function
classes on the bias of IPS and DR methods, and based on this, we propose a
universal kernel-based balancing method to balance functions on the reproducing
kernel Hilbert space. In addition, we propose a novel adaptive kernel balancing
method during the alternating update between unbiased evaluation and training of
the prediction model. Specifically, the prediction loss of the model is projected
in the kernel-based covariate function space, and the projection coefficients are
used to determine which functions should be prioritized for balancing to reduce the
estimation bias. We conduct extensive experiments on three real-world datasets to
demonstrate the effectiveness of the proposed approach.

1 INTRODUCTION

In the era of information explosion, recommender systems (RSs) have become a core component of
many online platforms, such as social media, e-commerce, and music streaming. The goal of RS is to
recommend users content or products that they may be interested in. However, due to the presence
of the selection bias, the collected data cannot represent the target population, which poses a great
challenge in the RS training phase (Marlin and Zemel, 2009; Schnabel et al., 2016; Lin et al., 2023).

Many methods have been proposed in order to mitigate the selection bias (Schnabel et al., 2016; Dai
et al., 2022; Wang et al., 2019; Li et al., 2023a; Saito, 2019). Among them, error imputation based
(EIB) methods first impute pseudo-labels to the missing events and then combine the pseudo-labels
and observed labels for model training (Marlin et al., 2007; Chang et al., 2010; Steck, 2010). However,
it is impractical to obtain accurate pseudo-labelings due to user self-selection and item popularity in
practice, thus will introduce bias to the EIB methods. Another frequently-used debiasing methods are
based on the inverse propensity score (IPS), which reweights the observed events to achieve unbiased
estimation (Oosterhuis, 2022; Saito et al., 2020; Li et al., 2023e; Luo et al., 2021). However, due
to data sparsity, propensity scores can hardly be estimated accurately and will always have extreme
values, which results in high variance for IPS methods. Doubly robust (DR) methods overcome
the shortcomings of EIB and IPS by combining pseudo-labeling and propensity together to achieve
smaller biases and variances (Saito, 2020; Guo et al., 2021; Wang et al., 2019; 2022; Li et al., 2023b).
However, the DR methods are also biased when the learned pseudo-labeling model and learned
propensity model are inaccurate (Wang et al., 2019; Saito, 2020).

The propensity model plays an crucial role in propensity-based debiased methods. Previous causal
inference literature have theoretically and empirically demonstrated the importance of balancing
property of propensity (Imai and Ratkovic, 2014; Li et al., 2018; 2023c). Nonetheless, the balancing
property of propensity is rarely discussed and exploited in the field of debiased recommendation.
To fill this gap, a recent work (Li et al., 2023d) proposes a propensity balancing measurement to
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regularize the IPS and DR estimators, and achieves the state-of-the-art performance. However, on
one hand, it is not realistic to balance all possible functions for a specific model using only finite
samples. On the other hand, balancing only an arbitrary function is not sufficient for IPS and DR
methods to achieve unbiased learning (see Corollary 1 for the formal theoretical results). Thus, it
is necessary to discuss which functions should be more favored to be balanced for the IPS and DR
estimators, resulting in smaller estimation biases of the ideal loss and enhanced unbiased learning.

In this paper, we theoretically analyze the advantages of balancing kernel functions, and propose
universal kernel-based balancing methods, namely KBIPS and KBDR, to balance functions on the
reproducing kernel Hilbert space (RKHS), which adaptively selects the functions that most need to
be balanced to reduce the estimation biases of the previous IPS and DR estimators. Moreover, we
propose a novel entropy-based optimization problem to effectively balance the selected functions.
Finally, we perform theoretical analysis showing that the learned kernel balanced propensities can
reduce the generalization bound to improve the performance of debiased learning.

The main contributions of this paper are shown below:
• We theoretically analyze which functions need to be balanced for IPS and DR methods, and

proposes a kernel balancing method to adaptively select balancing functions.
• We further propose an entropy-based optimization approach to effectively balance the

selected balancing functions, and derive the generalization error bound.
• We conduct extensive experiment to verify the effectiveness of the proposed estimators and

balancing approach on three real-world datasets, including a large-scale industrial dataset.

2 RELATED WORK

Debiased Recommendation. The collected data from RS is observational rather than experimental,
leading to various biases in the data, which seriously affect the quality of the learned recommendation
model. Many previous methods are proposed to mitigate the selection bias problem (Marlin and Zemel,
2009; Schnabel et al., 2016; Saito, 2019; Chen et al., 2021; Wang et al., 2019). The error imputation
based (EIB) methods attempt to impute the missing events, and then train a recommendation model
on both observed and imputed data (Chang et al., 2010; Steck, 2010; Hernández-Lobato et al., 2014).
Another common debiasing methods are propensity-based, including inverse propensity scoring (IPS)
methods (Imbens and Rubin, 2015; Schnabel et al., 2016; Saito et al., 2020; Oosterhuis, 2022; Luo
et al., 2021), and doubly robust (DR) methods (Morgan and Winship, 2015; Wang et al., 2019; Saito,
2020). Specifically, IPS adjusts the distribution to all events by reweighting the observed events,
while DR combines the EIB and IPS methods, which takes advantage of both, i.e., has lower variance
and bias. Based on the above advantages, many competing DR-based methods are proposed, such as
MRDR (Guo et al., 2021), DR-BIAS (Dai et al., 2022), ESCM2-DR (Wang et al., 2022), TDR (Li
et al., 2023b) and SDR (Li et al., 2023e). Given the widespread of the propensity model, Li et al.
(2023d) proposes a propensity balancing measurement to regularize the IPS and DR estimators. In this
paper, we extend Li et al. (2023d) by proposing novel kernel balancing-based IPS and DR estimators
that adaptively find the balancing functions that contribute the most to reducing the estimation bias.

Covariate Balancing in Causal Inference. Balancing refers to aligning the distribution of covariates
in the treatment and control groups, which is a theme central to the estimation of causal effects
based on observational studies (Stuart, 2010; Imbens and Rubin, 2015). This is because balancing
ensures that units receiving different treatments are comparable directly, and the association becomes
causation under unconfoundedness assumption (Imai and Ratkovic, 2014; Hernán and Robins, 2020).
In randomized controlled experiments, balance is naturally maintained due to the complete random
assignment of treatments. However, in observational studies, treatment groups typically exhibit
systematic differences in covariates, which can result in a lack of balance. To obtain accurate estimates
of causal effects in observational studies, a wide variety of methods have emerged for balancing
the finite order moments of covariates, including matching (Rosenbaum and Rubin, 1983; Stuart,
2010; Wu et al., 2020), stratification (Hernán and Robins, 2020), entropy balancing (Hainmueller,
2012; Zhao and Percival, 2017), covariate balancing propensity (Imai and Ratkovic, 2014), and
weighted euclidean balancing (Chen and Zhou, 2023). In recent years, several approaches were
developed balancing infinite order moments of covariates (Sant’Anna et al., 2022) or the covariates
distributions (Wong and Chan, 2018). However, it is unrealistic to balance infinite order moments
with only finite samples, so this paper proposes a novel balancing method that adaptively finds the
balancing functions in RKHS that are most important for achieving unbiased learning.

2



Under review as a conference paper at ICLR 2024

3 PRELIMINARIES

3.1 DEBIASED RECOMMEDATION

Suppose U = {u1, u2, ...}, I = {i1, i2, ...} are the user set and item set, and D = {u1, u2, ...um} ×
{i1, i2, ...in} are sampled from the whole user set and item set, respectively. Let xu,i and ru,i ∈ {0, 1}
be the feature and rating of user-item pair (u, i), where ru,i = 1 or 0 represents whether user u likes
(or purchases) item i or not. Let ou,i be a Bernoulli variable indicating whether the true rating ru,i
is observed ou,i = 1 or missing ou,i = 0, and O = {(u, i) | (u, i) ∈ D, ou,i = 1} be the set of the
user-item pairs with observed ratings. Thus we can only observe ru,i when ou,i = 1.

Let r̂u,i = f(xu,i; θ) be the prediction model that aims to predict all ru,i accurately. If all the ratings
are observed, we can train the prediction model directly by minimizing the following ideal loss:

LIdeal(θ) =
1

|D|
∑

(u,i)∈D

eu,i,

where eu,i = L(r̂u,i, ru,i) is the prediction error with L(·, ·) be an arbitrary loss function, e.g., mean
square loss or cross entropy loss. However, the ratings are missing for all (u, i) ∈ D\O, thus eu,i are
also not accessible. An naive estimator is to estimate ideal loss directly from the observed samples,
which is shown as follows:

LNaive(θ) =
1

|O|
∑

(u,i)∈O

eu,i,

However, there is always a discrepancy between observed events O and all events D, due to the
existence of confounders that affect both treatment and outcome. Therefore, the naive estimator
always is not an unbiased estimation of the ideal loss (Wang et al., 2019). The inverse propensity
score (IPS) (Schnabel et al., 2016) and doubly robust (DR) learning (Wang et al., 2019; 2021) are two
main propensity-based strategies to eliminate such discrepancy. The IPS estimator is given below:

LIPS(θ) =
1

|D|
∑

(u,i)∈D

ou,ieu,i
p̂u,i

,

where p̂u,i = π(xu,i;ϕp) is the estimation of propensity score pu,i := P(ou,i = 1|xu,i). The IPS
method is unbiased when all the estimate propensities are correct. The DR estimator further combines
the imputed error, which is constructed below:

LDR(θ) =
1

|D|
∑

(u,i)∈D

[
êu,i +

ou,i · (eu,i − êu,i)

p̂u,i

]
,

where êu,i = m(xu,i;ϕe) is the imputed error. The DR estimator is unbiased when all the estimated
propensities or the imputed errors are accurate.

3.2 CAUSAL BALANCING

The propensity score can be used to adjust confounding and recover the distribution. Despite their
popularity and theoretical appeal, a main practical difficulty is that the propensity score must be
estimated. From a causal perspective, the true propensity score will have balancing property (Imai and
Ratkovic, 2014; Imbens and Rubin, 2015; Rosenbaum, 2020; Sant’Anna et al., 2022). Specifically,
for all ϕ : X → Rm, the true propensity satisfies

E
[
ou,iϕ(xu,i)

pu,i

]
= E

[
(1− ou,i)ϕ(xu,i)

1− pu,i

]
= E[ϕ(xu,i)]. (1)

Inspiring by this, Li et al. (2023d) adopt the difference of the left term and middle term as a
regularization term during the propensity training phase for IPS and DR methods. Meanwhile, they
select several ϕ(x) manually and verifies the effectiveness of balancing. However, there are infinite
ϕ(x) need to be balanced, and we often cannot balance too much ϕ(x) because of the computational
cost. Meanwhile, the balancing property requires exact matching on the estimated propensity score,
which is typically impossible (Imai and Ratkovic, 2014). Therefore, it is essential to investigate
which function class should be balanced and how to efficiently balance that function class.
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4 THE PROPOSED ADAPTIVELY KERNEL BALANCING METHOD

4.1 THE RELATIONSHIP BETWEEN BALANCING PROPERTY AND CROSS ENTROPY LOSS

Many propensity-based methods adopt cross entropy loss in the training phase of propensity model
π(xu,i;ϕp). The origin propensity model loss is shown below:

Lp(ϕp) =
∑

(u,i)∈D

−ou,i log {π(xu,i;ϕp)} − (1− ou,i) log {1− π(xu,i;ϕp)} .

Taking the first derivative of the loss function according to ϕp, the following equation is obtained:

∂Lp(ϕp)

∂ϕp
=

∑
(u,i)∈D

−ou,iπ
′(xu,i;ϕp)

π(xu,i;ϕp)
+

(1− ou,i)π
′(xu,i;ϕp)

1− π(xu,i;ϕp)
.

If we minimize Lp(ϕp), the first derivative should be zero. Notably, it ensures the balancing property
of the propensity with ϕ(x) = π′(xu,i;ϕp) in Equation 1. Thus, though not formally discussed,
many propensity-based methods can be seen as a special case of propensity balancing.

4.2 BALANCING FINITE FUNCTIONS

Balancing only one ϕ(x) is not sufficient for ensuring the propensity balancing property. Before the
discussion of how to choose ϕ(x), we first propose two general estimators named Kernel Balancing
IPS (KBIPS) and Kernel Balancing DR (KBDR):

LKBIPS(θ) =
1

|D|
∑

(u,i)∈D

ou,iŵu,ieu,i,

LKBDR(θ) =
1

|D|
∑

(u,i)∈D

[
êu,i + ou,iŵu,i(eu,i − êu,i)

]
. (2)

When ŵu,i =
1

p̂u,i
, the KBIPS and KBDR will degenerate to vanilla IPS and DR. The following

theorem shows the bias of these two estimators.
Theorem 1. The biases of the KBIPS and KBDR are shown as follows:

Bias(LKBIPS(θ)) =

 1

|D|
∑

(u,i)∈D

(ou,iŵu,i − 1)eu,i


2

,

Bias(LKBDR(θ)) =

 1

|D|
∑

(u,i)∈D

(ou,iŵu,i − 1)(eu,i − êu,i)


2

.

We then discuss how to choose finite appropriate ϕ(x) to learn an appropriate propensity model that
achieves lower estimation bias. Specifically, let h(j)(xu,i), j = 1, . . . , J be the selected balancing
functions, motivated by the widely-adopted entropy balancing method (Hainmueller, 2012), we
propose to learn the balancing weights ŵu,i = g(xu,i;ϕw) by solving the optimization problem:

max
ϕw

−
∑

(u,i)∈O

g(xu,i;ϕw) log g(xu,i;ϕw)

s.t. g(xu,i;ϕw) ≥ 0 for all (u, i) ∈ O,

1

|D|
∑

(u,i)∈D

ou,ig(xu,i;ϕw) = 1,

1

|D|
∑

(u,i)∈D

ou,ig(xu,i;ϕw)h
(j)(xu,i) =

1

|D|
∑

(u,i)∈D

h(j)(xu,i), j ∈ {1, . . . , J}.

The above optimization problem consists of three features. First, the objective function is the empirical
entropy of the balancing weights, by the principle of maximum entropy (Guiasu and Shenitzer, 1985),
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it reaches the maximum value when the balancing weights are uniform, thus effectively avoiding
high variance due to extremely small propensities. Second, the balancing constraints are imposed
to equalize the selected covariate functions between the observed and missing samples. Third, two
normalization constraints are imposed, which implies that the weights sum to the normalization
constant of one, and the nonnegativity of the balancing weights, making the empirical entropy as the
objective function be well-defined. Remarkably, it is a convex optimization with respect to ŵu,i =
g(xu,i;ϕw), thus we can adopt Lagrange multiplier to solve this problem. The following corollary
shows the bias depends on the distance between eu,i and HJ = span{h(1)(xu,i), . . . , h

(J)(xu,i)}.

Corollary 1 (Main Result). If eu,i(x) ∈ HJ = span{h(1)(x), . . . , h(J)(x)}, then proposed
KBIPS is unbiased; otherwise, KBIPS is biased. Similarly, if eu,i(x) − êu,i(x) ∈ HJ =

span{h(1)(x), . . . , h(J)(x)}, then proposed KBDR is unbiased; otherwise, KBDR is biased.

Next, taking KBIPS as an example (KBDR follows from a similar argument), two natural
questions are how to select those h(xu,i) and what should we do when eu,i(x) /∈ HJ =

span{h(1)(xu,i), . . . , h
(J)(xu,i)}, but eu,i(·) in a larger hypothesis space instead? Fortunately,

kernel balancing gives a feasible solution.

4.3 KERNEL BALANCING

First, we formally provide the definition of the kernel function as below.
Definition 1. Let X be a non-empty set. A function K : X × X → R is a kernel if there exists a
Hilbert space H and a feature map ϕ : X → H such that ∀x, x′ ∈ X , K (x, x′) := ⟨ϕ(x), ϕ (x′)⟩H .

Typical kernel functions consist of Gaussian kernel and exponential kernel with the explicit forms

KGau (x, x′) = exp

(
−∥x− x′∥2

2σ2

)
and KExp (x, x′) = exp

(
−∥x− x′∥

2σ2

)
.

By noticing that eu,i(x) is a continue function of xu,i under mean square loss or cross entropy loss, it
is important to have a guarantee that the space HJ is rich enough, i.e., there is a function in HJ can
approach an arbitrary continue function. We next introduce the definition of universal kernel below:
Definition 2. For X compact Hausdorff, a kernel is universal if for any continuous function e : X →
R and ϵ > 0, there exists f ∈ H in the corresponding RKHS such that supx∈X |f(x)− e(x)| ≤ ϵ.

The following lemma shows that there are some widely-used kernel functions have such property.
Lemma 1. Both the Gaussian and exponential kernel are universal (Sriperumbudur et al., 2011).

Until now, we show that there is a function in RKHS H = span{K(·, x) | x ∈ X} that can approach
any continuous function when we adopt Gaussian or exponential kernel, where K(·, x) denotes a
kernel function. However, H might be a infinity dimension space with |X | = ∞, which leads to an
infinity constrains for the optimization problem. The following representer theorem shows guarantee
that kernel methods retain optimality under penalized empirical risk minimization, and provide a
form of the best-possible choice of kernel balancing under finite samples.
Lemma 2 (Representer theorem). If Ω = h(∥f∥) for some increasing function h : R+ → R, then
some empirical risk minimizer must admit the form f(·) =

∑
i=1 αiκ (·, xi) for some α ∈ Rn. If h

is strictly increasing, all minimizers admit this form.

The universal kernel property and representer theorem assure that when we minimize the bias of
KBIPS, the following equation holds:

min
w≥0

(Bias(LKBIPS(θ))) = min
w≥0

 1

|D|
∑

(u,i)∈D

(ou,iwu,i − 1)eu,i(x)


2

(by the bias definition)

≈ min
w≥0

 1

|D|
∑

(u,i)∈D

(ou,iwu,i − 1)(
∑

(s,t)∈U×I

αs,tK(x, xs,t))


2

(by the universal property)

= min
w≥0

 1

|D|
∑

(u,i)∈D

(ou,iwu,i − 1)(
∑

(s,t)∈D

αs,tK(x, xs,t))


2

(by the representer theorem),
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where (α1,1, . . . , αm,n) minimizes the following mean squared loss:

(α1,1, . . . , αm,n) = arg min
α∈R|D|

∑
(u,i)∈D

eu,i −
∑

(s,t)∈D

αs,tK(xu,i, xs,t)

2

. (3)

Finally, we can construct an optimization problem in Section 4.2 by selecting the kernel function
class {K(xu,i, ·) : (u, i) ∈ D} to balance to learn a balancing propensity, which provides a solution
for which function class should be balanced.

4.4 THREE PROPOSED KERNEL BALANCING METHODS

In practice, it is hard to balance all |D| functions in a single batch. Thus, we propose three kernel
balancing methods to effectively balance the kernel functions.

Kernel Balancing. We first propose a simple kernel balancing method, which randomly chooses J
functions from span{K(·, xu,i) : (u, i) ∈ D} to balance. However, this simple method regards all
kernel functions equally important and is independent of the coefficients αs,t of the kernel function
K(·, xs,t), which has no guarantee for learning a high quality balancing propensity.

Worst-Case Kernel Balancing. Different from finding the optimal kernel function that needs to be
balanced, the worst-case kernel balancing method focus on controlling the worst case. Specifically,
we propose to play a minimax game as shown below:

min
w≥0

sup
e∈H̃

 1

|D|
∑

(u,i)∈D

(ou,iwu,i − 1)e(xu,i)


2
 = min

w≥0

sup
e∈H

{
1

|D|
∑

(u,i)∈D(ou,iwu,i − 1)e(xu,i)
}2

1
|D|
∑

(u,i)∈D e(xu,i)2

 ,

where H̃ = {e(·) ∈ H : ∥e(·)∥2N = |D|−1
∑

(u,i)∈D e(xu,i)
2 = 1}.

By the universal property and representer theorem in Section 4.3, the right hand side of the above
equation is the same as the following:

min
w≥0

sup
αs,t

{
1

|D|
∑

(u,i)∈D(ou,iwu,i − 1)
∑

(s,t)∈D αs,tK(xu,i, xs,t)
}2

1
|D|
∑

(u,i)∈D e(xu,i)2

 ,

One should be noticed that this method is too conservative and unstable. If we only solve the equation
above,

∑
(s,t)∈D αs,tK(xu,i, xs,t) will not be able to approach the eu,i(x) because the αs,t cannot

minimize the mean square loss in Section 4.3.

Adaptive Kernel Balancing. To overcome the shortcomings of the above two methods, we propose
a novel kernel balancing method that can adaptively select which kernel function to balance. Specifi-
cally, given current prediction model f(xu,i; θ), first fit eu,i(x) using span{K(·, xu,i) : (u, i) ∈ D},
then balance the J functions with maximal |αs,t|, where J is a hyper-parameter. This proposed
method will balance the kernel functions that contributes the most to the eu,i, thus improves the
efficiency. The optimization problem is constructed below:

min
ϕw

∑
(u,i)∈O

g(xu,i;ϕw) log g(xu,i;ϕw) + γ

J∑
j=1

ξj

s.t. ξj ≥ 0, for all j ∈ {1, . . . , J} and g(xu,i;ϕw) ≥ 0 for all (u, i) ∈ O,∑
(u,i)∈D

ou,ig(xu,i;ϕw) = 1,

∑
(u,i)∈D

ou,ig(xu,i;ϕw)h
(j)(xu,i)−

1

|D|
∑

(u,i)∈D

h(j)(xu,i) ≤ C + ξj j ∈ {1, . . . , J},

∑
(u,i)∈D

ou,ig(xu,i;ϕw)h
(j)(xu,i)−

1

|D|
∑

(u,i)∈D

h(j)(xu,i) ≥ −C + ξj j ∈ {1, . . . , J},
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Algorithm 1: The Proposed Adaptive KBDR (AKBDR) Learning Algorithm
Input: observed ratings Yo, and the hyper-parameter J .

1 while stopping criteria is not satisfied do
2 for number of steps for training the imputation model do
3 Sample a batch of user-item pairs {(ui, ii)}Ii=1 from O;
4 Update ϕe by descending along the gradient ∇ϕe

Le (ϕe, ϕw, θ);
5 end
6 for number of steps for training the balancing weight model do
7 Sample a batch of user-item pairs {(uk, ik)}Kk=1 from D;
8 Solve the Equation 3 for the αuk,ik and select J pairs (uk, ik) with maximum αuk,ik ;
9 Update ϕw by descending along the gradient ∇ϕw

ℓ(ϕw);
10 end
11 for number of steps for training the prediction model do
12 Sample a batch of user-item pairs {(ul, il)}Ll=1 from O;
13 Update θ by descending along the gradient ∇θLKBDR (ϕe, ϕw, θ);
14 end
15 end

which is equivalent to

min
ϕw

ℓ(ϕw) =
∑

(u,i)∈O

g(xu,i;ϕw) log g(xu,i;ϕw) + γ

J∑
j=1

(
[−C − τ̂ (j)]+ + [τ̂ (j) − C]+

)
, (4)

where

τ̂ (j) =
∑

(u,i)∈D

ou,ig(xu,i;ϕw)h
(j)(xu,i)−

1

|D|
∑

(u,i)∈D

h(j)(xu,i), j ∈ {1, . . . , J}.

Since achieving strict balancing on all balancing functions, i.e., the weighted average balancing
functions on the observed samples are exact same with the average of that over all samples, is
usually infeasible as J increases, we introduce a slack variable ξj for each balancing function and a
pre-specified threshold C, which penalizes the loss when the deviation |τ̂ j | > C.

4.5 THE LEARNING ALGOTITHM AND THE GENERALIZATION BOUNDS

Taking adaptive KBDR (AKBDR) as an example, because the balancing weights and eu,i(x) are
relying on each other in the Equation 3, thus we adopt a widely used joint learning framework to
train the prediction model r̂u,i = f(xu,i; θ), the balancing weight model ŵu,i = g(xu,i;ϕw) and
imputation model êu,i = m(xu,i;ϕe) alternatively. Specifically, we train the prediction model by
minimizing the LKBDR loss shown in Equation 2, train the balancing weight model by minimizing
the ℓ(ϕw) in Equation 4 and train the imputation model by minimizing the loss function Le below:

Le (ϕe, ϕw, θ) = |D|−1
∑

(u,i)∈D

ou,iwu,i(êu,i − eu,i)
2, (5)

and the whole procedure of the proposed joint learning process is summarized in Alg. 1.

Next, we analyze the generalization bound of the KBIPS and KBDR methods, which is shown below:

Theorem 2 (Generalization Bounds in RKHS). Let K be a bounded kernel, supx
√
K(x, x) =

B < ∞, and BK(M) = {f ∈ F | ∥f∥F ≤ M} is the corresponding kernel-based hypotheses space.
Suppose ŵu,i ≤ C, δ(r, ·) is L-Lipschitz continuous for all r, and that E0 := supr δ(r, 0) < ∞.
Then with probability at least 1− η, we have

LIdeal(θ) ≤ LKBIPS(θ) + |Bias(LKBIPS(θ))|+
2LMB√

|D|
+ 5C(E0 + LMB)

√
log(4/η)

2|D|
,

LIdeal(θ) ≤ LKBDR(θ) + |Bias(LKBDR(θ))|+ (1 + 2C)

(
2LMB√

|D|
+ 5(E0 + LMB)

√
log(4/η)

2|D|

)
.
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Table 1: Performance on AUC, NDCG@K and F1@K on Coat, Music and Product. The best two
result are bolded and the best baseline result is underlined for IPS-based and DR-based methods.

COAT MUSIC PRODUCT

Method AUC NDCG@5 F1@5 AUC NDCG@5 F1@5 AUC NDCG@20 F1@20

MF 0.703±0.006 0.605±0.012 0.467±0.007 0.673±0.001 0.635±0.002 0.306±0.002 0.753±0.001 0.449±0.002 0.124±0.002

+ CVIB 0.725±0.004 0.627±0.008 0.477±0.007 0.684±0.002 0.648±0.002 0.318±0.002 0.765±0.002 0.468±0.005 0.134±0.003

+ DIB 0.685±0.001 0.642±0.002 0.475±0.008 0.721±0.006 0.626±0.009 0.315±0.002 0.756±0.001 0.476±0.002 0.132±0.002

+ IPS 0.717±0.007 0.617±0.009 0.473±0.008 0.678±0.001 0.638±0.002 0.318±0.002 0.755±0.004 0.452±0.010 0.131±0.004

+ SNIPS 0.714±0.012 0.614±0.012 0.474±0.009 0.683±0.002 0.639±0.002 0.316±0.002 0.754±0.003 0.453±0.004 0.126±0.003

+ ASIPS 0.719±0.009 0.618±0.012 0.476±0.009 0.679±0.003 0.640±0.003 0.319±0.003 0.757±0.005 0.474±0.007 0.130±0.005

+ IPS-V2 0.726±0.005 0.627±0.009 0.479±0.008 0.685±0.002 0.646±0.003 0.320±0.002 0.764±0.001 0.476±0.003 0.135±0.003

+ KBIPS-Exp 0.714±0.003 0.618±0.010 0.474±0.007 0.676±0.002 0.642±0.003 0.318±0.002 0.763±0.001 0.463±0.007 0.134±0.002

+ KBIPS-Gau 0.715±0.005 0.619±0.010 0.475±0.008 0.678±0.001 0.640±0.004 0.315±0.003 0.760±0.003 0.470±0.008 0.133±0.003

+ WKBIPS-Exp 0.723±0.004 0.624±0.009 0.480±0.007 0.687±0.002 0.654±0.002 0.322±0.002 0.765±0.003 0.475±0.007 0.138±0.003

+ WKBIPS-Gau 0.722±0.004 0.625±0.008 0.479±0.007 0.686±0.002 0.650±0.002 0.321±0.002 0.763±0.003 0.476±0.007 0.137±0.003

+ AKBIPS-Exp 0.732∗
±0.004 0.636∗

±0.006 0.483±0.006 0.689∗
±0.001 0.658∗

±0.002 0.324∗
±0.002 0.766∗

±0.003 0.478±0.009 0.138∗
±0.003

+ AKBIPS-Gau 0.730∗
±0.003 0.633±0.008 0.484±0.007 0.688∗

±0.003 0.655∗
±0.003 0.324∗

±0.002 0.767∗
±0.003 0.480∗

±0.009 0.139∗
±0.003

+ DR 0.718±0.008 0.623±0.009 0.474±0.007 0.684±0.002 0.658±0.003 0.326±0.002 0.755±0.008 0.462±0.010 0.135±0.005

+ DR-JL 0.723±0.005 0.629±0.007 0.479±0.005 0.685±0.002 0.653±0.002 0.324±0.002 0.766±0.002 0.467±0.005 0.136±0.003

+ MRDR-JL 0.727±0.005 0.627±0.008 0.480±0.008 0.684±0.002 0.652±0.003 0.325±0.002 0.768±0.005 0.473±0.007 0.139±0.004

+ DR-BIAS 0.726±0.004 0.629±0.009 0.482±0.007 0.685±0.002 0.653±0.002 0.325±0.003 0.768±0.003 0.477±0.006 0.137±0.004

+ DR-MSE 0.727±0.007 0.631±0.008 0.484±0.007 0.687±0.002 0.657±0.003 0.327±0.003 0.770±0.003 0.480±0.006 0.140±0.003

+ MR 0.724±0.004 0.636±0.006 0.481±0.006 0.691±0.002 0.647±0.002 0.316±0.003 0.776±0.005 0.483±0.006 0.142±0.003

+ TDR 0.714±0.006 0.634±0.011 0.483±0.008 0.688±0.003 0.662±0.002 0.329±0.002 0.772±0.003 0.486±0.005 0.140±0.003

+ TDR-JL 0.731±0.005 0.639±0.007 0.484±0.007 0.689±0.002 0.656±0.004 0.327±0.003 0.772±0.003 0.489±0.005 0.142±0.003

+ SDR 0.735±0.005 0.640±0.007 0.484±0.006 0.688±0.002 0.661±0.003 0.329±0.002 0.773±0.001 0.491±0.003 0.143±0.003

+ DR-V2 0.734±0.007 0.639±0.009 0.487±0.006 0.690±0.002 0.660±0.005 0.328±0.002 0.773±0.003 0.488±0.006 0.142±0.004

+ KBDR-Exp 0.730±0.003 0.631±0.005 0.482±0.006 0.682±0.002 0.648±0.003 0.323±0.002 0.765±0.004 0.460±0.006 0.138±0.003

+ KBDR-Gau 0.726±0.005 0.630±0.008 0.480±0.008 0.683±0.002 0.652±0.003 0.325±0.002 0.766±0.003 0.469±0.007 0.134±0.004

+ WKBDR-Exp 0.735±0.005 0.637±0.009 0.483±0.006 0.685±0.003 0.654±0.003 0.325±0.002 0.773±0.003 0.489±0.008 0.142±0.003

+ WKBDR-Gau 0.732±0.003 0.638±0.007 0.483±0.005 0.687±0.001 0.655±0.002 0.327±0.002 0.773±0.002 0.490±0.005 0.142±0.004

+ AKBDR-Exp 0.745∗
±0.004 0.645±0.008 0.493∗

±0.007 0.692∗
±0.002 0.661±0.002 0.328±0.002 0.782∗

±0.003 0.498∗
±0.008 0.147∗

±0.003
+ AKBDR-Gau 0.746∗

±0.004 0.646∗
±0.008 0.492±0.007 0.694∗

±0.002 0.664∗
±0.002 0.332∗

±0.002 0.782∗
±0.005 0.503∗

±0.006 0.148∗
±0.004

Note: * means statistically significant results (p-value ≤ 0.05) using the paired-t-test compared with the best baseline method.

Remarkably, the above generalization bound in RKHS are able to be greatly reduced by adopting the
proposed adaptive KBDR learning approach in Alg. 1. On one hand, the prediction model minimizes
the loss LKBDR(θ) during the model training phase. On the other hand, as shown in Theorem 1 and
Corollary 1, the proposed adaptive kernel balancing method can automatically choose the balancing
functions that most need to be balanced to reduce the bias of the KBDR estimator1.

5 EXPERIMENTS

Dataset and Preprocessing. Following the previous studies (Saito, 2020; Wang et al., 2019; 2021;
Chen et al., 2021), we conduct real-world experiments on three widely used benchmark datasets:
Coat, Music, and a large-scale industrial dataset: Product. Coat consists of 6,960 biased ratings and
4,640 unbiased ratings evaluated by 290 users to 300 items. Music consists of 311,704 biased ratings
and 54,000 unbiased ratings evaluated by 15,400 users to 1,000 items. Coat and Music are both
five-scale datasets, and we binarize the ratings less than three as 0, otherwise as 1. Product consists
of 4,676,570 records of video watching ratios from 1,411 users to 3,327 items, and is almost fully
exposed. We binarize the video watching ratios less than two as 0, otherwise as 1.

Baselines. In our experiments, we compare the proposed methods implemented with both Gaussian
and exponential kernels to the following baseline methods: MF (Koren et al., 2009), DIB (Liu
et al., 2021), CVIB (Wang et al., 2020), IPS (Schnabel et al., 2016), SNIPS (Swaminathan and
Joachims, 2015), ASIPS (Saito, 2020) and IPS-V2 (Li et al., 2023d). Meanwhile, we also consider
the following DR-based baselines: DR (Saito, 2020), DR-JL (Wang et al., 2019), MRDR (Guo et al.,
2021), DR-BIAS (Dai et al., 2022), DR-MSE (Dai et al., 2022), MR (Li et al., 2023a), TDR (Li
et al., 2023b), TDR-JL (Li et al., 2023b), StableDR (Li et al., 2023e) and DR-V2 (Li et al., 2023d).

Experimental Protocols and Details. We adopt widely used evaluation metrics: AUC, NDCG@K,
and F1@K to assess the debasing performance. We set K = 5 for Coat and Music, while K = 20
for Product. We tune learning rate in {0.01, 0.03, 0.05, 0.1}, weight decay in {1e− 5, 5e− 5, 1e−
4, 5e− 4, 1e− 3, 5e− 3}, margin threshold C in {0, 1e− 6, 1e− 5, 1e− 4}, kernel hyper-parameter
σ2 in {0.5, 1, 5} for both Gaussian and exponential kernels, and regularization hyper-parameter γ in
{0.01, 0.1, 1, 10, 100}. We set the batch size to 128 on Coat and 2,048 on Music and Product.

1Similar arguments also hold for the proposed KBIPS estimator and the corresponding learning approach.
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Figure 1: Effects of the value of J on AUC and NDCG@20 on PRODUCT dataset.
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Figure 2: Effects of hyper-parameter γ on AUC and NDCG@K on MUSIC and PRODUCT datasets.

Performance Comparison. We compare the proposed methods with previous methods shown in
Table 1 and have the following findings. First, all the causality inspired methods outperform MF,
where CVIB, SNIPS and SDR are the most competitive baselines, while AKBDR achieves optimal
performance on the three datasets. Second, methods with balancing property such as DR-V2 and
AKBDR outperform those without, which empirically demonstrates the effectiveness of balancing.
Third, among kernel balancing methods, kernel balancing (KB) methods perform worst due to the
insufficient weights learned by randomly balancing, while adaptive kernel balancing (AKB) methods
perform best due to the proper priority of balanced functions provided by fitting prediction error.

In-Depth Analysis. We further explore the impact of the value of J on prediction performance on
PRODUCT dataset. The proposed kernel balancing methods are compared with moment balancing
(MB) methods which balance the former J th order moments and the results are shown in Figure 1.
We find the AUC and NDCG@20 metrics for all methods increase monotonically with increasing
value of J , because more functions or moments being balanced leads to bias reduction. In addition,
kernel balancing methods stably outperform moment balancing methods with varying value of J
even if the balanced functions are selected randomly, validating the effectiveness of kernel balancing.

Sensitivity Analysis. To explore the effect of balancing regularization hyper-parameter γ on debiasing
performance, we perform sensitivity analysis of AKB methods using varying γ in {1, 2, 5, 10, 20}
on Music and Product datasets, as shown in Figure 2. It can be observed that AKB methods stably
outperform the baseline methods without balancing property under different regularization strength.
Specifically, even when the balancing constraint strength is relatively small, e.g., 1, the AKB method
can still get clear performance gains, and the optimal performance is achieved around γ = 10.

6 CONCLUSION

In the information-driven landscape, recommender systems (RSs) are pivotal for various online
platforms. However, selection bias in the collected data poses a great challenge for recommendation
model training. To mitigate this issue, many methods were developed. However, we theoretically
reveal that previous approaches are restricted to balance finite-dimensional pre-specified functions of
features. To fill the gap, we first develop two new estimators, KBIPS and KBDR, which extend the
popular IPS and DR estimators in debiased recommendations. Then we propose a universal kernel-
based balancing method that adaptively achieve balance for continue functions in a RKHS. Based on
it, we further propose an adaptive kernel balancing method. Theoretical analysis demonstrates that
the proposed balancing method reduces both estimation bias and the generalization bound. Extensive
experiments on real-world datasets validate the effectiveness of our methods.
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A PROOFS

Theorem 1. The biases of the KBIPS and KBDR are shown as follows:

Bias(LKBIPS(θ)) =

 1

|D|
∑

(u,i)∈D

(ou,iŵu,i − 1)eu,i


2

,

Bias(LKBDR(θ)) =

 1

|D|
∑

(u,i)∈D

(ou,iŵu,i − 1)(eu,i − êu,i)


2

.

Proof of Theorem 1. By definition, the bias of the KBIPS estimator is the deviation to the ideal loss

Bias2(LKBIPS(θ)) = (LKBIPS(θ)− LIdeal(θ))
2

=

 1

|D|
∑

(u,i)∈D

ou,iŵu,ieu,i −
1

|D|
∑

(u,i)∈D

eu,i


2

=

 1

|D|
∑

(u,i)∈D

(ou,iŵu,i − 1)eu,i


2

.

Similarly, the bias of the KBIPS estimator to the ideal loss is

Bias(LKBDR(θ)) = (LKBDR(θ)− LIdeal(θ))
2

=

 1

|D|
∑

(u,i)∈D

[
êu,i + ou,iŵu,i(eu,i − êu,i)

]
− 1

|D|
∑

(u,i)∈D

eu,i


2

=

 1

|D|
∑

(u,i)∈D

(ou,iŵu,i − 1)(eu,i − êu,i)


2

.

Corollary 1. If eu,i(x) ∈ HJ = span{h(1)(x), . . . , h(J)(x)}, then proposed KBIPS is unbiased;
otherwise, KBIPS is biased. Similarly, if eu,i(x) − êu,i(x) ∈ HJ = span{h(1)(x), . . . , h(J)(x)},
then proposed KBDR is unbiased; otherwise, KBDR is biased.

Proof of Corollary 1. If eu,i(x) ∈ HJ = span{h(1)(x), . . . , h(J)(x)}, there exist {αj}Jj=1 satisfy-
ing eu,i(x) =

∑J
j=1 αjh

(j)(xu,i). By Theorem 1, the bias of the KBIPS estimator is

Bias(LKBIPS(θ)) =

 1

|D|
∑

(u,i)∈D

(ou,iŵu,i − 1)eu,i


2

=

 1

|D|
∑

(u,i)∈D

(ou,iŵu,i − 1)(

J∑
j=1

αjh
(j)(xu,i))


2

=

 1

|D|

J∑
j=1

αj

∑
(u,i)∈D

(ou,iŵu,ih
(j)(xu,i)− h(j)(xu,i))


2

.

13



Under review as a conference paper at ICLR 2024

Because the ŵu,i is learned by solving the following optimization problem

min
ϕw

∑
(u,i)∈O

wu,i logwu,i

s.t. wu,i ≥ 0 for all (u, i) ∈ O,

1

|D|
∑

(u,i)∈D

ou,iwu,i = 1,

1

|D|
∑

(u,i)∈D

ou,iwu,ih
(j)(xu,i) =

1

|D|
∑

(u,i)∈D

h(j)(xu,i), j ∈ {1, . . . , J},

thus the learned ŵu,i satisfying the constrains in the optimization problem, which means that
1

|D|
∑

(u,i)∈D

(ou,iŵu,ih
(j)(xu,i)− h(j)(xu,i)) = 0, j ∈ {1, . . . , J}.

Therefore, the bias of the KBIPS estimator is

Bias(LKBIPS(θ)) =

 1

|D|

J∑
j=1

αj

∑
(u,i)∈D

(ou,iŵu,ih
(j)(xu,i)− h(j)(xu,i))


2

.

If eu,i(x) /∈ HJ = span{h(1)(xu,i), . . . , h
(J)(xu,i)}, then for all {αj}Jj=1, eu,i(x) =∑J

j=1 αjh
(j)(x) + ϵ(xu,i), where ϵ(xu,i) is the non-zero residual term. Therefore, we have

Bias(LKBIPS(θ)) =

 1

|D|

J∑
j=1

αj

∑
(u,i)∈D

(ou,iŵu,ih
(j)(xu,i)− h(j)(xu,i))


2

=

 1

|D|

J∑
j=1

αj

∑
(u,i)∈D

ϵ(xu,i)


2

̸= 0.

Similar argument also holds for the proposed KBDR estimator.

Lemma 2 (Representer theorem). If Ω = h(∥f∥) for some increasing function h : R+ → R, then
some empirical risk minimizer must admit the form f(·) =

∑
i=1 αiκ (·, xi) for some α ∈ Rn. If h

is strictly increasing, all minimizers admit this form.

Proof. The proof can be found in Theorem 6.11 of Mohri et al. (2018).

Definition 2 (Empirical Rademacher Complexity (Shalev-Shwartz and Ben-David, 2014)). Let F
be a family of prediction models mapping from x ∈ X to [a, b], and S = {xu,i | (u, i) ∈ D} a fixed
sample of size |D| with elements in X . Then, the empirical Rademacher complexity of F with respect
to the sample S is defined as:

R(F) = Eσ∼{−1,+1}|D| sup
f∈F

 1

|D|
∑

(u,i)∈D

σu,if(xu,i)

 ,

where σ = {σu,i : (u, i) ∈ D}, and σu,i are independent uniform random variables taking values in
{−1,+1}. The random variables σu,i are called Rademacher variables.

Lemma 3 (Rademacher Comparison Lemma (Shalev-Shwartz and Ben-David, 2014)). Let F be a
family of real-valued functions on z ∈ Z to [a, b], and S = {xu,i | (u, i) ∈ D} a fixed sample of size
|D| with elements in X . Then

E
S∼P|D|

[
sup
f∈F

 E
z∼P

[f(z)]− 1

|D|
∑

(u,i)∈D

f (zu,i)

] ≤ 2 E
S∼P|D|

Eσ∼{−1,+1}|D| sup
f∈F

 1

|D|
∑

(u,i)∈D

σu,if (zu,i)

 ,

where σ = {σu,i : (u, i) ∈ D}, and σu,i are independent uniform random variables taking values in
{−1,+1}. The random variables σu,i are called Rademacher variables.
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Proof of Lemma 3. The proof can be found in Lemma 26.2 of Shalev-Shwartz and Ben-David
(2014).

Lemma 4 (McDiarmid’s Inequality (Shalev-Shwartz and Ben-David, 2014)). Let V be some set and
let f : V m → R be a function of m variables such that for some c > 0, for all i ∈ [m] and for all
x1, . . . , xm, x′

i ∈ V we have

|f (x1, . . . , xm)− f (x1, . . . , xi−1, x
′
i, xi+1, . . . , xm)| ≤ c

Let X1, . . . , Xm be m independent random variables taking values in V . Then, with probability of at
least 1− δ we have

|f (X1, . . . , Xm)− E [f (X1, . . . , Xm)]| ≤ c

√
log

(
2

δ

)
m/2

Proof of Lemma 4. The proof can be found in Lemma 26.4 of (Shalev-Shwartz and Ben-David,
2014).

Lemma 5 (Rademacher Calculus (Shalev-Shwartz and Ben-David, 2014)). For any A ⊂ Rm, scalar
c ∈ R, and vector a0 ∈ Rm, we have

R ({ca+ a0 : a ∈ A}) ≤ |c|R(A).

Proof of Lemma 5. The proof can be found in Lemma 26.6 of (Shalev-Shwartz and Ben-David,
2014).

Lemma 6 (Talagrand’s Lemma (Mohri et al., 2018)). Let Φ1, . . . ,Φm be L-Lipschitz functions
from R to R and σ1, . . . , σm be Rademacher random variables. Then, for any hypothesis set F of
real-valued functions, the following inequality holds:

1

m
E
σ

[
sup
f∈F

m∑
i=1

σi (Φi ◦ f) (xi)

)]
≤ L

m
E
σ

[
sup
f∈F

m∑
i=1

σif (xi)

]
= LR(F).

In particular, if Φi = Φ for all i ∈ [m], then the following holds:

R(Φ ◦ F) ≤ LR(F).

Proof of Lemma 6. The proof can be found in Section 5.4 of (Mohri et al., 2018).

Lemma 7. Suppose K is a bounded kernel with supx
√

K(x, x) = B < ∞ and let F be its RKHS.
Let M > 0 be fixed. Then for any S = {xu,i : (u, i) ∈ D},

R (BK(M)) ≤ MB√
|D|

,

where BK(M) = {f ∈ F | ∥f∥F ≤ M}.
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Proof of Lemma 7. Fix S = {xu,i : (u, i) ∈ D}. Then

R (BK(M)) = Eσ

 sup
f∈BK(M)

1

|D|
∑

(u,i)∈D

σu,if (xu,i)


=

1

|D|
Eσ

 sup
f∈BK(M)

∑
(u,i)∈D

σu,i ⟨f,K (·, xu,i)⟩


=

1

|D|
Eσ

 sup
f∈BK(M)

〈
f,

∑
(u,i)∈D

σu,iK (·, xu,i)

〉
=

1

|D|
E

〈M ∑
(u,i)∈D σu,iK (·, xu,i)∥∥∥∑(u,i)∈D σu,iK (·, xu,i)

∥∥∥ ,
∑

(u,i)∈D

σu,iK (·, xu,i)

〉
=

M

|D|
Eσ

∥∥∥∥∥∥
∑

(u,i)∈D

σu,iK (·, xu,i)

∥∥∥∥∥∥


=
M

|D|
Eσ


√√√√√
∥∥∥∥∥∥
∑

(u,i)∈D

σu,iK (·, xu,i)

∥∥∥∥∥∥
2


≤ M

|D|

√√√√√Eσ

∥∥∥∥∥∥
∑

(u,i)∈D

σu,iK (·, xu,i)

∥∥∥∥∥∥
2

=
M

|D|

√ ∑
(u,i)∈D

∥K (·, xu,i)∥2

=
M

|D|

√ ∑
(u,i)∈D

K (xu,i, xu,i)

≤ M

|D|
√
|D|B2

=
MB√
|D|

.

Theorem 2 (Generalization Bounds in RKHS). Let K be a bounded kernel, supx
√
K(x, x) =

B < ∞, and BK(M) = {f ∈ F | ∥f∥F ≤ M} is the corresponding kernel-based hypotheses space.
Suppose ŵu,i ≤ C, δ(r, ·) is L-Lipschitz continuous for all r, and that E0 := supr δ(r, 0) < ∞.
Then with probability at least 1− η, we have

LIdeal(θ) ≤ LKBIPS(θ) + |Bias(LKBIPS(θ))|+
2LMB√

|D|
+ 5C(E0 + LMB)

√
log(4/η)

2|D|
,

and

LIdeal(θ) ≤ LKBDR(θ) + |Bias(LKBDR(θ))|+ (1 + 2C)

(
2LMB√

|D|
+ 5(E0 + LMB)

√
log(4/η)

2|D|

)
.
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Proof of Theorem 2. We first prove the generalization bound of the kernel balancing IPS estimator,
note that the ideal loss can be decomposed as follows.

LIdeal(θ) = LKBIPS(θ) + (LIdeal(θ)− E(LKBIPS(θ))) + (E[LKBIPS(θ)]− LKBIPS(θ))

= LKBIPS(θ) + Bias(LKBIPS(θ)) + (E(LKBIPS(θ))− LKBIPS(θ))

≤ LKBIPS(θ) + |Bias(LKBIPS(θ))|

+ sup
fθ∈BK(M)

E

 1

|D|
∑

(u,i)∈D

ou,iŵu,ieu,i

− 1

|D|
∑

(u,i)∈D

ou,iŵu,ieu,i

 .

For simplicity, we denote the last term in the above formula as

B(F) = sup
fθ∈BK(M)

E

 1

|D|
∑

(u,i)∈D

ou,iŵu,ieu,i

− 1

|D|
∑

(u,i)∈D

ou,iŵu,ieu,i

 ,

we then aim to bound B(F) in the following.

Note that

B(F) = E
S∼P|D|

[B(F)] +

{
B(F)− E

S∼P|D|
[B(F)]

}
,

where the first term is E
S∼P|D|

[B(F)], and by Lemma 2 we have

E
S∼P|D|

[B(F)] ≤ 2 E
S∼P|D|

Eσ∼{−1,+1}|D| sup
fθ∈BK(M)

 1

|D|
∑

(u,i)∈D

σu,iou,iŵu,ieu,i


= 2 E

S∼P|D|
{R(LKBIPS)},

where

R(LKBIPS(θ)) := Eσ∼{−1,+1}|D| sup
fθ∈BK(M)

 1

|D|
∑

(u,i)∈D

σu,iou,iŵu,ieu,i

 .

By applying McDiarmid’s inequality in Lemma 4 and the assumptions that ŵu,i ≤ C, and eu,i ≤
E0 + LMB, let

c =
2C(E0 + LMB)

|D|
,

then with probability at least 1− η
2 ,∣∣∣∣R(LKBIPS(θ))− E

S∼P|D|
{R(LKBIPS(θ))}

∣∣∣∣ ≤ 2C(E0 + LMB)

|D|

√
log(4/η)|D|

2
= 2C(E0+LMB)

√
log(4/η)

2|D|
.

By the assumption that ŵu,i ≤ C and δ(r, ·) is L-Lipschitz continuous for all r, we have

R(LKBIPS(θ)) ≤ LR(F) ≤ LMB√
|D|

,

where the first inequality is from Lemma 5 and Lemma 6 with L as Lipschitz constant, the second
inequality is from Lemma 5, and R(F) is the empirical Rademacher complexity

R(F) = Eσ∼{−1,+1}|D| sup
fθ∈BK(M)

 1

|D|
∑

(u,i)∈D

σu,if(xu,i)

 ,

where σ = {σu,i : (u, i) ∈ D}, and σu,i are independent uniform random variables taking values in
{−1,+1}. The random variables σu,i are called Rademacher variables.
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For the rest term B(F)− E
S∼P|D|

[B(F)], by applying McDiarmid’s inequality in Lemma 4 and the

assumptions that ŵu,i ≤ C and eu,i ≤ E0 + LMB, let

c =
E0 + LMB

|D|
,

then with probability at least 1− η
2 ,∣∣∣∣B(F)− E

S∼P|D|
[B(F)]

∣∣∣∣ ≤ E0 + LMB

|D|

√
log(4/η)|D|

2
= (E0 + LMB)

√
log(4/η)

2|D|
.

We now bound B(F) combining the above results. Formally, with probability at least 1− η, we have

B(F) = E
S∼P|D|

[B(F)] +

{
B(F)− E

S∼P|D|
[B(F)]

}
≤ 2 E

S∼P|D|
{R(LKBIPS(θ))}+

{
B(F)− E

S∼P|D|
[B(F)]

}
≤ 2R(LKBIPS(θ)) + 4C(E0 + LMB)

√
log(4/η)

2|D|
+

{
B(F)− E

S∼P|D|
[B(F)]

}

≤ 2R(LKBIPS(θ)) + 5C(E0 + LMB)

√
log(4/η)

2|D|

≤ 2LMB√
|D|

+ 5C(E0 + LMB)

√
log(4/η)

2|D|
.

We now bound the ideal loss combining the above results. Formally, with probability at least 1− η,
we have

LIdeal(θ) ≤ LKBIPS(θ) + |Bias(LKBIPS(θ))|+ B(F)

≤ LKBIPS(θ) + |Bias(LKBIPS(θ))|+
2LMB√

|D|
+ 5C(E0 + LMB)

√
log(4/η)

2|D|
.

In Theorem 1, we have already prove that

|Bias(LKBIPS(θ))| =
1

|D|

∣∣∣∣∣∣
∑

(u,i)∈D

(ou,iwu,i − 1)eu,i

∣∣∣∣∣∣ ,
therefore with probability at least 1− η, we have

LIdeal(θ) ≤ LKBIPS(θ) + |Bias(LKBIPS(θ))|+
2LMB√

|D|
+ 5C(E0 + LMB)

√
log(4/η)

2|D|
.

We then prove the generalization bound of the kernel balancing DR estimator, similarly, the ideal loss
can be decomposed as follows.

LIdeal(θ) = LKBDR(θ) + (LIdeal(θ)− E(LKBDR(θ))) + (E[LKBDR(θ)]− LKBDR(θ))

= LKBDR(θ) + Bias(LKBDR(θ)) + (E(LKBDR(θ))− LKBDR(θ))

≤ LKBDR(θ) + |Bias(LKBDR(θ))|

+ sup
fθ∈BK(M)

E

 1

|D|
∑

(u,i)∈D

[
êu,i + ou,iŵu,i(eu,i − êu,i)

]− 1

|D|
∑

(u,i)∈D

[
êu,i + ou,iŵu,i(eu,i − êu,i)

] .

For simplicity, we denote the last term in the above formula as

B(F) = sup
fθ∈BK(M)

E

 1

|D|
∑

(u,i)∈D

[
êu,i + ou,iŵu,i(eu,i − êu,i)

]− 1

|D|
∑

(u,i)∈D

[
êu,i + ou,iŵu,i(eu,i − êu,i)

] ,

18



Under review as a conference paper at ICLR 2024

we then aim to bound B(F) in the following.

Note that

B(F) = E
S∼P|D|

[B(F)] +

{
B(F)− E

S∼P|D|
[B(F)]

}
,

where the first term is E
S∼P|D|

[B(F)], and by Lemma 2 we have

E
S∼P|D|

[B(F)] ≤ 2 E
S∼P|D|

Eσ∼{−1,+1}|D| sup
fθ∈BK(M)

 1

|D|
∑

(u,i)∈D

σu,i

[
êu,i + ou,iŵu,i(eu,i − êu,i)

]
= 2 E

S∼P|D|
{R(LKBDR)},

where

R(LKBDR(θ)) := Eσ∼{−1,+1}|D| sup
fθ∈BK(M)

 1

|D|
∑

(u,i)∈D

σu,i

[
êu,i + ou,iŵu,i(eu,i − êu,i)

] .

By applying McDiarmid’s inequality in Lemma 4 and the assumptions that ŵu,i ≤ C, êu,i ≤
E0+LMB, and eu,i ≤ E0+LMB, let c = 2(E0+LMB)(1+2C)

|D| , then with probability at least 1− η
2 ,

∣∣∣∣R(LKBDR(θ))− E
S∼P|D|

{R(LKBDR(θ))}
∣∣∣∣ ≤ 2(E0 + LMB)(1 + 2C)

|D|

√
log(4/η)|D|

2

= 2(E0 + LMB)(1 + 2C)

√
log(4/η)

2|D|
.

By the assumption that ŵu,i ≤ C and δ(r, ·) is L-Lipschitz continuous for all r, we have

R(LKBDR(θ)) ≤ L(1 + 2C)R(F) ≤ (1 + 2C)
LMB√

|D|
,

where the first inequality is from Lemma 5 and Lemma 6 with L(1 + 2C) as Lipschitz constant, the
second inequality is from Lemma 5, and R(F) is the empirical Rademacher complexity

R(F) = Eσ∼{−1,+1}|D| sup
fθ∈BK(M)

 1

|D|
∑

(u,i)∈D

σu,if(xu,i)

 ,

where σ = {σu,i : (u, i) ∈ D}, and σu,i are independent uniform random variables taking values in
{−1,+1}. The random variables σu,i are called Rademacher variables.

For the rest term B(F)− E
S∼P|D|

[B(F)], by applying McDiarmid’s inequality in Lemma 4 and the

assumptions that ŵu,i ≤ C, êu,i ≤ E0 + LMB, and eu,i ≤ E0 + LMB, let

c =
(E0 + LMB)(1 + 2C)

|D|
,

then with probability at least 1− η
2 ,

∣∣∣∣B(F)− E
S∼P|D|

[B(F)]

∣∣∣∣ ≤ (E0 + LMB)(1 + 2C)

|D|

√
log(4/η)|D|

2
= (E0+LMB)(1+2C)

√
log(4/η)

2|D|
.
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We now bound B(F) combining the above results. Formally, with probability at least 1− η, we have

B(F) = E
S∼P|D|

[B(F)] +

{
B(F)− E

S∼P|D|
[B(F)]

}
≤ 2 E

S∼P|D|
{R(LKBDR(θ))}+

{
B(F)− E

S∼P|D|
[B(F)]

}
≤ 2R(LKBDR(θ)) + 4(E0 + LMB)(1 + 2C)

√
log(4/η)

2|D|
+

{
B(F)− E

S∼P|D|
[B(F)]

}

≤ 2R(LKBDR(θ)) + 5(E0 + LMB)(1 + 2C)

√
log(4/η)

2|D|

≤ 2(1 + 2C)
LMB√

|D|
+ 5(E0 + LMB)(1 + 2C)

√
log(4/η)

2|D|

= (1 + 2C)

(
2LMB√

|D|
+ 5(E0 + LMB)

√
log(4/η)

2|D|

)
.

We now bound the ideal loss combining the above results. Formally, with probability at least 1− η,
we have

LIdeal(θ) ≤ LKBDR(θ) + |Bias(LKBDR(θ))|+ B(F)

≤ LKBDR(θ) + |Bias(LKBDR(θ))|+ (1 + 2C)

(
2LMB√

|D|
+ 5(E0 + LMB)

√
log(4/η)

2|D|

)
.

In Theorem 1, we have already prove that

|Bias(LKBDR(θ))| =
1

|D|

∣∣∣∣∣∣
∑

(u,i)∈D

(ou,iwu,i − 1)(eu,i − êu,i)

∣∣∣∣∣∣ ,
therefore with probability at least 1− η, we have

LIdeal(θ) ≤ LKBDR(θ) + |Bias(LKBDR(θ))|+ (1 + 2C)

(
2LMB√

|D|
+ 5(E0 + LMB)

√
log(4/η)

2|D|

)
,

which yields the stated results.

B MORE EXPERIMENTAL RESULTS

Table 2 shows the prediction performance of varying methods by taking Neural Collaborative
Filtering (NCF) (He et al., 2017) as the base model on the Product dataset. Among all the baseline
methods, IPS-V2 and DR-V2 demonstrate the most competitive performance, which could balance
manually selected functions to learn the balancing weights for unbiased learning. The proposed
kernel balancing methods achieve overall performance improvements, which is attribute to the fact
that the proposed methods are able to adaptively balance functions that is more worthy of being
balanced. This further validates the effectiveness of the proposed methods and demonstrates that the
proposed methods are also effective when adopting deep learning-based backbone as the base model.

Table 3 shows the prediction performance and the running time of the proposed KBDR and AKBDR
methods on the textscMusic dataset. First, AKBDR outperforms KBDR with varying J , which shows
the effectiveness of the proposed adaptively balancing method. For efficiency, AKBDR requires
about doubled running time to converge than KBDR, since it needs to sort all the coefficients of
kernel functions, which is time-consuming when the number of user-item pairs is large. When J > 5,
the performance of the AKBDR does not improve as the growth of J , but the running time increases.
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Table 2: Performance on AUC, NDCG@K and F1@K on PRODUCT. The best result is bolded and
the best baseline is underlined for IPS-based methods and DR-based methods.

Method AUC NDCG@20 F1@20

NCF 0.823±0.001 0.575±0.002 0.166±0.002

+ CVIB 0.820±0.002 0.544±0.004 0.162±0.002

+ IPS 0.822±0.003 0.579±0.006 0.169±0.003

+ SNIPS 0.833±0.002 0.586±0.002 0.178±0.002

+ ASIPS 0.832±0.002 0.583±0.003 0.178±0.002

+ IPS-V2 0.835±0.001 0.588±0.002 0.181±0.001

+ KBIPS-Gaussian 0.832±0.001 0.584±0.003 0.178±0.003

+ WKBIPS-Gaussian 0.833±0.002 0.588±0.003 0.181±0.003

+ AKBIPS-Gaussian 0.836∗
±0.001 0.592∗

±0.002 0.183∗
±0.002

+ DR 0.758±0.004 0.526±0.003 0.146±0.003

+ DR-JL 0.832±0.001 0.581±0.003 0.178±0.002

+ MRDR-JL 0.833±0.001 0.585±0.002 0.179±0.001

+ DR-BIAS 0.834±0.002 0.585±0.003 0.178±0.002

+ DR-MSE 0.834±0.002 0.587±0.002 0.180±0.001

+ MR 0.837±0.001 0.588±0.002 0.181±0.002

+ TDR-JL 0.834±0.002 0.582±0.002 0.179±0.003

+ SDR 0.835±0.002 0.587±0.003 0.179±0.002

+ DR-V2 0.837±0.002 0.586±0.004 0.182±0.002

+ KBDR-Gaussian 0.834±0.002 0.586±0.003 0.179±0.003

+ WKBDR-Gaussian 0.837±0.002 0.588±0.003 0.180±0.002

+ AKBDR-Gaussian 0.840∗
±0.002 0.590∗

±0.003 0.183±0.002

Note: * means statistically significant results (p-value ≤ 0.05) using the paired-t-test compared with the best baseline.

Table 3: Performance and efficiency analysis of the proposed CBDR and KBDR methods on MUSIC.
Number of balancing functions Metrics KBDR-Gaussian AKBDR-Gaussian

J = 3

AUC 0.681±0.003 0.688±0.003

NDCG@5 0.650±0.003 0.657±0.003

F1@5 0.323±0.002 0.326±0.002

Time (s) 389.28±17.51 664.99±12.37

J = 5

AUC 0.683±0.002 0.694±0.002

NDCG@5 0.652±0.003 0.664±0.002

F1@5 0.325±0.002 0.332±0.002

Time (s) 394.51±16.61 678.13±15.43

J = 10

AUC 0.682±0.002 0.694±0.002

NDCG@5 0.650±0.003 0.663±0.002

F1@5 0.324±0.003 0.330±0.003

Time (s) 399.91±8.58 719.63±23.79

J = 20

AUC 0.683±0.002 0.695±0.002

NDCG@5 0.651±0.002 0.664±0.003

F1@5 0.325±0.002 0.332±0.003

Time (s) 389.11±22.39 727.29±26.76

J = 50

AUC 0.684±0.002 0.695±0.002

NDCG@5 0.652±0.003 0.664±0.002

F1@5 0.324±0.003 0.333±0.002

Time (s) 407.89±11.67 722.43±25.55
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