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ABSTRACT

Preference-based reinforcement learning (PbRL) can help avoid sophisticated re-
ward designs and align better with human intentions, showing great promise in
various real-world applications. However, obtaining human feedback for pref-
erences can be expensive and time-consuming, which forms a strong barrier for
PbRL. In this work, we address the problem of low query efficiency in offline
PbRL, pinpointing two primary reasons: inefficient exploration and overoptimiza-
tion of learned reward functions. In response to these challenges, we propose a
novel algorithm, Offline PbRL via In-Dataset Exploration (OPRIDE), designed to
enhance the query efficiency of offline PbRL. OPRIDE consists of two key features:
a principled exploration strategy that maximizes the informativeness of the queries
and a discount scheduling mechanism aimed at mitigating overoptimization of the
learned reward functions. Through empirical evaluations, we demonstrate that
OPRIDE significantly outperforms prior methods, achieving strong performance
with notably fewer queries. Moreover, we provide theoretical guarantees of the al-
gorithm’s efficiency. Experimental results across various locomotion, manipulation,
and navigation tasks underscore the efficacy and versatility of our approach.

1 INTRODUCTION

Reinforcement learning (RL) has proven effective across a range of sequential decision-making
tasks, from mastering games like Go (Silver et al.l|[2016) to controlling complex systems such as
robots (Ahn et al., 2022) and plasma reactors (Degrave et al.| 2022). However, in many real-world
applications, designing an appropriate reward function is a daunting challenge, as these tasks often
involve objectives that are difficult to formalize with numerical rewards (Yang et al.| [2021}; 2023)).

Preference-based RL (PbRL) (Akrour et al., 2012; |Christiano et al., 2017 has emerged as a promising
paradigm, leveraging human feedback in the form of pairwise preferences, which are inherently
more interpretable yet still information-rich. This paradigm allows agents to learn from relative
judgments rather than numerical reward signals, significantly reducing the complexity of reward
design. Recent advancements in PbRL have illustrated its efficacy in enabling agents to learn novel
behaviors (Christiano et al., 2017} |[Kim et al.,[2023)) and in achieving better alignment with human
preferences (Ouyang et al., 2022} |Yang et al., [2025), which are often difficult to encapsulate in a
reward function. Despite these advantages, PORL methods still face critical challenges, particularly
in acquiring human feedback efficiently. Querying human preferences is both time-consuming and
resource-intensive, limiting the scalability of PbRL in real-world applications.

To address this challenge, we propose Offline PbRL via In-Dataset Exploration (OPRIDE), a
novel algorithm designed to systematically enhance the query efficiency of offline PbRL, as depicted
in Figure [T} OPRIDE introduces a principled exploration strategy that identifies the most informative
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Figure 1: The procedure of OPRIDE consists of two phases. In the first offline phase, we select
query based on exploration mechanism. The blue circles o and red triangles A represent the value
estimation V;,, and V,;,, respectively. In the second stage, we first learn an reward function based on
the preference dataset and then annotate the reward-free dataset. Next, we adjust the discount factor
to reduce the impact of noise in the reward learning.

queries by analyzing value differences between trajectories, ensuring that each query maximally
contributes to learning the optimal policy. Additionally, to prevent overoptimization of the learned
reward function (Gao et al., 2023} [Zhu et al., 2024), particularly in regions with high uncertainty,
we incorporate a discount factor scheduling mechanism that dynamically adjusts the discount based
on the variance in the reward estimation. Based on the pessimistic property of the smaller discount
factor, we can address the overestimation issue of the value function and, subsequently, a better policy
performance and higher query efficiency.

Experimental evaluations on diverse locomotion and manipulation tasks, including AntMaze (Fu et al.|
2020) and Meta-World (Yu et al.l 2019), demonstrate the efficacy of our approach in achieving strong
performance with significantly fewer queries compared to state-of-the-art baselines. Remarkably, our
method achieves compelling results with as few as ten queries on Meta-World tasks, underscoring
its efficiency and scalability. Furthermore, we provide theoretical insights into the efficiency of our
algorithm, demonstrating that our exploration strategy is provably efficient under mild assumptions.

Our contributions are threefold: (1) We introduce OPRIDE, a novel offline PbRL algorithm that
achieves superior query efficiency through in-dataset exploration; (2) We conduct extensive ablation
studies that highlight the effectiveness of each component, providing insights into the factors driving
query efficiency; and (3) We provide theoretical analyses establishing the provable efficiency of our
algorithm involving a principled exploration strategy under mild assumptions.

1.1 RELATED WORK

Preference-based RL. Various methods have been proposed to leverage human preferences (Akrour
et al.L[2012} Ibarz et al.| 2018) and have demonstrated success in tackling complex control tasks (Chris+
tiano et al., [2017} Lee et al.,|2021)) and in aligning large language models (Stiennon et al., [2020;
Ouyang et al., [2022; Rafailov et al., 2023} 2024). In the realm of offline Preference-based Rein-
forcement Learning (PbRL), a benchmark including several baselines (e.g., disagreement based
method) is introduced by OPRL (Shin et al., [2023)), which selects queries based on disagreement
between the reward models and is inefficient in determining the optimal policy. Kim et al.| (2023)
apply Transformer models to effectively capture preferences for better credit assignment. [Kang et al.
(2023) present a direct approach to learning policy based on preferences. A recent work by [Lindner
et al.|(2021) proposes an information-directed query selection method for PbRL, using the Laplacian
approximation and the Hessian matrix for posterior computation. In contrast, our method selects
queries to maximize the information gain about the optimal policy rather than the reward function,
ensuring higher query efficiency.
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Our work is also related to recent two-stage offline PbDRL methods that enhance reward learning or
query design. CLARIFY (Mu et al.) employs contrastive learning to disambiguate preferences in
noisy queries by refining trajectory representations, differing from our direct exploration of value
differences within the dataset. LiRE (Choi et al.| [2024)) introduces listwise ranking to replace pairwise
queries, improving feedback efficiency through sequential comparisons. Differently, we focus on
maximizing policy-relevant information per query via value ensemble disagreement. Additionally,
we note emerging single-stage paradigms that bypass explicit reward modeling: IPL (Hejna &
Sadigh, [2023)) and CPL (Hejna et al.) derive policies directly from preferences via inverse learning
or contrastive objectives, while DPPO (An et al., [2023)) optimizes policies using preference logits
without reward intermediates. These methods represent an alternative direction, whereas OPRIDE
retains the two-stage structure to leverage established offline RL algorithms.

In addition to empirical achievements, prior studies have also explored the theoretical aspects of
PbRL. Pacchiano et al.|(2021)) propose a provable PbRL algorithm tailored for linear MDPs. |Chen
et al.| (2022) extend this approach to scenarios where the Eluder dimension is finite. [Zhan et al.
(2023a)) delve into the study of PbRL within an offline setting where a preference dataset is provided.
Wang et al.| (2023) propose an efficient randomized algorithm for PbRL in linear MDP and an
efficient TS-based algorithm for nonlinear cases with finite Eluder dimensions. |Sekhari et al.| (2023)
provides a PbRL algorithm with PAC guarantees. [Novoseller et al.| (2020) proposes the dueling
posterior sampling algorithm that has an information-theoretic guarantee. |Xu et al.[|(2020) provide a
gap-dependent analysis for preference-based contextual bandit and imitation learning. Wu & Sun
(2023) analyze the complexity of learning with utility-based preferences and general preferences.

2 PRELIMINARIES

We consider infinite-horizon Markov Decision Processes (MDPs), defined by the tuple (S, A, v, P, r),
with state space S, action space A, horizon H, transition function P : § x A — A(S) and reward
function  : S x A — [0, 1]. Without loss of generality, we assume a fixed start state sq.

A policy 7 : & — A(A) specifies a decision-making strategy in which the agent chooses actions
adaptively based on the current state, that is, a ~ 7(- | s). The value function V™ : S — R and the
action-value function (Q-function) Q™ : S x A — R are defined as

oo

V7(s) =E, [Zr(st,at) Sp = s], Q" (s,a) =E, [ir(st,at)

t=1 t=1

so=s,a0=al, (1)

where the expectation is w.r.t. the trajectory 7 induced by w. We define the Bellman evaluation
operator as

(Tﬂf)(& CL) = Es’~P(-|s7a),a’~7r(~|s’) [T(Sv CL) + fo(S/a a/)] : (2)

We use 7%, Q*, and V* to denote an optimal policy, the corresponding optimal Q-function and
optimal value function, respectively. We have the Bellman optimality equation

V*(S) = I;leajl( Q* (57 CL), Q* (57 CL) = ES/NP("S,CL) [T(S, a) + VV*(S/)] . (3)

Meanwhile, the optimal policy 7* satisfies 7*(- | s) = argmax, (Q*(s,-),7(-|$)).4. We aim to
learn a policy 7 from the candidate policy class II that maximizes the expected cumulative reward.
Correspondingly, we define the performance metric as the sub-optimality compared with the optimal
policy, i.e.,

SubOpt () = V7™ (s0) — V™ (s0). 4)

2.1 BELLMAN CONSISTENT PESSIMISM

A unique challenge in offline RL is that the learned policy may induce a state-action density that
is different from the data distribution p, which may lead to large extrapolation errors when we do
not impose any coverage assumption on p. Therefore, it is important to carefully characterize the
distribution shift, which we measure using the coverage coefficient. Specifically, we adopt the one
used in |Xie et al.|(2021)) that considers the distribution shift of Bellman errors:
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Definition 1 (Bellman shift coefficient (Xie et al., [2021)). We define C(v; u, Q,m) as follows to
measure the distribution shift from an arbitrary distribution v to the data distribution u, w.rt. Q and
,

lg —T™qll3,,
Clv;u, Q,m) = max ——————="-.
( y s & ) prete) ||q_']r7rqH%,M

Here Q is the Q-function approximation class we consider. Intuitively, C(v; y1, @, 7) measures how
well Bellman errors under 7 transfer between the distributions v and p. For instance, a small value of
C(d™; u, Q, ) enables accurate policy evaluation for 7 using data collected under p.. Definition is
a generalization compared to prior works that is defined specific to linear function approximation
(Agarwal et all [2021} Jin et al. [2021). More generally, we have C(v;u, Q,7) < ||[v/p]lco =

sup, , ZE:Z% holds for any 7 and Q.

2.2 PREFERENCE-BASED REINFORCEMENT LEARNING

To learn reward functions from preference labels, we consider the Bradley-Terry pairwise preference
model (Bradley & Terry, |1952) as used by most prior works (Christiano et al., [2017; [Ibarz et al.,
2018 [Palan et al., 2019). Specifically, the preference label between two given trajectories 7; and 7; is
defined as

1

R) " exp (R(1;) = R(1)) + 1’

P (Ti - T 5)

where 7 = (54, a;)_ is a trajectory and R(7) = ZtT:O 77 (s, at) is the return function. To simplify
the theoretical analysis, we consider learning a return model instead of a reward model. The return
model R is trained to minimize the cross-entropy loss between the predicted preference and the
ground truth with a given preference dataset Dp.¢ as follows:

Le(R)=— E {ologp(n >-7'2’R)+(1—0)10g(1—]P’(7'1 >72’R))], 6)

(Tl :7—2 aO)NDpref

where o is the ground truth label given by human labelers. We assume that the difference of
return functions AR = {AR(7y,72) : Traj x Traj — R|IR € R, AR(ry,72) = R(11) — R(m2)}
has a finite Eluder dimension, which is a common general function approximation class in RL
literature (Russo & Van Roy, |2013;|Chen et al.| 2022).

Definition 2 (Eluder Dimension (Russo & Van Roy, [2013)). Suppose F is a function class defined in
X, the a-Eluder dimension dgy, (F, &) is the longest sequence {x1,2a, -+ , 2y} € X such that there
exists o > o where x; is o' -independent of {x1,--- ,x;_1} forall i € [n].

The above defined Eluder dimension is used to establish a suboptimality upper bound for our proposed
algorithm in Section[d] The following generalized linear preference model considered by many prior
works (Pacchiano et al., 2021} Zhan et al.| [2023b) is a special case of finite Eluder dimension (Chen
et al.| 2022). We include it to show that our analysis in Section[z_f] is general.

Definition 3 (Generalized Linear Preference Model). In d-dimensional generalized linear models,
the preference function can be represented as P(11 > 12|0) = o({¢(71,72), R)) where o is an
increasing Lipschitz continuous function, ¢ : Traj x Traj — R is a known feature map satisfying
lp(T1,72)|l2 < H and 6 € R? is the unknown parameter.

3 METHOD

In this section, we present our proposed algorithm, Offline Preference-based Reinforcement Learning
with In-Dataset Exploration (OPRIDE), illustrated in Figure[I] The key idea of OPRIDE is to enhance
the query efficiency of offline PbRL by conducting optimistic exploration with in-dataset queries
and then utilizing the learned reward function pessimistically with discount factor scheduling. The
overall algorithm is shown in Algorithm [I]
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3.1 OFFLINE QUERY SELECTION WITH IN-DATASET EXPLORATION

Generating informative queries is crucial for calibrating the reward function. Various methods
have been proposed to generate queries for offline preference-based RL, like disagreement-based
approaches (Christiano et al.} 2017) and information-gain-based approaches (Wilson et al.l 2012
Shin et al., 2023), but it may lead the algorithm to focus on refining reward estimates in regions of
the state space that are irrelevant to the optimal policy. This naturally leads to the idea of employing
an exploration objective (Akrour et al.,|2011) into offline query selection, where we maximize the
information gain about the optimal policy rather than the reward function.

Inspired by principled exploration strategies for PbRL, analyzed in Section[d] we propose to use the
difference of value differences as the exploration criteria. Specifically, we first train a set of reward
functions {rp, }, using bootstapping, then train a set of value functions {V, }}4, using offline
algorithms like IQL (Kostrikov et al.,2021;|Ma et al.,[2021) with the reward functions. Finally, we
select two trajectories 7y and 75 that maximize the difference of value differences between the two
trajectories:

argmax argmax | (V’l/hi (11) = Vi, (7'1)) - (Vw,v, (m2) — Vi, (7'2))| ) @)

(11,72)ED 1,j€[M]
The reward function rg, and the value functions Q4,, Vy;, are iteratively updated after each preference
query. Intuitively, Equation|/]aims to select queries that most effectively minimize the diameter of
the uncertainty set for the value function. The diameter represents the maximum possible disagree-
ment between any two candidate value functions on any two policies. Reducing this diameter is
proportional to the information gain from a query. Therefore, minimizing this diameter is equiv-
alent to maximizing the information gain for each query. This objective is directly linked to the
information gain via information ratio I' (Lu & Van Roy, 2019} |Russo & Van Roy, 2016). The

diameter of the uncertainty set is upper-bounded by P (diam(R) < Tsy/I(R; D)) >1—4, where

diam(R) = maxpg, ,r,er MaXn, mer |(R1(m1) — Ri(m2)) — (Ra2(m1) — Ra(m2))|, and I(R; D) is
the mutual information between the reward function class R and the query dataset D. Maximizing
the information gain I directly corresponds to reducing the diameter. Mathematically, the sample
complexity of reward function estimation is proportional to the Eluder dimension of the reward
function class, dgj, (R ), while Equation s complexity relates to the Eluder dimension of the optimal
value function class. It is often the case that dg, (V*) < dgw(R). Please refer to Sectionfor the
complete theoretical analysis.

3.2 POLICY EXTRACTION WITH VARIANCE-BASED DISCOUNT SCHEDULING

After obtaining the preference feedback, we can train the reward function using the cross-entropy
loss in Equation E] and annotate the reward-free dataset D = {{(s?, a?")}1_,}N_; to obtain a labeled
dataset D = {{(s?,a?, TIYE Y., where 7 = 1/M Zf\il rg,. However, it is well-known that a
learned reward function is prone to overoptimization (Gao et al.| |2023; Zhu et al.| 2024)), leading to
overestimation of the value function and, subsequently, a suboptimal policy.

Learning from preference feedback is more vulnerable to this issue, as the feedback is binary and
sparse. To solve this issue, we propose to adjust the discount factor based on the variance of the
value function estimates that serve as a stronger regulator. Using a smaller discount factor is known
to provide pessimistic and robust guarantees and performs well in various settings like imitation
learning (Liu et al.,2024). Specifically, we reduce the discount factor where there is a higher variance
in value estimation, thereby alleviating the impact of reward function overestimation.

. Batch
§(s,a){vsman, 1fl Var{Qu, (s, a)} Ly > Top m%({Var;{Qo, (7 ap) HLY™) o
v, else

where 7 is the adjusted discount factor. Please note that if the variance of the value estimation for
a data point is greater than the top m% in the batch, we consider that the reward function for this
data point has overestimation noise and reduces the corresponding discount factor. SubsequentlyA, we
can learn a corresponding Q-value function and extract the policy from the labeled datasets D by
adopting the standard offline reinforcement learning algorithms, like IQL (Kostrikov et al.| [2021)).
We also consider a softer confidence discount mechanism, which is detailed in the Appendix [E|
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4 THEORETICAL ANALYSIS

In this section, we investigate the theoretical guarantees for generating queries with an explorative
objective. Specifically, we consider the strategy consisting of the following procedures: (1) construct
a confidence set for the return function based on existing queries; (2) construct a candidate policy
set using pessimistic value estimation as the criteria; and (3) select a pair of policies that maximize
disagreement on values for new queries. A detailed strategy description is available in Algorithm 2]

Construct Confidence Set. For the return function, we can use the cross entropy loss as in Equation|6]
to get the maximum likelihood estimator (MLE) for the return function Ry:

~

Ry, = argmin L (R), 9)
RER
where Ly (R) = Y5 (0;log P(7} = 72; R) + (1 — 0;) log(1 — P(7} = 72; R))) is the MLE loss.
Then we can constuct the confidence set for the reward function as follows:

k 2
Ch(R) = {R eR| Y ((RE) - RE2) — (Ru(n) = Rulr?))) < m} (10)

where [y, is the confidence parameter to be specified later. Given the confidence set for the return
function R, we can subsequently construct a confidence set for policies using a pessimistic value
function. Specifically, we consider the pessimistic value function ¢ that leads to the worst-case value
for the optimal policy over the Bellman uncertainty of the value function. Please refer to Algorithm 3]
in Appendix for more details. The candidate policy set ITj, is constructed as follows:

I, = {%|aReck(n)ﬁ:argmaxaR(sl,w).}. (11)
mell

Intuitively speaking, IT; consists of policies that are possibly optimal within the current level of

uncertainty over reward and dynamics. By constraining exploration policies in 11, we achieve proper

exploitation by avoiding unnecessary explorations.

Selecting Exploratory Policies. For a given pair of policies (71, ms) in I, we determine their
exploration power by measuring how much disagreement can be made for different reward functions
in the confidence set. Specifically, we select explorative policies via the following criteria:

k k ~T ~Tq ~TTo ~TTo
T, Ty = argmax max v —v — \v —v .
15712 o1 maeTly Ri,R2€CK(R) (( Ry Rg) ( Ry R2)) (12)

Intuitively, we choose two policies 71, 7o such that there is a R € C(R) that strongly prefers 7y
over my, and there is a Ry € Ci(R) that strongly prefer 2 over ;. We sample two trajectories
R~ kol k2 o 7R2 | query the preference between them, and add it to the preference dataset.
Choosing the pair of trajectories that maximize disagreement helps us explore efficiently. Then, we
have the following theoretical guarantee:

Theorem 4. Let 8, = c14/log(K|AR|)/K and ¢ = co+/log(N|I||Q|)/N, where c1,co are

universal constants. Then the expected suboptimality of 7 from Algorithm[2]is upper bounded by

O log(N|QI[I]) \/ndEIM(AR, 1/K)log (K|AR)) 13

SubOpt(7) < O \/ N =) K(1—7) )

Offline Error Preference Error

where  is the degree of non-linearity of the link function o, C' is the coverage coefficient in
Definition[l) N is the size of the offline dataset and K is the number of queries.

Proof. See Appendix [B|for a detailed proof. [
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Algorithm 1 Offline Preference-Based Reinforcement Learning with In-Dataset Exploration

1: Input: Unlabeled offline dataset D = {r,, = {(s7,a?)}_,}]_,, query budget K, ensemble
number M

2: Initialized the preference dataset Dpyer < 9.

3: forepisode k =1,--- , K do

4:  Train M ensembles of reward network 74, with Dy using Lcg in Equation @

5 Train M corresponding value functions Vy,, @4, with each reward function 7, .

6:  Select trajectories 7!, 752 that maximize the exploration objective according to Equation

7:  Receive the preference o, between 7! and 72 and add it to the preference dataset, i.e.,
Dpref — Dpref U {(Tk’ly Tk’Qa Ok)}

8: end for

9: Annotate the unlabeled offline dataset D with the reward function @ and obtain D.
10: Adjust the discount facto 7 to 5 based on Equation 8]
11: Extract policy ¢ via offline RL from D.
12: Output: The learned policy m¢

Domain | Task | OPRL PT PT+PDS IDRL OPRIDE

lever-pull 63.2+104 49.2+3.7 51.7£0.1 33.1£1.2 51.8%+1.6
peg-insert-side | 3.5+1.8 16.8+0.1 124£14 67.44+0.1  79.0+0.2
plate-slide 77.4£1.6 4.9£0.0 37.3£23  79.6+3.5 79.9+4.6
push 10.6£1.5 16.7£5.0 1.8+£04  30.7£53 59.1+54
push-back 0.8£0.0 1.1£0.4 1.1£0.1 14.0£1.1  17.7+2.0

Metaworld |0 b wall | 7.4442  748+144 34409 892432 102.2+1.2
reach 635429 82.0+0.8 843109 758+18 88.0-+0.5
soccer 343440 513441 4154119 443421 454439
sweep-into | 37.1413.9 98402  92+0.1  63.1435 71.6+0.1
sweep 68+18 80404  80+0.1 73.0+28 78.5+10
Average | | 30442 314429 250+18 570463 65333

Table 1: Performance of offline RL algorithm on the reward-labeled dataset with different preference
reward learning methods on the Meta-World tasks over five random seeds.

Equation [I3]decomposes the suboptimality of Algorithm 2]into two terms nicely: the offline error
term and the preference error term. The first error is due to the finite sample bias of the dataset, and
the preference error is due to the limited amount of preference queries. Compared to pure online
learning, the preference error is reduced by a factor of 1/(1 — 7). Therefore, querying with an offline
dataset can be much more sample-efficient than pure online queries when N >> K. This is because
the offline dataset contains rich information about dynamics and can reduce the effective horizon
of the problem (Hu et al.l2023)). This also aligns with our empirical findings that ~ 10 queries are
usually sufficient for reasonable performance in offline settings.

5 EXPERIMENTS

In this section, we aim to answer the following questions: (1) How does our method perform on
various navigation and manipulation tasks compared to other offline PbRL methods? (2) How
effective is the proposed exploration-based query selection and discounted-based pessimism? (3)
How does our method perform across different numbers of queries?

5.1 EXPERIMENTAL DETAILS

Environment Setup. We perform empirical evaluations on Meta-World (Yu et al.,|2019)) and the
Antmaze task on the DARL benchmark (Fu et al.,[2020). In the preference query, we use a segment
length of 50 for all tasks. Our setup begins with a dataset of unlabeled trajectories. We use a
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Domain | Task | OPRL PT PT+PDS IDRL OPRIDE

umaze 76.3+3.7 77.5+45 845485 85.5+3.4 87.5+5.6
umaze-diverse | 72.5+3.4 68.0+£3.0 78.0£6.0 69.1+4.2 73.14+24
medium-play 0.0+£0.0 63.54+0.5 72.5+6.5 63.84+4.1 62.2+2.0

Antmaze | o diim-diverse | 0.04£0.0 635445 58.044.0 6574141 69.4+5.2
large-play 73409 65425 9.0+8.0 187434 27.5+125
large-diverse | 6.942.4 23.5+0.5 85425 143425 21.5+15

Average | | 271417 504+42.5 517459 528436 56.8+4.8

Table 2: Performance of offline RL algorithm on the reward-labeled dataset with different preference
reward learning methods on the Antmaze tasks over five random seeds.

Task PT PDS + VDS + . VDS + OPRIDE
Random Query Random Query Disagreement (VDS+IDE)
bin-picking 31.9+16.2 53.4+19.0 71.949.0 78.5+17.8 93.3+3.2
button-press-wall | 58.84+0.9 59.440.9 77.2+0.8 67.44+5.4 77.7+0.1
door-close 65.1£10.1 62.448.7 72.3+0.1 88.3+0.7 94.8+1.1
faucet-close 57.84+0.9 46.240.2 59.4+8.5 48.7+0.6 73.1+0.8
peg-insert-side 16.840.1 12.44+1.4 13.8+4.4 9.7£8.5 79.0+0.2
reach 82.0+0.8 84.3+0.9 83.34+0.1 86.6+0.1 88.0+0.5
sweep 8.0+0.4 8.0+0.1 28.7+1.8 18.2+2.9 78.5+1.0

Table 3: Ablation of the query selection module on the Meta-World tasks. We report the performance
of offline RL algorithm on the reward-labeled dataset with various query selection and policy extration
mechanism. IDE and VDS represent the In-Dataset Exploration module and the Variance-based
Discount Scheduling module proposed in Section respectively.

preference-based RL method (e.g., OPRIDE) to select queries from this dataset. These queries are
then used to train a reward model. Subsequently, this learned reward model is used to relabel the
entire trajectory dataset with rewards, which is then used to train a policy with a standard offline RL
algorithm. We adopt the normalized score metric proposed by the DARL benchmark. Please refer to
Appendix [F] for more experimental details.

Baselines. We compare OPRIDE with several state-of-the-art offline PbRL methods, including
Offline Preference-based Reinforcement Learning (OPRL; [Shin et al., [2023)), Preference Trans-
former (PT; Kim et al., [2023) and Information Directed Reward Learning (IDRL; [Lindner et al.,
2021). To illustrate the effectiveness of our proposed variance-based discount, we compare our
method with Provable Data Sharing (PDS; Hu et al.| 2023)) as a baseline algorithm. For OPRL, we
employ disagreement-based query selection, as it yields the best performance. We adopt the same
architecture as in Preference Transformer (PT) for a fair comparison.

5.2 EXPERIMENTAL RESULTS

Answer to Question 1: To show that OPRIDE can generate valuable rewards with a few queries,
we conducted a comprehensive comparative analysis of OPRIDE against several baseline methods,
utilizing Meta-World and Antmaze tasks as our testing grounds. Specifically, we use a budget of 10
queries on each task for all offline preference-based reinforcement learning methods. Then, we let
all algorithms employ the IQL algorithm for subsequent offline training for a fair comparison. The
experimental results in Table[T]and Table 2] are normalized episode returns averaged over five random
seeds. In most tasks in Meta-World and Antmaze, OPRIDE demonstrates superior performance
compared to baseline algorithms. Moreover, unlike IDRL, which relies on the Laplacian approxima-
tion and the Hessian matrix for posterior computation, our method leverages critic values for query
selection, ensuring easier implementation and superior empirical performance, as demonstrated in
our comparative experiments.
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Domain |  Tasks | Zero Random  Negative =~ OPRIDE

coffee-push | 7.6+4.3 5.8+2.7 0.7£0.1  59.4+24.8
disassemble | 9.3£0.4  16.8+7.3 10.1£0.2 26.6+4.9
hammer 38.1£6.4 46.14£24 22.6+1.8 50.3£3.2
push 57.5£1.5 344+£173 4.6+£23 59.1+54
push-wall | 81.9£3.8 80.1+£09 17.6+1.9 102.2+1.2
soccer 333+1.6 41.148.8 44.0+6.4 45.4+3.9
sweep 29.0+£0.2 29.04£2.6 249+03 78.5£1.0

Metaworld

Table 4: Comparison between the survival instinct and OPRIDE.

hammer-v2 coffee-push-v2 disassemble-v2 push-v2
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Figure 2: Performance of offline preference-based RL algorithms with various queries.
OPRIDE achieves a better query efficiency across tasks and number of queries.

We also compare OPRIDE with the recent research work Survival Instinct (L1 et al., 2024])) since
they find that wrong rewards can also lead to good offline RL performance. Specifically, we used
three types of rewards, the same as the author: (1) zero: the zero reward, (2) random: labeling each
transition with a reward value randomly sampled from Unif [0, 1], and (3) negative: the negation of
true reward. Then, we trained the same offline learning algorithm as OPRIDE on the reward-labeled
dataset. The experimental results in Table [d]indicate that OPRIDE still outperforms these baselines in
most tasks. We attribute the above experimental results to the challenging nature of the dataset we
created. Specifically, in|Li et al.| (2024), the perturbed script policy data accounts for 100% of the
dataset. However, in our created dataset, the perturbed script policy data only accounts for 5% of the
dataset. We conduct additional experiments on Mujoco and Kitchen tasks. Please refer to Appendix [E]
for the complete experimental results.

Answer to Question 2: To study the contribution of each component in our framework, we conduct
several ablation studies to verify the effectiveness of each part, as shown in Table[3] Comparing our
method with the VDS + Random Query and the VDS + Disagreement baseline, we can see
that disagreement-based approaches offer little improvement over the random query selection baseline,
while our exploration criteria lead to vast performance improvement, showcasing that our method is
able to collect useful information within a few queries. Comparing the PDS + Random Query
and the VDS + Random Query baseline, we can conclude that while PDS is helpful on some tasks
like bin-picking-v2, it fails to prevent reward overoptimization and makes the performance
worse on some other tasks. On the contrary, VDS + Random Query is able to improve over the
PT baseline on most tasks, showing its robust ability to reduce reward overestimation.

We have conducted ablation experiments to determine the sensitivity of the discount factor hyper-
parameter. Specifically, we vary the ygmay values from 0.5 to 0.95 for the data points with the high
variance. The experimental results in Table[7)in Appendix [E]indicate that 0.7~0.8 is an appropriate
range for vysman, and the performance is robust across different yyma values. We conduct additional
ablation studies for the In-Dataset Exploration module, the Variance-based Discount Scheduling
module and the hyperparameter m. Please refer to Appendix [E|for the complete results.

Answer to Question 3: To investigate how the number of queries affects OPRIDE ’s overall perfor-
mance, we vary the number of queries and compare our method with various baselines. The results
presented in Figure 2] demonstrate that OPRIDE achieves a superior query efficiency and signifi-
cantly outperforms the baselines across various numbers of queries. In most tasks, OPRIDE achieves
good performance with just ten queries, and its performance continues to improve as the number of
queries increases. In contrast, the baseline methods require multiple times the number of queries to
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achieve performance on par with OPRIDE (e.g., hammer—-v2). Even with 20 queries, the baseline
algorithm shows no significant improvement on some hard tasks (e.g., cof fee-push-v2).

Computational Cost: To improve computational efficiency, we implement the following modifi-
cations. (1) When training reward functions, instead of traversing the entire dataset, we sample S
segments at each iteration. (2) Furthermore, we utilize a multi-head mechanism instead of separate
training for each reward function. This means different reward functions share the same backbone,
with only the last layer being distinct. Therefore, the computational cost of our overall method is
Sx (14 (M-1)/L) x K instead of N x M x K, where L is the number of neural network layers.
Please refer to Appendix [E|for the complete computational cost results.

6 CONCLUSION

This paper proposes a new framework, in-dataset exploration, to improve query efficiency in offline
PbRL. Compared with disagreement-based approaches, using an exploration strategy helps reduce the
burden of learning an accurate reward function in the low-return region, improving learning efficiency.
Our proposed algorithm, OPRIDE, conducts in-dataset exploration by weighted trajectory queries,
and a principled exploration strategy deals with pairwise queries. Our method has provable guarantees,
and our practical variant achieves strong empirical performance on various tasks. Compared to prior
methods, our method significantly reduces the required queries. Overall, our method provides a
promising and principled way to reduce queries required from human labelers in PbRL.
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We have provided the source code in the supplementary materials, which will be made public after
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A ADDITIONAL DETAILS

In this section, we provide a detailed description for the theoretical version of OPRIDE as in
Algorithm 2}

Algorithm 2 Theoretical Analysis Version of OPRIDE

1: Input: Unlabeled offline dataset D, query budget K
2: Initialized preference dataset Dy < ()
3:fork=1,--- /Kdo

4: Calculate conﬁdence set C(R) for reward function based on Dyt with Equation
5:  Calculate pessimistic value function g(-) using Algorithm 3[for each reward function in Cy, (R).
6:  Construct the near-optimal pol1cy set I using Equation
7:  Select explorative pol1c1es 7}, w3 within 1Ty, based on Equat10n.
8:  Sample trajectories 7}, 77 with selected pohcy T, T
9:  Receive the preference oy, between 7 and 77 and add it to the preference dataset
Dpref — Dpref U {(Tk s Tk s Ok)}~
10: end for

11: Output: Average policy 7 = 5 - S, (7}, + 7).

A.1 DETAILS OF BELLMAN-CONSISTENT PESSIMISM (BCP; XIE ET AL.,|2021)

In this section, we consider Bellman-consistent Pessimism (BCP;|Xie et al.,|2021)) as the backbone
algorithm, described in Algorithm[3] It is a representative model-free offline algorithm with theoretical

guarantees. PEVI uses negative bonus I'(-, -) over standard Q-value estimation Q(-,-) = (BV)(:) to

reduce potential bias due to finite data, where B is some empirical estimation of B from dataset D.
We use the following notion of £-uncertainty quantifier as follows to formalize the idea of pessimism.

Algorithm 3 Bellman-consistent Pessimism (BCP)

1: Input: Offline Dataset Dot = {7 = {(sF,af)}_o} |, reward function r.
2: Set the loss function as

K

T
2
L(q,q',mD) ZZ qe(sysar) = (r(sty af) + a0 (st1:Te41))) (14)
k=1 t=0

3: Set the confidence set of value functions as

V(m,e) = {q eV:L(q,q,mD)— mir&ﬁ(qﬂq,w;D) < e} . (15)
q'e
4: Compute pessimistic policy and value function as
7 =argmax min q;(s1,m). (16)
mell  qEV(m,e)
and
g = argmin ¢\ (s1, 7). (17)
qeV(T,e€)

5: Output: 7 and q.

Lemma 5. Under conditions of Theorem, let Ct = Cldnr; py Q, %), we have

Ctlog —lgym

(18)

14
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where T is the output of Algorithmwith dataset D,y and return function R. Similarly, we have

Ctlog —lggm

V*(m) —v(mr) <O m )

(19)

where U is the output of Algorithmwith dataset Dz, policy T and return function R.

Proof. This proof is mainly adapted from the proof of Theorem 1 in|Xie et al|(2021) to the finite-
horizon case. For simplicity we only prove the first part of the lemma. The second part can be proved
similarly using the pessimistic property of the value function .

Using the optimality of 7, we have
g oo™ = 2 oo S g o) g, e
Now, let Upin () = argmin,co_ (S0, T) and vmax () = argmax,co . v(so, 7).
Using a standard reward decomposition argument |Cai et al.| (2020), we have
Ul,mam (7T) - Ul,min(ﬂ—)
= V1,maz — V1 (71—) + v (77) — V1, min

H

H
§ T § T
= IEai,r (Uh,maz -T vh+1,maz) - (Uh,min -T Uh+1,min)
h=1 h=1

H

< Z th,maa: - Tﬂvthl,mazHQ,d" + ||vh,min -
h=1

H
< \/ ,u, v, Z |Uh,maa: - Tﬂ—vh—&-l,max”lu + HUIL,min -
=1
1
< ——/C(d™; u, YV, m)ep, (20)
-

-1
2

holds under event &; in Lemma|[T4and &3 in Lemma T3] The second inequality follows from the
definition of C(d™; u, V, ) and the last inequality follows from Lemma [14] and Lemma[15] Let
m = m* and plug in the definition of ¢,, we complete the proof.

)

O
Algorithm 4 Bellman-consistent Pessimism Evaluation
1: Input: Offline Dataset Dogr = {73, = {(sF,af)} o}, reward function r, policy
2: Set the loss function as
K T )
L(q,q,m;D) = ZZ q: st,ah (r(sf,af) +*yq/(sf+1,7rt+1))) . (22)
k=1 t=0
3: Set the confidence set of value functions as
V(r.0 = {4 €V £0.0.mD) - min £0d' 0.7 D) < . 23
q'e
4: Compute pessimistic value function as
g = argmin ¢(sg, 7). (24)

geV(m,¢€)

5: Output: ¥ and q.
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B PROOF OF THEOREM [4]

Theorem 6 (Restatement of Theorem [). Suppose (1) Q* € Q,7n* € I, and (2) T"q € Q,V7 €
I1, g € Q. Also suppose the difference of return functions has a finite Eluder dimension dg,, (AR, o)
and the underlying distribution of the offline dataset admit a finite coverage coefficient C1. Let

Br = c1/1og(K|AR|)/K and € = co+/log(N|11||Q|)/N, where c1,co are universal constants.

Then the expected suboptimality of T from Algorithm 2)is upper bounded by

) Ol log(N|QIM]) . [den(AR, 1/K) log (K|AR])
SubOpt(7) < O <\/ N(1— )2 + \/ El T =) ) , (25)

where N is the size of the offline dataset and K is the number of queries.

Remark 7. In Theorem[6|we consider finite function classes for policy 11, Q-value Q and return
function R. However, it can be readily extended to infinite function classes by using the covering
number of the function classes, as done in|Chen et al.|(2022); Xie et al.|(2021). We also remark
that while we consider the realizable and Bellman-complete setting where Q* € Q and TQ € Q for
simplicity, we can extend the result to approximate realizable and Bellman-complete setting as in | Xie
et al.|(2021)).

Remark 8. The suboptimality bound uses the Eluder dimension of the difference function class AR
of the original return function class R. This is because we can only determine R(T,) — R(72) from
the preference query between 11 and To and the absolute value for R(T) can be free to choose.

Proof. For simplicity we let V7™ := V" (s1).

For any return function R € Cj, (R) and the policy 7 = BCP(D, ﬁ) generated by Algorithm we
have

VE Vi (26)
s ~* ~* ~* o~ * ~T ~T ~T ~T T
=V3« — Ui« + Vg — Vg +U% — U5+ UL — Upe + Ve — Vi
T ~* ~* ~* ~* ~7 ~7 ~7
SVR*_UR*—’—UR*_'U& +'UE _UR"FUR'—’UR*'FO
<V — 0 40 — 0% 40 T~ T

.. L
<VE -3 4+ max (aﬂ T T —w)
=V R* R* R R R R

R1,R2€Ci(R) ! 2 2 !
* * ~k,1 ~k,1 ~k,2 ~k,2
<VE —%% +  max (m _ o o ) 27)
=VR R Rl,Rzeck(R) R1 R2 Rz R1 ’

which hold under event £; in Lemmal(TT] The first inequality follows from the pessimistic property
of U, the second inequality follows from the fact that 7 is the optimal policy with respect to v. The
third inequality holds since R, R* € C(R) and the last inequality follows from the definition of
%k,l, %k,2.

Following Lemma [5| we have for all policy 7 and reward function R, the following holds with
probability at least 1 — 24:

. Cllog(N|IT[|Q)
Vit = \/JM = o
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Then we have
VE — VL.

* * k,1 ~k1 k2 ~k,2
<VE, — 0% + max (v — 0% + 0% — 0% )
S VR Rt X ey VA R, R, R:

~k,1 ~k,1 ~k,2 ~k,2 k, ~k,1
< S+  max ((V”’—V”’+V”’—V”’)+(v” V’T')
> Coff R1 Rgeck (R) Rl R2 R2 R1 Rl Rl

+ (R -V + (R -vET) + (R i)

~k,1 ~k,1 ~k,2 ~
<€ ((V”'—V”’ V”'—V”’) 45)
< Coff + Rl,RTgé(R) Ry R, T VR, Ry + 4Cofr
BEoit + (v - v
= 5&, a —
it fh,é?ééiCR) Rl fz

Consider the online preference-based regret as
K

1 * ~k, * =k,
Reg(K) ::§Z<Vﬂ _Vﬂ.k1+Vﬂ- _Vﬂ-kz))
k=1

VRS -VET).

we have
Reg(K)
K

S omax (VAT -VET VR VR 4 5KE
Sy mpecy(r) \ T TR T TR T o

K

=3 max (Ve (™M) = Vi (78) + Vi, (752) — Vi, (7)) +

R1,R2€CL(R
PR 2€CL(R)

IN

+ (VA = VR, (T"1) = (VA = Vi, (51))
VA = Vi (75) = (V= Vi, (759) | + 5K

D N R L A )

Ro€eCy (R

+ 16

4
log (g) + 5K ot

) Z i B2 iy (a7 = Ba7) = (Rl = Ro(9)

+ 16 + 5K Eofr

K 4
1_710g(5)

< e/ kdar K log (K|AR|/6) + 16

K 4
1_ ~ log (5) + 5K€Off.

(28)

(29)

(30)

€1y

(32)

(33)

The first inequality follows from Equation 29} The second inequality follows from Azuma-
Hoeffding’s inequality and the fact that Vr(7) — V7 is a martingale when 7 ~ 7. Please refer
to[Cai et al| (2020) for a detailed derivation. The last inequality follows directly from Lemma|[T2]

Finally, set 6 = 1/K and follow a standard argument for regret to PAC conversion (Jin et al., [2018),
we can show that the expected suboptimality of average policy 7 generated by Algorithm [2]is upper

bounded by

SubOpt(7) < ¢

Ct 10g(N|VHH| de (AR, 1/K) log (K|A’RD
TNO—)? K(1—~)
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Theorem 9 (Performance Guarantees with Pure Offline Queries). Suppose (1) Q* € Q,n* € 11, and
(2) T"q € Q,Vm € 11, q € Q. Also we suppose the difference of return functions has a finite Eluder
dimension dg, (AR, «) and the underlying distribution of the offline dataset admits a finite coverage
coefficient Ct. Let B}, = c14/log(K|AR|)/K and ¢ = cy+/log(N|I1||Q|)/N, where ci,cy are
universal constants. Then the expected suboptimality of T from Algorithm[2|with pure offline queries
is upper bounded by

SubOpt(A) SO( \/C*log(NIQIIHI)+ WEM(ARA/JK)log<1f<|mz|>+ flogwmm)),

N(1—9)? K(1—7) N(1—9)
(34)
where N is the size of the offline dataset, K is the number of queries and C' = max, %, where |1
is the distribution that generates the dataset D.

Proof. The main difference between using pure offline queries and using online queries is that we
have to use trajectories sampled from the dataset 71,752 instead of online sampled trajectories
Lkl Clog(N|AR])

N{i=y) since we need to

,7%2. This incurs an additional performance gap of Eoap =
refine our query policies within the covered policy set

Ieovered = {71— | max d (S) < C} .
s p(s)

The proof for £y, is the same as standard offline guarantees, and are omitted for simplicity. Then
similar to the proof of Theorem|[f] the regret can be bounded as

Reg(K)

K
<Y max (R = RiF) - (RGP - Ro(7H2))

k=1 R, Rgéck (R)

K 1
+ Ky + 16 | 7= log (5) + 5K Eur. (35)

Then following the proof of Theorem|[6] we have

_ ct 1og(N|V||H\ dp (AR, 1/K) log (K|AR)) Clog(N|AR|)
<c A Besfiand = Wil bminied V4
SubOpt(w) S Co e N(l _ 1_,7) + c2 N(l—’y)
O
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C PERFORMANCE GUARANTEES WITH PURE OFFLINE QUERIES

In pure offline settings, we have the following theorem.

Theorem 10 (Performance Guarantees with Pure Offline Queries). Suppose (1) Q* € Q,* € 11,
and (2) T"q € Q,Vr € Il,q € Q. Also we suppose the difference of return functions has a finite
Eluder dimension dg, (AR, «) and the underlying distribution of the offline dataset admits a finite
coverage coefficient Ct. Let ), = ci1+/log(K|AR|)/K and ¢ = cy+/log(N|||Q|)/N, where
c1, 2 are universal constants. Then the expected suboptimality of T from Algorithm [2| with pure
offline queries is upper bounded by

] Cllog(NIQIT) | [de(AR,1/K)log (K|AR])  [Clog(N|AR])
SubOpt(w)<(9<\/ N =) +\/’ K= +\/ N~ ) )

(36)
where N is the size of the offline dataset, K is the number of queries and C' = max i (S() , Where 11
is the distribution that generates the dataset D.

Proof. The main difference between using pure offline queries and using online queries is that we
have to use trajectories sampled from the dataset 7!, 7%:2 instead of online sampled trajectories

k1 Clog(N|AR)|)

Ny since we need to

, 782, This incurs an additional performance gap 0f Eoap =
refine our query policies within the covered policy set

Heovered = {71' | max d (S) < C} .
s p(s)

The proof for £y, is the same as standard offline guarantees, and are omitted for simplicity. Then
similar to the proof of Theorem |[f] the regret can be bounded as

K

~k,1y F2)) _ (Ry(7%1) — Ry (72
Reg(K)S,;Rl,}gl%(n)((Rl(T ) = Ri(77?)) = (Ra(T™1) — Ro(757)))

+ KEgp + 16

K 4
log (7) + 5K Eyf- 37

Then following the proof of Theorem|[6] we have

T
SubOpt(7) < co - 1| & log NIVIIH\ dgu (AR, 1/K) log (KIAR]) | [Clog(N|AR])
K(1—7) N(1—~)
O
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D AUXILIARY LEMMAS

Lemma 11. With probability at least 1 — 6, the following event &1 holds
R* € Cx(R), VEke€ K],

where

Ck(R) = {R € R ((R(n) - R(r2)) = (R(n) — R(72)))* < exlog(K|AR|/3) } .

c is an absolute constant and k. := is the degree of non-linearity of the link function o.

1
o’ (2Rpax)

Proof. Using Lemma|[T6] we have that

2
< 2log(|A .
< 210g(|AR|/6)

k
> |pi - 1R B - 2R
1=1

Note that P(1} = 72|R) = o(R(1) — R(72)), and R(7) is bounded by Rinax, we have

k
> ((R(r1) — R(r2)) — (R*(11) — R*(72)))? < cxlog(|AR]|/3)

i=1
Then, by the union bound, we have the conclusion immediately. O

Lemma 12. Under event £ in Lemma |7_71 it holds that

K
D |(Ra(r5) = Ra(7F2)) — (Ra(791) — Ra(79%))| < O <\/dElu(A72, 8)K log (K|AR|/6)) :
k=1

(38)

Proof. Under event &1, we have maxi << diam(B(, r,),., (Ck(R))) < 2/ log (K|AR|/J) by
Lemmal|T6 where

A 1/2
B(ry )10 (F) == sup (Z((fl(Tf)—fl(Té))—(fz(Tf)—fz(th)))2> :

f1,f2€F \}1

Therefore, following Lemma@ we have

K
YR = Ri(752) = (Ra(71) = Ro(757))]
k=1

IN

K
>~ B o (Ri)
k=1

< 0 (\/dm (AR, )K log (KARI/3)) (39)

O

Lemma 13 (Lemma 5 of Russo & Van Roy| (2014). . Let V € Boo (X, C) be a set of functions
bounded by C > 0, (V;)>1 and (x;)¢>1 be sequences such that V, CV and x, € X hold fort > 1.
Let Vg, = {(f(21),..., f(z1)) : f € VHC RY) andfor S C R, let diam(S) = sup,, ¢ [[u—][2
be the diameter of S. Then, for any T > 1 and o > 0 it holds that

T
Y diam (Vila,) < o+ C(d A T) + 267V dT, (40)

t=1

where dp = maxi<;<p diam (Vy|,,,) and d = dim.(V, «).
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The following lemmas summarizes the results regarding General Function Estimator.
Lemma 14 (Theorem A.1 in Xie et al.| (2021). For any © € 11, let q, be defined as follows,

gr =argmin  sup g —T7q3,.
9€Q admissible v

Then the following event Ey holds with probability as least 1 — §:

139 log 12T
n(l—7) ~

where E(q, ;D) = L(q,q, ;D) — ming ey L(¢, g, m; D).

E(qr,m;D) <

The following lemma shows that £(g, ; D) could effectively estimate |lq — 77 q||3

T

(41)

(42)

Lemma 15 (Theorem A.2 in|Xie et al.[(2021)). Forany w € Il,q € Q,h € [H], and any € > 0, if

E(q,m; D) < ¢ Then the following event E3 holds with probability as least 1 — §:

231log —‘Q!m

ni—y) TVeEe

la=T7¢ |2, <

(43)

Lemma 16 (Theorem 21 in [Agarwal et al[(2020)). Fix § € (0, 1), assume |F| < oo and f* € F.

Then with probability at least 1 —

n
> Eonp,
=1

Fle) = ()| < 2108(171/5).
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E ADDITIONAL EXPERIMENTAL RESULTS

Experiments on Meta-World Table [5|shows the complete experimental results in Meta-World.

Task | OPRL PT PT+PDS IDRL OPRIDE
assembly-v2 10.1£0.5 10.2£0.7  12.840.6 10.3x1.9 14.2+1.3
basketball-v2 11.7+£10.2  80.7£0.1  78.7£2.0 82.7+£2.5 614423

bin-picking-v2 82.0£5.6 31.9+16.2 5344190 84.7+£29 93.3+3.2
button-press-wall-v2 | 51.7£1.6  58.8£09  59.44+09 69.0+1.0 77.7£0.1
box-close-v2 15.0+0.7 17.7+£0.1 172403 16.9+0.6 16.8+£0.4
coffee-push-v2 1.7£1.7 1.3+0.5 1.3£0.5  42.0£3.8 59.4+24.8
disassemble-v2 8.44+0.8 6.0+£0.4 7.6+0.2 74+19  26.6+t4.9
door-close-v2 61.2+1.3  65.1+10.1 62.4£87 78.1+£3.2 94.8+1.1
door-unlock-v2 79.2+2.3  73.7£54  73.6£4.8 712429 71.0£2.3
drawer-open-v2 53.0£33  59.7£13  58.3£0.1 62.54+2.0 68.7£3.0
faucet-close-v2 60.8+1.0 57.8£09  46.2+02 61.54+32 73.1+0.8
hammer-v2 164+1.0 302+1.7 32.64+0.8 33.6+2.8 50.3£3.2
hand-insert-v2 52432 18.7£0.1  20.3+0.6 41.9+2.7 61.8+4.9
handle-press-v2 28.7+4.0 279402 282402 28.0+04 28.7£0.1
lever-pull-v2 63.2+104 49.2+3.7  51.7+£0.1 33.1£1.2 51.8%+1.6
peg-insert-side-v2 3.5+1.8 16.8+0.1 124+14 67.4£0.1 79.0+0.2
plate-slide-v2 77.4+1.6 4.9140.0 37323 79.6+3.5 79.9+4.6
push-v2 10.6£1.5  16.7£5.0 1.8£04  30.7£53 59.14+54
push-back-v2 0.84+0.0 1.1+04 1.140.1 14.0+1.1  17.7£2.0
push-wall-v2 74+42  748+144 34409  89.2432 102.2+1.2
reach-v2 63.5£29  82.0+0.8 84.3+£09 75.8+1.8 88.0+0.5
soccer-v2 343+4.0 51.3+4.1 41.5+11.9 443421 454439
sweep-into-v2 37.1£139  9.84+0.2 924+0.1  63.1£3.5 71.6+0.1
sweep-v2 6.8+1.8 8.0+0.4 8.0+0.1  73.0+2.8 78.5+£1.0

Table 5: Performance of offline RL algorithm on the reward-labeled dataset with different preference
reward learning methods on the Meta-World tasks.

Experiments on Mujoco and Kitchen We conduct a wider range of experiments on MuJoCo and
Kitchen tasks. The experimental results in Table [6] show that OPRIDE achieves superior performance
compared with other baselines. The experimental results also demonstrate that the In-Dataset
Exploration and Variance-based Discount Scheduling mechanisms we proposed can be effectively
applied to different tasks.

Domain | Tasks | OPRL PT PT+PDS OPRIDE
hopper-medium 23.0+0.1 36.942.1 35.8+1.8  38.5+2.2
hopper-medium-expert 57742377 68.0+2.6  69.1£1.7 92.3+15.8
walker2d-medium 70.6£1.1  71.7£2.6 709+1.8  72.7+1.8
Mujoco walker2d-medium-expert | 108.3+3.8 109.4+0.3 108.4+£0.5 110.3+£0.2
halfcheetah-medium 41.940.1 421401  41.54+0.1  42.440.1
halfcheetah-medium-expert | 81.8+0.6  81.9+0.1 82.4+0.2  86.5£1.5
kitchen-partial 34.6+0.2  482+4.1 51.1+23  38.7+3.7

kitchen-mixed 46.94+0.1  42.54+1.0 449419  49.840.1

kitchen-partial 62.6£1.7 47.5+£25 498+45  63.7f+1.1

Table 6: Performance of offline RL algorithm on the reward-labeled dataset with different preference
reward learning methods on the Mujoco tasks.

Ablation about In-Dataset Exploration module The choice to emphasize value functions over
reward functions is crucial due to their ability to guide policy optimization effectively. Intuitively,
while maximizing the information gain concerning the reward function (e.g., difference over the
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“Ysmall \ 0.5 0.6 0.7 0.8 0.9 0.95

bin-picking 72.1£239 87.842.7 93.3+32 84.649.4 7484335 709494
button-press-wall | 77.6+£0.3  77.4+03 77.7+£0.1 71.0+£0.7 69.2409  68.1£9.7
door-close 88.44+0.8  89.9+0.7 94.8+1.1 90.0£2.1 91.1£1.5  87.6%£0.7
faucet-close 58.1£52 5824125 73.1+£0.8 61.442.7 55.14£3.7 57.4+12.1

Table 7: Performance of offline RL algorithm on the reward-labeled dataset with various discount
factor values ysm, on the high variance data points.

reward function) can help learn a well-calibrated reward function, it can still be sample inefficient in
determining the optimal policy since we are not interested in the accuracy of the reward function in
low-return regions. For instance, suppose we have actions a; and a that lead to a terminal state s,
and their immediate rewards are highly uncertain, ranging from [—1, 1]. And we have actions a3 and
a4 that lead to high return states s; but yield a known fixed immediate reward of zero. By maximizing
the reward differences, we will compare a; and a5, but such comparison contains no information in
determining the optimal policy, which will not choose a; and as at all. Theoretically, maximizing the
information gain with respect to the reward function is insufficient to derive a performance guarantee
for PbRL.

We conduct additional ablation studies for these two mechanisms. The experimental results in Table[§]
show that maximizing information gain about the optimal policy can achieve better performance than
the reward function.

Domain \ Tasks \ OPRIDE (Reward Difference) OPRIDE (Value Function Difference)
bin-picking 78.5£17.8 93.3£3.2
button-press-wall 67.4+5.4 77.7+£0.1
door-close 88.3+0.7 94.8+1.1
Metaworld faucet-close 48.7+0.6 73.1+0.8
peg-insert-side 9.7+8.5 79.0+0.2
reach 86.6+0.1 88.0+0.5
sweep 18.2+£2.9 78.5+1.0

Table 8: Ablation study on the metaworld tasks.

Ablation about Variance-based Discount Scheduling module The choice of using a pessimistic
discount factor in offline RL draws on theoretical guarantees discussed in prior works (Jiang et al.,
2015; Hu et al.} 2022). While prior methods may utilize a smaller fixed discount factor (Jiang
et al., 2015) or tuned values in imitation learning (Liu et al.l [2023)), our approach innovatively
employs variance-based discount scheduling to mitigate reward overestimation issues specific to
offline Preference-based RL.

A smaller discount factor serves a dual purpose: it regulates optimality against sample efficiency
trade-offs (Hu et al., [2022) and aligns with model-based pessimism principles, ensuring robust policy
learning. Conversely, multiplicative adjustments to rewards lack theoretical grounding and often
yield suboptimal performance, as evidenced in Table[9]

Domain \ Tasks \ OPRIDE (Penalise Reward) OPRIDE (Penalise Discount Factor)
bin-picking 53.44+19.0 93.3+3.2
button-press-wall 59.4+0.9 77.7£0.1
door-close 62.448.7 94.8+1.1
Metaworld faucet-close 46.240.2 73.1£0.8
peg-insert-side 12.4+1.4 79.0+£0.2
reach 84.3+0.9 88.0+0.5
sweep 8.0£0.1 78.5+1.0

Table 9: Ablation studies about penalizing rewards and the discount factor.
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Ablation for hyperparameter m We conduct an ablation study on the hyperparameter m, with the
results presented in Table[I0] Our findings indicate a clear trade-off. An excessively large m reduces
the discount factor v for too many data points, leading to an overly pessimistic value estimation.
Conversely, a value of m that is too small provides an insufficient penalty for estimation uncertainty.
Based on this, we recommend using a larger m for more complex tasks (which tend to have higher
estimation noise) and a smaller m for simpler tasks.

m% | 10% | 20% | 30% | 40% | 50%

bin-picking 71.4£3.3 | 859439 | 93.3+3.2 | 88.7+£2.6 | 73.2£2.7
button-press-wall | 67.2+2.1 | 70.24+0.6 | 77.7+0.1 | 77.5£0.3 | 77.5£0.6
door-close 87.9+1.2 | 89.6£1.0 | 94.8£1.1 | 89.6£0.8 | 87.3+0.9
faucet-close 56.8+£2.6 | 62.3£1.6 | 73.1+0.8 | 58.7+£1.9 | 57.6+2.1

Table 10: Ablation study for the hyperparameter m from 10% to 50%.

Softer confidence discount mechanism We investigate a more adaptive, ’soft” confidence discount
mechanism and compared it with our current threshold-based approach. Specifically, we implement
a continuous annealing strategy where the smaller discount factor, ~Ysman, is adjusted based on the
variance of the ensemble’s value function estimates, Var[Q, (s, a)]M, . In this setup, ~sman decreases
as the variance increases, governed by the formula:

~
max(1, o - Var[Qg, (s, a)]M,)’

Vsmall =

The experimental results, presented in Table [I1] show that the performance of this continuous
annealing approach is comparable to our hard-penalty method. Given its comparable performance
and simpler implementation, we opted for the threshold-based approach in our final model.

Tasks | Continuous annealing | Threshold-based
bin-picking 94.1+3.7 93.3+3.2
button-press-wall 77.4+0.3 77.7£0.1
door-close 94.3£1.7 94.8+1.1
faucet-close 71.6£0.9 73.1£0.8
peg-insert-side 80.5+0.3 79.0+0.2
reach 87.5+0.6 88.0+0.5
sweep 79.8+1.2 78.5£1.0

Table 11: Ablation study for the discount factor mechanism on the Meta-World tasks.

Computational cost We present the computational cost of OPRIDE on the GeForce RTX 3090
GPU device, as shown in Table[I2] The reported time is the sum of the reward function training time
and the policy training time.The experimental results indicate that as the number of ensembles M
increases, the computational cost does not increase significantly. This is because we have adopted a
multi-head mechanism instead of separate training, thereby saving training time.

M \ 2 \ 5 \ 10
bin-picking 1.1h | 1.2h | 1.3h
button-press-wall | 1.1h | 1.1h | 1.2h
door-close 1.1h | 1.2h | 1.3h

faucet-close 09h | 1.0h | 1.2h
peg-insert-side 1.0h | 1.1h | 1.3h

Table 12: Computational Cost for OPRIDE with ensemble M, where h is the hour. The report time is
the sum of the reward function training time and the policy training time.
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Ablation study of query number We conduct experiments with various query numbers. The
experimental results in Table [13[show that performance gains accelerate most rapidly between 0.1%
and 0.2% of queries. Beyond 0.3%, improvements gradually taper off, ultimately stabilizing at around
1%. At this point, adding further queries yields only marginal performance benefits.

Query Number | 1 (BC) | 10(0.1%) | 13 | 20(0.2%) | 30 (0.3%) | 50 (0.5%) | 100 (1.0%)

Hammer-v2 13.24£3.3 | 50.3+3.2 | 55442.6 | 7594+2.2 | 79.1£2.6 | 79.5+£2.7 | 79.9£2.3
Coffee-push-v2 | 2.5+1.1 | 56.7+2.8 | 57.6+2.5 | 55.3+3.1 | 58.9+£3.7 | 59.44+3.5 | 59.5+3.4
Disassemble-v2 | 9.3%1.7 | 26.6£2.8 | 27.8 £3.1 | 30.6£5.2 | 35.7+£4.8 | 37.24+4.6 | 38.3%5.1

Push-v2 1.2+0.6 | 509+1.8 | 63.7£2.1 | 76.8£2.4 | 82.742.6 | 83.6+£2.3 | 84.0 2.2

Table 13: Performance of OPRIDE with various query numbers.

Comparison with one-stage and sequential ranked list methods We compare our method with
one-stage framework (IPL (Hejna & Sadigh, |[2023), CPL (Hejna et al.)) and sequential ranked list
method (LiRE) (Choi et al., 2024). The experimental results in Table[]_7f] show that compared to PT,
one-stage framework and LiRE achieve better performance by either bypassing reward modeling or
enhancing query sampling mechanisms. Meanwhile, OPRIDE outperforms all of them, demonstrating
that our iterative two-stage framework can explore more valuable queries.

Tasks | PT | IPL | CPL | LiRE | OPRIDE

lever-pull 49.2£3.7 | 50.2£2.1 | 50.1£2.5 | 51.2+1.8 | 51.8£1.6
peg-insert-side | 16.8+£0.1 | 53.8+0.4 | 54.7£0.3 | 63.1£0.2 | 79.0£0.2
plate-slide 49+0.0 | 60.9+5.6 | 61.7+£4.8 | 68.3+£4.3 | 79.9+4.6
push 16.7£5.0 | 38.5+4.2 | 39.2+£3.9 | 45.5£3.7 | 59.1+£5.4
push-back 1.1£0.4 9.8+1.6 | 9.3£1.8 | 13.2+1.5 | 17.7+£2.0
push-wall 74.8£14.4 | 85.84+4.7 | 87.3+3.8 | 90.2+3.6 | 102.2+1.2

reach 82.0+0.8 | 84.2+0.2 | 84.7+0.6 | 85.4+0.3 | 88.0+0.5
soccer 51.3£4.1 | 52.3+4.7 | 53.6£3.9 | 54.2£3.6 | 45.4+£39
sweep-into 9.8+£0.2 | 54.24£0.3 | 56.84+0.3 | 62.94+0.2 | 71.6%0.1
sweep 8.0+£04 | 69.3£1.1 | 68.2£1.3 | 71.3£1.6 | 78.5£1.0

Table 14: Comparison with one-stage framework and sequential ranked list method.

Pixel-based and actual human-in-the-loop environments we conducted experiments on pixel-
based Atari environments to rigorously test OPRIDE’s applicability beyond vector-state domains.
In addition, these experiments incorporated actual human preference feedback rather than synthetic
scripted teachers. We recruited 15 human evaluators with prior gaming experience to provide trajec-
tory comparisons through an intuitive interface. Each evaluator performed 50 pairwise comparisons
per task, with queries selected by OPRIDE’s exploration mechanism.

As shown in Table [I5] OPRIDE achieves state-of-the-art results across all five Atari games. Notably,
these improvements persist despite the added complexity of image-based state representations and
inherent noise in human labeling. This validates OPRIDE’s robustness to visual inputs and its
effectiveness with genuine human feedback. We attribute this success to two key design features: (1)
The exploration strategy’s focus on segment-level value differences remains effective when states are
represented as latent features from CNN encoders, and (2) The variance-based discount scheduling
mitigates overoptimization risks amplified by noisy human labels.
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Tasks |  OPRL | PT | PT+PDS | IDRL | OPRIDE
Pong 9.6£1.4 9.4+1.0 8.5+1.8 15.3+1.1 17.8£1.3
Breakout | 125.9+14.2 | 79.9£13.9 86.3+13.8 | 153.7+£145 | 256.7+143

Q*bert | 7924.6+376.1 | 7482.9£353.4 | 6844.2+394.6 | 8294.1£359.7 | 13535.24+327.2
Seaquest | 2784.1+72.7 | 2538.3£78.9 | 2459.6+74.5 | 2941.2+69.2 3478.4£71.3
Asterix 164.9+21.5 155.84+24.6 146.3+27.4 357.4£30.1 426.94+28.7

Table 15: Experiments on pixel-based Atari tasks with human-in-the-loop.
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F EXPERIMENT DETAILS

Experimental Setup For the Meta-World tasks, each dataset consists of 1000 trajectories. 50
trajectories of which are collected by the corresponding scripted policy added with a Gaussian noise
N(0,0.8) to increase diversity, and the rest 950 trajectories are collected with a policy that is a
e-greedy variant to the former noisy policy and select random actions with probability ¢ = 0.8. For
the Antmaze tasks, we use the standard dataset in the D4RL benchmark but remove the reward labels.

OPRL We use the official implementation[7] which uses 7 ensembles. Each ensemble is initially
trained with 1 randomly selected query and then performs 3 rounds of active querying and training,
and in each round, 1 query is acquired, making a total of 10 queries.

PT We use the official implementation m We follow its original hyper-parameter settings, and
change the number of queries to 10.

IDRL We use the official implementation ﬂ We follow its original hyper-parameter settings.

Survival Instinct We use the official implementation [ﬂ We follow its original hyper-parameter
settings.

OPRIDE Our code is built on PT. We use the same transformer architecture and hyper-parameter
with PT. The ensemble number N is 2. The size of D is 10000. The offline pre-training step for
Vi(-,-) in the Equationis 10000 x ¢, where c is the c-th selected query. Please refer to Tablefor
detailed parameters.

Hyperparameter Value
Optimizer Adam
Critic learning rate 3e-4
Actor learning rate 3e-4
Mini-batch size 256
Discount factor 0.99
Target update rate S5e-3
IQL parameter 7 0.7
IQL parameter o 3.0
Query Number 10

OPRL Value
Ensemble Number 7

OPRIDE Value
Ensemble Number N 2
Size of D 10000
Offline Pre-training step 10000 X ¢
Top m% Top 30%
“Ysmall 0.7
S 1000

Table 16: Hyper-parameters sheet of Algorithms.

“https://github.com/danielshinl/oprl
https://github.com/csmile-1006/PreferenceTransformer/tree/main
*https://github.com/david-lindner/idrl
Shttps://survival-instinct.github.io
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