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ABSTRACT

Learning in MDPs with highly complex state representations is currently possible
due to multiple advancements in reinforcement learning algorithm design. However,
this incline in complexity, and furthermore the increase in the dimensions of the
observation came at the cost of non-robustness that can be taken advantage of
(i.e. moving along worst-case directions in the observation space). To solve this
policy instability problem we propose a novel method to ascertain the presence
of these non-robust directions via quadratic approximation of the deep neural
policy loss. Our method provides a theoretical basis for the fundamental cut-
off between stable observations and non-robust observations. Furthermore, our
technique is computationally efficient, and does not depend on the methods used to
produce the worst-case directions. We conduct extensive experiments in the Arcade
Learning Environment with several different non-robust alteration techniques. Most
significantly, we demonstrate the effectiveness of our approach even in the setting
where alterations are explicitly optimized to circumvent our proposed method.

1 INTRODUCTION

Since Mnih et al.|(2015) showed that deep neural networks can be used to parameterize reinforcement
learning policies, there has been substantial growth in new algorithms and applications for deep
reinforcement learning. While this progress has resulted in a variety of new capabilities for reinforce-
ment learning agents, it has at the same time introduced new challenges due to the non-robustness of
deep neural networks to imperceptible adversarial perturbations originally discovered by |Szegedy:
et al.|(2014)). In particular, Huang et al.| (2017); Kos & Song|(2017) showed that the non-robustness
of neural networks to adversarial perturbations extends to the deep reinforcement learning domain,
where applications such as autonomous driving, automatic financial trading or healthcare decision
making cannot tolerate such a vulnerability.

There has been a significant amount of effort in trying to make deep neural networks robust to
adversarial perturbations (Goodfellow et al.| 2015 |Madry et al., 2018 [Pinto et al.,2017). However,
in this arms race it has been shown that deep reinforcement learning policies learn adversarial features
independent from their worst-case (i.e. adversarial) training techniques (Korkmaz, 2022). More
intriguingly, a line of work has focused on showing the inevitability of adversarial examples and the
intrinsic difficulty of learning robust models (Dohmatob) 2019; |Mahloujifar et al.,2019;|Gourdeau
et al.l [2019). Given that it may not be possible to make DNNs completely robust to adversarial
examples, a natural objective is to instead attempt to detect the presence of adversarial manipulations.

In this paper we propose a novel identification method for adversarial directions in the deep neural
policy manifold. Our study is the first one that focuses on detection of non-robust directions in
the deep reinforcement learning neural loss landscape. Our approach relies on differences in the
curvature of the neural policy in the neighborhood of an adversarial direction when compared to a
baseline state observation. At a high level our method is based on the intuition that while baseline
states have neighborhoods determined by an optimization procedure intended to learn a policy that
works well across all states, each non-robust direction is the output of some local optimization in the
neighborhood of one particular state. Our proposed method is computationally efficient, requiring
only one gradient computation and two policy evaluations, requires no training that depends on the
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method used to compute the adversarial direction, and is theoretically well-founded. Hence, our study
focuses on identification of non-robust directions and makes the following contributions:

* Qur paper is the first to focus on identification of adversarial directions in the deep reinforce-
ment learning policy manifold.

* We propose a novel method, Identification of Non-Robust Directions (INRD), to detect ad-
versarial state manipulations based on the local curvature of the neural network policy. INRD
is independent of the method used to generate the adversarial direction, computationally
efficient, and theoretically justified.

* We conduct experiments in various MDPs from the Arcade Learning Environment that
demonstrate the effectiveness of INRD in identifying adversarial directions computed via
several state-of-the-art adversarial attack methods.

* Most importantly, we demonstrate that INRD remains effective even against multiple
methods for generating non-robust directions specifically designed to evade INRD.

2 RELATED WORK AND BACKGROUND

Deep Reinforcement Learning: In this paper we focus on discrete action set Markov Decision
Processes (MDPs) which are given by a continuous set of states S, a discrete set of actions A, a
transition probability function P : S X A x S — R, and a reward function R : Sx A x S - R. A
policy 7 : S — P(A) assigns a probability distribution on actions 7 (-|s) to each state s. The goal in
reinforcement learning is to learn the state-action value function that maximizes expected cumulative
discounted rewards R = E,,r(s,,.) >¢ V" R(5¢, ar, s¢+1) by taking action a in state s. The temporal
difference learning is achieved by one step Q-learning which updates Q(s;, a;) by

Q(st,a:) + a[Rip1 + 7 max Q(st+1,a) — Q(s¢,a4)].

Adversarial Examples: (Goodfellow et al.|(2015)) introduced the fast gradient method (FGM) for
producing adversarial examples for image classification. The method is based on taking the gradient
of the training cost function J(x, y) with respect to the input image, and bounding the perturbation
by € where x is the input image and y is the output label. Later, an iterative version of FGM called
I-FGM was proposed by Kurakin et al.|(2016). This is also often referred to as Projected Gradient
Descent (PGD) as in (Madry et al.l 2018)) where the I-FGM update is

el = clip, (22, + asign(V,J (a2, y))). (1)

where 20, = z. Dong et al|(2018) further modified I-FGM by introducing a momentum term
in the update, yielding a method called MI-FGSM. [Korkmaz| (2020) later proposed a Nesterov-
momentum based approach for the deep reinforcement learning domain. The DeepFool method
of Moosavi-Dezfooli et al.| (2016) is an alternative approach to those based on FGSM. DeepFool
performs iterative projection to the closest separating hyperplane between classes. Another alternative
approach proposed by |Carlini & Wagner| (2017a)) is based on finding a minimal perturbation that
achieves a different target class label. The approach is based on minimizing the loss

min e T+ |5~

2

where s is the clean input, s,qy is the adversarial example, and J(s) is a modified version of the cost
function used to train the network. |Chen et al.| (2018)) proposed a variant of the |Carlini & Wagner
(20174a) formulation that adds an ¢ -regularization term to produce sparser adversarial examples,

min ¢ () 4 |5 s, s 15— s ®

Our method focusing on identifying non-robust directions in the deep neural policy manifold is the
first method to investigate detection of adversarial manipulations in deep reinforcement learning. Our
identification method does not require modifying the training of the neural network, does not require
any training tailored to the adversarial method used, and uses only two neural network function
evaluations and one gradient computation.
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Adversarial Deep Reinforcement Learning: The adversarial problem initially has been investigated
by [Huang et al.| (2017) and |Kos & Song|(2017) concurrently. In this work the authors show that
perturbations computed via FGSM result in extreme performance loss on the learnt policy. [Lin et al.
(2017) and |Sun et al.|(2020) focused on timing strategies in the adversarial formulation and utilized
the [Carlini & Wagner| (2017a)) method to produce the perturbations. While there is a reasonable body
of work focused on finding efficient and effective adversarial perturbations, a substantial body of work
focused on building agents robust to these perturbations. Mandlekar et al.|(2017) proposed to utilize
FGSM perturbations during training time to obtain more robust agents. [Pinto et al.|(2017)) modeled the
adversarial interaction as a zero sum game and proposed a joint training strategy to increase robustness
in the continuous action space setting. Recently, |Gleave et al.|(2020) considered an adversary who
is allowed to take natural actions in a given environment instead of £,,-norm bounded perturbations
and modeled the adversarial relationship as a zero sum Markov game. However, recent concerns
have been raised on the robustness of adversarial training methods by [Korkmaz| (2022). In this paper
the authors show that the state-of-the-art adversarial training techniques end up learning similar
non-robust features. Thus, with the rising concerns on robustness of recent proposed adversarial
training techniques our work aims to solve the adversarial problem from a different perspective by
detecting adversarial directions.

3 IDENTIFICATION OF NON-ROBUST DIRECTIONS (INRD)

In this section we give the high-level motivation for and formal description of our identification
method. We begin by introducing necessary notation and definitions. We denote an original clean
state by 5 and an adversarially perturbed state by ¢V,

Definition 3.1. The cost of a state, J (s, T), is defined as the cross entropy loss between the policy
m(als) of the agent, and a target distribution on actions 7(a).

J(s,7) ==Y 7(a)log(m(als)) )

a

Definition 3.2. The argmax policy, 7*(a|s), is defined as the distribution which puts all probability
mass on the highest weight action of 7 (als).

7*(a|s) = 1(a = arg max 7(a'|s)) (5)

We use the following notation for the gradient and Hessian with respect to states s:
Vs (s0,70) = Vs J (8, T)|s=s0,7=r0
ViJ(so, To) = VEJ(Sv T)s=s0,7=10

3.1 FIRST-ORDER IDENTIFICATION OF NON-ROBUST DIRECTIONS (FO-INRD)

As a naive baseline we first describe an identification method based on estimating how much the cost
function J(s, 7) varies under small perturbations. Prior work of Roth et al.|(2019); |Hu et al.| (2019)
has shown that the behavior of deep neural network classifiers under small, random perturbations
is different at clean versus adversarial examples. Therefore, a natural baseline detection method is:
given an input state so sample a small random perturbation 7 ~ N(0, €I) and compute,

K(s0,m) = J(s0 + 1,7 (-[s0)) = J(s0, 7" (-[50))- (6)

The first-order identification method proceeds by first estimating the mean and the variance of
over a clean run of the agent in the environment. Next a threshold ¢ is chosen so that a desired false
positive rate (FPR) is achieved (i.e. some desired fraction of the states in the clean run lie more
than ¢ standard deviations from the mean). Finally, at test time a state encountered by the agent is
classified as adversarial if it is at least ¢ standard deviations away from the mean. Otherwise the
state is classified as clean. As a first attempt, the first-order method can be naturally interpreted
as a finite-difference approximation to the magnitude of the gradient at sy. If we assume that the
first-order Taylor approximation of J is accurate in a ball of radius r > € centered at sg, then

J(s0 + 1,7 ([s0)) & J(s0, 7" (-[0)) + Vs (s0, 7" (-[50)) - -
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Therefore,

IC(SO777) %vSJ(SQ,’]T*('Lgo)) e (7)
Thus, for n ~ N(0, €I) the test statistic K(sg,7) is approximately distributed as a Gaussian with
mean 0 and variance €?||V.J(sq, 7*(:|50))||?. Under this interpretation one would expect the test
statistics for clean and adversarial states to have the same mean with potentially different standard
deviations, possibly making it hard to distinguish clean from adversarial. However, this is not what
we observe empirically, and in fact the first-order method does a decent job of detecting adversarial
examples. The method works because, in fact, the mean of XC(3, n) for clean examples § is reasonably
well separated from the mean of XC(s*4V, 1)) for adversarial examples 524V, The empirical performance
of the first-order method thus indicates that the assumption of accuracy for the first-order Taylor
approximation of J does not hold in practice. This leads naturally to the consideration of information
on the second derivatives (i.e. the local quadratic approximation) of J in order to identify non-robust
directions.

3.2 SECOND-ORDER IDENTIFICATION OF NON-ROBUST DIRECTIONS (SO-INRD)

The second-order identification method is based on measuring the local curvature of the cost function
J(s,7). The method exploits the fact that J(s,7) will have larger negative curvature at a clean
example as compared to an adversarial example. In particular, the high level theoretical motivation
for this approach is that adversarial examples are the output of a local optimization procedure
which attempts to find a nearby perturbed state s with a low value for the cost .J (5%, ) for
some T # 7*(+|5). A direction of large negative curvature for J(s*%, 7) indicates that a very small
perturbation along this direction could dramatically decrease the cost function. Therefore, such
points are likely to be unstable for local optimization procedures attempting to minimize the cost
function in a small neighborhood. On the other hand, the curvature of J(s,7) at a clean state §
is determined by the overall algorithm used to train the deep reinforcement learning agent. This
algorithm optimizes the parameters of the neural network policy while considering all states visited
during training, and thus is not likely to be heavily overfit to the state 5. In particular, we expect
larger negative curvature at 5 than at an adversarial example 5. We make the connection between
negative curvature and instability for local optimization formal in Section[3.3] Based on the above
discussion, a natural choice of metric for distinguishing adversarial versus clean examples is the
most negative eigenvalue of the Hessian Ayin (V2J(s0, 7*(+|s0)). While this is the most natural
measurement of curvature, it requires computing the eigenvalues of a matrix whose number of entries
are quadratic in the input dimension. Since the input is very high-dimensional, and we would like to
perform this computation in real-time for every state visited by the agent, computing the value Ap;j, is
computationally prohibitive. Instead we approximate this value by measuring the curvature along a
direction which is correlated with the negative eigenvectors of the Hessian. Given this direction, the
value that we measure is the accuracy of the first order Taylor approximation of the cost of the given
state J(s, 7). We denote the first order Taylor approximation at the state sq in direction 7) by

J(s0,m) = J(50,7"(-50)) + Vs J (50,7 (:|50)) - -

The metric we will use to detect adversarial examples is the finite-difference approximation

L(s0,n) = J(s0 +n,7"(*|s0)) — J(s0,7)- (8)

To see formally that Equation (8] gives an approximation of the most negative eigenvector of the
Hessian, we will assume that the cost function J(s, 7) is well approximated by its quadratic Taylor
approximation at the point sy i.e.

J(s0+1,7*(:|s0)) = J(s0,7(-|s0)) + Vs (s0,7*(-|s0)) - 0 + 10" V3 (0,7 ([s0))n (9
for a small enough perturbation 7. Substituting the above formula into Equation (8} yields
L(s0.m) = 0" ViJ(s0,7"(:|50)) (10)

The above quadratic form is minimized when 7 lies in the same direction as the most negative
eigenvector of the Hessian, in which case

L(s0,m) = Amin (V2J (50,7 (-[50))) [m]l3 an

We choose the sign of the gradient direction for measuring the accuracy of the first order Taylor
approximation. To motivate this choice note that —V,J (s, 7) is locally the direction of steepest
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Algorithm 1: Second Order Identification of Non-Robust Directions (SO-INRD)

Input: The clean run mean £ and variance o2( L), identification threshold ¢ > 0,parameter ¢ > 0.
for states s; visited by deep reinforcement learning policy do
_ sien(VsJ(si, m(si)))
"I s (sl
J(si,mi) = J(si, 7 ([s5)) + Vs (si, 77 (:si)) - 0
L(sismi) = J(si +mi, 7 (:[5:)) — J(si,m:)
if |L£(si,n:) — L| > t-o(L) then
Label state s; as a non-robust direction
end if
end for

decrease for the cost function. If the gradient direction additionally has negative curvature of large
magnitude, then small perturbations along this direction will result in even more rapid decrease in
the cost function value than predicted by the first-order gradient approximation. Note that this can
be true even if the gradient itself has small magnitude, as long as the negative curvature is large
enough. Thus, by the discussion at the beginning of Section 3.2} adversarial examples are likely to
have relatively smaller magnitude negative curvature in the gradient direction than clean examples.
Formally, for e > 0 we set

n(s0) = 6sign (Vs (s0,7(:|50))) .

Vs (s0,7*(-[50)) 2

To calibrate the detection method we record the mean £ = E4[L(s,7(s))] and variance 02(L) =
Vars[L(s,n(s))] of our proposed test statistic over states from a clean run of the policy in the MDP.
Then at test time we set a threshold ¢ > 0, and for each state s; visited by the agent test if

|L(s:,n(s:)) — L| > to(L). (13)

If the threshold of ¢ standard deviations is exceeded we classify the state s; as adversarial, and
otherwise classify it as clean. Pseudo-code for the second order method is given in Algorithm

12)

3.3 NEGATIVE CURVATURE AND INSTABILITY OF LOCAL OPTIMIZATION

In this section we formalize the connection between negative curvature and instability for local
optimization procedures that motivated our definition of £(s,n). Given a state sy and a target
distribution 7 # 7*(+|s(), we assume the adversary is trying to find a state s minimizing .J (521", 7)
among all states close to so by some metric. Formally, let D, (s) > 0 be a convex function of s that
should be thought of as measuring distance to sg. One standard choice for the distance function is
Dy, (s) = ||ls — so||b. We model the adversary as minimizing the loss

f(s) = J(s,7) + Ds,(s). (14)
In particular, we make the following assumption:
Assumption 3.1. The adversarial state s*Y is a local minimum of f(s).

Of course this assumption is violated in practice since different methods used to compute adversarial
directions optimize objective functions other than f, and do not necessarily always converge to a
local minimum. Nevertheless the assumption allows us to make formal qualitative predictions about
the behavior of the second-order identification method that correspond well with empirical results
across a broad variety of methods for generating adversarial directions. We now state our main result
lower bounding the curvature of J (s, ).

Proposition 3.2. For ¢ > 0 assume that the maximum eigenvalue of the Hessian V2D, (s) is
bounded by c. If s* is a local minimum of f(s) then X\pi,(V2J(s*,7)) > —c

Proof. Let v be the eigenvector of V2.J(s*, 7) corresponding to the minimum eigenvalue. At a local
minimum s* of f(s) the Hessian V2 f(s*) must be positive semi-definite. Therefore,
0<v ' V2f(s" v =0v"V2J(s*, 7)o +v VD, (s%)v
< Amin(V2J (5%, 7)) + ¢
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Figure 1: L(s) for our proposed method SO-INRD vs visited states with corresponding TPR values
for the following attack methods: FGSM, MI-FGSM, Nesterov, DeepFool, Carlini& Wagner, Elastic
Net Method. TPR values shown in the upper right box of the figure when FPR is equal to 0.01.

Rearranging the above inequality completes the proof. O

The second order conditions for a local minimum of f imply a lower bound on the smallest eigenvalue
of V2J(s*,7). Thus, by Assumption we obtain a lower bound on Ay (V2J(524V, 7)). The
assumption that the maximum eigenvalue of the Hessian V2 Dy, (s) is bounded by c is satisfied for
example when Dy, (s) = £||s — sol|3. In contrast, the local curvature of the cost function J (s, ) at
a clean example is determined by an optimization procedure that updates the weights 0 of the neural
network policy rather than the states s. If we write Jy (s, 7) to make explicit the dependence on the
weights, then the second order conditions for optimizing the original neural network apply to the
Hessian with respect to weights V2.Jy(s, 7) rather than the Hessian with respect to states V2.Jp(s, 7).
Additionally, first order optimality conditions can help to justify the choice of V4.J(s, ) as a good
direction to check for negative curvature. Indeed by the first order conditions, at a local optimum s*
of f(s) we have

0=V, f(s*) =VJ(s",7) + VD, (s%). (15)
Therefore, Vi J(s*,7) = —VDsg, (s*). So assuming the adversary finds a local optimum, VJ (s, 7)
points in a direction that decreases the distance function D;, (s*). Thus sufficiently negative cur-
vature in the direction of V4J(s, 7) implies not only that s is not a local minimum of f, but also
that the distance function Dy, (s) can be decreased by moving along this direction of negative
curvature. To summarize, we have shown that second order optimality conditions arising from
computing an adversarial example give rise to lower bounds on the smallest eigenvalue of the Hessian
Amin (VZJ(s,7)). The function £(s, ) used to identify adversarial directions for SO-INRD is a
finite difference approximation to

0 V2I(3,7)0 > Amin (V2I(5,7)) ]|

Therefore the results of this section imply that £(s, ) should be larger at adversarial examples than
clean examples.

4 EXPERIMENTS

In our experiments agents are trained with DDQN |Wang et al.| (2016) in the Arcade Learning
Environment (ALE) Bellemare et al.|(2013) from OpenAl|Brockman et al.|(2016). For a baseline we
compare FO-INRD and SO-INRD with the detection method of OAO proposed by Roth et al.[(2019),
which is based on estimating the average change in the odds ratio between classes under noise.

In Figure |1/ we plot the value of L(s) over states for various games without an adversarial attack
and under adversarial attack with the following methods: Carlini & Wagner, Elastic Net, Nesterov
Momentum, DeepFool, MIFGSM and FGSM. We show in the legends of Figure [I]the true positive
rate (TPR) values for the different attacks when false positive rate (FPR) is equal to 0.01. The value
of L(s) for clean states is generally well-concentrated and negative. On the other hand, for states
computed by the different adversarial attack methods £(s) is clearly larger, matching the predictions
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Figure 2: ROC curves of FO-INRD, SO-INRD and OAO method for the following attack meth-
ods: FGSM, MI-FGSM, Nesterov Momentum, DeepFool, Carlini& Wagner, Elastic Net Method in
RoadRunner. TPR values shown in the lower right box of the figure when FPR is equal to 0.01.

Table 1: True Positive Rates (TPR) for FGSM, MI-FGSM, Nesterov Momentum, Carlini&Wagner,
Elastic-Net and DeepFool when False Positive Rate (FPR) is equal to 0.01. The proposed methods SO-
INRD and FO-INRD are evaluated, and compared with Roth et al. (OAO) in Riverraid, RoadRunner,
Alien, Seaquest, Boxing, Pong, and Robotank games. More results for different FPR values are
reported in the supplementary material.

Detection Method-Attack Method RiverRaid RoadRunner Alien Seaquest Boxing Pong Robotank

SO-INRD FGSM 0.997 1.0 1.0 0.995 0.994 1.0 0.999
FO-INRD FGSM 0.990 0.843 0.803 0.931 0.793  0.622 0.413
OAO FGSM 0.681 0.767 0.885 0.403 0.264  0.424 0.911
SO-INRD M-IFGSM 0.998 1.0 1.0 0.985 0.910 1.0 0.985
FO-INRD M-IFGSM 0.952 0.863 0.991 0.981 0.827  0.622 0.470
OAO M-IFGSM 0.775 0.554 0.929 0.581 0.499  0.679 0.777
SO-INRD Nesterov Momentum 0.995 0.989 0.996 0.952 0.865 1.0 0.954
FO-INRD Nesterov Momentum 0.990 0.714 0.997 0.979 0.746  0.633 0.574
OAO Nesterov Momentum 0.785 0.646 0.925 0.671 0.517  0.687 0.753
SO-INRD Carlini&Wagner 0.910 0.988 0.945 0.723 0.856  0.850 0.713
FO-INRD Carlini&Wagner 0.695 0.594 0.642 0.516 0.785 0.494 0.119
OAO Carlini&Wagner 0.036 0.118 0.018 0.004 0.016  0.028 0.032
SO-INRD Elastic Net 0.777 0.943 0.875 0.687 0.770  0.736 0.815
FO-INRD Elastic Net 0.685 0.454 0.561 0.502 0.743  0.361 0.212
OAO Elastic Net 0.124 0.210 0.060 0.014 0.150  0.092 0.056
SO-INRD DeepFool 0914 0.996 0.993 0.860 0.951 0.889 0.900
FO-INRD DeepFool 0.841 0.847 0.936 0.777 0.928 0.796 0.268
OAO DeepFool 0.397 0.447 0.611 0.234 0.381 0.367 0.607

of Proposition The fact that £(s) is consistently larger at adversarial examples across a wide
variety of adversarial perturbation methods indicates that Assumption [3.1] qualitatively captures the
behavior of these methods. In particular the FGSM-based methods and DeepFool do not explicitly
optimize an objective function of the form f(s) = J(s,7) + Dy, (s) as in Assumption[3.1] However,
by enforcing a constraint on the distance of the adversarial example from the original clean example,
these methods implicitly solve an optimization problem of the form given in (T4), and thus exhibit
the qualitative behavior predicted by Proposition 3.2}

In Table |I| we show TPR values for FO-INRD, SO-INRD, and the OAO method under the FGSM,
MI-FGSM, Nesterov Momentum, DeepFool, Carlini& Wagner, and Elastic-Net attacks when FPR
is equal to 0.01. For all of the attack methods in all of the environments SO-INRD is able to detect
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Figure 3: ROC curves of FO-INRD, SO-INRD and OAO method for the following attack meth-
ods: FGSM, MI-FGSM, Nesterov Momentum, DeepFool, Carlini&Wagner, Elastic Net Method in
Robotank. TPR values are reported in the lower right box of the figure when FPR is equal to 0.01.

Table 2: TPR for Feature Matching for SO-INRD and OAO method FPR=0.01

Feature Matching Riverraid RoadRunner Alien Seaquest Boxing Robotank

SO-INRD 0.882 0.863 0.9016 0.955 0.988 0.8978
OAO Method 0.0088 0.006 0.007 0.0146  0.0106 0.0158

adversarial perturbations with large TPR. SO-INRD outperforms the other detection methods in all
cases except for Nesterov Momentum in Alien and Seaquest where FO-INRD has TPR 0.997 and
0.980 while SO-INRD has 0.996 and 0.952. We also observe that while the perturbations computed
by FGSM, MI-FGSM, Nesterov Momentum can generally be detected with large TPR values by all
the detection methods, the perturbations computed by Carlini&Wagner and the Elastic-Net method
are more difficult to detect. Despite the difficulty, SO-INRD achieves TPR values ranging from 0.713
to 0.988 for Carlini&Wagner, and TPR values ranging from 0.687 to 0.943 for Elastic-Net when FPR
is equal to 0.01. In Figure [2]and Figure 3] we show ROC curves for each detection method under the
FGSM, MI-FGSM, Nesterov Momentum, DeepFool, Carlini&Wagner and Elastic-Net method for
RoadRunner and Robotank respectively. In Robotank the OAO method outperforms FO-INRD and
even approaches the TPR of SO-INRD for high FPR under FGSM, MI-FGSM, Nesterov Momentum
and DeepFool. However for the Carlini&Wagner and Elastic-Net attacks, SO-INRD has a much
higher TPR across a wide range of FPR levels.

5 COMPUTING ADVERSARIAL DIRECTIONS SPECIFICALLY TO EVADE INRD

Recently, [Tramer et al.|(2020) introduced a comprehensive methodology for tailoring the optimization
procedure used to produce adversarial examples in order to overcome detection and defense methods.
In particular, the high level idea is to keep the attack as simple as possible while still accurately
targeting the detection method. More specifically, the methodology is based on designing an attack
based on gradient descent on some loss function. Further, minimizing the loss function should
correspond closely to subverting the full detection method while still being possible to optimize.
Critically, the authors highlight that while the choice of loss function to optimize can be a difficult
task, the use of “feature matching”|Gowal et al.|(2019) can circumvent most of the current detection
methods. We now describe how we applied the methodology discussed above to design detection
aware adversaries for SO-INRD. As a first attempt, we tested the “feature matching” approach that
was used to break the OAO detection method in [Tramer et al.| (2020). This approach attempts to
match the logits of the adversarial example to those of a clean example from a different class in order
to evade detection. To optimize the loss for this method we used up to 1000 PGD iterations, and we
searched step size varying from 0.01 to 10~%. We find that this method succeeds in reducing the TPR
of the OAO method to nearly zero. It is also able to slightly reduce the TPR of our SO-INRD method
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Table 3: TPR values of INRD in the presence of a identification aware adversary when FPR=0.01.

Detection Method RiverRaid RoadRunner Alien Seaquest Boxing Pong Robotank

SO-INRD — C&W 0.650 0.849 0.445 0.381 0.710  0.712 0.657
FO-INRD — C&W 0.346 0.348 0.351 0.193 0.621  0.325 0.0973

(see results in Table E]) However, as we will see next, a larger reduction in the TPR of SO-INRD
can be achieved by optimizing a modified version of the loss from Carlini & Wagner| (2017b). Our
next attempt is based on a modification of the |Carlini & Wagner| (2017b) formulation to additionally
minimize the cost function £(s) used in SO-INRD,

min ¢ - J(s*) 4 Hsad"—sﬂz—l—)\-[,(sadv). (16)
sives 2

Recall that £(s) is consistently larger at adversarial examples than at clean examples. Thus the
above optimization problem attempts to find adversarial examples with as small values of £(s) as
possible. Since the function £(s) involves taking the sign of the gradient, we use Backwards Pass
Differentiable Approximation (BPDA) as introduced in|Carlini & Wagner (2017b) to compute the
gradients. However, we also tried designing an adversary with a fully differentiable cost function by
using a perturbation in the gradient direction (without the sign). We found that this fully differentiable
adversary performed significantly worse than the one based on BPDA. We conducted exhaustive grid
search over all the parameters in this optimization method: learning rate, iteration number, confidence
parameter x, and objective function parameter A. In C&W we used up to 30000 iterations to find
adversarial examples to bypass detection methods. We searched the confidence parameter from 0
to 50, the learning rate from 0.001 to 0.1, and A\ from 0.001 to 10. In our grid search over these
hyperparameters we found that there is a trade-off between the attack success rate and the detection
of the perturbations. In other words, if we optimize the perturbation to be undetectable the success
rate of the perturbation (i.e. the rate at which the perturbation actually makes the agent choose a
non-optimal action) decreases. Therefore, when finalizing the hyperparameters for the SO-INRD
detection-aware adversary we restricted our search to a setting where the decrease in the success rate
of the attack was at most 10%.

Since FO-INRD is based on sampling a random perturbation, we use another approach introduced by
Carlini & Wagner| (2017b) to minimize the expectation of the original loss function when averaged
over the randomness used in the detection method. In particular, we estimate the expectation by
computing the empirical mean of the loss over 50 samples from the same noise source. As for the case
of SO-INRD we grid search over hyperparameters to achieve as low a TPR as possible while losing at
most 10% in the success rate of the attack. Table shows the TPR in the adversary-aware setting with
the best hyperparameters found for each method. The fact that SO-INRD still performs quite well in
the adversary-aware setting is an indication that there is a fundamental trade-off between computing
an adversarial example and minimizing £(s). This trade-off makes sense in light of Proposition
which shows that searching for an adversarial example in a small neighborhood will tend to increase

L(s).

6 CONCLUSION

In this paper we introduce a novel algorithm INRD, the first method for identification of adversarial
directions in the deep neural policy manifold. Our method is theoretically motivated by the fact that
local optimization objectives corresponding to the construction of adversarial directions lead naturally
to lower bounds on the curvature of the cost function J (s, 7). We have further shown empirically that
the curvature of J(s, 7) is significantly larger at adversarial states than at clean observations, leading
to a highly effective method SO-INRD for detecting adversarial directions in deep reinforcement
learning. We additionally demonstrate that SO-INRD remains effective in the adversary-aware setting,
and connect this fact to our original theoretical motivation. We believe that due to the strong empirical
performance and solid theoretical motivation SO-INRD can be an important step towards producing
robust deep reinforcement learning policies.
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