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Abstract. Large language models (LLMs) require substantial resources
for task-specific adaptation, that motivates the development of parameter-
efficient fine-tuning (PEFT) methods. This paper presents quantum-
amplitude embedded adaptation (QAA), a novel PEFT framework that
logarithmically compresses activation vectors using quantum-amplitude
embedding and applies expressive non-linear transformations via param-
eterized quantum circuits (PQCs). By replacing linear adapters in at-
tention modules with compact quantum modules, QAA achieves high
expressivity while drastically reducing the number of trainable param-
eters. Empirical results demonstrate that QAA performs on par with
or better than existing PEFT under constrained memory and compute
budgets, highlighting its potential for efficient LLM fine-tuning.
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1 Introduction

Background and Motivation. Large language models (LLMs) have demon-
strated remarkable performance across diverse natural language processing (NLP)
tasks, including summarization, question answering, and instruction following (Neu-
mann et al., 2025; Zhou et al., 2024a). However, to fully leverage this capability
for domain-specific generation or structured prediction tasks, additional fine-
tuning on downstream data remains essential (Gao et al., 2025; Zhang et al.,
2024a). Fine-tuning allows the model to specialize its behavior by conditioning
on task-relevant data, thereby improving performance on target distributions
that differ from the pre-training corpus (Ahn et al., 2025; Wu et al., 2025b; Xu
et al., 2024). Despite its effectiveness, full fine-tuning of LLMs remains computa-
tionally prohibitive due to their enormous parameter sizes (Kasneci et al., 2023;
Lin et al., 2025). Updating all parameters for each downstream task becomes im-
practical, particularly in multi-task or resource-constrained settings (Schmirler
et al., 2024; Yang et al., 2024). To address this, parameter-efficient fine-tuning
(PEFT) strategies have been proposed (Ali et al., 2025; Ma et al., 2022). Among
the various strategies, low-rank adaptation (LoRA) (Hu et al., 2022) is intro-
duced to reduce the cost of fine-tuning LLM by injecting trainable low-rank
matrices into frozen attention and feed-forward layers, effectively constraining
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Fig. 1: The overall architecture of QAA.

updates to a smaller parameter subspace. Building on the principle of min-
imal parameter modification, prefix tuning (Huang et al., 2023) proposes an
alternative approach that prepends a small number of trainable vectors to the
input sequence, conditioning the model’s behavior without altering its inter-
nal weights. However, existing PEFT techniques predominantly utilize linear
projection layers or discretized prompt tokens, which inherently constrain their
representational capacity (Kim et al., 2025; Wu et al., 2025a). Such approaches
are insufficient to capture the non-linear, compositional, and context-sensitive
transformations required for effective task adaptation (Lv et al., 2024; Zhou
et al., 2024c). This limitation becomes more pronounced under extremely tight
parameter budgets, where a trade-off emerges between fine-tuning efficiency and
representational expressivity (Chang et al., 2024).

Algorithm Concept. To address the limitations of existing PEFT methods,
this paper introduces the quantum-amplitude embedded adaptation (QAA), a
novel quantum parameterized modules into transformer-based architectures by
replacing classical linear adapters with a structure that combines logarithmic
amplitude embedding (Cuéllar et al., 2023; Gonzalez-Conde et al., 2024) and
parameterized quantum circuit (PQC) (Baek et al., 2023; Mahmud et al., 2025)
as illustrated in Fig. 1. This architecture enables a compressed representation
of the input vector in logarithmic space while enhancing transformation expres-
sivity through quantum operations (Kottahachchi Kankanamge Don and Khalil,
2025). The compressed representation is then processed by a PQC, which per-
forms non-linear transformations over entangled qubit states. These transforma-
tions enable the modeling of complex input-output mappings that are difficult
to express with conventional low-rank or quantized layers. Therefore, QAA aims
to preserve performance while minimizing the adaptation overhead. This design
bridges the gap between efficiency and expressivity in PEFT, offering a new
direction for scalable fine-tuning under resource constraints.

Contributions. First of all, the novel PEFT framework, QAA is proposed,
which enables logarithmic compression via quantum-amplitude embedding and
expressive non-linear adaptation via PQC. In addition, the proposed method in-
tegrates seamlessly with transformer-based LLMs without modifying pretrained
weights, ensuring modular and scalable deployment. Lastly, experimental results
show that QAA achieves competitive performance compared to classical base-
lines under constrained parameter settings.
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Fig. 2: QAA-based LLM fine-tuning framework.
2 LLM Fine-Tuning Framework

The LLM fine-tuning is computationally expensive due to their massive pa-
rameter sizes, often ranging from hundreds of millions to billions (Ding et al.,
2023; Kalyan, 2024). Updating full model copies for each downstream task is
impractical, especially in multi-task, low-resource, or on-device scenarios with
limited memory and compute (Lian et al., 2022; Zhou et al., 2024b). Let Z =
{(z4,v:)}, denote the task-specific dataset, where z; is an input sequence (e.g.,
a prompt, document, or question) and y; is the corresponding output sequence.
Given a pre-trained autoregressive language model Pp(y | ), where & € RI?!
denotes the full set of model parameters and |®| is the total number of tun-
able weights, the standard fine-tuning objective maximizes the conditional log-
likelihood of the target sequence y given the input z, as follows,

mgxzm cz Z log Py (y: | x,y<t)- (1)

In full fine-tuning, all parameters @ are updated, resulting in a unique fine-tuned
model for each task (Liu et al., 2023). However, as |$| becomes large (e.g., over
175 billion for GPT-3), this becomes infeasible in memory footprint, training
time, and deployment cost (Brown et al., 2020; Hoffmann et al., 2022).

To address this, PEFT methods have been developed to adapt only a small
subset of parameters while keeping the majority of @ frozen (Usman et al., 2024).
Classical PEFT techniques such as LoRA (Mao et al., 2025), insert lightweight
trainable modules into the LLM attention or feedforward blocks. Formally, PEFT
methods aim to learn a low-dimensional update function Ah(6), parameterized
by 6 € Rl where |§] < |®|, such that the model parameters become & +
Ah(6) (Thomas et al., 2024). The fine-tuning objective is then rewritten as,

lyl
max Z ()eZ Z 108 oy ano)(ye | 2,y<1)- (2)

We define A$(0) as a quantum-amplitude adapter that logarithmically com-
presses the full activation 2 € R? via amplitude embedding and applies trainable
quantum circuits for efficient fine-tuning.
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Table 1: Comparison of parameter complexity across PEFT.

Method "IYainable Parameters
Full Fine-Tuning O(d?)

LoRA (rank-r) O(dr)

Prefix Tuning (length-I) O(ld)

QAA (proposed) O(dlogd)

3 Algorithm Design

3.1 QAA

This paper proposes the QA A, a novel PEFT mechanism that integrates quantum-
amplitude embedding and PQC into the LLM adaptation process. As shown in

Fig. 2, QAA replaces conventional full-rank linear adapters by projecting hid-

den activation vectors into a quantum feature space. This approach enables

expressive, non-linear transformation while reducing the number of trainable

parameters to a logarithmic scale with respect to the hidden dimension d.

Quantum-Amplitude Embedding Let z; € R? denote the hidden activa-
tion vector of a pretrained language model, such as the output of an attention
sub-layer. To represent this vector in a quantum system, we employ amplitude
embedding, which encodes a real-valued vector into the amplitudes of a quan-
tum state. The number of qubits n is selected such that n = [log, d], ensuring
that the quantum state can represent a vector of dimension 2". To align the
dimension with quantum requirements, the number of qubits n is selected such
that n = [log,d]. Then, z; is transformed into 2, € R?" by zero-padding or

truncating to z; € R?". The input vector z} is normalized as, #; = H;:E,‘i‘h. Where
the ¢ norm is defined as ||z}]|2 = Z?igl(x;J)Q This step guarantees that

the amplitude embedded quantum state satisfies the normalization constraint
(x;]z;) = 1 ensuring that the total probability amplitude across all basis states
sums to one. Then, the normalized vector Z; is embedded into a quantum state,
|y = Zjlgl Z; ; |j), where each component Z; ; becomes the amplitude of basis
state |j) in the quantum system. This representation enables the quantum circuit
to operate on the entire input vector in superposition, facilitating global, paral-
lel processing. Amplitude embedding enables logarithmic compression of input
vectors, requiring only log, d qubits to represent a d-dimensional activation vec-
tor. This compact encoding not only reduces the number of required qubits but
also allows the PQC to operate on a superposition of features, enabling efficient
learning of complex, entangled representations.

PQC-based Non-Linear Learning After amplitude embedding, the quantum
state is processed by a PQC to enable expressive, non-linear transformations in
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a high-dimensional Hilbert space (Khairy et al., 2020). Let the input quantum
state be |z;) € C?" across n qubits. The PQC applies a sequence of parameterized
gates followed by entangling operations, forming a unitary transformation Ur(6),
where 6 € R™ denotes the trainable parameters.

The PQC consists of two main operations. First, for each qubit j € {1,...,n},
a parameterized single-qubit rotation gate Ry is applied, defined as, Ry (6;) =

exp (—i%Y), where Y is the Pauli-Y matrix and 6; denotes the learnable pa-

rameter for qubit j. These rotations introduce controlled non-linearity at the
qubit level, enabling the circuit to represent more complex transformations than
classical linear layers. Second, to model inter-qubit dependencies, the circuit in-
cludes a fixed entanglement pattern using CNOT (controlled-NOT) gates. For
adjacent qubits (j,7 + 1), the CNOT operation acts as,

ONOTj,j+11a); [6) 41 = la); la ® b) 541, (3)

where @ denotes bitwise XOR. These entangling operations create quantum
correlations across the qubits, allowing the PQC to model joint dependencies
and capture task-specific interactions (Pappalardo et al., 2025).

Decoding and Up Projection After the PQC processes the amplitude em-
bedded quantum state, the resulting quantum state |¢;) € C2" is measured in
the computational basis. To extract classical features from this quantum state,
we perform expectation-value measurements with respect to Pauli-Z observables
on each qubit. Specifically, the output vector is defined as,

A9 = (il Z; |9, €R™, (4)

where Z; denotes the Pauli-Z operator acting on the j-th qubit, and (v;|Z;|v;)

is the expected measurement outcome on that qubit. This vector Zz((I) serves as

a compact representation of the task-relevant quantum features encoded during
the PQC transformation.

To reintegrate the quantum features into the original LLM architecture, we
apply a learnable linear transformation, or up-projection, via a matrix W, €
R4*™ where d is the hidden dimension of the base model. The resulting decoded
activation is given by, z; = Wuzl-(q) € RY. Finally, this decoded activation is

combined with the frozen hidden state x; through a residual merge, xl(aug) =

This complete process—including amplitude embedding, PQC transforma-
tion, quantum measurement, and up-projection—defines the update function
AP(0), which enables PEFT with logarithmically fewer learnable parameters

compared to full model adaptation.

3.2 Complexity and Expressivity Analysis

Classical PEFT methods, such as LoRA and prefix tuning, reduce the number
of trainable parameters by restricting the update space. In LoRA, a full-rank
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Q: Look up the boiling || : The boiling point of water is 100 °C (212 °F), at

point of water. standard atmospheric pressure. When heated at higher
pressures, water's boiling point increases. For example,

CRIENED) water will boil at a temperature of 115 “C (239 °F) atan

A: The water is boiled atmospheric pressure of 1 bar. At higher pressures, such

and the point of boiling is || as those experienced at the bottom of the ocean, the
always at the boiling point || boiling point of water can be as high as 374 °C (705 °F).

Input
Q: How can we A: There are a number of ways to reduce air pollution,
reduce air pollution? such as shifting to renewable energy sources,
encouraging the use of public transportation,
prohibiting the burning of fossil fuels, implementing
A: There are many ways policies to reduce emissions from industrial sources,
that you can reduce air and implementing vehicle emissions standards.
pollution. If you want to Additionally, individuals can do their part to reduce air
reduce your pollution, pollution by reducing car use, avoiding burning
take a look at this book materials such as wood, and changing to energy
that describes some of efficient appliances. Additionally, individuals can do
the ways you can reduce || their part to reduce air pollution by reducing car use,
air pollution. avoiding burning materials such as wood.

Fig. 3: Example output generated using QAA-based LLM.

Table 2: Comparison of the standard NLG evaluation metrics using different
adaptation methods.

Model #Model #Trainable Trainable Standard NLG Evaluation Metrics
& Method Parameters | Parameters Ratio |BLEU ROUGE-1 ROUGE-2 ROUGE-L BERTScoreF1

GPT-NEO (Full) 125.2M 125.2M 100% 10.62 18.65 17.28 18.35 83.06
GPT-NEO (LoRA) 125.2M 294.9K 0.24% 0.734 7.179 2.069 5.874 77.76
GPT-NEO (Prefix) 125.2M 368.6K 0.29% 0.827 8.585 2.169 6.833 76.95
GPT-NEO (QAA) 125.2M 184.5K 0.14% |33.37 47.58 45.27 46.51 89.11
TinyLLaMA (Full) 1.100B 1.100B 100% 24.25 25.06 24.34 25.06 85.44
TinyLLaMA (LoRA) 1.100B 1.126M 0.11% 12.24 21.14 20.64 21.14 85.13
TinyLLaMA (Prefix) 1.100B 0.225M 0.02% 21.07 12.37 21.07 24.88 87.17
TinyLLaMA (QAA) 1.100B 0.540M 0.05% 20.66 40.28 32.13 36.29 88.17
Qwen2.5 (Full) 494.0M 494.0M 100% 13.92 21.90 21.30 21.88 86.14
Qwen2.5 (LoRA) 494.0M 0.540M 0.10% 6.549 15.45 12.94 17.99 83.78
Qwen2.5 (Prefix) 494.0M 0.122M 0.02% 1.715 14.08 4.984 9.229 82.56
Qwen2.5 (QAA) 494.0M 0.215M 0.04% 12.95 21.77 21.56 21.76 87.76

matrix update is decomposed as W < W + AB with A € R¥" B ¢ R"™*4,
yielding a parameter cost of O(dr). Prefix tuning prepends [ trainable vectors of
dimension d, resulting in O(ld) parameters. While effective, these methods are
inherently linear and limited in expressivity.

The proposed QAA departs from this linear paradigm. It performs amplitude
embedding of the hidden activation z; € R? into a quantum state |z;) € c?",
with n = [log, d]. The transformation is carried out by a trainable PQC with L
layers acting on n qubits. This circuit introduces O(L - logd) parameters. The
expectation values from the PQC output are decoded by an up-projection matrix
W, € R¥1°ed to match the original hidden size. Hence, the total trainable
parameter count is bounded by, |[A®|gaa = O(dlogd). Compared to LoRA’s
O(dr) and prefix tuning’s O(ld), QAA achieves lower parameter complexity when
r,l = 2(logd). Moreover, PQCs enable expressive non-linear transformations
and qubit entanglement, which allows QAA to approximate complex functions
beyond the capacity of linear modules.
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eters (%) across models.

4 Performance Evaluation

To validate the feasibility of the proposed QAA, experiments are conducted
across three LLM models—GPT-NEO (Black et al., 2021), TinyLLaMA (Zhang
et al., 2024b), and Qwen2.5 (Xiang et al., 2025)—on the standard NLG evalu-
ation metrics on Alpaca (Taori et al., 2023) dataset. The evaluation compares
QAA with baselines: full fine-tuning, LoRA with » = 8, and prefix tuning. Per-
formance is assessed in terms of BLEU, ROUGE (1, 2, L), and BERTScore F1,
alongside the number and ratio of trainable parameters.

Qualitative Evaluation. Fig. 3 presents example responses comparing GPT-
NEO and GPT-NEO + QAA on instruction-following tasks. In both cases, the
QAA-enhanced model produces answers that are significantly more informative
and context-aware. In the boiling point query, GPT-NEO provides a vague and
partially correct answer, while GPT-NEO + QAA offers a detailed explanation
including scientific units, conditions (e.g., atmospheric pressure), and contextual
scenarios. Similarly, in the air pollution task, the base model defers the answer
to an external resource, whereas the QA A-augmented model provides actionable
strategies, demonstrating improved reasoning and informativeness. These vali-
date QAA’s ability to enhance the LLMs with minimal additional parameters.
Training Efficiency. Fig. 4(a) illustrates the training loss curve over 1000 op-
timization steps across four fine-tuning strategies. The proposed QAA exhibits
the fastest convergence rate, achieving a training loss below 0.5 within approx-
imately 300 steps. In contrast, prefix tuning and LoRA show slower and less
stable convergence behaviors. While full fine-tuning shows a convergence rate
comparable to that of QAA. These results indicate that QAA not only acceler-
ates convergence but also achieves the lowest final training loss among all PEFT
methods. The improvement is attributed to the expressive power of the quan-
tum circuit, enhanced function approximation, despite utilizing fewer trainable
parameters.

Parameter Efficiency. Fig. 4(b) and Table 2 compare the ratio of trainable
parameters across different fine-tuning methods and model backbones. The pro-
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posed QAA consistently maintains one of the lowest parameter footprints among
all baselines. Specifically, for GPT-NEO, QAA updates only 184.5K parameters,
corresponding to 0.14% of the full model size, which is significantly lower than
LoRA (0.24%) and prefix tuning (0.29%). For TinyLLaMA, QAA trains merely
0.05% of the parameters, compared to 0.11% for LoRA and 0.02% for prefix
tuning. Similarly, in the case of Qwen2.5, QAA achieves a trainable ratio of just
0.04%, outperforming LoRA (0.10%) and prefix tuning (0.02%) in parameter ef-
ficiency. These results demonstrate that QAA substantially reduces the number
of trainable parameters while still maintaining competitive performance.
Generation Quality. In Table 2, QAA consistently outperforms LoRA and
prefix tuning across all model backbones while maintaining a significantly lower
number of trainable parameters. On GPT-NEO, QAA achieves a BLEU score
of 33.37 and a BERTScore of 89.11, both of which are substantially higher than
those of LoRA (BLEU: 0.734, BERTScore: 77.76) and prefix tuning (BLEU:
0.827, BERTScore: 76.95), and even surpass the full fine-tuning baseline (BLEU:
10.62, BERTScore: 83.06). For TinyLLaMA, QAA achieves a BERTScore of
88.17 with only 0.05% of trainable parameters, approaching the full model’s
score of 85.44 while also improving upon LoRA and prefix tuning in ROUGE-1
and ROUGE-L. In the case of Qwen2.5, QAA achieves a BLEU score of 12.95
and BERTScore of 87.76, again outperforming LoRA (BLEU: 6.549, BERTScore:
83.78) and prefix tuning (BLEU: 1.715, BERTScore: 82.56), and closely match-
ing the full model’s performance. These results indicate that QAA effectively
captures both lexical precision and semantic fidelity, achieving state-of-the-art
generation quality.

5 Conclusion

This paper presents QAA, a novel quantum adapter for PEFT of LLMs. QAA
leverages quantum circuit-based non-linear transformations to enhance the ex-
pressiveness of low-rank adaptations while significantly reducing the number
of trainable parameters. Experiments across LLM backbones, demonstrate that
QAA achieves competitive performance to full fine-tuning and consistently out-
performs existing PEFT methods. These results highlight QAA’s potential as a
practical and scalable fine-tuning strategy for resource-constrained environments
and downstream applications.
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