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Abstract

To mitigate forgetting, existing lifelong event001
detection methods typically maintain a mem-002
ory module and replay the stored memory data003
during the learning of a new task. However,004
the simple combination of memory data and005
new-task samples can still result in substantial006
forgetting of previously acquired knowledge,007
which may occur due to the potential overlap008
between the feature distribution of new data009
and the previously learned embedding space.010
Moreover, the model suffers from overfitting011
on the few memory samples rather than ef-012
fectively remembering learned patterns. To013
address the challenges of forgetting and over-014
fitting, we propose a novel method based on015
embedding space separation and compaction.016
Our method alleviates forgetting of previously017
learned tasks by forcing the feature distribu-018
tion of new data away from the previous em-019
bedding space. It also mitigates overfitting by020
a memory calibration mechanism that encour-021
ages memory data to be close to its prototype to022
enhance intra-class compactness. In addition,023
the learnable parameters of the new task are ini-024
tialized by drawing upon acquired knowledge025
from the previously learned task to facilitate026
forward knowledge transfer. With extensive027
experiments, we demonstrate that our method028
can significantly outperform previous state-of-029
the-art approaches.030

1 Introduction031

Event detection (ED) aims to detect the event type032

of trigger words in a given sentence, e.g., extract-033

ing the event type injure from the trigger word034

scalded in text “He was scalded by hot water”.035

Traditional ED methods typically consider a fixed036

pre-defined set of event types (Chen et al., 2015;037

Nguyen et al., 2016; Huang and Ji, 2020). However,038

as the environment and data distributions change039

in real scenarios, the model might face challenges040

in handling rapidly emerging new event types.041

A more practical setting is lifelong event detec- 042

tion or LED (Cao et al., 2020), where the model 043

learns event knowledge from a sequence of tasks 044

with different sets of event types. In LED, the model 045

is expected to retain and accumulate knowledge 046

when learning new tasks, which is challenging due 047

to catastrophic forgetting (McCloskey and Cohen, 048

1989) of previously acquired knowledge. Existing 049

methods (Cao et al., 2020; Yu et al., 2021) for miti- 050

gating forgetting in LED typically maintain a mem- 051

ory that saves a few key samples of previous tasks, 052

which are then combined with new data for training. 053

Recently, Liu et al. (2022) introduce Episodic Mem- 054

ory Prompts (EMP) that leverages soft prompts to 055

remember learned event types, achieving state-of- 056

the-art performance on LED. 057

Despite its effectiveness, EMP has two key limi- 058

tations. First, simply combining new data and mem- 059

ory samples for training can still result in forgetting 060

as the feature distribution of new data might over- 061

lap with the previously learned embedding space 062

(see Appendix A.2). Second, it may overfit on a 063

few memory samples after frequent replays rather 064

than effectively retaining learned patterns. 065

To address the above limitations of EMP, in 066

this paper, we introduce a novel method based 067

on Embedding space Separation and COmpaction 068

(ESCO) for LED. In particular, we propose a 069

margin-based loss that forces the feature distribu- 070

tion of new event types away from the learned em- 071

bedding space to alleviate forgetting. Inspired by 072

Han et al. (2020), we introduce a memory calibra- 073

tion mechanism to encourage memory data to be 074

close to its prototype to avoid overfitting on the 075

few memory samples. In addition, the learnable pa- 076

rameters of the new task are initialized using those 077

of the previously learned task to facilitate forward 078

knowledge transfer, which is as important for life- 079

long learning as preventing forgetting (Ke et al., 080

2020). The empirical results show that our method 081

significantly outperforms previous state-of-the-art 082
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approaches. In summary, our main contributions083

are:084

• We propose ESCO, a novel method based on085

embedding space separation and compaction to086

mitigate forgetting and overfitting in LED.087

• With extensive experiments and analysis, we088

demonstrate the effectiveness of our method com-089

pared to existing ones. Our code base is available090

at <redacted>.091

2 Problem Formulation092

LED involves learning from a stream of event de-093

tection tasks T = (T 1, . . . , T n), where each task094

T k has its own training set Dk
train, validation set095

Dk
valid, and test set Dk

test. For every input text xi in096

Dk, it contains a set of target spans {xit} and their097

corresponding labels yit which belong to the event098

type set Ck of task T k. Note that the event type099

sets of different tasks are non-overlapping.100

After the training on Dk
train, the model is ex-101

pected to perform well on all the k tasks that it102

has learned and will be evaluated on the combined103

test set D̂k
test = ∪k

i=1Di
test consisting of all known104

event types Ĉk = ∪k
i=1Ci. During the learning, a105

memory module M which stores a few key sam-106

ples of previous tasks is maintained to overcome107

the forgetting problem.108

3 Embedding Space Separation and109

Compaction110

When learning a new task T k, following Liu et al.111

(2022), we first initialize a set of soft prompts Pk =112

{pk1, ..., pk|Ck|} where Ck is the event type set of T k.113

The accumulated prompts Qk = [P1, ...,Pk] until114

T k are then combined with the input text xi to115

obtain the contextual representations using a frozen116

BERT (Devlin et al., 2019):117

[xi,Qk] = BERT([xi,Qk]) (1)118

where xi and Qk are the representations of xi and119

Qk, respectively. To facilitate forward knowledge120

transfer, we initialize soft prompts Pk of the new121

task using learned prompts Pk−1 of the previous122

task. For the first task T 1, we initialize each event123

type prompt p1i in P1 using its corresponding name.124

To predict the event type of the span xit, we125

concatenate the representations corresponding to126

the start and end token and obtain the logits over127

all learned types through a feed-forward network128

(FFN) as well as a linear layer: 129

Zi
t = Linear(FFN([xim, xin])) (2) 130

where xit = FFN([xim, xin]) is the span representa- 131

tion, m and n denote the start and end index of the 132

span, respectively. Following Liu et al. (2022), to 133

entangle span representations with soft prompts, 134

the probability distribution over all prompts is cal- 135

culated as Zq = FFN(Qk) · xit, where · is the inner 136

product. Zq is then combined with Zi
t to optimize 137

the cross entropy loss: 138

Lnew = −
∑

(xi
t,y

i
t)∈Dk

train

CE(Zi
t + Zq, y

i
t) (3) 139

After learning the previous task T k−1, we select 140

the top-l most informative training examples for 141

each event type in Ck−1 using the herding algo- 142

rithm (Welling, 2009), which are then saved in the 143

memory module M for replay to mitigate forget- 144

ting. Similar as Eq. 3, the training objective for 145

memory replay when learning T k is: 146

Lmem = −
∑

(xi
t,y

i
t)∈M

CE(Zi
t + Zq, y

i
t) (4) 147

However, the simple combination of Lnew and 148

Lmem can still result in substantial forgetting of 149

acquired knowledge due to the potential overlap 150

between the feature distribution of new event types 151

and the previously learned embedding space (see 152

Appendix A.2). To ensure that the new feature 153

distribution is away from the learned embedding 154

space, we design a margin-based loss, which de- 155

creases the similarity scores between new samples 156

and prototypes (see Eq. 8 for the calculation of 157

prototypes) of learned event types: 158

Lsim =
∑

(xi
t,y

i
t)∈Dk

train

∑
ei∈Ek−1

max(0, g(xi
t, ei)−m1) (5) 159

where Ek−1 is the prototype set of previous k − 1 160

tasks, g(, ) is the similarity function (cosine similar- 161

ity) and m1 is the margin for Lsim. Note that Lsim is 162

different from metric learning or contrastive learn- 163

ing (Qin and Joty, 2022) which typically considers 164

both positive and negative pairs. Lsim only includes 165

negative pairs while ignoring positive ones as our 166

goal in designing Lsim is to separate the new fea- 167

ture distribution and the learned embedding space. 168
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As the size of memory M is typically small,169

the model is prone to overfit on the few memory170

samples after frequent replays, making learned dis-171

tributions distorted. To effectively recover from172

distorted learned distributions, we introduce a mem-173

ory calibration mechanism inspired by Han et al.174

(2020). Specifically, for each memory sample in175

M, we encourage it to be close to its corresponding176

prototype to improve the intra-class compactness177

of learned distributions. More formally,178

Lcal = −
∑

(xi
t,y

i
t)∈M

log
exp g(xi

t, el)∑|Ek−1|
j=1 exp g(xi

t, ej)
(6)179

where el is the prototype of yit. The total loss for180

learning on T k is defined as:181

Ltotal = Lnew + λ1Lsim + λ2(Lmem + Lcal) (7)182

where λ1 and λ2 are loss weights.183

After learning T k and selecting memory data184

for T k, we use the memory M to calculate proto-185

types of all learned event types in Ck. Specifically,186

for each event type ej in Ck, we obtain its proto-187

type ej by averaging the span representations of all188

samples labeled as ej in M as follows:189

ej =
1

|Mej |
∑

(xi
t,y

i
t)∈Mej

xit (8)190

where Mej = {(xit, yit)|(xit, yit) ∈ M, yit = ej}.191

4 Experiment192

4.1 Experimental Setup193

We conduct experiments on two representative194

event detection datasets in our work: ACE05195

(Doddington et al., 2004) and MAVEN (Wang196

et al., 2020). Following Liu et al. (2022), we197

divide each dataset into a sequence of 5 tasks198

with non-overlapping event type sets to form a199

class-incremental setting. After learning T k, the200

model is evaluated on the combined test set D̂k
test =201

∪k
i=1Di

test of all seen tasks. As the task order might202

influence the model performance, we run experi-203

ments for each dataset 5 times with different task204

order permutations and report the average results.205

More details of the experimental setup are in Ap-206

pendix A.3.207

4.2 Methods Compared208

We compare our approach with the following meth-209

ods: (1) Fine-tuning tunes the model only on new210

MAVEN ACE05

Task index 1 2 3 4 5 1 2 3 4 5

Fine-tuning 63.51 39.99 33.36 23.83 22.69 58.30 43.96 38.02 21.53 25.71
BiC 63.51 46.69 39.15 31.69 30.47 58.30 45.73 43.28 35.70 30.80
KCN 63.51 51.17 46.80 38.72 38.58 58.30 54.71 52.88 44.93 41.10
KT 63.51 52.36 47.24 39.51 39.34 58.30 55.41 53.95 45.00 42.62
EMP 67.50 59.67 58.03 54.80 54.39 58.35 50.03 54.91 47.78 47.19

ESCO 67.50 61.37 60.65 57.43 57.35 58.35 57.42 57.63 53.64 55.20

MTL — — — — 68.42 — — — — 67.22

Table 1: F1 score (%) of different methods at every
time step on two datasets. ‘MTL’ stands for ‘multi-task
learning’. ESCO is significantly better than EMP with
p-value < 0.05 (paired t-test). We report results with
variance and detailed results for different task orders
in Appendix A.4 and Appendix A.5, respectively. In
addition, the comparison of computational resources
between EMP and ESCO is shown in Appendix A.6.

data without memory; (2) BiC (Wu et al., 2019) in- 211

troduces a bias correction layer to improve lifelong 212

learning performance; (3) KCN (Cao et al., 2020) 213

designs prototype enhanced retrospection and hier- 214

archical distillation to alleviate semantic ambigu- 215

ity and class imbalance; (4) KT (Yu et al., 2021) 216

proposes to transfer knowledge between related 217

types; (5) EMP (Liu et al., 2022) leverages type- 218

specific soft prompts to remember learned event 219

knowledge; and (6) Multi-task learning (MTL) 220

simultaneously trains the model on all data, serving 221

as the upper bound in LED. 222

4.3 Main Results 223

We report the F1 score of different methods at each 224

time step in Table 1. From the results, we can ob- 225

serve that ESCO significantly outperforms previ- 226

ous baselines on both datasets, demonstrating its su- 227

periority. Simply fine-tuning the model on new data 228

without memory replay results in poor performance 229

due to severe forgetting of learned knowledge. Al- 230

though BiC, KCN and KT could alleviate forgetting 231

to some extent, there is still a large performance 232

drop after learning all tasks. EMP achieves better 233

performance because the type-specific soft prompts 234

help retain previously acquired knowledge. How- 235

ever, it does not necessarily ensure large distances 236

among feature distributions of different event types, 237

and easily overfits on the memory samples. Our 238

proposed ESCO outperforms EMP by a large mar- 239

gin through embedding space separation and com- 240

paction. To verify its effectiveness, we visualize the 241

embedding spaces of EMP and ESCO on ACE05 242

in Fig. 1. Specifically, we randomly select 6 event 243

types from different learning stages and visualize 244

their test data using t-SNE (Van der Maaten and 245

Hinton, 2008). The comparison demonstrates that 246

ESCO could achieve larger inter-class distances 247
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Figure 1: Comparison between the embedding spaces
of EMP (left) and ESCO (right). Colors represent dif-
ferent event types with numbers being the event indexes.
Compared with EMP, ESCO shows larger inter-class
distances, e.g., the distance between 13 and 18, and bet-
ter intra-class compactness (circled regions).

and better intra-class compactness in the embed-248

ding space.249

4.4 Ablation Study250

To analyze the contribution of different components251

of ESCO, we conduct several ablations. Specif-252

ically, we investigate three variants of ESCO:253

(a) without the margin-based loss (w.o. margin),254

(b) removing the memory calibration mechanism255

(w.o. calibration), and (c) without forward knowl-256

edge transfer (FKT) (w.o. FKT). The results of257

different ablations after learning all tasks are re-258

ported in Table 2. We can see that all components259

contribute to overall performance. The margin-260

based loss yields about 1.25% performance boost261

as it can bring feature distribution of new data away262

from the learned embedding space. The memory263

calibration mechanism improves the F1 score by264

1.47%, which demonstrates the necessity of im-265

proving intra-class compactness of learned distribu-266

tions. The adoption of forward knowledge transfer267

leads to 0.80% improvement, indicating that it can268

indeed transfer useful learned knowledge to facili-269

tate the learning of new tasks.270

4.5 Further Analysis271

Quantify Knowledge Transfer. Following272

Lopez-Paz and Ranzato (2017), we report the273

backward transfer (BWT) and forward transfer274

(FWT) of EMP and ESCO after learning all tasks275

in Table 3. From the comparison, we can observe276

that ESCO outperforms EMP by a large margin277

in terms of BWT and FWT on both datasets,278

demonstrating its effectiveness.279

In addition, we show the effect of memory size,280

results of different memory sample selection meth-281

ods, the comparison with the contrastive loss in282

Method MAVEN ACE05 Average

ESCO 57.35 55.20 56.28
w.o. margin 55.92 54.13 55.03
w.o. calibration 55.76 53.85 54.81
w.o. FKT 56.58 54.38 55.48

Table 2: F1 score (%) of different ablations after learn-
ing all tasks: (i) without the margin-based loss, (ii)
without the memory calibration mechanism, and (iii)
without forward knowledge transfer. All components
improve the performance of our method.

Dataset MAVEN ACE05
BWT FWT BWT FWT

EMP -10.4 -2.9 -16.8 0.5

ESCO -6.3 -1.2 -7.5 4.1

Table 3: Backward transfer (BWT) and forward transfer
(FWT) of EMP and ESCO after learning all tasks on
MAVEN and ACE05.

Qin and Joty (2022), and a case study of the model 283

output in Appendix A.7 ∼ A.10, respectively. 284

5 Related Work 285

Lifelong event detection (LED) aims to continu- 286

ally learn from a sequence of event detection tasks 287

with different sets of event types. Cao et al. (2020) 288

propose KCN which addresses the semantic am- 289

biguity and data imbalance problems in LED by 290

prototype enhanced retrospection and hierarchical 291

distillation. KT (Yu et al., 2021) encourages bi- 292

directional knowledge transfer between old and 293

new event types. Liu et al. (2022) introduce EMP to 294

retain previously learned task-specific event knowl- 295

edge through soft prompts. In contrast to previous 296

works, we innovate on the methodology by impos- 297

ing further constraints in the embedding space to 298

mitigate forgetting and overfitting. 299

6 Conclusion 300

In this work, we have introduced embedding space 301

separation and compaction (ESCO) for lifelong 302

event detection (LED). ESCO imposes novel fea- 303

ture constraints in the embedding space to alleviate 304

forgetting and overfitting problems. It initializes 305

the learnable parameters for the new task by inherit- 306

ing those from the previously learned task to facili- 307

tate forward knowledge transfer. With extensive ex- 308

periments and analysis, we have demonstrated that 309

ESCO significantly outperforms previous methods. 310

For future work, we are interested in exploring 311

ESCO in a meta-learning paradigm for LED. 312
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Method Avg Time (hour)

EMP 8.2
ESCO 8.4

Table 4: The comparison of the average running time
(Avg Time) between EMP and ESCO.

46

31

Figure 2: Overlap between feature distributions of event
types at different learning stages, e.g., circled regions.
Colors represent different event types with numbers
being the event indexes.

Pengfei Yu, Heng Ji, and Prem Natarajan. 2021. Life-429
long event detection with knowledge transfer. In Pro-430
ceedings of the 2021 Conference on Empirical Meth-431
ods in Natural Language Processing, pages 5278–432
5290, Online and Punta Cana, Dominican Republic.433
Association for Computational Linguistics.434

A Appendix435

A.1 Limitations436

Although effective, ESCO also has some limita-437

tions. For example, ESCO mainly focuses on the438

setting where each task has enough training data.439

We leave how to explore lifelong event detection in440

few-shot settings as future work.441

A.2 Overlap of Feature Distributions442

Fig. 2 shows an example of the overlap between fea-443

ture distributions of event types at different learning444

stages.445

A.3 Implementation Details446

All methods are implemented with Py-447

Torch/Transformers library (Wolf et al., 2020). For448

hyperparameters, we mainly follow the settings449

in Liu et al. (2022) to have a fair comparison.450

We adopt −0.1 for the margin value m1 so that451

the similarity score between a new sample and452

the prototype of a previously learned event type453

could be optimized to a negative number, i.e., large454

inter-class distance. We set the weight λ1 to 0.1455

so that its corresponding loss Lsim has roughly the456
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Figure 3: The performance of ESCO and EMP with
different memory sizes.

same order of magnitude as other losses. The loss 457

weight λ2 is set to s
k+s , where k is the number of 458

target spans in the current batch and s is equal to 459

50 following Liu et al. (2022). For each task, we 460

train the model for 20 epochs with early stopping. 461

For the state-of-the-art EMP (Liu et al., 2022), 462

we reproduce the results using its open-source code 463

and the same environment. For our method, we use 464

the same environment and shared hyperparameters 465

as EMP. For other baselines, we reuse the results 466

in Liu et al. (2022). There are mainly two rea- 467

sons: (a) They perform much worse than EMP, 468

i.e., they are not primary comparison approaches in 469

our work; and (b) EMP reports different baseline 470

results from Yu et al. (2021), indicating different 471

settings. However, EMP does not provide details 472

on how to obtain baseline results. As we use the 473

same setting as EMP, we decide to reuse its results 474

for other baselines. 475

A.4 Results with Variance 476

We show results with variance for EMP and ESCO 477

in Table 5. 478

A.5 Detailed Results for Different Task 479

Orders 480

Table 6 reports detailed results for different task 481

orders. 482

A.6 Comparison of Computational Resources 483

We present the average running time of EMP and 484

ESCO in Table 4. The comparison demonstrates 485

that ESCO can outperform EMP by a large mar- 486

gin with a negligible increase in computational re- 487

sources. 488

A.7 Effect of Memory Size 489

Following Liu et al. (2022), we select 20 samples 490

as memory data for each event type. To inves- 491
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MAVEN ACE05

Task index 1 2 3 4 5 1 2 3 4 5

EMP 67.50±3.54 59.67±2.74 58.03±1.44 54.80±0.95 54.39±0.82 58.35±6.92 50.03±18.18 54.91±9.19 47.78±2.57 47.19±8.53

ESCO 67.50±3.54 61.37±2.92 60.65±1.85 57.43±0.81 57.35±0.66 58.35±6.92 57.42±13.56 57.63±6.26 53.64±4.41 55.20±4.16

Table 5: F1 score (%) and variance of EMP and ESCO at every time step on two datasets.

Task Order MAVEN ACE05

1 2 3 4 5 1 2 3 4 5

1
70.80 62.19 60.00 56.11 54.95 62.58 65.60 67.20 45.06 39.07
70.80 64.73 62.22 57.26 57.67 62.58 68.35 66.02 54.13 49.33

2
66.06 56.01 56.16 54.07 54.91 49.17 50.99 57.78 51.76 42.49
66.06 58.36 58.16 57.71 57.40 49.17 52.13 60.73 57.85 54.76

3
70.80 59.91 57.43 55.53 55.02 62.58 59.43 50.08 46.27 55.12
70.80 62.70 60.03 58.27 57.57 62.58 61.03 51.96 47.95 59.97

4
67.42 62.35 58.74 54.10 53.19 64.68 55.15 56.87 47.30 41.65
67.42 62.81 62.72 56.12 56.20 64.68 69.12 58.44 57.78 53.67

5
62.39 57.90 57.81 54.20 53.88 52.74 18.99 42.62 48.53 57.64
62.39 58.22 60.09 57.78 57.88 52.74 36.49 51.01 50.46 58.29

Table 6: F1 score (%) of 5 runs with different task orders on two datasets. For every order, the upper row shows the
performance of EMP and the lower row is the result of ESCO.

EMP ESCO

Herding algorithm 54.4 57.1
Example influence 53.5 56.4

Table 7: F1 score (%) of EMP and ESCO with different
memory sample selection approaches.

ESCO ESCOcon

F1 score (%) 57.1 56.6

Table 8: Performance comparison between ESCO and
ESCOcon.

tigate whether different memory sizes influence492

the performance gain of ESCO, we conduct con-493

trolled experiments on ACE05 with memory size494

{5, 10, 15, 25, 30, 35}. The performance compari-495

son between ESCO and EMP is shown in Fig. 3.496

We can observe that ESCO consistently outper-497

forms EMP by a large margin with different mem-498

ory sizes, demonstrating its robustness.499

A.8 Different Memory Sample Selection500

Approaches501

Following EMP (Liu et al., 2022), we use the herd-502

ing algorithm (Welling, 2009) to select memory503

samples. To validate whether different memory504

sample selection approaches influence the perfor-505

mance gain of ESCO, we replace the herding algo- 506

rithm of EMP and ESCO with example influence 507

(Sun et al., 2022) for memory selection. We ran- 508

domly select three sequences for experiments and 509

report the performance comparison between EMP 510

and ESCO in Table 7. We can see that: (a) ESCO 511

consistently outperforms EMP in different cases, 512

demonstrating its effectiveness; and (b) herding 513

algorithm performs better than example influence, 514

justifying our choice. 515

A.9 Comparison with the Contrastive Loss 516

As mentioned in §3, our designed margin-based 517

loss Lsim is different from the contrastive loss as 518

Lsim only includes negative pairs while ignoring 519

positive ones. To further demonstrate its superior- 520

ity, we replace it with the contrastive loss in (Qin 521

and Joty, 2022), namely ESCOcon. We use the 522

same sequences as Appendix A.8 for experiments 523

and report the results of ESCO and ESCOcon in 524

Table 8, which verify the effectiveness of Lsim. 525

A.10 Case Study 526

We select MAVEN as a representative task and 527

show several example outputs in Table 9. Com- 528

pared with EMP, ESCO is able to retain more pre- 529

cise and fine-grained event knowledge, e.g., ESCO 530

can successfully detect the event type Escaping 531
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Fighting continued until 9 May, when the Red Army entered the nearly liberated city.

Label Arriving
EMP Becoming_a_member
ESCO Arriving

In Japan, hundreds of people evacuated from mudslide-prone areas.

Label Escaping
EMP Removing
ESCO Escaping

Table 9: Output examples of EMP and ESCO. We color target spans in blue, correct outputs in green, and wrong
outputs in red.

from the target span evacuated while EMP is con-532

fused by another semantically similar type Remov-533

ing.534
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