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ABSTRACT

Large Language Models (LLMs) have demonstrated remarkable reasoning abilities,
yet existing test-time frameworks often rely on coarse self-verification and self-
correction, limiting their effectiveness on complex tasks. In this paper, we propose
Socratic Self-Refine (SSR), a novel framework for fine-grained evaluation and
precise refinement of LLM reasoning. Our proposed SSR decomposes model
responses into verifiable (sub-question, sub-answer) pairs, enabling step-level
confidence estimation through controlled re-solving and self-consistency checks.
By pinpointing unreliable steps and iteratively refining them, SSR produces more
accurate and interpretable reasoning chains. Empirical results across five reasoning
benchmarks and three LLMs show that SSR consistently outperforms state-of-the-
art iterative self-refinement baselines. Beyond performance gains, SSR provides
a principled black-box approach for evaluating and understanding the internal
reasoning processes of LLMs.
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Figure 1: Test-Time Parallel Scaling Performance (Left) and Conceptual Overview (Right)
of our proposed Socratic Self-Refine (SSR). By decomposing responses into Socratic steps, re-
evaluating intermediate results through self-consistency, and refining specific step-level errors, SSR
achieves substantially higher initial accuracy (~67.57 % relative improvement) and continues to
scale effectively even when standard Chain-of-Thought (CoT) begins to saturate. Notably, this
performance advantage holds under comparable computational cost. Experiments are conducted with
GPT-5-mini in low-reasoning, low-verbosity mode.

1 INTRODUCTION

Large Language Models (LLMs) have rapidly advanced the frontier of machine reasoning, demonstrat-
ing impressive performance across domains ranging from mathematical problem solving to complex
logical inference (Wei et al., 2022a; Wang et al., 2022; Chung et al., 2024; Guo et al., 2025; Ke et al.,
2025). Central to these capabilities is the paradigm of reasoning with explicit intermediate steps,
often instantiated through chain-of-thought (CoT) prompting (Wei et al., 2022b). By externalizing
reasoning traces, CoT enables models to articulate their latent decision-making process, offering
both interpretability and opportunities for iterative improvement (Madaan et al., 2023). Despite these
strengths, the reasoning traces generated by LLMs remain prone to cascading errors: a single flawed
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step can propagate downstream, leading to incorrect or incoherent final answers (Wu et al., 2025;
You et al., 2025). This vulnerability raises pressing questions about how to reliably evaluate, refine,
and searching for better multi-step reasoning at test time.

Existing frameworks have sought to address these challenges largely fall into two paradigms: sample
selection with self-verification and self-refinement. Sample selection with self-verification, aims to
assess response reliability by assigning confidence scores to completed reasoning traces either by
LLM-as-a-Judge (Gu et al., 2024), or a specific ranking model (Snell et al., 2024), and then through
multiple sampling and selection improves the final answer reliability (Zheng et al., 2023b; Chen
et al., 2025). While these approaches can identify low-quality outputs, they often operate at a coarse
granularity, overlooking subtle step-level errors embedded within long derivations (Fang et al., 2025).
Self-refinement methods, by contrast, encourage LLMs to iteratively critique and revise their own
responses (Madaan et al., 2023; Zhang et al., 2024; Bi et al., 2024). Although such frameworks have
yielded measurable gains, their reliance on holistic self-feedback frequently limits their ability to
pinpoint and correct specific erroneous steps. As a result, both paradigms struggle to provide robust
and interpretable error correction in complex reasoning tasks.

In this paper, we propose Socratic Self-Refine (SSR), a novel framework designed to overcome
these limitations by introducing fine-grained, step-level evaluation and targeted refinement of LLM
reasoning. SSR reformulates the reasoning process into a sequence of verifiable (sub-question,
sub-answer) pairs, which we refer to as Socratic steps. This decomposition enables precise confidence
estimation through controlled re-solving and self-consistency checks at the step level. Unreliable
steps are selectively refined, allowing the model to fix errors without depending on vague feedback.
By iteratively applying this process, SSR improves both the accuracy and interpretability of LLM
reasoning, offering a principled black-box approach to evaluating and refining model behavior.

Empirical results across 5 reasoning tasks (3 mathematical and 2 logical) and multiple state-of-the-art
LLMs demonstrate that SSR consistently outperforms baseline self-refinement methods. Beyond raw
accuracy gains, our analysis shows that SSR yields more reliable refinement trajectories, particularly
when combined with plan-level adjustments or adaptive gating mechanisms. These findings highlight
the importance of explicit step-level verification in building trustworthy LLM reasoning systems.
More broadly, SSR represents a step toward interpretable and controllable test-time reasoning,
bridging the gap between coarse-grained judgment and fine-grained error correction. To summarize,
our contributions are:

* We propose a novel framework, Socratic Self-Refine (SSR), that allows more fine-grained con-
fidence estimation and precise error control over decomposed reasoning steps. By formulating
reasoning as a sequence of (sub-question, sub-answer) pairs, SSR overcomes the limitations of
existing holistic self-refinement methods.

* We empirically validate SSR on 5 reasoning tasks using two state-of-the-art models, demon-
strating that it consistently outperforms existing self-refine-based baselines.

¢ Our SSR introduces a mechanism for eliciting the model’s step-level confidence, by having
the LLM re-solve each sub-question multiple times with explicit context control. Leveraging
self-consistency as a reliable confidence estimate for each step, SSR provides a pioneering
effort in evaluating and interpreting the internal reasoning processes of LLMs.

2 RELATED WORK

Self-Evaluation and Refinement of LLMs. Recent work has introduced both intrinsic and gen-
erative approaches for LLM self-evaluation. On the intrinsic side, uncertainty-based methods
estimate correctness either through consistency, by comparing multiple independently generated
outputs (Kuhn et al., 2023; Manakul et al., 2023), or through statistics derived from the model’s
output distribution (Kang et al., 2025; Fu et al., 2025; Zhang et al., 2025a). On the generative side,
the LLM-as-a-Judge paradigm directly prompts models to evaluate responses, often achieving strong
alignment with human preferences and supporting test-time strategies like abstaining from low-quality
responses or selecting among candidates (Zheng et al., 2023b; Gu et al., 2024; Zhou et al., 2025b;
Ren et al., 2023; Chen et al., 2025; Huang et al., 2025; Zhong et al., 2025; Zhou et al., 2025a). While
limitations such as positional bias (Zheng et al., 2023a; Shi et al., 2024) and a preference for longer
responses (Hu et al., 2024) do exist, both uncertainty-based and judge-based methods remain effective
and have proven valuable for evaluating LLLM outputs. Building on these evaluation techniques, a
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Figure 2: Overview of Socratic Self-Refine (SSR). Block @: Chain-of-Thought (CoT) reasoning,
serves as the starting point for the iterative refinement methods; Block @: Simple Self-Refine,
generates feedback and then refines the original response based on the feedback; Block ®: Plan
refinement, summarizes the high-level plan of a reasoning trace, and refines the plan and the trace if
necessary; Block @-®: Three building blocks of our SSR, includes Socratic decomposition, Socratic
verification, and Socratic refinement. SSR-Lin: Linear SSR, faithfully applies three blocks (®-®) for
K iterations; SSR-Ada: Adaptive SSR, only carries out Socratic blocks (®-®) when the normal Self-
Refine cannot identify any mistakes (¢ = cpnax); SSR-Plan: Adaptive SSR with Plan Refinement,
adds an additional plan refinement round (®) before the full iterative refinement algorithm (®-®).

growing body of work extends beyond verification to self-refinement, where LLMs not only diagnose
weaknesses in their outputs but also iteratively improve them (Madaan et al., 2023). Early efforts
explored direct self-correction based on feedback, while subsequent methods introduced structured
search (Zhang et al., 2024), parallel sampling to enrich candidate diversity (Bi et al., 2024; Chen
et al., 2025), and reformulation strategies that generate improved sub-questions by incorporating
contextual preconditions (Teng et al., 2025). More recent work trains generative verifiers to guide the
refinement process (Zhong et al., 2025). Collectively, these approaches demonstrate that refinement
transforms passive evaluation into an active mechanism for improving reliability, making it a key step
toward controllable and trustworthy reasoning in LLMs.

Process Evaluation of LLMs. Verifying only the final outcome of an LLM is insufficient; ensuring
reliability requires mechanisms that also evaluate the reasoning process itself. Beyond using human
annotations to train process reward models (Lightman et al., 2023; He et al., 2024; Zhang et al.,
2025b), the rapid advancement of model capabilities has motivated a growing set of test-time methods
for step-level verification. These approaches typically decompose the reasoning trace and assess
the correctness of each step to localize errors more accurately (Ling et al., 2023; Zhao et al., 2025;
Mukherjee et al., 2025; Fang et al., 2025). Compared to existing work of process evaluation, our SSR
framework adopts a Socratic formulation of reasoning, representing the process as a sequence of
question—answer pairs (details in Sec. 3). This structure makes the steps straightforward to re-execute
and enables reliable confidence estimation. Crucially, SSR goes beyond verification by producing
informative signals that directly support subsequent refinement.

3 SOCRATIC SELF-REFINE (SSR)

This section introduces our Socratic Self-Refine (SSR). Sec. 3.1 introduces the fundamental as-
sumption that natural-language reasoning can be described as a Socratic process. Sec. 3.2 presents
the core of SSR, including the decomposition into Socratic steps, their verification, and reasoning
refinement guided by Socratic confidence scores. Finally, Sec. 3.3 discusses two techniques for
practical deployment of SSR: plan refinement and adaptive iteration refinement. For details of the
prompt templates introduced in this section, please refer to Appendix C.3.
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Notation. In this paper, scalars are denoted by lowercase letters (x), vectors (or token/word
sequences) by bold lowercase letters (x), random vectors by boldface lowercase letters (x), and
matrices (or sets of tokens, words, or phrases) by bold uppercase letters (X). We denote by
[m] = 1,2,...,m the set of consecutive integers from 1 to m. For consistency, K denotes the total
number of refinement iterations, while (k) indicates the current iteration; when unambiguous, we
omit (k) to reduce clutter. Finally, N is the number of parallel runs used for test-time scaling.

3.1 LLM REASONING AS SOCRATIC PROCESS

Preliminary of LLM Reasoning. For problems with short-form ground-truth answers, LLM
reasoning can be modeled as marginalization over intermediate natural language reasoning traces z
(a sequence of tokens/words) to produce the final answer y (Chen et al., 2024):

roly | ) = / ro(y | 2, z)mo(z | )dz (1)

Chain-of-Thought (CoT) reasoning (Wei et al., 2022b) approximates this integral with a single
sample: the model first generates a reasoning trace z ~ mg(- | «) and then derives the final answer
y ~ 7e(- | z,x). Empirically, allocating more computation to approximate Eqn. | improves
performance. A common strategy is Majority Voting (Maj@N), which averages over multiple
sampled reasoning traces (Wang et al., 2022):

N
7T'g(y | CL‘) ~ % Zn:l 7-‘-G(y | Zn,Il?), Zn ™~ TFQ(Z | :B) (2)

Reasoning as Socratic Process. In this paper, we posit that the reasoning process is implicitly
modeled as a sequence of goal-setting and problem-solving steps; that is, the natural-language
reasoning trace z can be viewed as semantically equivalent to a sequence of question-answer pairs.
Formally, given a query «, we assume that for any reasoning—answer pair (z,y), there exists a
ground-truth decomposition St = (z,y) such that '

St = {s¢ £ (a1, at)}te[T]v 3

where each s; is a Socratic step, ap = y denotes the final answer, and the equivalence St = (z,y)
implies that the oracle probability model p satisfies

p(z,y | ) = p({(a ar) hierm) | ). “
Compared with the purely natural-language reasoning process z, the explicit sequence of Socratic
steps offers clear advantages, most notably, finer-grained modeling and potential control of the
reasoning process, enabling verification and intervention. This explicit modeling lies at the heart of
our proposed method, Socratic Self-Refine (SSR), which we detail in Sec. 3.2.

3.2 SOCRATIC SELF-REFINE (SSR): DECOMPOSITION, VERIFICATION, AND REFINEMENT

From Entangled Reasoning to Explicit Socratic Process. Under the assumption of Eqn. 4, our
goal is to recover the full Socratic process St from the natural-language reasoning trace z. Since no
prior work explicitly models this process, and the oracle posterior p(St | «, y, z) is unavailable, we
adopt a zero-shot prompting approach with LLMs to decompose z into the Socratic process St:

ST NT(G(' | $7y7z7mdec) %p( | 137972)7 (5)
where x4, denotes a decomposition query that prompts the LLM to extract a sequence of sub-
questions and their corresponding sub-answers. Leveraging prior work on LLM-based summarization
and information extraction (Van Veen et al., 2024), this decomposition can be performed reliably
with relatively little overhead.

LLM Self-Verification on Socratic Steps. We now leverage the reformulation of the original
reasoning trace z into the Socratic process St to enable LLM self-verification. The joint probability
distribution of St can be factorized into a product of conditional probabilities:
T
mo(St | ) = mo({(at, at) ey | T) = H 7o(q: | {si}i<t, ) -mo(ai | i, {si}i<t, ), (6)

t=1

t-th step planning t-th step execution

'Note that (i) the ground-truth decomposition may not be unique. E.g., {s:}7—; and {s; }7_, are both valid
decompositions, with the latter representing a coarser process; and (ii) the true structure of the decomposition
can be non-linear (Teng et al., 2025), though it can be mapped to a linear form in CoT reasoning.
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where {s;};<1 = (). This factorization captures our core perspective on LLM reasoning: at each
step, the model first plans by formulating the next sub-question, and then executes by generating
the corresponding sub-answer. Such a sequential formulation naturally lends itself to Monte Carlo
search over possible reasoning trajectories, where the two types of actions are sub-question generation
(q@) and sub-answer generation (a) (Qi et al., 2024; Acuna et al., 2025). However, as the modern
LLMs typically do not undergo the training of explicitly proposing and answering the next probable
sub-questions, this approach might be less effective.

SSR evaluates the confidence of each sub-answer a; given the current sub-question g, the original
query x, and the context of the previous Socratic steps (g;,a;),.,. Specifically, we encode all
relevant information into the context and ask the LLM to solve each sub-question independently M
times. The resulting answers form a reference set

A= {@itiep), @i ~ mol- | @t {Si}i<t, @). 7

We then compare the original ¢-th step sub-answer a; with ﬁt and estimate the confidence score as

M
= 2 Zi:l la,—a,,, VtelT). (8)

For mathematical problems, intermediate sub-answers can be restricted to mathematical expressions
through simple prompting, allowing for deterministic equivalence checking. In practice, however,
we find that this restriction does not consistently constrain LLM outputs We therefore resort to
LLM self-evaluation, producing confidence scores directly with a context-free confidence estimation
prompt Tcons:

Cr = {ci ~ 7o | as, A\ty Tcont) }ee[T)- ©)

These confidence scores are then used to guide refinement of the current-round reasoning and can
also be aggregated to reflect overall response quality, which supports sample selection in our test-time
scaling experiments (Sec. 4.4). It is worth noting that we enforce strict context management during
confidence estimation: the prompt includes only the candidate sub-answer and the reference answer
set, with no additional information. This design has two motivations. First, we assume that judging
equivalence between expressions can be done in a context-free manner, i.e., with only the expressions.
Second, isolating the context helps control the computation budget.

LLM Self-Refinement with Socratic Steps. Once the confidence scores of all Socratic steps
are estimated, we use them to guide reasoning refinement. In SSR, we first identify the step
t" = arg miny{c; 4[] with the lowest confidence score ;. We then apply majority voting over its
reference answer set to obtain a refined sub-answer:

aj, = arg max mo(a | gy, {8:}ictr, ) &= maj_vote(Ay). (10)

This refined sub-answer is injected into the iteration-k refinement of (z(*), y(¥)), producing the next
iteration:

(280, g0y~ (- 2,y ™), 20, g1 a0l ), (11)
N———

Socratic Feedback

where the triplet (qt(,k ), aifé), a:,(k)) is called Socratic Feedback, the template of which can be found

in Appendix C.3, and xf is the refinement query that prompts the LLM to revise for a new reasoning

trace z(¥*+1) that leads to a:,(k). Because most modern LLMs are trained with instruction tuning (Wei
et al., 2021) and preference tuning (Ouyang et al., 2022), both relying on chain-of-thought-like
structures, the direct injection of the Socratic process in unnatural formats (e.g., JSON) might disrupt
reasoning. Our design principle in SSR is therefore to minimize format disruption and to inject only
the necessary information into the refinement context. For a detailed analysis of this issue, please
refer to Sec. 4.3. We refer to the variant that directly combines the three steps described above as
Linear SSR (SSR-Lin).

3.3 SSR DEPLOYMENT: BETTER EFFICIENCY AND BEYOND STEP-LEVEL REFINEMENT

Improving the Efficiency of SSR with Gating Self-Refine. Applying fine-grained, step-level SSR
at every refinement step can be costly compared to other iterative refinement frameworks (Madaan
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et al., 2023; Teng et al., 2025). To balance efficiency and accuracy, we adopt a gating mechanism
that combines Self-Refine (Madaan et al., 2023) with SSR. In deployment, Self-Refine serves as the
default refinement method, while SSR is invoked only when Self-Refine fails to identify mistakes in
the reasoning trace or when the response is already correct. Because these two situations cannot be
distinguished in advance, applying SSR in the latter case incurs only a minor additional cost, while in
the former case it provides an extra layer of safety. Compared to SSR only, this approach reduces
overhead while preserving the advantages of SSR’s ability of fine-grained step-level verification. We
denote SSR with this adaptive gating mechanism as Adaptive SSR (SSR-Ada).

SSR Planning Refinement. Our current SSR relies on two implicit assumptions about reasoning
planning: (i) response quality evaluation is independent of high-level planning, and (ii) refinement
focuses only on execution accuracy. These restrictions may limit the performance of SSR. By
assuming probabilistic independence between each sub-question g; and the preceding answers
{a;}i<t , the factorization > in Eqn. 6 can be simplified as

mo(St | @) = mo({acherr | #)- [, mo(ar | au {s:}ice, @)

high-level planning sequential execution

(12)

To ensure the reliability of high-level planning before applying step-level SSR, while keeping the
overhead modest compared to other baselines, we perform only one round of plan refinement. Unlike
our main SSR procedure, we do not repeatedly sample rollouts or evaluate their quality. Instead,
we directly prompt the LLM to judge whether the high-level plan (a sequence of sub-questions or
their natural-language description) is sufficiently sound for the subsequent execution. We denote
SSR-Ada plus this plan refinement as SSR-Plan. For the detailed algorithmic description of our
SSR, please refer to Algorithm 1 in the Appendix.

4 EXPERIMENTS

We evaluate our SSR’s effectiveness through comprehensive experiments, covering experimental
setup (Sec. 4.1), main results on the mathematical and logical reasoning benchmarks (Sec. 4.2),
ablation studies on the choice of incorporating Socratic content into refinement (Sec. 4.3), and
test-time scaling effect of our SSR (Sec. 4.4). For additional results, please refer to Appendix D.

4.1 SETTINGS

Models, Datasets, and Evaluation. We use the latest GPT—4 . 1-nano (general-purpose) and
GPT-5-mini (reasoning) models from OpenAl as our LLM backbones, chosen for their balanced
capabilities in instruction following and reasoning. We additionally include the results of the strong
LLM Gemini-2.5-Flash (Comanici et al., 2025) in Appendix D.I.

Our evaluation covers two categories of datasets: mathematical reasoning and logical reasoning.
For mathematical reasoning, we adopt the challenging Level-5 subset of the MATH dataset (MATH-
Level-5) with numerical answers (Hendrycks et al., 2021) and the American Invitational Mathematics
Examination (AIME) from 2024 and 2025 (AIME-Team, 2025). For logical reasoning, we use
the synthetic reasoning-gym environment to generate sub-tasks including the Zebra Puzzle and
Mini-Sudoku (Stojanovski et al., 2025).

Baselines. We compare our SSR against several iterative refinement—based test-time LLM reasoning
frameworks. Self-Refine (Madaan et al., 2023) iteratively generates feedback for a given response and
updates the response based on this self-feedback. Monte Carlo Tree Self-Refine (MCTSr) (Zhang
et al., 2024) treats the full generation as a node and the self-refine step as an edge, applying Monte
Carlo Tree Search (MCTS) to search for the best response. Atom of Thoughts (AoT) (Teng et al.,
2025) incrementally constructs a Directed Acyclic Graph (DAG) of reasoning, contracts intermediate
results into improved sub-questions, and solves them step by step. We do not include parallel
sampling—based baselines such as Forest of Thoughts (FoT) (Bi et al., 2024), since these approaches
are complementary to iterative refinement methods. Their benefits are instead reflected through the
Maj @5 metric in Table 1.

>Under this assumption, we posit that the LLM establishes an overall plan before generating the actual
response (Ye et al., 2024; Lindsey et al., 2025).
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Table 1: Last-Round Performance of Iterative Refinement-Based Reasoning Methods. LR-
Acc: Last-round refinement’s accuracy, yielded by 10 repeated experiments; LR-Maj@5: Last-
round refinement’s accuracy of majority voting with 5 samples in parallel, yielded by 50 repeated
experiments. Boldface and underlining denote the best and the second-best performance, respectively.

Method MATH-Level-5 AIME24 AIME25 Zebra-Puzzle Mini-Sudoku
etho

LR-Acc LR-Maj@5 LR-Acc LR-Maj@5 LR-Acc LR-Maj@5 LR-Acc LR-Maj@5 LR-Acc LR-Maj@5

GPT-4.1-nano

CoT 74.88+135 82.32+1.11 27.00+458 32.80+2.15 23.00+348 26.93+297 55.20+3.28 56.56+244 47.40+335 66.04+2.69
Self-Refine 68.69+1.15 79.81+075 28.00+4.99 34.33+300 22.67+291 28.33+342 53.50+1.96 56.08+193 53.60+4.59 73.04+321
MCTSr 74.02+1.12 83.01+081 23.67+433 30.47+3.13 20.00+4.94 25.73+422 54.90+247 54.88+245 53.33+1.63 73.84+2.43
AoT 75.15+100 82.83+083 21.11+497 25.67+361 21.33+3.06 25.53+3.75 29.33+3.16 43.60+2.65 42.80+2.96 65.08+2.26

SSR-Lin (Ours) 77.06+0.93 83.64+0.69 32.67+3.59 39.93+3.23 24.00+4.67 27.33+406 54.60+220 54.10+2.09 53.10+247 72.76+255
SSR-Ada (Ours) 75.70+131 82.71+090 29.67+6.74 37.47+425 24.67+3.06 28.80+3.38 54.30+190 55.14+1.71 51.50+4.41 73.22+4337
SSR-Plan (Ours) 76.01+057 83.75+0.74 27.33+573 35.80+339 22.33+3.67 27.53+446 56.90+3.11 57.30+239 47.70+422 66.46+4.61

GPT-5-mini

CoT 82.95+1.02 90.05+054 50.67+4.67 60.87+3.93 37.00+6.57 49.80+4.19 82.80+271 91.00+1.30 42.40+242 61.96+3.19
Self-Refine 87.02+1.40 94.11+047 63.33+494 74.40+374 53.67+6.23 68.33+3.48 82.00+261 92.64+161 63.60+335 93.82+135
MCTSr 87.42+089 92.91+071 57.00+5.67 68.87+435 46.97+6.11 55.40+476 83.00+190 89.82+149 61.40+6.17 89.68+2.56
AoT 80.56+0.63 88.84+060 46.67+516 57.00+321 33.00+6.05 43.60+3.82 65.30+3.07 74.78+207 61.70+3.72 82.72+2.75

SSR-Lin (Ours) 88.36+1.06 93.01+0.63 64.0045.12 74.60+4.10 55.67+4.48 65.47+376 87.70+2.97 93.70+1.76 93.60+1.69 99.70-+0.54
SSR-Ada (Ours) 91.57+051 95.62+035 68.67+4.52 75.934+3.08 60.33+4.58 70.134+3.46 87.30+2.53 93.00+1.69 96.10+2.07 99.98-+0.14
SSR-Plan (Ours) 92.16+0.67 95.93+030 69.67+4.82 79.00+3.48 62.00+6.18 71.53+5.26 88.00+155 93.20+1.08 94.80+2.48 100.00-0.00

Implementation of SSR. We implement and evaluate three variants of SSR in Sec. 3.3. Linear
SSR (SSR-Lin) applies Socratic self-refine at every iteration, making it the most costly but also
the most thorough approach to step-level fine-grained refinement. Adaptive SSR (SSR-Ada) first
applies the basic Self-Refine; if the feedback reveals clear and critical errors, the feedback is directly
adopted, while if no errors are detected, the method falls back to Socratic self-refine. SSR with
plan refinement (SSR-Plan) adds an initial round of plan refinement before the step-level Socratic
self-refine, thereby equipping SSR with high-level refinement capabilities. For more details, please
refer to Appendix C.2.

4.2 SSR’S STEP-LEVEL VERIFICATION LEADS TO CONSISTENT PERFORMANCE GAINS

Table 1 and Table 2 show results on comprehensive metrics for various methods.

Overall, the proposed SSR variants bring substantial improvements when powered by the strong
GPT-5-mini. Across all tasks, SSR consistently surpasses competitive baselines, yielding clear
gains in both LR-Acc and LR-Maj@5. Notably, SSR-Plan achieves the best or second-best results
in nearly every setting, with particularly large margins on challenging mathematical reasoning
benchmarks like AIME. This highlights that structured preliminary planning amplifies the benefits of
iterative refinement, even when starting from already strong GPT—-5-mini reasoning capabilities.
Our framework also demonstrates effectiveness on the weaker GPT—4 . 1-nano backbone. Despite
its limited reasoning capacity, all three SSR variants in general improve performance over baselines,
underscoring that our refinement strategies generalize across model scales. This implies a viable path
of adopting our SSR to boost smaller, resource-efficient models.

Second, the results in Table 2 show that SSR maintains superiority under upper-bound evaluation
metrics. Both BoK-Acc and Pass@K demonstrate that SSR variants yield higher-quality and diverse
refinement trajectories compared to baselines. Again, SSR-Plan often achieves the best results, while
SSR-Ada provides a favorable trade-off between efficiency and accuracy, confirming the value of
adaptively combining Self-Refine with Socratic refinement.

Finally, the comparison across reasoning categories highlights complementary strengths. In math-
ematical reasoning, SSR gains from explicit verification and refinement of sub-answers, which
reduces cascading errors in long derivations. In logical reasoning tasks such as Zebra-Puzzle and
Mini-Sudoku, where execution accuracy dominates, step-level Socratic verification also proves highly
effective, often yielding substantial improvements over baselines.

Overall, the experiments confirm that the explicit modeling and verification of Socratic steps in SSR
provides more reliable and controllable refinement than existing iterative approaches, with SSR-Plan
standing out as the most robust variant.
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Table 2: Upper-Bound Performance of Iterative Refinement-Based Reasoning Methods. BoK-
Acc: Best-of-K refinements’ accuracy, yielded by prompting LL.M-as-a-Judge (Gu et al., 2024) for
selecting the best answer out of K iterations of refinement; Pass @K: Pass-at-K refinements’ accuracy
(at lease one of K iterations gets the answer correct). Both experiments are repeated for 10 times.
Boldface and underlining denote the best and the second-best performance, respectively.

Mettiod MATH-Level-5 AIME24 AIME25 Zebra-Puzzle Mini-Sudoku
etho
BoK-Acc  Pass@K  BoK-Acc Pass@K BoK-Acc Pass@K BoK-Acc Pass@K  BoK-Acc Pass@K
GPT-4.1l-nano
CoT 74.88+1.35 - 27.00+4.58 - 23.00-+3.48 - 55.20+3.28 - 47.40+3.35 -
Self-Refine 76.48+095 81.60+082 30.67+554 31.67+500 23.67+407 26.00+490 55.60+3.77 59.60+237 56.90+5.84 65.70+355
AoT 79.37+1.54 87.28+0.64 23.33+521 33.70+3.99 24.33+448 29.33+533 37.33+320 63.224364 50.20+5.08 76.00+3.26

SSR-Lin (Ours) 78.03+1.00 82.97+098 33.33+422 38.33+563 26.67+3.94 32.00+400 55.90+274 65.40+1.96 58.20+3.71 75.40+338
SSR-Ada (Ours) 78.05+1.37 85.14+056 31.67+582 36.3345.67 25.67+448 32.00+340 55.30+1.19 62.804+2.04 56.70+344 74.20+4.94
SSR-Plan (Ours) 78.40+1.10 85.274047 31.33+542 35.67+423 24.33+367 34.3345.17 56.60+358 64.60+3.01 56.40+4.05 73.70+237

GPT-5-mini

CoT 82.95+1.02 - 50.67+4.67 - 37.0046.57 - 82.80+2.71 - 42.40+2.42 -
Self-Refine 89.40+1.00 91.59+083 61.33+400 68.00+371 51.67+687 56.67+667 90.90+221 91.30+179 85.70+323 83.30+2.19
AoT 85.87+049 91.38+080 56.67+6.15 61.67+582 39.33+327 49.00+539 88.80+1.94 93.50+143 93.70+1.73 90.70+2.15

SSR-Lin (Ours) 88.16+131 89.54+125 65.33+542 67.00+3.79 55.33+7.02 59.00+5.17 92.20+223 93.20+260 95.30+1.19 95.50+1.57
SSR-Ada (Ours) 93.14+052 94.63+036 71.67+4.28 74.00+4.90 61.00+473 66.00+389 91.80+1.89 93.00+1.84 98.20+125 98.10+145
SSR-Plan (Ours) 93.48+0.52 95.05+034 71.00+448 73.67+407 65.67+6.16 69.67+526 92.30+1.62 93.30+1.79 98.70+1.00 98.30+1.19

4.3 ANALYSIS: SSR CONTEXT MANAGEMENT

As discussed in Sec. 3.2, represent- Table 3: Ablation Study on SSR Context Management,
ing a natural language reasoning trace evaluated on GPT—5-mini.
z as a Socratic process St requires

careful consideration, since it intro-  pfethod Refinement Context Dataset

duces a distributional shift between AIME24  AIME25
the model’s training data and our arti-  CoT _ i 50674467 37.0046.57
ficially structured context. In this sub-  Self-Refine  Reflection ~ Natural =~ 63.33+494 53.67+623
section, we explore alternative ways Reflection  Natural 69.67+4.82 62.00-+6.18
of integrating the Socratic process St SSR-Plan Reflection  Socratic 67.67+4.48 60.33+4.82
into reasoning refinement. Specifi- (Ours) Intervention  Natural 54.67+476 42.67+7.12

cally, we focus on two key aspects: Intervention  Socratic 57.00+8.09 52.00+5.62

* Context Format (Natural / Socratic): Iterative refinement can be performed using only the
Socratic steps St (Socratic), discarding the original natural language reasoning trace z; or
conversely, using only z without the Socratic decomposition (Natural).

* Context Completeness (Reflection / Intervention): Since LLM chain-of-thought reasoning
assumes linear dependencies, once the first problematic step sy is identified, later steps can be
discarded. Refinement may then intervene directly at the error location (Intervention), avoiding
unnecessary tokens, unlike SSR which refines after the full reasoning is completed (Reflection).

The results are reported in Table 3. From the table, we observe that our implementation adopted in
the main experiments (reflection + natural context) yields the strongest results (69.67 on AIME24
and 62.00 on AIME25), outperforming both Self-Refine and other variants of SSR. This suggests that
preserving the original reasoning trace while applying reflection-based precise step-level refinement
provides the model with richer contextual cues for error correction.

Under reflection, replacing the natural context with the Socratic context yields slightly weaker but
still competitive results, suggesting that while Socratic decomposition supports step-level analysis, it
may miss some nuances of natural language reasoning. In contrast, intervention-based refinement
consistently underperforms, as prematurely truncating the reasoning trace discards useful contextual
information and leads to weaker refinements.

4.4 ANALYSIS: TEST-TIME SCALING OF SSR

In this subsection, we investigate whether the performance gains of SSR can be sustained under
increased test-time compute. Test-time scaling for iterative refinement generally follows two orthog-
onal approaches: (i) sequential scaling, which increases the number of refinement iterations, and
(ii) parallel scaling, which runs multiple refinements in parallel and aggregates the outputs.
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In our study, sequential scaling extends the number of iterations by 3x, with performance reported
as Last-Round Accuracy (LR-Acc). Parallel scaling increases the number of parallel samples to 64,
also reporting aggregated LR-Acc. Experiments are conducted on AIME25 with the GPT-5-mini
backbone (low-reasoning, low-verbosity). As baselines, we include basic CoT and Self-Refine. For
Self-Refine and SSR, we perform an additional self-evaluation on the final reasoning trace and use the
resulting 0-5 score for weighted best-of-/V (WBoN). For CoT, we apply majority voting (Maj@ N).

The results are shown in Fig. 3.  *° %
On the sequential scaling side 80 .
(left), SSR consistently outper-
forms Self-Refine across all it-
eration counts. Accuracy im-
proves steadily as the number of
refinement iterations increases,
with SSR showing stronger gains 401

and greater stability than Self- .|~~~ | | |

Refine. In contrast, Self-Refine CT Y st PR paralel samples *
benefits from additional itera- 7 CoT 7Y selffieline R SsRiflan (ours)

tions but plateaus at a lower accu- Figure 3: Performance of Sequential (Left) and Parallel (Right)
racy, confirming that iterative re- Test-Time Scaling, evaluated on AIME25 (AIME-Team, 2025)
finement is essential for improve- with GPT-5-mini low-reasoning low-verbosity mode.

ment. On the parallel scaling

side (right), all methods improve as the number of parallel samples increases, but SSR maintains a
clear margin over Self-Refine and CoT. Notably, SSR reaches higher accuracy levels more quickly,
suggesting that its Socratic step-level verification yields more consistent refinements, which aggregate
effectively under parallel sampling. Self-Refine shows moderate improvements with larger sample
sizes, while CoT lags behind, highlighting the importance of structured refinement.
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In both parallel and sequential scaling, SSR consistently outperforms Self-Refine and vanilla CoT,
even when the baselines are given additional compute and cost, as shown in Fig. | and Appendix D.2.
This demonstrates that SSR makes more efficient use of available resources. Unlike Self-Refine,
whose improvements plateau quickly, SSR continues to gain with further iterations, indicating that
confidence-aware step refinement enables more robust and scalable performance under larger budgets.

5 CONCLUSION

In this paper, we introduced Socratic Self-Refine (SSR), a novel iterative refinement framework that
leverages step-level Socratic decomposition to evaluate and improve LLM reasoning. By explicitly
modeling reasoning as a sequence of sub-questions and sub-answers, SSR provides fine-grained
confidence estimation and enables targeted refinements where errors are most likely to occur. Across
both mathematical and logical reasoning benchmarks, SSR consistently outperforms existing iterative
refinement baselines, with the plan-refinement variant achieving the most robust gains. Beyond
empirical performance, SSR highlights the importance of moving from outcome-level to process-level
evaluation. By treating reasoning as a verifiable sequence of interpretable steps, our framework makes
LLM outputs more transparent and opens the door to interventions that are more systematic than ad
hoc self-correction. We believe our SSR offers a valuable mechanism for controlling the reasoning
trajectory, mitigating biases, and aligning model behavior more closely with human expectations.

Limitations. Despite its advantages, SSR has several limitations. First, the step-level Socratic
decomposition relies on LLM prompting, which can introduce noise and inconsistencies, particu-
larly for problems with ambiguous or ill-posed sub-questions. Second, the computational cost of
fine-grained verification is substantially higher than that of standard iterative refinement, limiting
scalability to large datasets or long reasoning chains. Finally, our evaluation focuses primarily on
mathematical and logical reasoning tasks; the generalizability of SSR to open-ended domains such as
commonsense or multi-modal reasoning remains to be validated.

Future Work. In future work, we aim to extend SSR to more diverse reasoning domains, including
scientific and multimodal tasks, and explore tighter integration with training-time objectives. Another
promising direction is developing more efficient confidence estimation to further reduce cost, as well
as investigating human-in-the-loop settings where SSR can enhance interpretability and reliability.
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APPENDIX

In Appendix A, we describe the role of LLMs in our work. In Appendix B, we present the full
algorithmic description of our proposed SSR. In Appendix C, we provide our implementation details
of the experiments, including:

* dataset details (Appendix C.1),
* baseline details (Appendix C.2),
* prompt templates used in LLM reasoning (Appendix C.3),

Finally, in Appendix D, we present additional experimental results, including:

* additional results on Gemini-2.5-Flash (Appendix D.1),

* additional results on sequential and parallel test-time scaling (Appendix D.2),
* additional results on SSR-as-a-Judge (Appendix D.3),

 and a qualitative analysis on our SSR refinement (Appendix D.4).

A LLM USAGE DISCLOSURE

Large language models (LLMs) were used exclusively to help polish the writing of this paper by
improving grammar, clarity, and readability. They did not contribute to research ideation, experimental
design, data analysis, or the generation of scientific content. All technical contributions, claims, and
conclusions are solely those of the authors.

B ALGORITHM

Algorithm 1 Socratic Self-Refine (SSR)

input {x, Tgec, Teont, Trer = prompt for original query, reasoning decomposition, confidence estima-
tion, and refinement;
mg: LLM policy;
(29 4()): initial CoT reasoning and answer;
K': maximum refinement rounds;
M: number of parallel solves per sub-question for confidence;
Chax: maximum value of the confidence.

1: (Optional) {q:},c(r) ~ mo(- | =, y(© 20 g4.). Prompt 7 to judge plan adequacy. If

inadequate, refine once and update (z(o), y(O)). > Optional plan check (Eqn. 12).
2: fork=1,...,K do
30 (2D 4+ 0(R))  Self-Refine(z*), y*)). o> Self-Refine Gating.
4: i C%) = Cppx then
5: St = {(as, at) }reir) ~ 7o (- | =, y® 20 24.). > SSR Decomposition (Eqn. 4).
6: for ¢ = 1 to T in parallel do
7: Ay = A{Gsi}icimy, G ~ oo | @, {Si}ict, ). > Reference Set Sampling.
8: ct ~ mo(- | at, At, Teons)- > Confidence Estimation (Eqn. 8).
9: end for
10: t' < argminge 7y ¢;. > Pick weakest step
11: ay, maj_vote(Ay ). > Majority vote sub-answer
12: (2D (kD) (- | 2,y 2(F) qg,k'), agfc), a:,(k), Lref)- > Round-%k SSR.
13:  endif
14: end for

output (z(%), y¥)): refined reasoning and answer.

C IMPLEMENTATION DETAILS
Appendix C.1 introduces the basic charactaristics of the adopted datasets; Appendix C.2 intro-

duces the implementation details of the state-of-the-art iterative refinement baselines and our SSR.
Appendix C.3 lists the prompt template we use for different methods.
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C.1

DATASETS

Table 4 shows the statistics of datasets in our experiments. These datasets span two different types of
reasoning tasks and different difficulty levels, from moderate to highly challenging, covering both
grade-school-level numerical reasoning and advanced symbolic mathematical tasks. This diversity
in problem domains and difficulty ensures a comprehensive and representative assessment of the
model’s capabilities across varied reasoning scenarios.

Table 4: Dataset Statistics.

Dataset #Examples Split Task Type  Language Level

MATH-Level-5 (Hendrycks et al., 2021) 681 Test split Mathematical English Moderate

AIME24 (AIME-Team, 2025) 30 Full set Mathematical English Highly Challenging

AIME25 (AIME-Team, 2025) 30 Full set Mathematical English Highly Challenging

Zebra-Puzzle (Stojanovski et al., 2025) 100 Randomly Synthesized Logical English Moderate

Mini-Sudoku (Stojanovski et al., 2025) 100 Randomly Synthesized Logical English Moderate
C.2 BASELINES AND OUR SSR

We compare our proposed Socratic Self-Refine (SSR) against several state-of-the-art iterative refine-
ment reasoning frameworks. The detailed prompt templates are provided in the next section.

Self-Refine (Madaan et al., 2023): We follow the prompt template defined in LLM-as-a-
Judge (Zhou et al., 2025a), which produces feedback and scores for the model’s own response;
the feedback is then used for refinement. We perform three refinement iterations, with each
iteration independent of previous ones for conciseness.

Monte Carlo Tree Self-Refine (MCTSr) (Zhang et al., 2024): We adopt the released code for
reproducibility. Since the original prompt was designed for smaller open-source LLMs (Touvron
etal., 2023; Dubey et al., 2024) with format mismatches to our setting, we adapt the template
while retaining the same verification prompt (as Self-Refine) and faithfully preserving the
Monte Carlo Tree construction and exploration. The maximum number of iterations is set to
four, following the original paper.

Atom-of-Thoughts (AoT) (Teng et al., 2025): We mainly follow the released implementation.
However, as the original decomposition restricts intermediate answers to purely numerical
forms, which is limiting for challenging mathematical and logical reasoning, we slightly relax
this constraint. For fair comparison, we set the maximum number of atoms to three, omit the
final “Ensemble” step, and report only the last-iteration performance in Table 1. Results with
the ensemble step are reported separately in Column “BoK-Acc” of Table 2.
Forest-of-Thought (FoT) (Bi et al., 2024): As a parallel scaling variant of MCTSr (ignoring
early stopping), FoT is not directly evaluated. Nevertheless, MCTSr’s results in the “LR-
Maj@5” column can be treated as an approximate proxy for FoT performance with tree size 5
and majority voting aggregation.

Linear SSR (SSR-Lin, Ours): Each iteration proceeds as follows: (i) decompose the given
CoT into Socratic steps; (ii) re-answer each sub-question multiple times, assuming prior steps
are correct; (iii) identify the step with the lowest confidence score and refine based on the
majority-voted sub-answer. We set the number of iterations to three for fairness.

Adaptive SSR (SSR-Ada, Ours): At the beginning of each round, SSR-Ada first applies
Self-Refine. If unreliable steps are identified with non-perfect scores, refinement proceeds via
this efficient route. Otherwise (if Self-Refine fails or is overconfident), the method falls back to
the full Socratic refinement.

SSR with Plan Refinement (SSR-Plan, Ours): Extends SSR-Ada by adding a preliminary
plan refinement stage before iterative refinement.

Shared LLM Configuration. For GPT-4.1-nano, we set the maximum token length to 16,384
and temperature to 0.6. For GPT-5-mini, we set the maximum completion length to 16,384 and
temperature to 1.0. For Gemini-2.5-Flash, we set the maximum completion length to 32,768
and temperature to 0.6.
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C.3 PROMPT TEMPLATES

This subsection presents the prompt templates used for the baselines and our SSR. The templates
are identical for both mathematical and logical reasoning, except for a role specification: “you are a
precise math problem solver” versus “you are a precise logical reasoning problem solver.”

¢ CoT: uses Chain-of-Thought,

* Self-Refine: uses Verification and Refine (Normal);

* MCTSr: uses Verification and Refine (Normal);

¢ AoT: uses Decompose (AoT), Contract (AoT), and Ensemble;

* SSR: uses Decompose (SSR, Ours), Solve Sub-Question (SSR, Ours), Confidence Estimate
(SSR, Ours), Reflection (SSR, Ours), and Refine (SSR, Ours).

You are a precise math problem solver. Solve the given math problem step by step:
QUESTION: {question}

Please extend your chain of thought as much as possible; the longer the chain of thought, the
better.

You can freely reason in your response, but please enclose the final answer within <an-
swer></answer> tags (pure number without units and explanations).

Please act as an impartial judge and evaluate the correctness of the response provided by an Al
assistant to the user prompt displayed below. You will be given the assistant’s response.

When evaluating the assistant’s response, identify any mistakes or inaccurate information.
Be as objective as possible. Avoid any biases, such as order of responses, length, or stylistic
elements like formatting.

Before providing an your final verdict, think through the judging process and output your
thoughts as an explanation.

After providing your explanation, you must output a score of scale 0 to 5, where 0 represents you
are completely certain that the response is incorrect and 5 represents you are completelycertain
that the response is correct. Please enclose your score in <answer> and </answer> tags.
<|User Promptl>

{question}

<IThe Start of Assistant’s Answerl>

{response }

<IThe End of Assistant’s Answerl>

Refine (Normal)

You are a precise math problem solver. Refine the provided solution to the given math problem,
step-by-step, by meticulously addressing the judge’s feedback (whose score is enclosed within
<answer></answer> tags).

QUESTION: {question}
ORIGINAL SOLUTION: {original_cot_response}
JUDGE RESPONSE: {judge_response}
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Your task is to re-evaluate the original reasoning, identify where it went wrong based on the
judge’s comments, which should be enclosed within <evaluation></evaluation> tags; after that,
construct a new, corrected chain of thought. Explain each step thoroughly. The more detailed
and explicit your reasoning, the better.

You can freely reason in your response, but please enclose the final, numerical answer within
<answer></answer> tags (pure number only, without units or explanations).

\. .

Decompose (AoT)

You are tasked with breaking down a math problem’s reasoning process into a series of
sub-questions.

Original Question: {question}
Complete Reasoning Process: {trajectory}

Instructions:

¢ Break down the reasoning process into a series of sub-questions.

 Each sub-question should:

— Be written in a clear, interrogative form.

— Be precise, unambiguous, and directly answerable from the provided reasoning or
prior sub-question answers.

— Have a clear, **exact expression** as its answer (e.g., use fractions like ‘1/3°, sym-
bolic representations like ‘pi‘, or precise numerical values such as ‘1.0°). **Crucially,
avoid approximations or rounding** unless the original question explicitly requires
it.

— List the 0-based indexes of other sub-questions it depends on. This list can be empty
if no prior sub-question answers are needed.

* Dependencies are defined as information necessary to answer the current sub-question
that:

— Does NOT come directly from the original question.

— MUST come from the answers of previous sub-questions.

» **Stop generating sub-questions once the final answer to the Original Question has been
fully derived from the reasoning process.** Do not include any subsequent or irrelevant
steps that do not directly contribute to reaching the final answer.

Format your response as the following JSON object:

{{
"sub-questions": [
{{
"description": "<clear, precise interrogative question>",
"answer": <exact expression of the answer>,
"depend": [<indices of prerequisite sub-questions>]
by

1,

"answer": {answer}

}}

Contract (AoT)

You are a math problem solver specializing in optimizing step-by-step reasoning processes.
Your task is to optimize the existing reasoning trajectory into a more efficient, single
self-contained question.

For the original question: {question}

17
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Here are step-by-step reasoning process:
{response}

{sub_questions}
Here are explanations of key concepts:

* self-contained: The optimized question must be solvable independently, without relying
on any external information

« efficient: The optimized question must be simpler than the original, requiring fewer reason-
ing steps (these steps are reduced because some solved independent sub-problems become
known conditions in the optimized question or are excluded as incorrect explorations)

You can freely reason in your response, but please enclose the your optimized question within
<question></question> tags.

. J

Decompose (SSR, Ours)

You are tasked with breaking down a math problem’s reasoning process into a series of
**atomic** sub-questions.

Original Question: {question}
Complete Reasoning Process: {trajectory}

Instructions:

* Break down the reasoning process into a series of sub-questions.

* Each sub-question should:

— Be written in a clear, interrogative form.

— Be precise, unambiguous, and directly answerable from the provided reasoning or
prior sub-question answers.

— Have a clear, **exact expression** as its answer (e.g., use fractions like ‘1/3°, sym-
bolic representations like ‘pi‘, or precise numerical values such as ‘1.0°). **Crucially,
avoid approximations or rounding** unless the original question explicitly requires
1t.

— List the 0-based indexes of other sub-questions it depends on. This list can be empty
if no prior sub-question answers are needed.

* **Stop generating sub-questions once the final answer to the Original Question has been
fully derived from the reasoning process.** Do not include any subsequent or irrelevant
steps that do not directly contribute to reaching the final answer.

» The sub-question, sub-answer pairs should perfectly represent the reasoning process of
the solution.

Format your response as the following JSON object:

{{
"sub-questions": [

{{

"description": "<clear, precise interrogative question>",
"answer": <exact expression of the answer>,
b,
1,
"answer": {answer}

H}

\. .

Solve Sub-Question (SSR, Ours)

You are a precise math problem solver. Given the original question and the series of
sub-questions and their answers which perfectly represent the reasoning process of the solution,
think step by step and answer the next sub-question. Do not extend the reasoning process
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beyond this sub-question and enclose the answer within <answer></answer> tags.

Original question:
{question}

The series of sub-questions and their answers:
{socratic_reasoning_trajectory }

The next sub-question to be answered:
{next_sub_question}

Confidence Estimate (SSR, Ours)

You are a math expert. Given the a math expression as the prediction and a list of reference
answers, determine the confidence of the prediction.

The prediction is:
{prediction}

The reference answers are:
{answers}

Please answer with a number of scale 0 to 5 that represents the confidence of the prediction.
0 means the prediction does not match any of the reference answers. 5 means the prediction
matches the reference answers perfectly. If you cannot determine the confidence, please answer
with -1. Enclose the answer within <answer></answer> tags.

Reflection (SSR, Ours)

Wait, in the sub-step of "{wrong_question}", the answer is "{wrong_answer}", but after
careful re-evaluating the process, I think that the actual answer to this sub-question should be
"{revised_answer}".

Refine (SSR, Ours)

{cot_instruction}

{cot_reasoning_trace}
{reflection}

Let’s re-evaluate the reasoning process based on your reflection. Enclose it within <evalua-
tion></evaluation> tags. After that, let’s reasoning step by step again to solve the original
question. This time, you should address the specific issue identified in your own re-evaluation.
Finally,enclose the final answer within <answer></answer> tags."

You are a precise math problem solver. Compare then synthesize the best answer from multiple
solutions to solve the following question.

QUESTION: {question}
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SOLUTIONS:
{solutions}

Please extend your chain of thought as much as possible; the longer the chain of thought, the
better.

You can freely reason in your response, but please enclose the final answer within <an-
swer></answer> tags (pure number without units and explanations).

D ADDITIONAL EXPERIMENTAL RESULTS

Appendix D.1 reports additional results on a strong model, Gemini-2.5-Flash. Appendix D.2
provides further experiments on both sequential and parallel test-time scaling. Appendix D.3 presents
results using SSR as an LLM judge, offering deeper insights into its underlying mechanism. Finally,
Appendix D.4 includes qualitative examples that illustrate the behavior of SSR in practice.

D.1 ADDITIONAL RESULTS OF GEMINI-2.5-FLASH

Table 5: Performance of Iterative Refinement-Based Reasoning Methods. LR-Acc: Last-round
refinement’s accuracy, yielded by 10 repeated experiments; Pass @K: Pass-at-K refinements’ accuracy
(at lease one of K iterations gets the answer correct). LR-Maj@35: Last-round refinement’s accuracy
of majority voting with 5 samples in parallel, yielded by 50 repeated experiments. Boldface and
underlining denote the best and the second-best performance, respectively.

Method AIME24 AIME25 Zebra-Puzzle
etho

LR-Acc  Pass@K LR-Maj@5 LR-Acc Pass@K LR-Maj@5 LR-Acc Pass@K LR-Maj@5

Gemini-2.5-Flash

CoT 81.85+2.77 - 85.60+1.55 68.00+4.52 - 72474399 67.44+1.89 - 76.12+1.92
Self-Refine 82.96+367 87.41+305 88.87+246 76.33+7.06 81.00+423 84.60+248 75.254295 77.00+3.32 88.98+1.49
MCTSr 83.00+4.07 - 86.67+231 70.95+7.50 - 77.73+278 75.60+2.94 - 85.68+1.91
AoT 81.67+1.67 85.33+221 86.134+2.86 70.74+562 75.194650 78.40+2.60 54.71+3.49 86.14+1.88 65.74+239

SSR-Lin (Ours) 86.30+3.99 90.37+t4.29 90.93+298 79.26+4.66 83.33+4.16 88.47+3.14 87.62+2.18 89.75+254 92.30+1.36
SSR-Ada (Ours) 82.50+4.00 87.50+323 88.33+167 76.30+637 84.44+471 87.27+272 87.14+196 89.00+1.69 91.86+1.30
SSR-Plan (Ours) 84.17+4.00 89.17+3.63 89.67+1.00 78.00+6.00 84.00+442 86.73+3.16 86.50+2.60 89.00+250 92.06+1.39

We further report results of applying SSR to a stronger model, Gemini-2.5-Flash, from a
different model family (Comanici et al., 2025). Owing to its exceptionally strong mathematical and
logical reasoning ability, two benchmarks used in the main body (MATH-Level-5 and Mini-Sudoku)
are no longer suitable for differentiating framework performance, as naive CoT already solves nearly
all questions correctly. Therefore, we report results only on the remaining three datasets, following
the same evaluation protocols described in Sec. 4.

When applied to the stronger Gemini-2.5-Flash model, our SSR variants continue to demon-
strate consistent improvements over baseline iterative refinement methods. On AIME24 and AIME25,
SSR-Lin achieves the highest LR-Acc and LR-Maj@5, while SSR-Ada and SSR-Plan deliver highly
competitive results, particularly in terms of Pass @K, reflecting their ability to exploit refinement
opportunities even when the base model is already very strong. The gains are especially notable
on AIME25, where SSR-Ada substantially outperforms all baselines in both LR-Acc and Pass @K,
indicating the effectiveness of adaptively switching between efficient self-refinement and more costly
Socratic refinement. On Zebra-Puzzle, all three variants of SSR surpass or match the best-performing
baselines, with SSR-Lin again delivering the strongest overall results. These findings confirm that
even for a state-of-the-art reasoning model like Gemini-2.5-Flash, our refinement strategies
provide additional benefits, reinforcing their generality and scalability across model families and task

types.
D.2 ADDITIONAL RESULTS OF TEST-TIME SCALING AT LARGER SCALE

Applying iterative refinement, even for a single round, inevitably increases computation and latency
at test time. Thus, comparisons restricted to a fixed number of iterations, as in Sec. 4.4, may be unfair
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Figure 4: Performance of Parallel Test-Time Scaling, evaluated on AIME25 with GPT-5-mini
low-reasoning low-verbosity mode. Iterative refinement (both Self-Refine (Madaan et al., 2023)
and our SSR) holds non-trivial advantage against CoT (Wei et al., 2022b) in terms of absolute
performance and budget control. Our SSR outperforms the baselines under the same budget, with
SSR’s confidence estimation playing a crucial role.
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Figure 5: Performance of Iterative Test-Time Scaling, evaluated on AIME25 with GPT-5-mini
low-reasoning low-verbosity mode.

or incomplete. To more fairly assess efficiency, we examine the test-time scaling behavior of our
SSR relative to baselines under comparable computational cost. The results are presented in Fig. 4
(parallel scaling) and Fig. 5 (sequential scaling).

In the parallel scaling setting (Fig. 4), both Self-Refine and our SSR substantially outperform vanilla
CoT across all compute budgets, confirming that iterative refinement provides clear gains when
additional samples are available. Importantly, our SSR consistently yields higher accuracy than
Self-Refine under the same budget, demonstrating that confidence-aware step selection and plan
refinement lead to more efficient use of compute. In the sequential scaling setting (Fig. 5), a similar
trend emerges: while performance plateaus quickly for Self-Refine, SSR continues to improve
steadily with additional iterations, particularly in the early- to mid-cost regime. This suggests that
SSR better leverages iterative opportunities, correcting errors that Self-Refine either overlooks or
misjudges. Taken together, these results demonstrate that SSR not only provides stronger single-
iteration performance but also scales more effectively under increased compute, striking a favorable
balance between accuracy and cost.

D.3 ADDITIONAL RESULTS OF SSR-AS-A-JUDGE

To better understand the strengths of SSR, we further assess its self-evaluation quality and compare it
with the LLM-as-a-Judge framework (Gu et al., 2024). We evaluate the self-evaluation ability on the
four datasets we use in the main body, and we further include the results on ProcessBench (Zhang
et al., 2025b). For self-evaluation, due to the smaller dataset sizes of AIME24 and AIME25, we
sample 100 parallel reasoning traces per question, yielding datasets of 3,000 examples each. For
logical reasoning, we sample 10 traces per question, resulting in datasets of 1,000 examples each.
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AIME 24 AIME 25 Zebra Puzzles Mini Sudoku
AUROC (%) AUROC (%) AUROC (%) AUROC (%)
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Figure 6: Self-Evaluation Performance of SSR-as-a-Judge and LLM-as-a-Judge, evaluated with
GPT-5-mini.
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Figure 7: Performance of SSR-as-a-Judge and LLM-as-a-Judge, evaluated on Process-
Bench (Zhang et al., 2025b), with GPT-4 . 1-nano.

In the LLM-as-a-Judge setting, the model is prompted to provide both feedback and a confidence
score on a 05 scale. For SSR, we perform a single iteration of Socratic step decomposition and
confidence estimation of each step. All experiments run with GPT-5-mini low-reasoning low-
verbosity mode. Since SSR produces step-level confidence scores Cr = {c; }4¢[r) for the Socratic
steps St = {S;}1¢[7), these must be aggregated into a single score to represent overall response
quality. We show the result of (i) Min (min{ct}tE[T]), the weakest step confidence; (ii) Mean-

Log (% Zthl log ¢;), a length-normalized version inspired by confidence and uncertainty estimation
in sequence modeling (Zhang et al., 2025a); and (iii) SSR-Ada with Mean.

We formulate the evaluation of a judge’s ability as a problem of incorrect reasoning trace detection,
where incorrect responses are labeled as positives. We report three correlation-based metrics: Area
Under the Receiver Operating Characteristic Curve (AUROC), Precision™ and Recall* at the optimal
classification threshold (Hanley & McNeil, 1982; Boyd et al., 2013; Farquhar et al., 2024; Ye et al.,
2025; Zhang et al., 2025a), which together measure how well confidence scores distinguish between
correct and incorrect responses.

The results are shown in Fig. 6 and Fig. 7. Somewhat unexpectedly, across most evaluation metrics,
the judging ability of SSR does not surpass the basic LLM-as-a-Judge. This is evident in consistently
lower AUROC, suggesting that the confidence scores produced by SSR contain more noise and
thus yield less balanced evaluations. Why, then, does SSR still outperform baselines as an iterative
refinement framework? As illustrated in Fig. 6, the key lies in its complementary role to Self-Refine.
While SSR lags behind LLM-as-a-Judge in AUROC,, it consistently achieves much higher recall of
incorrect reasoning traces, particularly on logical reasoning benchmarks such as Zebra Puzzle and
Mini-Sudoku. This broader coverage allows SSR to catch errors that Self-Refine often misses, even
if it introduces additional noise. The mechanism behind SSR-Ada can thus be understood as three
cascading factors:

* High precision of LLM-as-a-Judge: when used in Self-Refine, it reliably identifies problem-
atic reasoning traces, but often misses a large portion of incorrect ones.

* High coverage of SSR: it captures and provides useful signals for truly problematic steps in
reasoning, though at the cost of introducing some unreliable feedback for feedback.

* Inherent robustness of LLMs: during refinement, LLMs can withstand noisy refinement
feedback, serving as a safeguard that enables recovery and improvement despite occasional
errors.
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D.4 QUALITATIVE ANALYSIS

In this section, we present a concrete example to illustrate how SSR performs step-level verification
and refinement. The example is taken from a MATH-Level-5 question, with GPT-4.1-nano
serving as the backbone LLM. The results are shown in Fig. 8-14.

The qualitative example illustrates how SSR intervenes within the reasoning process rather than only
at the final output. By decomposing reasoning into Socratic steps, estimating step-level confidence,
and selectively refining weak points, SSR prevents local errors from propagating through the reasoning
trace. Compared to standard Self-Refine, which often produces brittle trajectories, SSR provides
interpretable and controllable corrections that lead to more reliable outcomes. These case studies
complement our quantitative results and highlight the practical value of SSR as a step-level refinement
framework.
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[QUESTION]
Exits on a highway are numbered consecutively from 1 to 50. The distance from exit41to exit 50is 100 km. If each exit
is at least 6 km fromthe next exit, what is the longest possible distance, in kilometers, between exit 47 and exit 48?

f[Chain-of-Thought] (1/3) \
Let's carefully analyze the problem step by step:

1. **Understanding the problem:**
- The highway has exits numbered from 1 to 50.
- The distance between exit 41 and exit 50 is 100 km.
- Each exitis at least 6 km from the next exit.
- We are asked to find the maximum possible distance between exit 47 and exit 48.

2. **Implications of the distance between exit 41 and exit 50:**
- Since the exits are numbered consecutively, and the distance from exit 41 to exit 50 is 100 km, thisinvolves 9
segments:
- From exit 41 to 42
-42t043
-43to44
-44to 45
-451t0 46
-46to 47
-47t0 48
-481t0 49
-49t0 50
- The total of these 9 segmentsis 100 km.

3. **Constraints on each segment:**
- Each segment (distance between consecutive exits) is at least 6 km.
- This means the minimal total distance from exit 41 to exit 50, if all segments are at their minimum, is:
\[
9 \times 6 = 54 \text{ km}
\]
- Butthe actual total is 100 km, which is greater than 54 km, so there is some "extra" distance to distribute among
these segments.

4. **Distributing the extra distance: **
- The total "extra" beyond the minimumiis:
\[
100 - 54 = 46 \text{ km}
\]
- To maximize the distance between exit 47 and exit 48, we want to maximize the length of that specific segment.
- To do that, we should minimize the distances of all other segments, since the total sumiis fixed at 100 km.

& J

Figure 8: Qualitative Result, Concrete Example (1/7): Chain-of-Thought Response (1/3).
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[QUESTION]
Exits on a highway are numbered consecutively from 1 to 50. The distance from exit41to exit 50is 100 km. If each exit
is at least 6 km fromthe next exit, what is the longest possible distance, in kilometers, between exit 47 and exit 48?

[GROUND TRUTH]
52

([Chain-of-Thought] (2/3) \
5. **Minimizing other segments: **
- For segments other than 47-48, assign the minimum of 6 km each.
- The segments before exit 47 are:
-41-42
-42-43
-43-44
- 44-45
-45-46
- There are 5 such segments, each at 6 km:
\[
5\times 6 = 30 \text{ km}
\]
- The remaining segments are:
-47-48
- 48-49

- 49-50

& J

Figure 9: Qualitative Result, Concrete Example (2/7): Chain-of-Thought Response (2/3).
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[QUESTION]
Exits on a highway are numbered consecutively from 1 to 50. The distance from exit41to exit 50is 100 km. If each exit
is at least 6 km fromthe next exit, what is the longest possible distance, in kilometers, between exit 47 and exit 48?

/[Chain-of-Thought] (2/3) \

6. **Calculating the maximum for segment 47-48:**
- The total distance from exit 41 to 50 is 100 km.
- The distances of the first 5 segments (41-42 to 45-46) sum to 30 km.
- The remaining distance for the last 4 segments (including 47-48) is:
\[
100 - 30 = 70 \text{ km}
\]
- Since 48-49 and 49-50 are also at least 6 km each, we need to consider their minimal contributions:
- 48-49: at least 6 km
- 49-50: at least 6 km
- So, the minimal total for these two segments is:
\[
2 \times 6= 12\text{ km}
\]
- Therefore, the maximum possible length for 47-48 is when the other two segments (48-49 and 49-50) are at their
minimums:
\[
\text{Distance of 47-48} =70 - 12 = 58 \text{ km}
\]
- This is because the totalforthe last 4 segmentsis 70 km, allocated as:
- 47-48: as large as possible
- 48-49: 6 km (minimum)
- 49-50: 6 km (minimum)
- The remaining 70 - 6 - 6 = 58 km can be assigned to 47-48.

7.**Conclusion:**
- The maximum possible distance between exit 47 and exit 48 is 58 km.

**Final step:**

- Since this calculation is based on assigning the minimal distances to other segments (except 47-48), and
respecting the minimum segment length of 6 km, this setup is feasible.

**Therefore, the longest possible distance between exit 47 and exit 48 is 58 km .**

<answer>58</answer>

& J

Figure 10: Qualitative Result, Concrete Example (3/7): Chain-of-Thought Response (3/3).
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[QUESTION]
Exits on a highway are numbered consecutively from 1 to 50. The distance from exit41to exit 50is 100 km. If each exit
is at least 6 km fromthe next exit, what is the longest possible distance, in kilometers, between exit 47 and exit 48?

/[Self-Reﬁne] \

<evaluation>In the original solution, the key mistake was in the calculation of the maximum possible distance
between exit 47 and exit48. The initial approach correctly identified that to maximize this gap, the distances from exit
41 to 47 should be minimized (each at 6 km), and the distances from exit 48 to 50 should also be minimized (each at
6 km). The remaining segment, from exit 47 to 48, would then be as large as possible, given the total constraint of 100
km from exit 41 to 50.

However, the original calculation failed to account for the scaling necessary to ensure the total distance from exit 41
to exit 50 is exactly 100 km. It also overlooked the fact that the positions were initially considered in an unscaled
coordinate system, leading to an overestimation of the maximum gap.

The key correction is to recognize that the maximum unscaled gap between exits 47 and 48 is 52 km, obtained by
assigning minimal distances (6 km) to the other segments. Then, since the total from exit 41 to 50 is 100 km, the
actualmaximum gap is scaled proportionally:

\[

\text{Maximum unscaled gap} = 52 \text{ km}
\]

\[

\texf{Scaling factor} = \frac{100X 106}

\]

Multiplying these gives the true maximum:

\[

52 \times \frac{100) 106} = \frac{5200}{106} = \frac{26 0045 3}
\]

Thus, the corrected maximum possible distance between exit 47 and exit 48 is\(\frac{2600}{53}\) km, approximately
49.06 km.

The initial answer of 58 km was overestimated because it did not properly incorporate the scaling factor to match the
total distance constraint.</evaluation>

<answer>2600/53</answer>

Figure 11: Qualitative Result, Concrete Example (4/7): Self-Refine.
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[QUESTION]
Exits on a highway are numbered consecutively from 1 to 50. The distance from exit41to exit 50is 100 km. If each exit
is at least 6 km fromthe next exit, what is the longest possible distance, in kilometers, between exit 47 and exit 48?

([Socratic Self-Refine (Ours)] (1/3) \

[
{

"question": "How many segments are there between exit 41 and exit 507",
"answer": 9,
"reference set": [
"There are 9 segments between exit 41 and exit 50.",
"There are 9 segments between exit 41 and exit 50.",
g
"NA",
"NA"
1,
"confidence": 4
h
{

"question": "What is the minimaltotal distance if each of these 9 segments is exactly 6 km?",
"answer": 54,
"reference set ": [
"54 km",
"54 km",
"54 km",
"54 km",
"54 km"
1
"confidence": 5
b
{

"question": "What is the total extra distance beyond the minimal total distance of 54 km, given that the actual
distancefromexit41to exit 50is 100 km?",
"answer": 46,
"reference set ": [
"100 km - 54 km = 46 km",
"100 km - 54 km = 46 km",
"100 km - 54 km = 46 km",
"100 km - 54 km = 46 km",
"100 km - 54 km = 46 km"
1,
"confidence": 5

h

\_ J

Figure 12: Qualitative Result, Concrete Example (5/7): Socratic Self-Refine (SSR, Ours) (1/3).
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[QUESTION]
Exits on a highway are numbered consecutively from 1 to 50. The distance from exit41to exit 50is 100 km. If each exit
is at least 6 km fromthe next exit, what is the longest possible distance, in kilometers, between exit 47 and exit 48?

([Socratic Self-Refine (Ours)] (2/3) \

{
"question": "How many segments are there between exit 41 and exit 50, and which segments are they?",
"answer": "Between exits 41-42, 42-43, 43-44, 44-45, 45-46, 46-47, 47-48, 48-49, 49-50",
"reference set ": [
"There are 9 segments between exit 41 and exit 50, corresponding to the intervals between each pair of
consecutive exits: from exit 41 to 42, 42 to 43, 43 to 44, 44 to 45, 45t0 46, 46 to 47, 47 to 48, 48 to 49, and 49 to 50.",
"There are 9 segments between exit 41 and exit 50, corresponding to the intervals between each pair of
consecutive exits from 41 to 50. These segments are:\n1. Between exit 41 and exit 42\n2. Between exit 42 and exit
43\n3. Between exit 43 and exit 44\n4. Between exit 44 and exit 45\n5. Between exit 45 and exit 46\n6. Between exit
46 and exit47\n7. Between exit 47 and exit 48\n8. Between exit 48 and exit 49\n9. Between exit 49 and exit 50",
"There are 9 segments between exit 41 and exit 50, corresponding to the intervals between each consecutive pair
of exits from 41 to 50. Specifically, these segments are: \n1. between exit41and exit42 \n2. between exit42and
exit43 \n3. between exit43and exit44 \n4. between exit 44 and exit45 \n5. between exit 45and exit 46 \n6.
between exit 46 and exit47 \n7. between exit47 and exit48 \n8. between exit 48 and exit49 \n9. between exit 49
and exit 50",
"There are 9 segments between exit 41 and exit 50, corresponding to the intervals between each pair of
consecutive exits: from exit 41 to 42, 42 to 43, 43 to 44, 44 to 45, 45t0 46, 46 to 47, 47 to 48, 48 to 49, and 49 to 50.",
"There are 9 segments between exit 41 and exit 50, corresponding to the intervals between each pair of
consecutive exits: from exit 41 to 42, 42 to 43, 43 to 44, 44 to 45, 45t0 46, 46 to 47, 47 to 48, 48 to 49, and 49 to 50."
1,
"confidence": 4
b
{

"question": "If all segments exceptthe one between exits 47 and 48 are set to their minimal length of 6 km, what is
the total length of these other segments?",
"answer": 8,
"reference set ": [
"48 km",
"48 km",
"48 km",
"48 km",
"48 km"
1,
"confidence": 0

h

\_ J

Figure 13: Qualitative Result, Concrete Example (6/7): Socratic Self-Refine (SSR, Ours) (2/3).
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[QUESTION]
Exits on a highway are numbered consecutively from 1 to 50. The distance from exit41to exit 50is 100 km. If each exit
is at least 6 km fromthe next exit, what is the longest possible distance, in kilometers, between exit 47 and exit 48?

([Socratic Self-Refine (Ours)] (3/3) \

{
"question": "What is the maximum possible length of the segment between exits 47 and 48, given the totaldistance
of 100 km and the minimal lengths of other segments?",
"answer": 52,
"reference set ": [
"38",
"46 km",
"52 km",
"52 km",
ngon
1,
"confidence": 4
}
]

<evaluation>\nUpon re-examination, | realize that | miscounted the number of segments between exits 41 and 50.
There are 9 segments connecting these 10 exits, not 8. Specifically, the segments are\n\n41-42, 42-43, 43-44, 44-45,
45-46, 46-47, 47-48, 48-49, 49-50.\n\nIn the previous reasoning, | mistakenly considered only 8 segments when fixing
distances at 6 km, excluding the segment between 47 and 48. To maximize the distance between exits 47 and 48, |
should set all other segments to their minimal length of 6 km, which is 8 segments (excluding the one between 47
and 48). But actually, there are 9 segments total, and only one of them is between 47 and 48.\n\nTherefore, the
correct approach is:\n\n- Fix all other segments (except 47-48) at 6 km.\n- Sum these fixed segments:\n \n There are
8 other segments besides 47-48 (from 41-42 up to 46-47, and from 48-49 up to 49-50), totaling 8 segments.\n\n- Sum
of these fixed segments: \\(8 \\times 6 = 48\\) km.\n\n- Total distance from 41 to 50 is 100 km; thus, the length of the
segment between 47 and 48 can be:\n\n \\[\n 100 - 48 = 52 \\text{ km}\n \\]\n\nThis confirms that the maximum
distance between exit 47 and exit 48 is **52 km**.\n\nThe initial miscount was in the number of segments fixed at
minimal length, but after correction, the reasoning aligns with the previous conclusion.\n\n</evaluation>\n\nNow,
let's proceed with the step-by-step reasoning again, explicitly addressing the count of segments:\n\n---\n\n### Step
1: Count the total segments between exits 41 and 50\n\n- The exits are numbered 41, 42, 43, 44, 45, 46, 47, 48, 49,
50.\n- The segments are:\n\n 41-42, 42-43, 43-44, 44-45, 45-46, 46-47, 47-48, 48-49, 49-50.\n\n- Total of **9
segments**.\n\n---\n\n### Step 2: Understand the goal\n\n- The total distance from exit 41 to exit 50 is 100 km.\n-
Each segmentis at least 6 km.\n- To maximize the distance between exit 47 and exit 48, set all other segments to
theirminimum length (6 km), except the segment between 47 and 48, which we want to maximize\n\n---\n\n###
Step 3: Fix other segments at minimal length\n\n- The segments fixed at minimum length (6 km):\n\n 41-42, 42-43,
43-44, 44-45, 45-46, 48-49, 49-50.\n\n- Count how many segments are fixed at 6 km:\n\n From 41-42 to 46-47: 6
segments (41-42, 42-43, 43-44, 44-45, 45-46, 46-47).\n\n From 48-49 to 49-50: 2 segments.\n\n- Total fixed
segments: **8**\n\n- Sum of fixed segments: \\(8 \\times 6 = 48\\) km.\n\n---\n\n### Step 4: Calculate the
maximum possible distance for the segment 47-48\n\n- Total distance from 41 to 50: 100 km.\n- Sum of fixed
segments: 48 km.\n- Remaining distance for the segment between 47 and 48:\n\n \\[\n 100 - 48 = 52 \\text{ km}\n
\\]\n\n- This is feasible because the segment length is at least 6 kmand can be extended up to 52 km.\n\n---\n\n###
**Final conclusion:**\n\nThe maximum possible distance between exit47 and exit 48 is **52 km**.\n\n---\n\n###
Final answer:\n\n<answer>52</answer>"

\_ J

Figure 14: Qualitative Result, Concrete Example (7/7): Socratic Self-Refine (SSR, Ours) (3/3).
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