
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SSR: SOCRATIC SELF-REFINE FOR LARGE LAN-
GUAGE MODEL REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have demonstrated remarkable reasoning abilities,
yet existing test-time frameworks often rely on coarse self-verification and self-
correction, limiting their effectiveness on complex tasks. In this paper, we propose
Socratic Self-Refine (SSR), a novel framework for fine-grained evaluation and
precise refinement of LLM reasoning. Our proposed SSR decomposes model
responses into verifiable (sub-question, sub-answer) pairs, enabling step-level
confidence estimation through controlled re-solving and self-consistency checks.
By pinpointing unreliable steps and iteratively refining them, SSR produces more
accurate and interpretable reasoning chains. Empirical results across five reasoning
benchmarks and three LLMs show that SSR consistently outperforms state-of-the-
art iterative self-refinement baselines. Beyond performance gains, SSR provides
a principled black-box approach for evaluating and understanding the internal
reasoning processes of LLMs.

Given 𝑥 + 𝑦 = 13 , 𝑥𝑦 = 24, find the distance from (𝑥, 𝑦) to the origin.

…
Rearranging it into standard quadratic form:

𝒙𝟐 − 𝟏𝟑𝒙 + 𝟐𝟒 = 𝟎
…

The factors of 24 that work are−3 and−8. Hence we can factor it as:
𝒙 − 𝟑 𝒙 − 𝟖 = 𝟎

…

Let’s not rush and break it down and re-solve them for𝑀 times:

The factorization doesn’t look correct. Let’s refine it.

𝒒1

ෝ𝒂11

𝒒2

ෝ𝒂21

ෝ𝒂12 ෝ𝒂22

…

𝒒𝑡: Factorization

ෝ𝒂𝑡1: 𝒙 − 𝟒 𝒙 − 𝟔 = 𝟎

ෝ𝒂𝑡2: 𝒙 − 𝟖 𝒙 − 𝟑 = 𝟎

… … …

…

𝒒𝑇

ෝ𝒂𝑇1

ෝ𝒂𝑇2

…

ෝ𝒂𝑡𝑀: 𝒙 − 𝟐 𝒙 − 𝟏𝟐 = 𝟎 ෝ𝒂𝑇𝑀ෝ𝒂1𝑀 ෝ𝒂2𝑀

Figure 1: Test-Time Parallel Scaling Performance (Left) and Conceptual Overview (Right)
of our proposed Socratic Self-Refine (SSR). By decomposing responses into Socratic steps, re-
evaluating intermediate results through self-consistency, and refining specific step-level errors, SSR
achieves substantially higher initial accuracy (∼67.57% relative improvement) and continues to
scale effectively even when standard Chain-of-Thought (CoT) begins to saturate. Notably, this
performance advantage holds under comparable computational cost. Experiments are conducted with
GPT-5-mini in low-reasoning, low-verbosity mode.

1 INTRODUCTION

Large Language Models (LLMs) have rapidly advanced the frontier of machine reasoning, demonstrat-
ing impressive performance across domains ranging from mathematical problem solving to complex
logical inference (Wei et al., 2022a; Wang et al., 2022; Chung et al., 2024; Guo et al., 2025; Ke et al.,
2025). Central to these capabilities is the paradigm of reasoning with explicit intermediate steps,
often instantiated through chain-of-thought (CoT) prompting (Wei et al., 2022b). By externalizing
reasoning traces, CoT enables models to articulate their latent decision-making process, offering
both interpretability and opportunities for iterative improvement (Madaan et al., 2023). Despite these
strengths, the reasoning traces generated by LLMs remain prone to cascading errors: a single flawed

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

step can propagate downstream, leading to incorrect or incoherent final answers (Wu et al., 2025;
You et al., 2025). This vulnerability raises pressing questions about how to reliably evaluate, refine,
and searching for better multi-step reasoning at test time.

Existing frameworks have sought to address these challenges largely fall into two paradigms: sample
selection with self-verification and self-refinement. Sample selection with self-verification, aims to
assess response reliability by assigning confidence scores to completed reasoning traces either by
LLM-as-a-Judge (Gu et al., 2024), or a specific ranking model (Snell et al., 2024), and then through
multiple sampling and selection improves the final answer reliability (Zheng et al., 2023b; Chen
et al., 2025). While these approaches can identify low-quality outputs, they often operate at a coarse
granularity, overlooking subtle step-level errors embedded within long derivations (Fang et al., 2025).
Self-refinement methods, by contrast, encourage LLMs to iteratively critique and revise their own
responses (Madaan et al., 2023; Zhang et al., 2024; Bi et al., 2024). Although such frameworks have
yielded measurable gains, their reliance on holistic self-feedback frequently limits their ability to
pinpoint and correct specific erroneous steps. As a result, both paradigms struggle to provide robust
and interpretable error correction in complex reasoning tasks.

In this paper, we propose Socratic Self-Refine (SSR), a novel framework designed to overcome
these limitations by introducing fine-grained, step-level evaluation and targeted refinement of LLM
reasoning. SSR reformulates the reasoning process into a sequence of verifiable (sub-question,
sub-answer) pairs, which we refer to as Socratic steps. This decomposition enables precise confidence
estimation through controlled re-solving and self-consistency checks at the step level. Unreliable
steps are selectively refined, allowing the model to fix errors without depending on vague feedback.
By iteratively applying this process, SSR improves both the accuracy and interpretability of LLM
reasoning, offering a principled black-box approach to evaluating and refining model behavior.

Empirical results across 5 reasoning tasks (3 mathematical and 2 logical) and multiple state-of-the-art
LLMs demonstrate that SSR consistently outperforms baseline self-refinement methods. Beyond raw
accuracy gains, our analysis shows that SSR yields more reliable refinement trajectories, particularly
when combined with plan-level adjustments or adaptive gating mechanisms. These findings highlight
the importance of explicit step-level verification in building trustworthy LLM reasoning systems.
More broadly, SSR represents a step toward interpretable and controllable test-time reasoning,
bridging the gap between coarse-grained judgment and fine-grained error correction. To summarize,
our contributions are:

• We propose a novel framework, Socratic Self-Refine (SSR), that allows more fine-grained con-
fidence estimation and precise error control over decomposed reasoning steps. By formulating
reasoning as a sequence of (sub-question, sub-answer) pairs, SSR overcomes the limitations of
existing holistic self-refinement methods.

• We empirically validate SSR on 5 reasoning tasks using two state-of-the-art models, demon-
strating that it consistently outperforms existing self-refine-based baselines.

• Our SSR introduces a mechanism for eliciting the model’s step-level confidence, by having
the LLM re-solve each sub-question multiple times with explicit context control. Leveraging
self-consistency as a reliable confidence estimate for each step, SSR provides a pioneering
effort in evaluating and interpreting the internal reasoning processes of LLMs.

2 RELATED WORK

Self-Evaluation and Refinement of LLMs. Recent work has introduced both intrinsic and gen-
erative approaches for LLM self-evaluation. On the intrinsic side, uncertainty-based methods
estimate correctness either through consistency, by comparing multiple independently generated
outputs (Kuhn et al., 2023; Manakul et al., 2023), or through statistics derived from the model’s
output distribution (Kang et al., 2025; Fu et al., 2025; Zhang et al., 2025a). On the generative side,
the LLM-as-a-Judge paradigm directly prompts models to evaluate responses, often achieving strong
alignment with human preferences and supporting test-time strategies like abstaining from low-quality
responses or selecting among candidates (Zheng et al., 2023b; Gu et al., 2024; Zhou et al., 2025b;
Ren et al., 2023; Chen et al., 2025; Huang et al., 2025; Zhong et al., 2025; Zhou et al., 2025a). While
limitations such as positional bias (Zheng et al., 2023a; Shi et al., 2024) and a preference for longer
responses (Hu et al., 2024) do exist, both uncertainty-based and judge-based methods remain effective
and have proven valuable for evaluating LLM outputs. Building on these evaluation techniques, a

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

SSR (Confidence Estimation): Let’s re-consider
each question 𝒒𝑡 based on the prior context…

SSR (Decompose): Let’s decompose 𝒛(𝟎) into
Socratic steps…

Sub-Question 𝒒1 Sub-Answer 𝒂1

CoT: Let’s solve step by step…
If 𝒄(𝒌) < 𝒄𝐦𝐚𝐱

Plan-Score 𝒉(𝟎)

Plan-Refine: Let’s refine the plan and provide a
new reasoning trace 𝒛(𝟎)…

If 𝒉(𝟎) < 𝒉𝐦𝐚𝐱

Sub-Question 𝒒2 Sub-Answer 𝒂2

Sub-Question 𝒒𝑇 Sub-Answer 𝒂𝑇

…

𝒒𝑡

Else

ෝ𝒂𝑡1 …

Reference Set ෡𝑨𝒕

Sub-Question 𝒒𝒕′ 𝒄𝒕′

𝒕′ = arg 𝐦𝐢𝐧
𝒕

𝒄𝒕

𝒂𝒕′
∗

𝒂𝒕′

𝒄𝑡

Maj@M
Reasoning 𝒛(𝒌+𝟏) Answer 𝒚(𝒌+𝟏)

① ③②

④ ⑤ ⑥

Socratic Steps 𝑺𝑇

Sub-Answer 𝒂𝑡

ෝ𝒂𝑡2 ෝ𝒂𝑡𝑀

SSR (Refine): After a second thought, a better
solution to 𝒒𝒕′ appears to be 𝒂𝒕′

∗ . Let’s refine…

Refined Response

Plan-Eval: Let’s evaluate the high-level plan
represented by 𝒛(𝟎)…

Reasoning 𝒛(𝟎) Answer 𝒚(𝟎)Reasoning 𝒛(𝒌+𝟏) Answer 𝒚(𝒌+𝟏)

Self-Refine (Verify): Let’s verify…

Self-Refine (Refine): Let’s refine 𝒛(𝒌) and 𝒚(𝒌)

based on 𝒇(𝒌)…

Feedback 𝒇(𝒌) Score 𝒄(𝒌)

Reasoning 𝒛(𝟎) Answer 𝒚(𝟎)

Query 𝒙: Given 𝑥 + 𝑦 = 13 and 𝑥𝑦 = 24, find
the distance from the point (𝑥, 𝑦) to the origin.

Socratic Verification

Self-Refine: ① → 𝑲 ×② SSR-Lin: ① → 𝑲 × (④⑤⑥) SSR-Ada: ① → 𝑲 × (②④⑤⑥) SSR-Plan: ①③ → 𝑲 × (②④⑤⑥)

Figure 2: Overview of Socratic Self-Refine (SSR). Block ①: Chain-of-Thought (CoT) reasoning,
serves as the starting point for the iterative refinement methods; Block ②: Simple Self-Refine,
generates feedback and then refines the original response based on the feedback; Block ③: Plan
refinement, summarizes the high-level plan of a reasoning trace, and refines the plan and the trace if
necessary; Block ④-⑥: Three building blocks of our SSR, includes Socratic decomposition, Socratic
verification, and Socratic refinement. SSR-Lin: Linear SSR, faithfully applies three blocks (④-⑥) for
K iterations; SSR-Ada: Adaptive SSR, only carries out Socratic blocks (④-⑥) when the normal Self-
Refine cannot identify any mistakes (c = cmax); SSR-Plan: Adaptive SSR with Plan Refinement,
adds an additional plan refinement round (③) before the full iterative refinement algorithm (④-⑥).

growing body of work extends beyond verification to self-refinement, where LLMs not only diagnose
weaknesses in their outputs but also iteratively improve them (Madaan et al., 2023). Early efforts
explored direct self-correction based on feedback, while subsequent methods introduced structured
search (Zhang et al., 2024), parallel sampling to enrich candidate diversity (Bi et al., 2024; Chen
et al., 2025), and reformulation strategies that generate improved sub-questions by incorporating
contextual preconditions (Teng et al., 2025). More recent work trains generative verifiers to guide the
refinement process (Zhong et al., 2025). Collectively, these approaches demonstrate that refinement
transforms passive evaluation into an active mechanism for improving reliability, making it a key step
toward controllable and trustworthy reasoning in LLMs.

Process Evaluation of LLMs. Verifying only the final outcome of an LLM is insufficient; ensuring
reliability requires mechanisms that also evaluate the reasoning process itself. Beyond using human
annotations to train process reward models (Lightman et al., 2023; He et al., 2024; Zhang et al.,
2025b), the rapid advancement of model capabilities has motivated a growing set of test-time methods
for step-level verification. These approaches typically decompose the reasoning trace and assess
the correctness of each step to localize errors more accurately (Ling et al., 2023; Zhao et al., 2025;
Mukherjee et al., 2025; Fang et al., 2025). Compared to existing work of process evaluation, our SSR
framework adopts a Socratic formulation of reasoning, representing the process as a sequence of
question–answer pairs (details in Sec. 3). This structure makes the steps straightforward to re-execute
and enables reliable confidence estimation. Crucially, SSR goes beyond verification by producing
informative signals that directly support subsequent refinement.

3 SOCRATIC SELF-REFINE (SSR)

This section introduces our Socratic Self-Refine (SSR). Sec. 3.1 introduces the fundamental as-
sumption that natural-language reasoning can be described as a Socratic process. Sec. 3.2 presents
the core of SSR, including the decomposition into Socratic steps, their verification, and reasoning
refinement guided by Socratic confidence scores. Finally, Sec. 3.3 discusses two techniques for
practical deployment of SSR: plan refinement and adaptive iteration refinement. For details of the
prompt templates introduced in this section, please refer to Appendix C.3.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Notation. In this paper, scalars are denoted by lowercase letters (x), vectors (or token/word
sequences) by bold lowercase letters (x), random vectors by boldface lowercase letters (x), and
matrices (or sets of tokens, words, or phrases) by bold uppercase letters (X). We denote by
[m] = 1, 2, . . . ,m the set of consecutive integers from 1 to m. For consistency, K denotes the total
number of refinement iterations, while (k) indicates the current iteration; when unambiguous, we
omit (k) to reduce clutter. Finally, N is the number of parallel runs used for test-time scaling.

3.1 LLM REASONING AS SOCRATIC PROCESS

Preliminary of LLM Reasoning. For problems with short-form ground-truth answers, LLM
reasoning can be modeled as marginalization over intermediate natural language reasoning traces z
(a sequence of tokens/words) to produce the final answer y (Chen et al., 2024):

πθ(y | x) =
∫

πθ(y | z,x)πθ(z | x)dz (1)

Chain-of-Thought (CoT) reasoning (Wei et al., 2022b) approximates this integral with a single
sample: the model first generates a reasoning trace z ∼ πθ(· | x) and then derives the final answer
y ∼ πθ(· | z,x). Empirically, allocating more computation to approximate Eqn. 1 improves
performance. A common strategy is Majority Voting (Maj@N), which averages over multiple
sampled reasoning traces (Wang et al., 2022):

πθ(y | x) ≈ 1
N

∑N

n=1
πθ(y | zn,x), zn ∼ πθ(z | x). (2)

Reasoning as Socratic Process. In this paper, we posit that the reasoning process is implicitly
modeled as a sequence of goal-setting and problem-solving steps; that is, the natural-language
reasoning trace z can be viewed as semantically equivalent to a sequence of question-answer pairs.
Formally, given a query x, we assume that for any reasoning–answer pair (z,y), there exists a
ground-truth decomposition ST ≡ (z,y) such that 1

ST = {st ≜ (qt,at)}t∈[T], (3)

where each st is a Socratic step, aT = y denotes the final answer, and the equivalence ST ≡ (z,y)
implies that the oracle probability model p satisfies

p(z,y | x) = p({(qt,at)}t∈[T] | x). (4)
Compared with the purely natural-language reasoning process z, the explicit sequence of Socratic
steps offers clear advantages, most notably, finer-grained modeling and potential control of the
reasoning process, enabling verification and intervention. This explicit modeling lies at the heart of
our proposed method, Socratic Self-Refine (SSR), which we detail in Sec. 3.2.

3.2 SOCRATIC SELF-REFINE (SSR): DECOMPOSITION, VERIFICATION, AND REFINEMENT

From Entangled Reasoning to Explicit Socratic Process. Under the assumption of Eqn. 4, our
goal is to recover the full Socratic process ST from the natural-language reasoning trace z. Since no
prior work explicitly models this process, and the oracle posterior p(ST | x,y, z) is unavailable, we
adopt a zero-shot prompting approach with LLMs to decompose z into the Socratic process ST :

ST ∼ πθ(· | x,y, z,xdec) ≈ p(· | x,y, z), (5)
where xdec denotes a decomposition query that prompts the LLM to extract a sequence of sub-
questions and their corresponding sub-answers. Leveraging prior work on LLM-based summarization
and information extraction (Van Veen et al., 2024), this decomposition can be performed reliably
with relatively little overhead.

LLM Self-Verification on Socratic Steps. We now leverage the reformulation of the original
reasoning trace z into the Socratic process ST to enable LLM self-verification. The joint probability
distribution of ST can be factorized into a product of conditional probabilities:

πθ(ST | x) = πθ({(qt,at)}t∈[T] | x) =
∏T

t=1
πθ(qt | {si}i<t,x)︸ ︷︷ ︸

t-th step planning

·πθ(at | qt, {si}i<t,x)︸ ︷︷ ︸
t-th step execution

, (6)

1Note that (i) the ground-truth decomposition may not be unique. E.g., {st}Tt=1 and {st}Tt=2 are both valid
decompositions, with the latter representing a coarser process; and (ii) the true structure of the decomposition
can be non-linear (Teng et al., 2025), though it can be mapped to a linear form in CoT reasoning.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where {si}i<1 ≜ ∅. This factorization captures our core perspective on LLM reasoning: at each
step, the model first plans by formulating the next sub-question, and then executes by generating
the corresponding sub-answer. Such a sequential formulation naturally lends itself to Monte Carlo
search over possible reasoning trajectories, where the two types of actions are sub-question generation
(q) and sub-answer generation (a) (Qi et al., 2024; Acuna et al., 2025). However, as the modern
LLMs typically do not undergo the training of explicitly proposing and answering the next probable
sub-questions, this approach might be less effective.

SSR evaluates the confidence of each sub-answer at given the current sub-question qt, the original
query x, and the context of the previous Socratic steps (qi,ai)i<t. Specifically, we encode all
relevant information into the context and ask the LLM to solve each sub-question independently M
times. The resulting answers form a reference set

Ât = {âti}i∈[M], âti ∼ πθ(· | qt, {si}i<t,x). (7)

We then compare the original t-th step sub-answer at with Ât and estimate the confidence score as

ct =
1
M

∑M

i=1
1at=âti

, ∀t ∈ [T]. (8)

For mathematical problems, intermediate sub-answers can be restricted to mathematical expressions
through simple prompting, allowing for deterministic equivalence checking. In practice, however,
we find that this restriction does not consistently constrain LLM outputs We therefore resort to
LLM self-evaluation, producing confidence scores directly with a context-free confidence estimation
prompt xconf:

CT = {ct ∼ πθ(· | at, Ât,xconf)}t∈[T]. (9)

These confidence scores are then used to guide refinement of the current-round reasoning and can
also be aggregated to reflect overall response quality, which supports sample selection in our test-time
scaling experiments (Sec. 4.4). It is worth noting that we enforce strict context management during
confidence estimation: the prompt includes only the candidate sub-answer and the reference answer
set, with no additional information. This design has two motivations. First, we assume that judging
equivalence between expressions can be done in a context-free manner, i.e., with only the expressions.
Second, isolating the context helps control the computation budget.

LLM Self-Refinement with Socratic Steps. Once the confidence scores of all Socratic steps
are estimated, we use them to guide reasoning refinement. In SSR, we first identify the step
t′ = argmint{ct}t∈[T] with the lowest confidence score ct′ . We then apply majority voting over its
reference answer set to obtain a refined sub-answer:

a∗
t′ = argmax

a
πθ(a | qt′ , {si}i<t′ ,x) ≈ maj_vote(At′). (10)

This refined sub-answer is injected into the iteration-k refinement of (z(k),y(k)), producing the next
iteration:

(z(k+1),y(k+1)) ∼ πθ(· | x,y(k), z(k), q
(k)
t′ ,a

(k)
t′ ,a

∗(k)
t′︸ ︷︷ ︸

Socratic Feedback

,xref), (11)

where the triplet (q(k)
t′ ,a

(k)
t′ ,a

∗(k)
t′) is called Socratic Feedback, the template of which can be found

in Appendix C.3, and xref is the refinement query that prompts the LLM to revise for a new reasoning
trace z(k+1) that leads to a

∗(k)
t′ . Because most modern LLMs are trained with instruction tuning (Wei

et al., 2021) and preference tuning (Ouyang et al., 2022), both relying on chain-of-thought–like
structures, the direct injection of the Socratic process in unnatural formats (e.g., JSON) might disrupt
reasoning. Our design principle in SSR is therefore to minimize format disruption and to inject only
the necessary information into the refinement context. For a detailed analysis of this issue, please
refer to Sec. 4.3. We refer to the variant that directly combines the three steps described above as
Linear SSR (SSR-Lin).

3.3 SSR DEPLOYMENT: BETTER EFFICIENCY AND BEYOND STEP-LEVEL REFINEMENT

Improving the Efficiency of SSR with Gating Self-Refine. Applying fine-grained, step-level SSR
at every refinement step can be costly compared to other iterative refinement frameworks (Madaan

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

et al., 2023; Teng et al., 2025). To balance efficiency and accuracy, we adopt a gating mechanism
that combines Self-Refine (Madaan et al., 2023) with SSR. In deployment, Self-Refine serves as the
default refinement method, while SSR is invoked only when Self-Refine fails to identify mistakes in
the reasoning trace or when the response is already correct. Because these two situations cannot be
distinguished in advance, applying SSR in the latter case incurs only a minor additional cost, while in
the former case it provides an extra layer of safety. Compared to SSR only, this approach reduces
overhead while preserving the advantages of SSR’s ability of fine-grained step-level verification. We
denote SSR with this adaptive gating mechanism as Adaptive SSR (SSR-Ada).

SSR Planning Refinement. Our current SSR relies on two implicit assumptions about reasoning
planning: (i) response quality evaluation is independent of high-level planning, and (ii) refinement
focuses only on execution accuracy. These restrictions may limit the performance of SSR. By
assuming probabilistic independence between each sub-question qt and the preceding answers
{ai}i<t , the factorization 2 in Eqn. 6 can be simplified as

πθ(ST | x) = πθ({qt}t∈[T] | x)︸ ︷︷ ︸
high-level planning

·
∏T

t=1
πθ(at | qt, {si}i<t,x).︸ ︷︷ ︸

sequential execution

(12)

To ensure the reliability of high-level planning before applying step-level SSR, while keeping the
overhead modest compared to other baselines, we perform only one round of plan refinement. Unlike
our main SSR procedure, we do not repeatedly sample rollouts or evaluate their quality. Instead,
we directly prompt the LLM to judge whether the high-level plan (a sequence of sub-questions or
their natural-language description) is sufficiently sound for the subsequent execution. We denote
SSR-Ada plus this plan refinement as SSR-Plan. For the detailed algorithmic description of our
SSR, please refer to Algorithm 1 in the Appendix.

4 EXPERIMENTS

We evaluate our SSR’s effectiveness through comprehensive experiments, covering experimental
setup (Sec. 4.1), main results on the mathematical and logical reasoning benchmarks (Sec. 4.2),
ablation studies on the choice of incorporating Socratic content into refinement (Sec. 4.3), and
test-time scaling effect of our SSR (Sec. 4.4). For additional results, please refer to Appendix D.

4.1 SETTINGS

Models, Datasets, and Evaluation. We use the latest GPT-4.1-nano (general-purpose) and
GPT-5-mini (reasoning) models from OpenAI as our LLM backbones, chosen for their balanced
capabilities in instruction following and reasoning. We additionally include the results of the strong
LLM Gemini-2.5-Flash (Comanici et al., 2025) in Appendix D.1.

Our evaluation covers two categories of datasets: mathematical reasoning and logical reasoning.
For mathematical reasoning, we adopt the challenging Level-5 subset of the MATH dataset (MATH-
Level-5) with numerical answers (Hendrycks et al., 2021) and the American Invitational Mathematics
Examination (AIME) from 2024 and 2025 (AIME-Team, 2025). For logical reasoning, we use
the synthetic reasoning-gym environment to generate sub-tasks including the Zebra Puzzle and
Mini-Sudoku (Stojanovski et al., 2025).

Baselines. We compare our SSR against several iterative refinement–based test-time LLM reasoning
frameworks. Self-Refine (Madaan et al., 2023) iteratively generates feedback for a given response and
updates the response based on this self-feedback. Monte Carlo Tree Self-Refine (MCTSr) (Zhang
et al., 2024) treats the full generation as a node and the self-refine step as an edge, applying Monte
Carlo Tree Search (MCTS) to search for the best response. Atom of Thoughts (AoT) (Teng et al.,
2025) incrementally constructs a Directed Acyclic Graph (DAG) of reasoning, contracts intermediate
results into improved sub-questions, and solves them step by step. We do not include parallel
sampling–based baselines such as Forest of Thoughts (FoT) (Bi et al., 2024), since these approaches
are complementary to iterative refinement methods. Their benefits are instead reflected through the
Maj@5 metric in Table 1.

2Under this assumption, we posit that the LLM establishes an overall plan before generating the actual
response (Ye et al., 2024; Lindsey et al., 2025).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Last-Round Performance of Iterative Refinement-Based Reasoning Methods. LR-
Acc: Last-round refinement’s accuracy, yielded by 10 repeated experiments; LR-Maj@5: Last-
round refinement’s accuracy of majority voting with 5 samples in parallel, yielded by 50 repeated
experiments. Boldface and underlining denote the best and the second-best performance, respectively.

Method
MATH-Level-5 AIME24 AIME25 Zebra-Puzzle Mini-Sudoku

LR-Acc LR-Maj@5 LR-Acc LR-Maj@5 LR-Acc LR-Maj@5 LR-Acc LR-Maj@5 LR-Acc LR-Maj@5

GPT-4.1-nano

CoT 74.88±1.35 82.32±1.11 27.00±4.58 32.80±2.15 23.00±3.48 26.93±2.97 55.20±3.28 56.56±2.44 47.40±3.35 66.04±2.69

Self-Refine 68.69±1.15 79.81±0.75 28.00±4.99 34.33±3.00 22.67±2.91 28.33±3.42 53.50±1.96 56.08±1.93 53.60±4.59 73.04±3.21

MCTSr 74.02±1.12 83.01±0.81 23.67±4.33 30.47±3.13 20.00±4.94 25.73±4.22 54.90±2.47 54.88±2.45 53.33±1.63 73.84±2.43
AoT 75.15±1.00 82.83±0.83 21.11±4.97 25.67±3.61 21.33±3.06 25.53±3.75 29.33±3.16 43.60±2.65 42.80±2.96 65.08±2.26

SSR-Lin (Ours) 77.06±0.93 83.64±0.69 32.67±3.59 39.93±3.23 24.00±4.67 27.33±4.06 54.60±2.20 54.10±2.09 53.10±2.47 72.76±2.55

SSR-Ada (Ours) 75.70±1.31 82.71±0.90 29.67±6.74 37.47±4.25 24.67±3.06 28.80±3.38 54.30±1.90 55.14±1.71 51.50±4.41 73.22±3.37

SSR-Plan (Ours) 76.01±0.57 83.75±0.74 27.33±5.73 35.80±3.39 22.33±3.67 27.53±4.46 56.90±3.11 57.30±2.39 47.70±4.22 66.46±4.61

GPT-5-mini

CoT 82.95±1.02 90.05±0.54 50.67±4.67 60.87±3.93 37.00±6.57 49.80±4.19 82.80±2.71 91.00±1.30 42.40±2.42 61.96±3.19

Self-Refine 87.02±1.40 94.11±0.47 63.33±4.94 74.40±3.74 53.67±6.23 68.33±3.48 82.00±2.61 92.64±1.61 63.60±3.35 93.82±1.35

MCTSr 87.42±0.89 92.91±0.71 57.00±5.67 68.87±4.35 46.97±6.11 55.40±4.76 83.00±1.90 89.82±1.49 61.40±6.17 89.68±2.56

AoT 80.56±0.63 88.84±0.60 46.67±5.16 57.00±3.21 33.00±6.05 43.60±3.82 65.30±3.07 74.78±2.07 61.70±3.72 82.72±2.75

SSR-Lin (Ours) 88.36±1.06 93.01±0.63 64.00±5.12 74.60±4.10 55.67±4.48 65.47±3.76 87.70±2.97 93.70±1.76 93.60±1.69 99.70±0.54

SSR-Ada (Ours) 91.57±0.51 95.62±0.35 68.67±4.52 75.93±3.08 60.33±4.58 70.13±3.46 87.30±2.53 93.00±1.69 96.10±2.07 99.98±0.14

SSR-Plan (Ours) 92.16±0.67 95.93±0.30 69.67±4.82 79.00±3.48 62.00±6.18 71.53±5.26 88.00±1.55 93.20±1.08 94.80±2.48 100.00±0.00

Implementation of SSR. We implement and evaluate three variants of SSR in Sec. 3.3. Linear
SSR (SSR-Lin) applies Socratic self-refine at every iteration, making it the most costly but also
the most thorough approach to step-level fine-grained refinement. Adaptive SSR (SSR-Ada) first
applies the basic Self-Refine; if the feedback reveals clear and critical errors, the feedback is directly
adopted, while if no errors are detected, the method falls back to Socratic self-refine. SSR with
plan refinement (SSR-Plan) adds an initial round of plan refinement before the step-level Socratic
self-refine, thereby equipping SSR with high-level refinement capabilities. For more details, please
refer to Appendix C.2.

4.2 SSR’S STEP-LEVEL VERIFICATION LEADS TO CONSISTENT PERFORMANCE GAINS

Table 1 and Table 2 show results on comprehensive metrics for various methods.

Overall, the proposed SSR variants bring substantial improvements when powered by the strong
GPT-5-mini. Across all tasks, SSR consistently surpasses competitive baselines, yielding clear
gains in both LR-Acc and LR-Maj@5. Notably, SSR-Plan achieves the best or second-best results
in nearly every setting, with particularly large margins on challenging mathematical reasoning
benchmarks like AIME. This highlights that structured preliminary planning amplifies the benefits of
iterative refinement, even when starting from already strong GPT-5-mini reasoning capabilities.
Our framework also demonstrates effectiveness on the weaker GPT-4.1-nano backbone. Despite
its limited reasoning capacity, all three SSR variants in general improve performance over baselines,
underscoring that our refinement strategies generalize across model scales. This implies a viable path
of adopting our SSR to boost smaller, resource-efficient models.

Second, the results in Table 2 show that SSR maintains superiority under upper-bound evaluation
metrics. Both BoK-Acc and Pass@K demonstrate that SSR variants yield higher-quality and diverse
refinement trajectories compared to baselines. Again, SSR-Plan often achieves the best results, while
SSR-Ada provides a favorable trade-off between efficiency and accuracy, confirming the value of
adaptively combining Self-Refine with Socratic refinement.

Finally, the comparison across reasoning categories highlights complementary strengths. In math-
ematical reasoning, SSR gains from explicit verification and refinement of sub-answers, which
reduces cascading errors in long derivations. In logical reasoning tasks such as Zebra-Puzzle and
Mini-Sudoku, where execution accuracy dominates, step-level Socratic verification also proves highly
effective, often yielding substantial improvements over baselines.

Overall, the experiments confirm that the explicit modeling and verification of Socratic steps in SSR
provides more reliable and controllable refinement than existing iterative approaches, with SSR-Plan
standing out as the most robust variant.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Upper-Bound Performance of Iterative Refinement-Based Reasoning Methods. BoK-
Acc: Best-of-K refinements’ accuracy, yielded by prompting LLM-as-a-Judge (Gu et al., 2024) for
selecting the best answer out of K iterations of refinement; Pass@K: Pass-at-K refinements’ accuracy
(at lease one of K iterations gets the answer correct). Both experiments are repeated for 10 times.
Boldface and underlining denote the best and the second-best performance, respectively.

Method
MATH-Level-5 AIME24 AIME25 Zebra-Puzzle Mini-Sudoku

BoK-Acc Pass@K BoK-Acc Pass@K BoK-Acc Pass@K BoK-Acc Pass@K BoK-Acc Pass@K

GPT-4.1-nano

CoT 74.88±1.35 - 27.00±4.58 - 23.00±3.48 - 55.20±3.28 - 47.40±3.35 -
Self-Refine 76.48±0.95 81.60±0.82 30.67±5.54 31.67±5.00 23.67±4.07 26.00±4.90 55.60±3.77 59.60±2.37 56.90±5.84 65.70±3.55

AoT 79.37±1.54 87.28±0.64 23.33±5.21 33.70±3.99 24.33±4.48 29.33±5.33 37.33±3.20 63.22±3.64 50.20±5.08 76.00±3.26
SSR-Lin (Ours) 78.03±1.00 82.97±0.98 33.33±4.22 38.33±5.63 26.67±3.94 32.00±4.00 55.90±2.74 65.40±1.96 58.20±3.71 75.40±3.38

SSR-Ada (Ours) 78.05±1.37 85.14±0.56 31.67±5.82 36.33±5.67 25.67±4.48 32.00±3.40 55.30±1.19 62.80±2.04 56.70±3.44 74.20±4.94

SSR-Plan (Ours) 78.40±1.10 85.27±0.47 31.33±5.42 35.67±4.23 24.33±3.67 34.33±5.17 56.60±3.58 64.60±3.01 56.40±4.05 73.70±2.37

GPT-5-mini

CoT 82.95±1.02 - 50.67±4.67 - 37.00±6.57 - 82.80±2.71 - 42.40±2.42 -
Self-Refine 89.40±1.00 91.59±0.83 61.33±4.00 68.00±3.71 51.67±6.87 56.67±6.67 90.90±2.21 91.30±1.79 85.70±3.23 83.30±2.19

AoT 85.87±0.49 91.38±0.80 56.67±6.15 61.67±5.82 39.33±3.27 49.00±5.39 88.80±1.94 93.50±1.43 93.70±1.73 90.70±2.15

SSR-Lin (Ours) 88.16±1.31 89.54±1.25 65.33±5.42 67.00±3.79 55.33±7.02 59.00±5.17 92.20±2.23 93.20±2.60 95.30±1.19 95.50±1.57

SSR-Ada (Ours) 93.14±0.52 94.63±0.36 71.67±4.28 74.00±4.90 61.00±4.73 66.00±3.89 91.80±1.89 93.00±1.84 98.20±1.25 98.10±1.45

SSR-Plan (Ours) 93.48±0.52 95.05±0.34 71.00±4.48 73.67±4.07 65.67±6.16 69.67±5.26 92.30±1.62 93.30±1.79 98.70±1.00 98.30±1.19

4.3 ANALYSIS: SSR CONTEXT MANAGEMENT

Table 3: Ablation Study on SSR Context Management,
evaluated on GPT-5-mini.

Method Refinement Context
Dataset

AIME24 AIME25

CoT - - 50.67±4.67 37.00±6.57

Self-Refine Reflection Natural 63.33±4.94 53.67±6.23

SSR-Plan
(Ours)

Reflection Natural 69.67±4.82 62.00±6.18
Reflection Socratic 67.67±4.48 60.33±4.82

Intervention Natural 54.67±4.76 42.67±7.12

Intervention Socratic 57.00±8.09 52.00±5.62

As discussed in Sec. 3.2, represent-
ing a natural language reasoning trace
z as a Socratic process ST requires
careful consideration, since it intro-
duces a distributional shift between
the model’s training data and our arti-
ficially structured context. In this sub-
section, we explore alternative ways
of integrating the Socratic process ST

into reasoning refinement. Specifi-
cally, we focus on two key aspects:

• Context Format (Natural / Socratic): Iterative refinement can be performed using only the
Socratic steps ST (Socratic), discarding the original natural language reasoning trace z; or
conversely, using only z without the Socratic decomposition (Natural).

• Context Completeness (Reflection / Intervention): Since LLM chain-of-thought reasoning
assumes linear dependencies, once the first problematic step st′ is identified, later steps can be
discarded. Refinement may then intervene directly at the error location (Intervention), avoiding
unnecessary tokens, unlike SSR which refines after the full reasoning is completed (Reflection).

The results are reported in Table 3. From the table, we observe that our implementation adopted in
the main experiments (reflection + natural context) yields the strongest results (69.67 on AIME24
and 62.00 on AIME25), outperforming both Self-Refine and other variants of SSR. This suggests that
preserving the original reasoning trace while applying reflection-based precise step-level refinement
provides the model with richer contextual cues for error correction.

Under reflection, replacing the natural context with the Socratic context yields slightly weaker but
still competitive results, suggesting that while Socratic decomposition supports step-level analysis, it
may miss some nuances of natural language reasoning. In contrast, intervention-based refinement
consistently underperforms, as prematurely truncating the reasoning trace discards useful contextual
information and leads to weaker refinements.

4.4 ANALYSIS: TEST-TIME SCALING OF SSR

In this subsection, we investigate whether the performance gains of SSR can be sustained under
increased test-time compute. Test-time scaling for iterative refinement generally follows two orthog-
onal approaches: (i) sequential scaling, which increases the number of refinement iterations, and
(ii) parallel scaling, which runs multiple refinements in parallel and aggregates the outputs.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

In our study, sequential scaling extends the number of iterations by 3×, with performance reported
as Last-Round Accuracy (LR-Acc). Parallel scaling increases the number of parallel samples to 64,
also reporting aggregated LR-Acc. Experiments are conducted on AIME25 with the GPT-5-mini
backbone (low-reasoning, low-verbosity). As baselines, we include basic CoT and Self-Refine. For
Self-Refine and SSR, we perform an additional self-evaluation on the final reasoning trace and use the
resulting 0-5 score for weighted best-of-N (WBoN). For CoT, we apply majority voting (Maj@N).

0 1 2 3 4 5 6 7 8 9
#Iterations

30

40

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

1 35 8 16 32 64
#Parallel Samples

30

40

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

CoT Self-Refine SSR-Plan (Ours)

Figure 3: Performance of Sequential (Left) and Parallel (Right)
Test-Time Scaling, evaluated on AIME25 (AIME-Team, 2025)
with GPT-5-mini low-reasoning low-verbosity mode.

The results are shown in Fig. 3.
On the sequential scaling side
(left), SSR consistently outper-
forms Self-Refine across all it-
eration counts. Accuracy im-
proves steadily as the number of
refinement iterations increases,
with SSR showing stronger gains
and greater stability than Self-
Refine. In contrast, Self-Refine
benefits from additional itera-
tions but plateaus at a lower accu-
racy, confirming that iterative re-
finement is essential for improve-
ment. On the parallel scaling
side (right), all methods improve as the number of parallel samples increases, but SSR maintains a
clear margin over Self-Refine and CoT. Notably, SSR reaches higher accuracy levels more quickly,
suggesting that its Socratic step-level verification yields more consistent refinements, which aggregate
effectively under parallel sampling. Self-Refine shows moderate improvements with larger sample
sizes, while CoT lags behind, highlighting the importance of structured refinement.

In both parallel and sequential scaling, SSR consistently outperforms Self-Refine and vanilla CoT,
even when the baselines are given additional compute and cost, as shown in Fig. 1 and Appendix D.2.
This demonstrates that SSR makes more efficient use of available resources. Unlike Self-Refine,
whose improvements plateau quickly, SSR continues to gain with further iterations, indicating that
confidence-aware step refinement enables more robust and scalable performance under larger budgets.

5 CONCLUSION

In this paper, we introduced Socratic Self-Refine (SSR), a novel iterative refinement framework that
leverages step-level Socratic decomposition to evaluate and improve LLM reasoning. By explicitly
modeling reasoning as a sequence of sub-questions and sub-answers, SSR provides fine-grained
confidence estimation and enables targeted refinements where errors are most likely to occur. Across
both mathematical and logical reasoning benchmarks, SSR consistently outperforms existing iterative
refinement baselines, with the plan-refinement variant achieving the most robust gains. Beyond
empirical performance, SSR highlights the importance of moving from outcome-level to process-level
evaluation. By treating reasoning as a verifiable sequence of interpretable steps, our framework makes
LLM outputs more transparent and opens the door to interventions that are more systematic than ad
hoc self-correction. We believe our SSR offers a valuable mechanism for controlling the reasoning
trajectory, mitigating biases, and aligning model behavior more closely with human expectations.

Limitations. Despite its advantages, SSR has several limitations. First, the step-level Socratic
decomposition relies on LLM prompting, which can introduce noise and inconsistencies, particu-
larly for problems with ambiguous or ill-posed sub-questions. Second, the computational cost of
fine-grained verification is substantially higher than that of standard iterative refinement, limiting
scalability to large datasets or long reasoning chains. Finally, our evaluation focuses primarily on
mathematical and logical reasoning tasks; the generalizability of SSR to open-ended domains such as
commonsense or multi-modal reasoning remains to be validated.

Future Work. In future work, we aim to extend SSR to more diverse reasoning domains, including
scientific and multimodal tasks, and explore tighter integration with training-time objectives. Another
promising direction is developing more efficient confidence estimation to further reduce cost, as well
as investigating human-in-the-loop settings where SSR can enhance interpretability and reliability.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

David Acuna, Ximing Lu, Jaehun Jung, Hyunwoo Kim, Amlan Kar, Sanja Fidler, and Yejin
Choi. Socratic-mcts: Test-time visual reasoning by asking the right questions. arXiv preprint
arXiv:2506.08927, 2025.

AIME-Team. American invitational mathematics examination. Mathematical Association of America,
2025. https://maa.org/maa-invitational-competitions/.

Zhenni Bi, Kai Han, Chuanjian Liu, Yehui Tang, and Yunhe Wang. Forest-of-thought: Scaling
test-time compute for enhancing llm reasoning. arXiv preprint arXiv:2412.09078, 2024.

Kendrick Boyd, Kevin H Eng, and C David Page. Area under the precision-recall curve: point
estimates and confidence intervals. In Machine Learning and Knowledge Discovery in Databases:
European Conference, ECML PKDD 2013, Prague, Czech Republic, September 23-27, 2013,
Proceedings, Part III 13, pp. 451–466. Springer, 2013.

Haolin Chen, Yihao Feng, Zuxin Liu, Weiran Yao, Akshara Prabhakar, Shelby Heinecke, Ricky
Ho, Phil Mui, Silvio Savarese, Caiming Xiong, et al. Language models are hidden reasoners:
Unlocking latent reasoning capabilities via self-rewarding. arXiv preprint arXiv:2411.04282, 2024.

Jiefeng Chen, Jie Ren, Xinyun Chen, Chengrun Yang, Ruoxi Sun, Jinsung Yoon, and Sercan Ö Arık.
Sets: Leveraging self-verification and self-correction for improved test-time scaling. arXiv preprint
arXiv:2501.19306, 2025.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li,
Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language
models. Journal of Machine Learning Research, 25(70):1–53, 2024.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier
with advanced reasoning, multimodality, long context, and next generation agentic capabilities.
arXiv preprint arXiv:2507.06261, 2025.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Jiwei Fang, Bin Zhang, Changwei Wang, Jin Wan, and Zhiwei Xu. Graph of verification: Structured
verification of llm reasoning with directed acyclic graphs. arXiv preprint arXiv:2506.12509, 2025.

Sebastian Farquhar, Jannik Kossen, Lorenz Kuhn, and Yarin Gal. Detecting hallucinations in large
language models using semantic entropy. Nature, 630(8017):625–630, 2024.

Yichao Fu, Xuewei Wang, Yuandong Tian, and Jiawei Zhao. Deep think with confidence. arXiv
preprint arXiv:2508.15260, 2025.

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan Shen,
Shengjie Ma, Honghao Liu, et al. A survey on llm-as-a-judge. arXiv preprint arXiv:2411.15594,
2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

James A Hanley and Barbara J McNeil. The meaning and use of the area under a receiver operating
characteristic (roc) curve. Radiology, 143(1):29–36, 1982.

Jujie He, Tianwen Wei, Rui Yan, Jiacai Liu, Chaojie Wang, Yimeng Gan, Shiwen Tu, Chris Yuhao
Liu, Liang Zeng, Xiaokun Wang, Boyang Wang, Yongcong Li, Fuxiang Zhang, Jiacheng Xu,
Bo An, Yang Liu, and Yahui Zhou. Skywork-o1 open series, November 2024. URL https:
//doi.org/10.5281/zenodo.16998085.

10

https://maa.org/maa-invitational-competitions/
https://doi.org/10.5281/zenodo.16998085
https://doi.org/10.5281/zenodo.16998085

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Zhengyu Hu, Linxin Song, Jieyu Zhang, Zheyuan Xiao, Tianfu Wang, Zhengyu Chen, Nicholas Jing
Yuan, Jianxun Lian, Kaize Ding, and Hui Xiong. Explaining length bias in llm-based preference
evaluations. arXiv preprint arXiv:2407.01085, 2024.

Chengsong Huang, Langlin Huang, Jixuan Leng, Jiacheng Liu, and Jiaxin Huang. Efficient test-time
scaling via self-calibration. arXiv preprint arXiv:2503.00031, 2025.

Zhewei Kang, Xuandong Zhao, and Dawn Song. Scalable best-of-n selection for large language
models via self-certainty. arXiv preprint arXiv:2502.18581, 2025.

Zixuan Ke, Fangkai Jiao, Yifei Ming, Xuan-Phi Nguyen, Austin Xu, Do Xuan Long, Minzhi Li,
Chengwei Qin, Peifeng Wang, Silvio Savarese, et al. A survey of frontiers in llm reasoning:
Inference scaling, learning to reason, and agentic systems. arXiv preprint arXiv:2504.09037, 2025.

Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. Semantic uncertainty: Linguistic invariances for
uncertainty estimation in natural language generation. In The Eleventh International Conference
on Learning Representations, 2023.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Jack Lindsey, Wes Gurnee, Emmanuel Ameisen, Brian Chen, Adam Pearce, Nicholas L. Turner,
Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael Sklar, Adly
Templeton, Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas Henighan, Adam
Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam Zimmerman, Kelley
Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson. On the biology of a large language
model. Transformer Circuits Thread, 2025. URL https://transformer-circuits.
pub/2025/attribution-graphs/biology.html.

Zhan Ling, Yunhao Fang, Xuanlin Li, Zhiao Huang, Mingu Lee, Roland Memisevic, and Hao Su.
Deductive verification of chain-of-thought reasoning. Advances in Neural Information Processing
Systems, 36:36407–36433, 2023.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36:46534–46594, 2023.

Potsawee Manakul, Adian Liusie, and Mark JF Gales. Selfcheckgpt: Zero-resource black-box
hallucination detection for generative large language models. arXiv preprint arXiv:2303.08896,
2023.

Sagnik Mukherjee, Abhinav Chinta, Takyoung Kim, Tarun Anoop Sharma, and Dilek Hakkani-Tür.
Premise-augmented reasoning chains improve error identification in math reasoning with llms.
arXiv preprint arXiv:2502.02362, 2025.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Zhenting Qi, Mingyuan Ma, Jiahang Xu, Li Lyna Zhang, Fan Yang, and Mao Yang. Mutual reasoning
makes smaller llms stronger problem-solvers. arXiv preprint arXiv:2408.06195, 2024.

Jie Ren, Yao Zhao, Tu Vu, Peter J Liu, and Balaji Lakshminarayanan. Self-evaluation improves
selective generation in large language models. In Proceedings on, pp. 49–64. PMLR, 2023.

Lin Shi, Chiyu Ma, Wenhua Liang, Xingjian Diao, Weicheng Ma, and Soroush Vosoughi. Judging the
judges: A systematic study of position bias in llm-as-a-judge. arXiv preprint arXiv:2406.07791,
2024.

11

https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://transformer-circuits.pub/2025/attribution-graphs/biology.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Zafir Stojanovski, Oliver Stanley, Joe Sharratt, Richard Jones, Abdulhakeem Adefioye, Jean Kaddour,
and Andreas Köpf. Reasoning gym: Reasoning environments for reinforcement learning with
verifiable rewards. arXiv preprint arXiv:2505.24760, 2025.

Fengwei Teng, Zhaoyang Yu, Quan Shi, Jiayi Zhang, Chenglin Wu, and Yuyu Luo. Atom of thoughts
for markov llm test-time scaling. arXiv preprint arXiv:2502.12018, 2025.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Dave Van Veen, Cara Van Uden, Louis Blankemeier, Jean-Benoit Delbrouck, Asad Aali, Christian
Bluethgen, Anuj Pareek, Malgorzata Polacin, Eduardo Pontes Reis, Anna Seehofnerová, et al.
Adapted large language models can outperform medical experts in clinical text summarization.
Nature medicine, 30(4):1134–1142, 2024.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv preprint
arXiv:2109.01652, 2021.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682, 2022a.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022b.

Yuyang Wu, Yifei Wang, Ziyu Ye, Tianqi Du, Stefanie Jegelka, and Yisen Wang. When more is less:
Understanding chain-of-thought length in llms. arXiv preprint arXiv:2502.07266, 2025.

Tian Ye, Zicheng Xu, Yuanzhi Li, and Zeyuan Allen-Zhu. Physics of language models: Part 2.1,
grade-school math and the hidden reasoning process. arXiv preprint arXiv:2407.20311, 2024.

Zihuiwen Ye, Luckeciano Carvalho Melo, Younesse Kaddar, Phil Blunsom, Sam Staton, and Yarin
Gal. Uncertainty-aware step-wise verification with generative reward models. arXiv preprint
arXiv:2502.11250, 2025.

Weiqiu You, Anton Xue, Shreya Havaldar, Delip Rao, Helen Jin, Chris Callison-Burch, and Eric Wong.
Probabilistic soundness guarantees in llm reasoning chains. arXiv preprint arXiv:2507.12948,
2025.

Di Zhang, Xiaoshui Huang, Dongzhan Zhou, Yuqiang Li, and Wanli Ouyang. Accessing gpt-4 level
mathematical olympiad solutions via monte carlo tree self-refine with llama-3 8b. arXiv preprint
arXiv:2406.07394, 2024.

Tunyu Zhang, Haizhou Shi, Yibin Wang, Hengyi Wang, Xiaoxiao He, Zhuowei Li, Haoxian Chen,
Ligong Han, Kai Xu, Huan Zhang, et al. Token-level uncertainty estimation for large language
model reasoning. arXiv preprint arXiv:2505.11737, 2025a.

Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng Liu,
Jingren Zhou, and Junyang Lin. The lessons of developing process reward models in mathematical
reasoning. arXiv preprint arXiv:2501.07301, 2025b.

Jian Zhao, Runze Liu, Kaiyan Zhang, Zhimu Zhou, Junqi Gao, Dong Li, Jiafei Lyu, Zhouyi Qian,
Biqing Qi, Xiu Li, et al. Genprm: Scaling test-time compute of process reward models via
generative reasoning. arXiv preprint arXiv:2504.00891, 2025.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Chujie Zheng, Hao Zhou, Fandong Meng, Jie Zhou, and Minlie Huang. Large language models are
not robust multiple choice selectors, 2024. URL https://arxiv. org/abs/2309.03882, 2023a.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in neural information processing systems, 36:46595–46623, 2023b.

Jianyuan Zhong, Zeju Li, Zhijian Xu, Xiangyu Wen, Kezhi Li, and Qiang Xu. Solve-detect-verify:
Inference-time scaling with flexible generative verifier. arXiv preprint arXiv:2505.11966, 2025.

Yefan Zhou, Austin Xu, Yilun Zhou, Janvijay Singh, Jiang Gui, and Shafiq Joty. Variation in
verification: Understanding verification dynamics in large language models. arXiv preprint
arXiv:2509.17995, 2025a.

Yilun Zhou, Austin Xu, Peifeng Wang, Caiming Xiong, and Shafiq Joty. Evaluating judges as
evaluators: The jetts benchmark of llm-as-judges as test-time scaling evaluators. arXiv preprint
arXiv:2504.15253, 2025b.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

APPENDIX

In Appendix A, we describe the role of LLMs in our work. In Appendix B, we present the full
algorithmic description of our proposed SSR. In Appendix C, we provide our implementation details
of the experiments, including:

• dataset details (Appendix C.1),
• baseline details (Appendix C.2),
• prompt templates used in LLM reasoning (Appendix C.3),

Finally, in Appendix D, we present additional experimental results, including:

• additional results on Gemini-2.5-Flash (Appendix D.1),
• additional results on sequential and parallel test-time scaling (Appendix D.2),
• additional results on SSR-as-a-Judge (Appendix D.3),
• and a qualitative analysis on our SSR refinement (Appendix D.4).

A LLM USAGE DISCLOSURE

Large language models (LLMs) were used exclusively to help polish the writing of this paper by
improving grammar, clarity, and readability. They did not contribute to research ideation, experimental
design, data analysis, or the generation of scientific content. All technical contributions, claims, and
conclusions are solely those of the authors.

B ALGORITHM

Algorithm 1 Socratic Self-Refine (SSR)

input {x,xdec,xconf,xref}: prompt for original query, reasoning decomposition, confidence estima-
tion, and refinement;
πθ: LLM policy;
(z(0),y(0)): initial CoT reasoning and answer;
K: maximum refinement rounds;
M : number of parallel solves per sub-question for confidence;
Cmax: maximum value of the confidence.

1: (Optional) {qt}t∈[T] ∼ πθ(· | x,y(0), z(0),xdec). Prompt πθ to judge plan adequacy. If
inadequate, refine once and update (z(0),y(0)). ▷ Optional plan check (Eqn. 12).

2: for k = 1, . . . ,K do
3: (z(k+1),y(k+1), C(k))← Self-Refine(z(k),y(k)). ▷ Self-Refine Gating.
4: if C(k) = Cmax then
5: ST = {(qt,at)}t∈[T] ∼ πθ(· | x,y(k), z(k),xdec). ▷ SSR Decomposition (Eqn. 4).
6: for t = 1 to T in parallel do
7: Ât = {âti}i∈[M], âti ∼ πθ(· | qt, {si}i<t,x). ▷ Reference Set Sampling.
8: ct ∼ πθ(· | at, Ât,xconf). ▷ Confidence Estimation (Eqn. 8).
9: end for

10: t′ ← argmint∈[T] ct. ▷ Pick weakest step
11: a∗

t′ ← maj_vote(Ât′). ▷ Majority vote sub-answer
12: (z(k+1),y(k+1)) ∼ πθ(· | x,y(k), z(k), q

(k)
t′ ,a

(k)
t′ ,a

∗(k)
t′ ,xref). ▷ Round-k SSR.

13: end if
14: end for
output (z(K),y(K)): refined reasoning and answer.

C IMPLEMENTATION DETAILS

Appendix C.1 introduces the basic charactaristics of the adopted datasets; Appendix C.2 intro-
duces the implementation details of the state-of-the-art iterative refinement baselines and our SSR.
Appendix C.3 lists the prompt template we use for different methods.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C.1 DATASETS

Table 4 shows the statistics of datasets in our experiments. These datasets span two different types of
reasoning tasks and different difficulty levels, from moderate to highly challenging, covering both
grade-school-level numerical reasoning and advanced symbolic mathematical tasks. This diversity
in problem domains and difficulty ensures a comprehensive and representative assessment of the
model’s capabilities across varied reasoning scenarios.

Table 4: Dataset Statistics.
Dataset #Examples Split Task Type Language Level
MATH-Level-5 (Hendrycks et al., 2021) 681 Test split Mathematical English Moderate
AIME24 (AIME-Team, 2025) 30 Full set Mathematical English Highly Challenging
AIME25 (AIME-Team, 2025) 30 Full set Mathematical English Highly Challenging
Zebra-Puzzle (Stojanovski et al., 2025) 100 Randomly Synthesized Logical English Moderate
Mini-Sudoku (Stojanovski et al., 2025) 100 Randomly Synthesized Logical English Moderate

C.2 BASELINES AND OUR SSR

We compare our proposed Socratic Self-Refine (SSR) against several state-of-the-art iterative refine-
ment reasoning frameworks. The detailed prompt templates are provided in the next section.

• Self-Refine (Madaan et al., 2023): We follow the prompt template defined in LLM-as-a-
Judge (Zhou et al., 2025a), which produces feedback and scores for the model’s own response;
the feedback is then used for refinement. We perform three refinement iterations, with each
iteration independent of previous ones for conciseness.

• Monte Carlo Tree Self-Refine (MCTSr) (Zhang et al., 2024): We adopt the released code for
reproducibility. Since the original prompt was designed for smaller open-source LLMs (Touvron
et al., 2023; Dubey et al., 2024) with format mismatches to our setting, we adapt the template
while retaining the same verification prompt (as Self-Refine) and faithfully preserving the
Monte Carlo Tree construction and exploration. The maximum number of iterations is set to
four, following the original paper.

• Atom-of-Thoughts (AoT) (Teng et al., 2025): We mainly follow the released implementation.
However, as the original decomposition restricts intermediate answers to purely numerical
forms, which is limiting for challenging mathematical and logical reasoning, we slightly relax
this constraint. For fair comparison, we set the maximum number of atoms to three, omit the
final “Ensemble” step, and report only the last-iteration performance in Table 1. Results with
the ensemble step are reported separately in Column “BoK-Acc” of Table 2.

• Forest-of-Thought (FoT) (Bi et al., 2024): As a parallel scaling variant of MCTSr (ignoring
early stopping), FoT is not directly evaluated. Nevertheless, MCTSr’s results in the “LR-
Maj@5” column can be treated as an approximate proxy for FoT performance with tree size 5
and majority voting aggregation.

• Linear SSR (SSR-Lin, Ours): Each iteration proceeds as follows: (i) decompose the given
CoT into Socratic steps; (ii) re-answer each sub-question multiple times, assuming prior steps
are correct; (iii) identify the step with the lowest confidence score and refine based on the
majority-voted sub-answer. We set the number of iterations to three for fairness.

• Adaptive SSR (SSR-Ada, Ours): At the beginning of each round, SSR-Ada first applies
Self-Refine. If unreliable steps are identified with non-perfect scores, refinement proceeds via
this efficient route. Otherwise (if Self-Refine fails or is overconfident), the method falls back to
the full Socratic refinement.

• SSR with Plan Refinement (SSR-Plan, Ours): Extends SSR-Ada by adding a preliminary
plan refinement stage before iterative refinement.

Shared LLM Configuration. For GPT-4.1-nano, we set the maximum token length to 16,384
and temperature to 0.6. For GPT-5-mini, we set the maximum completion length to 16,384 and
temperature to 1.0. For Gemini-2.5-Flash, we set the maximum completion length to 32,768
and temperature to 0.6.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C.3 PROMPT TEMPLATES

This subsection presents the prompt templates used for the baselines and our SSR. The templates
are identical for both mathematical and logical reasoning, except for a role specification: “you are a
precise math problem solver” versus “you are a precise logical reasoning problem solver.”

• CoT: uses Chain-of-Thought;
• Self-Refine: uses Verification and Refine (Normal);
• MCTSr: uses Verification and Refine (Normal);
• AoT: uses Decompose (AoT), Contract (AoT), and Ensemble;
• SSR: uses Decompose (SSR, Ours), Solve Sub-Question (SSR, Ours), Confidence Estimate

(SSR, Ours), Reflection (SSR, Ours), and Refine (SSR, Ours).

Chain-of-Thought

You are a precise math problem solver. Solve the given math problem step by step:

QUESTION: {question}

Please extend your chain of thought as much as possible; the longer the chain of thought, the
better.

You can freely reason in your response, but please enclose the final answer within <an-
swer></answer> tags (pure number without units and explanations).

Verification

Please act as an impartial judge and evaluate the correctness of the response provided by an AI
assistant to the user prompt displayed below. You will be given the assistant’s response.

When evaluating the assistant’s response, identify any mistakes or inaccurate information.
Be as objective as possible. Avoid any biases, such as order of responses, length, or stylistic
elements like formatting.

Before providing an your final verdict, think through the judging process and output your
thoughts as an explanation.

After providing your explanation, you must output a score of scale 0 to 5, where 0 represents you
are completely certain that the response is incorrect and 5 represents you are completelycertain
that the response is correct. Please enclose your score in <answer> and </answer> tags.
<|User Prompt|>
{question}
<|The Start of Assistant’s Answer|>
{response}
<|The End of Assistant’s Answer|>

Refine (Normal)

You are a precise math problem solver. Refine the provided solution to the given math problem,
step-by-step, by meticulously addressing the judge’s feedback (whose score is enclosed within
<answer></answer> tags).

QUESTION: {question}
ORIGINAL SOLUTION: {original_cot_response}
JUDGE RESPONSE: {judge_response}

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Your task is to re-evaluate the original reasoning, identify where it went wrong based on the
judge’s comments, which should be enclosed within <evaluation></evaluation> tags; after that,
construct a new, corrected chain of thought. Explain each step thoroughly. The more detailed
and explicit your reasoning, the better.

You can freely reason in your response, but please enclose the final, numerical answer within
<answer></answer> tags (pure number only, without units or explanations).

Decompose (AoT)

You are tasked with breaking down a math problem’s reasoning process into a series of
sub-questions.

Original Question: {question}
Complete Reasoning Process: {trajectory}

Instructions:
• Break down the reasoning process into a series of sub-questions.
• Each sub-question should:

– Be written in a clear, interrogative form.
– Be precise, unambiguous, and directly answerable from the provided reasoning or

prior sub-question answers.
– Have a clear, **exact expression** as its answer (e.g., use fractions like ‘1/3‘, sym-

bolic representations like ‘pi‘, or precise numerical values such as ‘1.0‘). **Crucially,
avoid approximations or rounding** unless the original question explicitly requires
it.

– List the 0-based indexes of other sub-questions it depends on. This list can be empty
if no prior sub-question answers are needed.

• Dependencies are defined as information necessary to answer the current sub-question
that:

– Does NOT come directly from the original question.
– MUST come from the answers of previous sub-questions.

• **Stop generating sub-questions once the final answer to the Original Question has been
fully derived from the reasoning process.** Do not include any subsequent or irrelevant
steps that do not directly contribute to reaching the final answer.

Format your response as the following JSON object:

{{
"sub-questions": [

{{
"description": "<clear, precise interrogative question>",
"answer": <exact expression of the answer>,
"depend": [<indices of prerequisite sub-questions>]

}},
...

],
"answer": {answer}

}}

Contract (AoT)

You are a math problem solver specializing in optimizing step-by-step reasoning processes.
Your task is to optimize the existing reasoning trajectory into a more efficient, single
self-contained question.

For the original question: {question}

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Here are step-by-step reasoning process:
{response}

{sub_questions}
Here are explanations of key concepts:

• self-contained: The optimized question must be solvable independently, without relying
on any external information

• efficient: The optimized question must be simpler than the original, requiring fewer reason-
ing steps (these steps are reduced because some solved independent sub-problems become
known conditions in the optimized question or are excluded as incorrect explorations)

You can freely reason in your response, but please enclose the your optimized question within
<question></question> tags.

Decompose (SSR, Ours)

You are tasked with breaking down a math problem’s reasoning process into a series of
atomic sub-questions.

Original Question: {question}
Complete Reasoning Process: {trajectory}

Instructions:
• Break down the reasoning process into a series of sub-questions.
• Each sub-question should:

– Be written in a clear, interrogative form.
– Be precise, unambiguous, and directly answerable from the provided reasoning or

prior sub-question answers.
– Have a clear, **exact expression** as its answer (e.g., use fractions like ‘1/3‘, sym-

bolic representations like ‘pi‘, or precise numerical values such as ‘1.0‘). **Crucially,
avoid approximations or rounding** unless the original question explicitly requires
it.

– List the 0-based indexes of other sub-questions it depends on. This list can be empty
if no prior sub-question answers are needed.

• **Stop generating sub-questions once the final answer to the Original Question has been
fully derived from the reasoning process.** Do not include any subsequent or irrelevant
steps that do not directly contribute to reaching the final answer.

• The sub-question, sub-answer pairs should perfectly represent the reasoning process of
the solution.

Format your response as the following JSON object:

{{
"sub-questions": [

{{
"description": "<clear, precise interrogative question>",
"answer": <exact expression of the answer>,

}},
...

],
"answer": {answer}

}}

Solve Sub-Question (SSR, Ours)

You are a precise math problem solver. Given the original question and the series of
sub-questions and their answers which perfectly represent the reasoning process of the solution,
think step by step and answer the next sub-question. Do not extend the reasoning process

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

beyond this sub-question and enclose the answer within <answer></answer> tags.

Original question:
{question}

The series of sub-questions and their answers:
{socratic_reasoning_trajectory}

The next sub-question to be answered:
{next_sub_question}

Confidence Estimate (SSR, Ours)

You are a math expert. Given the a math expression as the prediction and a list of reference
answers, determine the confidence of the prediction.

The prediction is:
{prediction}

The reference answers are:
{answers}

Please answer with a number of scale 0 to 5 that represents the confidence of the prediction.
0 means the prediction does not match any of the reference answers. 5 means the prediction
matches the reference answers perfectly. If you cannot determine the confidence, please answer
with -1. Enclose the answer within <answer></answer> tags.

Reflection (SSR, Ours)

Wait, in the sub-step of "{wrong_question}", the answer is "{wrong_answer}", but after
careful re-evaluating the process, I think that the actual answer to this sub-question should be
"{revised_answer}".

Refine (SSR, Ours)

{cot_instruction}

{cot_reasoning_trace}

{reflection}

Let’s re-evaluate the reasoning process based on your reflection. Enclose it within <evalua-
tion></evaluation> tags. After that, let’s reasoning step by step again to solve the original
question. This time, you should address the specific issue identified in your own re-evaluation.
Finally,enclose the final answer within <answer></answer> tags."

Ensemble

You are a precise math problem solver. Compare then synthesize the best answer from multiple
solutions to solve the following question.

QUESTION: {question}

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

SOLUTIONS:
{solutions}

Please extend your chain of thought as much as possible; the longer the chain of thought, the
better.

You can freely reason in your response, but please enclose the final answer within <an-
swer></answer> tags (pure number without units and explanations).

D ADDITIONAL EXPERIMENTAL RESULTS

Appendix D.1 reports additional results on a strong model, Gemini-2.5-Flash. Appendix D.2
provides further experiments on both sequential and parallel test-time scaling. Appendix D.3 presents
results using SSR as an LLM judge, offering deeper insights into its underlying mechanism. Finally,
Appendix D.4 includes qualitative examples that illustrate the behavior of SSR in practice.

D.1 ADDITIONAL RESULTS OF GEMINI-2.5-FLASH

Table 5: Performance of Iterative Refinement-Based Reasoning Methods. LR-Acc: Last-round
refinement’s accuracy, yielded by 10 repeated experiments; Pass@K: Pass-at-K refinements’ accuracy
(at lease one of K iterations gets the answer correct). LR-Maj@5: Last-round refinement’s accuracy
of majority voting with 5 samples in parallel, yielded by 50 repeated experiments. Boldface and
underlining denote the best and the second-best performance, respectively.

Method
AIME24 AIME25 Zebra-Puzzle

LR-Acc Pass@K LR-Maj@5 LR-Acc Pass@K LR-Maj@5 LR-Acc Pass@K LR-Maj@5

Gemini-2.5-Flash

CoT 81.85±2.77 - 85.60±1.55 68.00±4.52 - 72.47±3.99 67.44±1.89 - 76.12±1.92

Self-Refine 82.96±3.67 87.41±3.05 88.87±2.46 76.33±7.06 81.00±4.23 84.60±2.48 75.25±2.95 77.00±3.32 88.98±1.49

MCTSr 83.00±4.07 - 86.67±2.31 70.95±7.50 - 77.73±2.78 75.60±2.94 - 85.68±1.91

AoT 81.67±1.67 85.33±2.21 86.13±2.86 70.74±5.62 75.19±6.50 78.40±2.60 54.71±3.49 86.14±1.88 65.74±2.39

SSR-Lin (Ours) 86.30±3.99 90.37±4.29 90.93±2.98 79.26±4.66 83.33±4.16 88.47±3.14 87.62±2.18 89.75±2.54 92.30±1.36
SSR-Ada (Ours) 82.50±4.00 87.50±3.23 88.33±1.67 76.30±6.37 84.44±4.71 87.27±2.72 87.14±1.96 89.00±1.69 91.86±1.30

SSR-Plan (Ours) 84.17±4.00 89.17±3.63 89.67±1.00 78.00±6.00 84.00±4.42 86.73±3.16 86.50±2.69 89.00±2.50 92.06±1.39

We further report results of applying SSR to a stronger model, Gemini-2.5-Flash, from a
different model family (Comanici et al., 2025). Owing to its exceptionally strong mathematical and
logical reasoning ability, two benchmarks used in the main body (MATH-Level-5 and Mini-Sudoku)
are no longer suitable for differentiating framework performance, as naive CoT already solves nearly
all questions correctly. Therefore, we report results only on the remaining three datasets, following
the same evaluation protocols described in Sec. 4.

When applied to the stronger Gemini-2.5-Flash model, our SSR variants continue to demon-
strate consistent improvements over baseline iterative refinement methods. On AIME24 and AIME25,
SSR-Lin achieves the highest LR-Acc and LR-Maj@5, while SSR-Ada and SSR-Plan deliver highly
competitive results, particularly in terms of Pass@K, reflecting their ability to exploit refinement
opportunities even when the base model is already very strong. The gains are especially notable
on AIME25, where SSR-Ada substantially outperforms all baselines in both LR-Acc and Pass@K,
indicating the effectiveness of adaptively switching between efficient self-refinement and more costly
Socratic refinement. On Zebra-Puzzle, all three variants of SSR surpass or match the best-performing
baselines, with SSR-Lin again delivering the strongest overall results. These findings confirm that
even for a state-of-the-art reasoning model like Gemini-2.5-Flash, our refinement strategies
provide additional benefits, reinforcing their generality and scalability across model families and task
types.

D.2 ADDITIONAL RESULTS OF TEST-TIME SCALING AT LARGER SCALE

Applying iterative refinement, even for a single round, inevitably increases computation and latency
at test time. Thus, comparisons restricted to a fixed number of iterations, as in Sec. 4.4, may be unfair

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

100 101 102 103

#Parallel Samples

30

40

50

60

70

80

Ac
cu

ra
cy

 (%
)

10 1 100 101 102

log [Cost ($)]

CoT (Maj@N)

Self-Refine (Maj@N)
Self-Refine (WBoN)

SSR-Plan (Maj@N, Ours)
SSR-Plan (WBoN, Ours)

Figure 4: Performance of Parallel Test-Time Scaling, evaluated on AIME25 with GPT-5-mini
low-reasoning low-verbosity mode. Iterative refinement (both Self-Refine (Madaan et al., 2023)
and our SSR) holds non-trivial advantage against CoT (Wei et al., 2022b) in terms of absolute
performance and budget control. Our SSR outperforms the baselines under the same budget, with
SSR’s confidence estimation playing a crucial role.

0 5 10 15 20 25 30
#Iterations

30

40

50

60

70

Ac
cu

ra
cy

 (%
)

0 1 2 3 4 5 6
Cost ($)

Self-Refine SSR-Plan (Ours)

Figure 5: Performance of Iterative Test-Time Scaling, evaluated on AIME25 with GPT-5-mini
low-reasoning low-verbosity mode.

or incomplete. To more fairly assess efficiency, we examine the test-time scaling behavior of our
SSR relative to baselines under comparable computational cost. The results are presented in Fig. 4
(parallel scaling) and Fig. 5 (sequential scaling).

In the parallel scaling setting (Fig. 4), both Self-Refine and our SSR substantially outperform vanilla
CoT across all compute budgets, confirming that iterative refinement provides clear gains when
additional samples are available. Importantly, our SSR consistently yields higher accuracy than
Self-Refine under the same budget, demonstrating that confidence-aware step selection and plan
refinement lead to more efficient use of compute. In the sequential scaling setting (Fig. 5), a similar
trend emerges: while performance plateaus quickly for Self-Refine, SSR continues to improve
steadily with additional iterations, particularly in the early- to mid-cost regime. This suggests that
SSR better leverages iterative opportunities, correcting errors that Self-Refine either overlooks or
misjudges. Taken together, these results demonstrate that SSR not only provides stronger single-
iteration performance but also scales more effectively under increased compute, striking a favorable
balance between accuracy and cost.

D.3 ADDITIONAL RESULTS OF SSR-AS-A-JUDGE

To better understand the strengths of SSR, we further assess its self-evaluation quality and compare it
with the LLM-as-a-Judge framework (Gu et al., 2024). We evaluate the self-evaluation ability on the
four datasets we use in the main body, and we further include the results on ProcessBench (Zhang
et al., 2025b). For self-evaluation, due to the smaller dataset sizes of AIME24 and AIME25, we
sample 100 parallel reasoning traces per question, yielding datasets of 3,000 examples each. For
logical reasoning, we sample 10 traces per question, resulting in datasets of 1,000 examples each.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

AUROC (%)

Precision* (%)Recall* (%)

AUROC (%)

20
40

60
80

100

AIME 24
AUROC (%)

Precision* (%)Recall* (%)

AUROC (%)

20
40

60
80

100

AIME 25
AUROC (%)

Precision* (%)Recall* (%)

AUROC (%)

20
40

60
80

100

Zebra Puzzles
AUROC (%)

Precision* (%)Recall* (%)

AUROC (%)

20
40

60
80

100

Mini Sudoku

LLM-as-a-Judge SSR-as-a-Judge (Min) SSR-as-a-Judge (Mean-Log) SSR-as-a-Judge (Adaptive)

Figure 6: Self-Evaluation Performance of SSR-as-a-Judge and LLM-as-a-Judge, evaluated with
GPT-5-mini.

AUROC (%)

Precision* (%)Recall* (%)

AUROC (%)

20
40

60
80

100

GSM8K
AUROC (%)

Precision* (%)Recall* (%)

AUROC (%)

20
40

60
80

100

MATH
AUROC (%)

Precision* (%)Recall* (%)

AUROC (%)

20
40

60
80

100

OlympiadBench
AUROC (%)

Precision* (%)Recall* (%)

AUROC (%)

20
40

60
80

100

OmniMATH

LLM-as-a-Judge SSR-as-a-Judge (Min) SSR-as-a-Judge (Mean-Log) SSR-as-a-Judge (Adaptive)

Figure 7: Performance of SSR-as-a-Judge and LLM-as-a-Judge, evaluated on Process-
Bench (Zhang et al., 2025b), with GPT-4.1-nano.

In the LLM-as-a-Judge setting, the model is prompted to provide both feedback and a confidence
score on a 0–5 scale. For SSR, we perform a single iteration of Socratic step decomposition and
confidence estimation of each step. All experiments run with GPT-5-mini low-reasoning low-
verbosity mode. Since SSR produces step-level confidence scores CT = {ct}t∈[T] for the Socratic
steps ST = {st}t∈[T], these must be aggregated into a single score to represent overall response
quality. We show the result of (i) Min (min{ct}t∈[T]), the weakest step confidence; (ii) Mean-
Log (1

T

∑T
t=1 log ct), a length-normalized version inspired by confidence and uncertainty estimation

in sequence modeling (Zhang et al., 2025a); and (iii) SSR-Ada with Mean.

We formulate the evaluation of a judge’s ability as a problem of incorrect reasoning trace detection,
where incorrect responses are labeled as positives. We report three correlation-based metrics: Area
Under the Receiver Operating Characteristic Curve (AUROC), Precision∗ and Recall∗ at the optimal
classification threshold (Hanley & McNeil, 1982; Boyd et al., 2013; Farquhar et al., 2024; Ye et al.,
2025; Zhang et al., 2025a), which together measure how well confidence scores distinguish between
correct and incorrect responses.

The results are shown in Fig. 6 and Fig. 7. Somewhat unexpectedly, across most evaluation metrics,
the judging ability of SSR does not surpass the basic LLM-as-a-Judge. This is evident in consistently
lower AUROC, suggesting that the confidence scores produced by SSR contain more noise and
thus yield less balanced evaluations. Why, then, does SSR still outperform baselines as an iterative
refinement framework? As illustrated in Fig. 6, the key lies in its complementary role to Self-Refine.
While SSR lags behind LLM-as-a-Judge in AUROC„ it consistently achieves much higher recall of
incorrect reasoning traces, particularly on logical reasoning benchmarks such as Zebra Puzzle and
Mini-Sudoku. This broader coverage allows SSR to catch errors that Self-Refine often misses, even
if it introduces additional noise. The mechanism behind SSR-Ada can thus be understood as three
cascading factors:

• High precision of LLM-as-a-Judge: when used in Self-Refine, it reliably identifies problem-
atic reasoning traces, but often misses a large portion of incorrect ones.

• High coverage of SSR: it captures and provides useful signals for truly problematic steps in
reasoning, though at the cost of introducing some unreliable feedback for feedback.

• Inherent robustness of LLMs: during refinement, LLMs can withstand noisy refinement
feedback, serving as a safeguard that enables recovery and improvement despite occasional
errors.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

D.4 QUALITATIVE ANALYSIS

In this section, we present a concrete example to illustrate how SSR performs step-level verification
and refinement. The example is taken from a MATH-Level-5 question, with GPT-4.1-nano
serving as the backbone LLM. The results are shown in Fig. 8-14.

The qualitative example illustrates how SSR intervenes within the reasoning process rather than only
at the final output. By decomposing reasoning into Socratic steps, estimating step-level confidence,
and selectively refining weak points, SSR prevents local errors from propagating through the reasoning
trace. Compared to standard Self-Refine, which often produces brittle trajectories, SSR provides
interpretable and controllable corrections that lead to more reliable outcomes. These case studies
complement our quantitative results and highlight the practical value of SSR as a step-level refinement
framework.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

[Chain-of-Thought] (1/3)

Let's carefully analyze the problem step by step:

1. **Understanding the problem:**
 - The highway has exits numbered from 1 to 50.
 - The distance between exit 41 and exit 50 is 100 km.
 - Each exit is at least 6 km from the next exit.
 - We are asked to find the maximum possible distance between exit 47 and exit 48.

2. **Implications of the distance between exit 41 and exit 50:**
 - Since the exits are numbered consecutively, and the distance from exit 41 to exit 50 is 100 km, this involves 9
segments:
 - From exit 41 to 42
 - 42 to 43
 - 43 to 44
 - 44 to 45
 - 45 to 46
 - 46 to 47
 - 47 to 48
 - 48 to 49
 - 49 to 50
 - The total of these 9 segments is 100 km.

3. **Constraints on each segment:**
 - Each segment (distance between consecutive exits) is at least 6 km.
 - This means the minimal total distance from exit 41 to exit 50, if all segments are at their minimum, is:
 \[
 9 \times 6 = 54 \text{ km}
 \]
 - But the actual total is 100 km, which is greater than 54 km, so there is some "extra" distance to distribute among
these segments.

4. **Distributing the extra distance:**
 - The total "extra" beyond the minimum is:
 \[
 100 - 54 = 46 \text{ km}
 \]
 - To maximize the distance between exit 47 and exit 48, we want to maximize the length of that specific segment.
 - To do that, we should minimize the distances of all other segments, since the total sum is fixed at 100 km.

[QUESTION]
Exits on a highway are numbered consecutively from 1 to 50. The distance from exit 41 to exit 50 is 100 km. If each exit
is at least 6 km from the next exit, what is the longest possible distance, in kilometers, between exit 47 and exit 48?

[GROUNDTRUTH]
52

Figure 8: Qualitative Result, Concrete Example (1/7): Chain-of-Thought Response (1/3).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

[Chain-of-Thought] (2/3)

5. **Minimizing other segments:**

 - For segments other than 47-48, assign the minimum of 6 km each.

 - The segments before exit 47 are:

 - 41-42

 - 42-43

 - 43-44

 - 44-45

 - 45-46

 - There are 5 such segments, each at 6 km:

 \[

 5 \times 6 = 30 \text{ km}

 \]

 - The remaining segments are:

 - 47-48

 - 48-49

 - 49-50

[QUESTION]
Exits on a highway are numbered consecutively from 1 to 50. The distance from exit 41 to exit 50 is 100 km. If each exit
is at least 6 km from the next exit, what is the longest possible distance, in kilometers, between exit 47 and exit 48?

[GROUNDTRUTH]
52

Figure 9: Qualitative Result, Concrete Example (2/7): Chain-of-Thought Response (2/3).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

[QUESTION]
Exits on a highway are numbered consecutively from 1 to 50. The distance from exit 41 to exit 50 is 100 km. If each exit
is at least 6 km from the next exit, what is the longest possible distance, in kilometers, between exit 47 and exit 48?

[GROUNDTRUTH]
52

[Chain-of-Thought] (2/3)

6. **Calculating the maximum for segment 47-48:**
 - The total distance from exit 41 to 50 is 100 km.
 - The distances of the first 5 segments (41-42 to 45-46) sum to 30 km.
 - The remaining distance for the last 4 segments (including 47-48) is:
 \[
 100 - 30 = 70 \text{ km}
 \]
 - Since 48-49 and 49-50 are also at least 6 km each, we need to consider their minimal contributions:
 - 48-49: at least 6 km
 - 49-50: at least 6 km
 - So, the minimal total for these two segments is:
 \[
 2 \times 6 = 12 \text{ km}
 \]
 - Therefore, the maximum possible length for 47-48 is when the other two segments (48-49 and 49-50) are at their
minimums:
 \[
 \text{Distance of 47-48} = 70 - 12 = 58 \text{ km}
 \]
 - This is because the total for the last 4 segments is 70 km, allocated as:
 - 47-48: as large as possible
 - 48-49: 6 km (minimum)
 - 49-50: 6 km (minimum)
 - The remaining 70 - 6 - 6 = 58 km can be assigned to 47-48.

7. **Conclusion:**
 - The maximum possible distance between exit 47 and exit 48 is 58 km.

Final step:

- Since this calculation is based on assigning the minimal distances to other segments (except 47 -48), and
respecting the minimum segment length of 6 km, this setup is feasible.

Therefore, the longest possible distance between exit 47 and exit 48 is 58 km.

<answer>58</answer>

Figure 10: Qualitative Result, Concrete Example (3/7): Chain-of-Thought Response (3/3).

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

[QUESTION]
Exits on a highway are numbered consecutively from 1 to 50. The distance from exit 41 to exit 50 is 100 km. If each exit
is at least 6 km from the next exit, what is the longest possible distance, in kilometers, between exit 47 and exit 48?

[GROUNDTRUTH]
52

[Self-Refine]

<evaluation>In the original solution, the key mistake was in the calculation of the maximum possible distance
between exit 47 and exit 48. The initial approach correctly identified that to maximize this gap, the distances from exit
41 to 47 should be minimized (each at 6 km), and the distances from exit 48 to 50 should also be minimized (each at
6 km). The remaining segment, from exit 47 to 48, would then be as large as possible, given the total constraint of 100
km from exit 41 to 50.

However, the original calculation failed to account for the scaling necessary to ensure the total distance from exit 41
to exit 50 is exactly 100 km. It also overlooked the fact that the positions were initially considered in an unscaled
coordinate system, leading to an overestimation of the maximum gap.

The key correction is to recognize that the maximum unscaled gap between exits 47 and 48 is 52 km, obtained by
assigning minimal distances (6 km) to the other segments. Then, since the total from exit 41 to 50 is 100 km, the
actual maximum gap is scaled proportionally:

\[
\text{Maximum unscaled gap} = 52 \text{ km}
\]
\[
\text{Scaling factor} = \frac{100}{106}
\]

Multiplying these gives the true maximum:

\[
52 \times \frac{100}{106} = \frac{5200}{106} = \frac{2600}{53}
\]

Thus, the corrected maximum possible distance between exit 47 and exit 48 is \(\frac{2600}{53}\) km, approximately
49.06 km.

The initial answer of 58 km was overestimated because it did not properly incorporate the scaling factor to match the
total distance constraint.</evaluation>

<answer>2600/53</answer>

Figure 11: Qualitative Result, Concrete Example (4/7): Self-Refine.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

[QUESTION]
Exits on a highway are numbered consecutively from 1 to 50. The distance from exit 41 to exit 50 is 100 km. If each exit
is at least 6 km from the next exit, what is the longest possible distance, in kilometers, between exit 47 and exit 48?

[GROUNDTRUTH]
52

[Socratic Self-Refine (Ours)] (1/3)

[
 {
 "question": "How many segments are there between exit 41 and exit 50?",

"answer": 9,
 "reference set": [
 "There are 9 segments between exit 41 and exit 50.",
 "There are 9 segments between exit 41 and exit 50.",
 "9",
 "NA",
 "NA"
],
 "confidence": 4
 },
 {
 "question": "What is the minimal total distance if each of these 9 segments is exactly 6 km?",
 "answer": 54,
 " reference set ": [
 "54 km",
 "54 km",
 "54 km",
 "54 km",
 "54 km"
],
 "confidence": 5
 },
 {
 "question": "What is the total extra distance beyond the minimal total distance of 54 km, given that the actual
distance from exit 41 to exit 50 is 100 km?",
 "answer": 46,
 "reference set ": [
 "100 km - 54 km = 46 km",
 "100 km - 54 km = 46 km",
 "100 km - 54 km = 46 km",
 "100 km - 54 km = 46 km",
 "100 km - 54 km = 46 km"
],
 "confidence": 5
 },

Figure 12: Qualitative Result, Concrete Example (5/7): Socratic Self-Refine (SSR, Ours) (1/3).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

[QUESTION]
Exits on a highway are numbered consecutively from 1 to 50. The distance from exit 41 to exit 50 is 100 km. If each exit
is at least 6 km from the next exit, what is the longest possible distance, in kilometers, between exit 47 and exit 48?

[GROUNDTRUTH]
52

[Socratic Self-Refine (Ours)] (2/3)

 {
 "question": "How many segments are there between exit 41 and exit 50, and which segments are they?",
 "answer": "Between exits 41-42, 42-43, 43-44, 44-45, 45-46, 46-47, 47-48, 48-49, 49-50",
 "reference set ": [
 "There are 9 segments between exit 41 and exit 50, corresponding to the intervals between each pair of
consecutive exits: from exit 41 to 42, 42 to 43, 43 to 44, 44 to 45, 45 to 46, 46 to 47, 47 to 48, 48 to 49, and 49 to 50.",
 "There are 9 segments between exit 41 and exit 50, corresponding to the intervals between each pair of
consecutive exits from 41 to 50. These segments are:\n1. Between exit 41 and exit 42\n2. Between exit 42 and exit
43\n3. Between exit 43 and exit 44\n4. Between exit 44 and exit 45\n5. Between exit 45 and exit 46\n6. Between exit
46 and exit 47\n7. Between exit 47 and exit 48\n8. Between exit 48 and exit 49\n9. Between exit 49 and exit 50",
 "There are 9 segments between exit 41 and exit 50, corresponding to the intervals between each consecutive pair
of exits from 41 to 50. Specifically, these segments are: \n1. between exit 41 and exit 42 \n2. between exit 42 and
exit 43 \n3. between exit 43 and exit 44 \n4. between exit 44 and exit 45 \n5. between exit 45 and exit 46 \n6.
between exit 46 and exit 47 \n7. between exit 47 and exit 48 \n8. between exit 48 and exit 49 \n9. between exit 49
and exit 50",
 "There are 9 segments between exit 41 and exit 50, corresponding to the intervals between each pair of
consecutive exits: from exit 41 to 42, 42 to 43, 43 to 44, 44 to 45, 45 to 46, 46 to 47, 47 to 48, 48 to 49, and 49 to 50.",
 "There are 9 segments between exit 41 and exit 50, corresponding to the intervals between each pair of
consecutive exits: from exit 41 to 42, 42 to 43, 43 to 44, 44 to 45, 45 to 46, 46 to 47, 47 to 48, 48 to 49, and 49 to 50."
],
 "confidence": 4
 },
 {
 "question": "If all segments except the one between exits 47 and 48 are set to their minimal length of 6 km, what is
the total length of these other segments?",
 "answer": 8,
 "reference set ": [
 "48 km",
 "48 km",
 "48 km",
 "48 km",
 "48 km"
],
 "confidence": 0
 },

Figure 13: Qualitative Result, Concrete Example (6/7): Socratic Self-Refine (SSR, Ours) (2/3).

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

[QUESTION]
Exits on a highway are numbered consecutively from 1 to 50. The distance from exit 41 to exit 50 is 100 km. If each exit
is at least 6 km from the next exit, what is the longest possible distance, in kilometers, between exit 47 and exit 48?

[GROUNDTRUTH]
52

[Socratic Self-Refine (Ours)] (3/3)

{
 "question": "What is the maximum possible length of the segment between exits 47 and 48, given the total distance
of 100 km and the minimal lengths of other segments?",
 "answer": 52,
 "reference set ": [
 "38",
 "46 km",
 "52 km",
 "52 km",
 "52"
],
 "confidence": 4
 }
]

<evaluation>\nUpon re-examination, I realize that I miscounted the number of segments between exits 41 and 50.
There are 9 segments connecting these 10 exits, not 8. Specifically, the segments are:\n\n41-42, 42-43, 43-44, 44-45,
45-46, 46-47, 47-48, 48-49, 49-50.\n\nIn the previous reasoning, I mistakenly considered only 8 segments when fixing
distances at 6 km, excluding the segment between 47 and 48. To maximize the distance between exits 47 and 48, I
should set all other segments to their minimal length of 6 km, which is 8 segments (excluding the one between 47
and 48). But actually, there are 9 segments total, and only one of them is between 47 and 48.\n\nTherefore, the
correct approach is:\n\n- Fix all other segments (except 47-48) at 6 km.\n- Sum these fixed segments:\n \n There are
8 other segments besides 47-48 (from 41-42 up to 46-47, and from 48-49 up to 49-50), totaling 8 segments.\n\n- Sum
of these fixed segments: \\(8 \\times 6 = 48\\) km.\n\n- Total distance from 41 to 50 is 100 km; thus, the length of the
segment between 47 and 48 can be:\n\n \\[\n 100 - 48 = 52 \\text{ km}\n \\]\n\nThis confirms that the maximum
distance between exit 47 and exit 48 is **52 km**.\n\nThe initial miscount was in the number of segments fixed at
minimal length, but after correction, the reasoning aligns with the previous conclusion.\n\n</evaluation>\n\nNow,
let's proceed with the step-by-step reasoning again, explicitly addressing the count of segments:\n\n---\n\n### Step
1: Count the total segments between exits 41 and 50\n\n- The exits are numbered 41, 42, 43, 44, 45, 46, 47, 48, 49,
50.\n- The segments are:\n\n 41-42, 42-43, 43-44, 44-45, 45-46, 46-47, 47-48, 48-49, 49-50.\n\n- Total of **9
segments**.\n\n---\n\n### Step 2: Understand the goal\n\n- The total distance from exit 41 to exit 50 is 100 km.\n-
Each segment is at least 6 km.\n- To maximize the distance between exit 47 and exit 48, set all other segments to
their minimum length (6 km), except the segment between 47 and 48, which we want to maximize.\n\n---\n\n###
Step 3: Fix other segments at minimal length\n\n- The segments fixed at minimum length (6 km):\n\n 41-42, 42-43,
43-44, 44-45, 45-46, 48-49, 49-50.\n\n- Count how many segments are fixed at 6 km:\n\n From 41-42 to 46-47: 6
segments (41-42, 42-43, 43-44, 44-45, 45-46, 46-47).\n\n From 48-49 to 49-50: 2 segments.\n\n- Total fixed
segments: **8**.\n\n- Sum of fixed segments: \\(8 \\times 6 = 48\\) km.\n\n---\n\n### Step 4: Calculate the
maximum possible distance for the segment 47-48\n\n- Total distance from 41 to 50: 100 km.\n- Sum of fixed
segments: 48 km.\n- Remaining distance for the segment between 47 and 48:\n\n \\[\n 100 - 48 = 52 \\text{ km}\n
\\]\n\n- This is feasible because the segment length is at least 6 km and can be extended up to 52 km.\n\n---\n\n###
Final conclusion:\n\nThe maximum possible distance between exit 47 and exit 48 is **52 km**.\n\n---\n\n###
Final answer:\n\n<answer>52</answer>"

Figure 14: Qualitative Result, Concrete Example (7/7): Socratic Self-Refine (SSR, Ours) (3/3).

30

	Introduction
	Related Work
	Socratic Self-Refine (SSR)
	LLM Reasoning as Socratic Process
	Socratic Self-Refine (SSR): Decomposition, Verification, and Refinement
	SSR Deployment: Better Efficiency and Beyond Step-Level Refinement

	Experiments
	Settings
	SSR's Step-Level Verification Leads to Consistent Performance Gains
	Analysis: SSR Context Management
	Analysis: Test-Time Scaling of SSR

	Conclusion
	LLM Usage Disclosure
	Algorithm
	Implementation Details
	Datasets
	Baselines and Our SSR
	Prompt Templates

	Additional Experimental Results
	Additional Results of Gemini-2.5-Flash
	Additional Results of Test-Time Scaling at Larger Scale
	Additional Results of SSR-as-a-Judge
	Qualitative Analysis

