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Abstract

We propose a Bayesian framework for fine-tuning
large diffusion models with a novel network struc-
ture called Bayesian Power Steering (BPS) 2. We
clarify the meaning behind adaptation from a
large probability space to a small probability
space and explore the task of fine-tuning pre-
trained models using learnable modules from a
Bayesian perspective. BPS extracts task-specific
knowledge from a pre-trained model’s learned
prior distribution. It efficiently leverages large dif-
fusion models, differentially intervening different
hidden features with a head-heavy and foot-light
configuration. Experiments highlight the superi-
ority of BPS over contemporary methods across a
range of tasks even with limited amount of data.
Notably, BPS attains an FID score of 10.49 under
the sketch condition on the COCO17 dataset.

1. Introduction
The advent of diffusion models (Ho et al., 2020; Song et al.,
2020b) and their extensions (Song et al., 2020a; Nichol &
Dhariwal, 2021; Huang et al., 2023), has enabled effective
learning of intricate probability measures for diverse data
types, including images (Ho et al., 2022; Rombach et al.,
2022; Saharia et al., 2022; Ho et al., 2022), audio (Kong
et al., 2020), and 3D bioimaging data (Luo & Hu, 2021;
Poole et al., 2022; Shi et al., 2023; Pinaya et al., 2022). For
these generative models, the quantity of training data plays
a crucial role in influencing both the precision of probability
measure estimation and the generalization capacity, enabling
them to extrapolate effectively within the probability space.
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Particularly, in computer vision, significant efforts have been
devoted to developing large-scale diffusion models. For
instance, the Stable Diffusion (SD, Rombach et al. (2022))
is trained utilizing the LAION-5B dataset (Schuhmann et al.,
2022), a large publicly available text-image dataset, with a
staggering magnitude of 585 billion.

The target 
probability space

The prior 
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Figure 1. The relationship between the probability spaces learned
by the pre-trained model (the prior probability space or large
probability space) and the target task (the target probability space
or small probability space). Different colors represent different
densities at various locations on the manifold.

The diversity and abundance of data contributes to the excep-
tional generative capabilities of large-scale models. They
can capture intricate details in the large probability space
of images. However, numerous data-driven modeling tasks
typically focus on a specific subset of the entire image space,
as illustrated in Figure 1. Moreover, the size of the train-
ing data available for these tasks is considerably smaller
compared to expansive datasets such as LAION-5B. This
limitation is especially evident in user-customized scenar-
ios, where the available number of samples provided by
users is often limited. Consequently, learning this smaller
probability space poses a significant challenge.

Pre-trained large models, which encapsulate information
across the large probability space and exhibit exceptional
generalization abilities, offer a potential solution to the chal-
lenge posed by limited training data sizes. This prompts us
to ask the question: can the judicious deployment of such
pre-trained large-scale models, in conjunction with carefully
curated specialized datasets, effectively facilitate the tran-
sition from a large probability space to a small probability
space?
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A related topic is domain adaptation for generative tasks.
Originating from the field of transfer learning, this concept
has gradually extended its application to generation tasks,
particularly aimed at transferring a broader knowledge base
acquired from publicly available data to the task-specific
distribution (Li et al., 2021; Harder et al., 2022; Lyu et al.,
2023; Kurakin et al., 2023). Especially in privacy protec-
tion and medical data domains, with a specific focus on
creating infinite amounts of synthetic data to maximise the
downstream prediction performance (Sagers et al., 2023;
Ghalebikesabi et al., 2023; Li et al., 2023; Tang et al., 2024).
Another notable application lies in customizing scenarios
for users. Textual inversion (Gal et al., 2022), DreamBooth
(Ruiz et al., 2023), LayoutDiffuse (Cheng et al., 2023) and
StyleDrop (Sohn et al., 2023) are exemplary techniques to
capture the specific domain (semantic concepts, patterns,
styles, etc.), leveraging a small set of user-provided example
images.

Other efforts have been devoted to conditional control for
text-to-image diffusion models for achieving customized
image generation. Text-based control methods, as explored
by Brooks et al. (2023); Hertz et al. (2022); Gafni et al.
(2022); Kawar et al. (2023); Parmar et al. (2023); Chefer
et al. (2023); Orgad et al. (2023); and Couairon et al. (2022),
are centered around the adjustment of prompts, manipula-
tion of CLIP features, and modification of cross-attention
mechanisms. The methods of (Ho & Salimans, 2022; Hong
et al., 2023; Nichol et al., 2021; Brack et al., 2023) combine
diverse prompts to achieve desired outcomes. For control
conditions other than text, Dhariwal & Nichol (2021) in-
troduce a time-dependent classifier, which requires a sepa-
rate training procedure and leads to a performance decline
(Ghalebikesabi et al., 2023) due to a decreasing signal-to-
noise ratio over time. Concurrent endeavors including T2I-
Adapter (Mou et al., 2023) and ControlNet (Zhang et al.,
2023) employ fine-tuning techniques on large-scale diffu-
sion models, which enable precise spatial control over image
generation and establish the state of the art (SOTA).

In this paper, we first mathematically formulate the problem,
proposing a framework for transition from a large proba-
bility space to a small probability space through its trans-
formation into a conditional generative problem. To tackle
this problem, we propose a Bayesian fine-tuning framework
along with a novel network structure called Bayesian Power
Steering (BPS), designed to shift the pretrained diffusion
system towards the data support specified by the given con-
ditions.

Our extensive experiments demonstrate that BPS, with sig-
nificantly reduced amounts of data, generates samples that
align with the support of the dataset and achieves compara-
ble generative quality to large-scale models. Our ablation
studies confirm the robustness and scalability of BPS across

datasets of varying sizes. Experiments validate the effective-
ness of the proposed model, the necessity of its components,
and , and provide a comparative analysis against strong
conditional image generation baselines. Notably,the pro-
posed method surpasses state-of-art methods, achieving the
FID score of 10.49 with sketch condition on the COCO17
dataset (Lin et al., 2014).

2. Preliminary: Stable Diffusion
Throughout this paper, we adopt the Stable Diffusion (Rom-
bach et al., 2022) as the pre-trained large-scale model. Ini-
tially, the image data X0 ∈ Rdimg(dimg = 5122 × 3) is
mapped to a lower-dimensional latent probability space
Z := (Ω,F,P) ⊂ Rd(d = 642 × 4) via the pre-trained
autoencoder (Esser et al., 2021), while related text prompts
are encoded as Ctext ∈ Rktext by CLIP (Radford et al., 2021).
Subsequently, the diffusion process (Ho et al., 2020) is
employed to generate representations of the image in the
latent space with condition Ctext. Finally, the image is re-
constructed using the pre-trained decoder.

The forward diffusion process in the latent space Rd is
expressed as {Zt}Tt=0 with t ∈ [T ] := {1, ..., T}:

Zt =
√
ᾱtZ0 +

√
1− ᾱtη, η ∼ N (0, Id), (1)

where Z0 ∈ Z denotes the generative object, and {ᾱt}Tt=1 is
a strictly decreasing sequence within the interval (0, 1). In
the reverse process, conditional modeling is accomplished
by manipulating the direction of the score function with
conditions. The backward process {Z̃Ctext

t }Tt=1 starts from
Z̃T ∼ N (0, Id) with the following iteration:

Z̃Ctext
t−1 =

1

1− βt

(
Z̃Ctext
t − βt√

1− ᾱt
ϵ∗(Z̃Ctext

t , t, Ctext)

)
+ σtη, (2)

, here βt := 1 − ᾱt/ᾱt−1, σt := 1−ᾱt−1

1−ᾱt
βt. According

to Tweedie’s formula (Efron, 2011), the denoise function
ϵ∗(zt, t, ctext) can be expressed as

ϵ∗(zt, t, ctext) : = −
√
1− ᾱt∇ log p(Zt = zt | Ctext = ctext)

= E[η | Zt = zt, Ctext = ctext]. (3)

The denoise function is parameterized through a neural
network, denoted as ϵθ̂. As demonstrated in equation (2),
precise control over the sampling process can be attained by
conducting fine-tuning on the pre-trained denoise function
ϵθ̂.

3. General Setup
Our objective is to fine-tune the pre-trained denoise func-
tion ϵθ̂ with learnable modules, aiming to extract a small
probability space from a large probability space.
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3.1. Problem Formulation

We first establish the precise mathematical definitions for
both large and small latent probability spaces. Let Z0 de-
fined in the latent probability space Z := (Ω,F,P) be the
generative target of the pre-trained model. Our focus lies on
a small latent probability space residing within a non-zero
measurable set ∆ ∈ F (Fig.1). This space corresponds to the
trace of Z on ∆ and is denoted as Z∆ := (∆,∆ ∩ F,P∆).
Specifically, the target probability measure is defined by
P∆(E) := P(E)/P(∆), for all E ∈ ∆ ∩ F.

According to the following lemma, the target domain ∆ can
be described using a suitable condition c ∈ Rk.

Lemma 3.1. (Chung, 2001) If ∆ ∈ F, then there exists
some measurable function ψ(·) such that ∆(ω) = ψ(Z0)
for any ∆(ω) := ω ∈ ∆ ∩ F.

By introducing a function ψ : Ω → Rk to describe the
relationship c = ψ(z0), ∆ can be defined as the union of
sets ∆ = ∪c∈ψ(∆){z0 : ψ(z0) = c}. Consequently, when
the data z0 ∈ ∆ aligns with suitable conditions c, the task
of learning a “small distribution” is formulated as learning
a probability measure of Z0 | C, where C is a random
variable defined in C := (ψ(∆),ψ(F),P ′) ⊆ Rk.

The form of conditions can vary widely. For example, in
Text-to-Image Diffusion Models, textual descriptions, de-
noted as Ctext, are employed to guide the generative process.
However, given that a single image can correspond to mul-
tiple descriptions, establishing a direct mapping ψ from
image to text alone is not practical. To address this, addi-
tional descriptors Cadd, such as edge, depth, or attention
information, can be incorporated based on the specific goals
of the model. These supplementary controls, which can be
numerous, aid in pinpointing the desired target support ∆.
Consequently, the condition in this context is represented
as a k-dimensional vector C := (C⊤

text, C
⊤
add)

⊤, integrating
both textual and additional descriptive elements.

The proposed BPS method, which is formally introduced in
Section 4, is based on the above formulation for fine-tuning
the pre-trained denoise function ϵθ̂ using independent paired
samples from X × C.

3.2. Bayesian Formulation

Suppose condition (ctext, cadd) provides a detailed character-
ization of the target domain, then our primary objective is
to learn the integrated denoise function, denoted as

ϵ̄∗(zt, t, ctext, cadd) := E[η | zt, ctext, cadd].

To take advantage of the pretrained model, we bridge
ϵ̄∗(zt, t, ctext, cadd) and ϵ∗(zt, t, ctext), using Tweedie’s for-
mula (Efron, 2011) and Bayes’ theorem as follows. First,

Tweedie’s formula gives

ϵ̄∗(zt, t, ctext, cadd) = −
√
1− ᾱt ∇ log p(zt | ctext, cadd).

By Bayes’ theorem, we have

p(zt | ctext, cadd) =
p(cadd | zt, ctext)

p(cadd | ctext)
p(zt | ctext). (4)

Taking the logarithm across (4), differentiating with respect
to zt, and then using the definitions of ϵ̄∗(zt, t, ctext, cadd)
given above and ϵ∗(zt, t, ctext) from Equation (3), we have

ϵ̄∗(zt, t, ctext, cadd) (5)

= −
√
1− ᾱt[∇ log p(cadd | zt, ctext) +∇ log p(zt | ctext)]

= −
√
1− ᾱt∇ log p(cadd | zt, ctext) + ϵ

∗(zt, t, ctext).

Detailed derivations are deferred to Appendix A. Below, we
denote

M(zt, t, ctext, cadd) = −
√
1− ᾱt∇ log p(cadd | zt, ctext).

(6)

The integrated function ϵ̄∗ can be interpreted as the posterior
denoise function corresponding to the prior denoise function
ϵ∗ for the pretrained model. It is obtained by combining
the pretrained denoise function ϵ∗ with a time-dependent
“steering gear” M .

We emphasizes the role of the learnable modules as
time-dependent “steering gears” {M(zt, t, ctext, cadd), t =
1, . . . , T} within the architecture, guiding the system to-
wards directions with a high probability density of satisfy-
ing condition C. However, such externally appended fine-
tuning structure introduces the problem of high-dimensional
input-output, thereby increasing the computational burden
during training. To address it, we integrate the information
of cadd into the pretrained denoising function by realizing
this corollary in the feature space, discussed in the following
subsection.

3.3. Integration Strategy

Our study utilizes a pretrained model ϵθ̂ based on the U-net
architecture (Ronneberger et al., 2015). This architecture
consists of an encoder (E.), a middle block (MB.), a skip-
connected decoder (D.), and skip-connections between the
encoder and decoder (E-D.). These components sequentially
extract information from the input, yielding distinctive levels
of feature space.

Based on the insights from equation 5, we explore potential
schemes for integrating residual structures across various hi-
erarchical levels of the feature space, as outlined in Table 1.
Notably, mode ME-D is adopted in ControlNet (Zhang et al.,
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(a) The ground truth. 

(c) Fine-tuned Pre-trained Model for Generation (d) Training from Scratch for Generation(b) Pre-trained Model-Based Generation

Figure 2. The simulation of 2D measure. The pre-trained model is trained with 500K samples, and the generative results are shown in Fig.
(b). In Figures (c) and (d), labeled subsets of 100 samples were utilized in the experiments. Fig. (c) illustrates the generation outcomes
achieved through fine-tuning the pre-trained model with 2.5K epochs, whereas Fig. (d) displays the results obtained by training the same
model from scratch with 20K epochs. The above legends represent the sampling of 5K samples on either the simulated or real measure.

Table 1. Sites of modular integration with pre-trained models.

MODE E. MB. D. E-D.

ALL
√ √ √ √

EMD
√ √ √

×
E

√
× × ×

EM
√ √

× ×
D × ×

√
×

MD ×
√ √

×
E-D × × ×

√

ME-D ×
√

×
√

M ×
√

× ×

2023) and mode EM is adopted in T2I-Adapter Mou et al.
(2023). We conduct a comparative analysis of the perfor-
mance exhibited by different integration modes, considering
the variables t and cadd as inputs, in following generation
tasks.

Generation of multimodal 2D data. We use this example
to demonstrate the formulation in subsection 3.1 and provide
a simple illustration of the impact of conditional information
on the denoising direction offset. As show in Fig. 2(a),
the complete support comprises two rings, and the target
domain ∆ is a specified ring. We construct a U-net tailored
for this vector data and pre-train a large-scale model. The
generation results are presented in Fig. 2(b).

We quantify the effectiveness of integration modes by the
accuracy of the support set to which the generated samples
belong. According to Fig.3, the generative performance can
be classified into three tiers. The first tier (ALL, EMD, and
EM) achieves the highest accuracy and the fastest conver-
gence rate. The second tier (E, EM, and ME-D) and the
third tier (M, MD, and D) exhibit relatively worse perfor-
mance. Furthermore, the comparison of mode E and EM (D
and MD/E-D and ME-D) highlights the critical impact of
injecting conditional information in the intermediate blocks.
Moreover, the analysis of modes E, M, and D elucidates
that introducing conditional information at different levels

of the feature space leads to varying degrees of influence
on the output gradient offset. Notably, injecting informa-
tion at earlier stages exerts a more significant impact on the
directional offset.

Figure 3. Classification accuracy of generated samples from dis-
tinct integration modes with n = 12 training samples. For each
mode, five experiments are conducted.

The robustness of various integration models concerning
sample size and the number of iterations is shown in Fig.4.
The first tier modes (ALL, EMD, and EM) consistently
demonstrate superior performance and convergence speed.

Segmentation-to-image. For this task, the performance is
assessed using the ADE20K dataset (Zhou et al., 2017). The
conditioning fidelity is evaluated through Mean Intersection-
over-Union (mIoU), and the state-of-the-art segmentation
method OneFormer (Jain et al., 2023) achieves the mIoU of
0.58.

We utilize the pre-trained SD as the backbone and exam
mode ALL, EMD, EM, MC-E, and MD. We generate im-
ages using segmentations from the ADE20K validation set
and then feed the generative results to OneFormer for seg-
mentation detection and computation of reconstructed IoUs.
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From Fig.4, these modes exhibit superior performance in
different tiers.

Figure 4. Robustness analysis of the integrated Models of distinct
modes with respect to sample size and number of iterations. The
horizontal coordinate is the number of epochs and the vertical
coordinate is the accuracy.

Table 2 presents the evaluation of semantic segmentation
label reconstruction with mIoU scores. Mode ALL, EMD,
and MD exhibit comparable performance. Notably, mode
MD outperforms mode ME-D, highlighting the significant
impact of the decoder component in complex tasks.

Table 2. Evaluation of semantic segmentation label reconstruction
with Mean Intersection over Union (mIoU ↑).

ALL EMD EM ME-D MD BPS

0.351 0.351 0.350 0.163 0.240 0.366

4. Bayesian Power Steering (BPS)
BPS incorporates a pre-trained SD model through the EMD
integration mode to deal with task-specific conditions. As
an instantiation of the Bayesian formulation in hierarchical
levels of the feature space, BPS excels in both computational
efficiency and domain recognition across multiple tasks.

4.1. Overview

BPS takes time step information and additional conditions
as inputs to perturb the latent features within the pre-trained
model, thereby altering the denoising trajectory. Fig.5 shows
the main components of BPS: a contracting path (CP), a
transition path (TP), and an expansive path (EP). These
components are specifically designed to extract features at
different scales, enabling adaptation to the diverse hidden
features of the pre-trained model.

The dimension of the additional condition cadd is user-
defined, and we take 512× 512 for single image-type con-
dition. Following the initial unshuffle module (Shi et al.,
2016), we downsample cadd to 64×64. Subsequently, within
the network, the scales for the extracted condition features
range from 8× 8 to 64× 64. Through the components CP,
TP, and EP, 8, 1, and 12 condition features are extracted
respectively, denoted as vadd = {vi

add | i = 1, 2, ..., 21}.

𝑍! , 𝑇 𝑍!
"!"#!

𝑍!"

CLIP 
encoder

𝐶#$%#

𝐶&''

BPS

Pre-trained 
denoise model

𝑇

CP TP EP

Figure 5. Overview of the integration model. The gray dumbbell
shapes represent the pre-trained model. The blue rectangles rep-
resent blocks with residual structures, and rectangles of the same
color in the same scale represent interventions in the same func-
tional unit sharing features from the BPS.

Note that the SD backbone contains 21 functional units,
which refers to the smallest operational unit in the UNet
structure and possess residual structures that serve as
binding sites. The dimension of vadd aligns with the
dimension of the latent feature h = {hi,j | i =
1, 2, ..., 21, i-th unit, j-th block} within the functional unit
of the UNet denoiser. The integration of BPS with the blocks
across different units is illustrated in Fig.5. The process of
feature extraction and fine-tuning latent features at different
scales can be summarized as follows:

vadd = Bϕ(t, cadd) (7)

ĥi,j = hi,j + vi
add, i = 1, 2, ..., 21, (8)

where Bϕ represents BPS, which can be considered as the
realization of steering gear M defined in (6) resttricted to
the feature space, ϕ denotes the learnable parameters, and
ĥ represents the disturbed latent feature. To train the inte-
gration model ϵ̄θ̂,ϕ(z, t, ctext, cadd) that combines BPS and
the SD backbone, we employ the following optimization
process:

Lϕ = EZ0,t,ϵ,cadd

[∥∥∥ϵ− ϵ̄θ̂,ϕ(z, t, ctext, cadd)
∥∥∥2
2

]
. (9)

During the optimization process, the parameter of the pre-
trained model θ̂ is frozen, and only the parameter ϕ requires
updating.

4.2. Architecture Design

Head-heavy and foot-light configuration. BPS mainly
consists of various specially designed residual blocks and
zero convolution layers. The component CP, TP and EP con-
tains 8, 2 and 12 residual blocks, respectively. Specifically,
the residual block structures in CP and TP are identical and
consist of two parts. The first part encompasses a convo-
lutional structure responsible for extracting the condition
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feature, while the second part combines the temporal fea-
tures through the scale shift norm mechanism to enable
precise temporal control. In contrast, a lightweight residual
structure is used in EP, where convolution plays a central
role in extracting the condition feature.The detailed struc-
tural diagram is provided in Appendix C.2.

Differentiated integration structure. Fig.3 and Table 2
provide insights of the influence by introducing additional
information at different stages of the pretrained model. Inter-
ventions at earlier stages and middle blocks exhibit a more
pronounced effect. With this in mind, basing on the EMD
integration mode, we assign different weights to the pertur-
bations originating from different stages. Specifically, for
each scale, two residual blocks and one convolution layer are
used to extract two latent features from the contracting path.
These features are assigned weights wi =

scale
4 , 1 ≤ i ≤ 8,

ensuring that earlier stage features have a greater impact.
The latent features from TP are assigned a weight of w1.
And the perturbation terms from EP are uniformly assigned
a weight of wi = 1, 10 ≤ i ≤ 21. To this end, the updated
formulation becomes:

ĥi,j = hi,j + wi ∗ vi
add, i = 1, 2, ..., 21. (10)

The superiority of such structure design is demonstrated in
Table 2.

4.3. Task-Specific Condition Design

The design of conditions (ψ) plays a crucial role in iden-
tifying the target domain as demonstrated in Lemma 3.1.
It is imperative for BPS to work in concert with the text
control layers within the SD backbone. This collaboration
is necessary to harness knowledge pertaining to ψ, which in
turn facilitates the efficient transmutation of the information
contained in C into the image representation Z0. Moreover,
this process must effectively distinguish the signal from the
noise disturbance termZt to ensure the integrity of the target
domain identification. We propose the following condition
designs for several tasks.

𝐶!""

Class label
2: Bus
6: Bicycle

Figure 6. The process of creating a layout condition: perform addi-
tion operations on the pixel points of the first channel using layer
labels, with the second channel tracking the number of operations
on each bit.

Layout condition design. Layout-to-image generation em-

powers users with precise control over layers. Most exist-
ing methods contain complex layer processing and mono-
functional neural network architectures (Cheng et al., 2023;
Zheng et al., 2023). However, our BPS model effectively
handles the task by converting layouts into image-type con-
ditions with dimensions of 512×512×2. As shown in Fig.6,
the first channels capture object location information, while
the second channel records object overlap. These conditions,
combined with the proposed network structure, contribute
to achieving a superior FID of 20.24 on the COCO dataset.
More information regarding the experimental setup is pro-
vided in Appendix C.1.

Figure 7. Generated samples with layout condition.

Multiple conditions design. Style and line are essential
elements in artistic drawing and achieving user-customized
artwork. Given the abstract nature of image style, data
enhancement techniques and the autoencoder of SD are
employed to the latent feature extraction of the source image.
The line structure is constructed using the HED soft edge
method (Xie & Tu, 2015). In the end, the two conditions are
concatenated as input to the BPS, enabling the generation
of customized artwork, as shown in Figure 8.

+

+

+

Figure 8. Adapt the pretrained model to a specific art domain with
multiple conditions (line, style).

Prompt design. Conditions Ctext and Cadd can be highly
correlated. To reduce dependence on prompts and enhance

6



Bayesian Power Steering

the active capture of information of Cadd, we design stochas-
tic multilevel textual control. This approach includes three
levels of text with equal probability: a generalized overview,
such as the default prompt in Zhang et al. (2023) (“a high-
quality, detailed, and professional image.”), followed by
object descriptions (e.g., “a car and a person”), and a de-
tailed portrayal of the objects and their states, generated
by BLIP (Li et al., 2022). An example is presented in Fig.
9. These levels of text are incorporated into the integration
model during training, with equal probability assigned to
each level.

“ a person skiing down a hill with 
trees in the background”

Figure 9. Sketch-to-image. The left showcases the sketch condi-
tions and prompts generated by BLIP, and the right presents the
corresponding outputs generated by BPS.

5. Experiments
5.1. Implementation Details

We train multiple BPS models with diverse conditions to
customize the pretrained diffusion system for various task-
specific scenarios. The pretrained model used is SD V1.5.
Training is performed on 2 NVIDIA A100 80GB GPUs,
taking at most 48 hours to complete. The optimizer used is
AdamW (Loshchilov & Hutter, 2017) with a learning rate
of 1× 10−5. The effective batch size is 256 after applying
gradient accumulation.

The performance of BPS is evaluated in layout-to-Image,
artistic drawing, segmentation-to-image, and segmentation-
to-image tasks. Further details regarding the datasets are
provided in the supplementary materials.

5.2. Qualitative Examination

Figures 7, 8 and 9 showcase the robust performance of
BPS across various tasks. Fig. 10 shows the generated
images in several prompt settings, demonstrating its ability
to accurately interpret content semantics from Ctext and

incorporate both Cadd and Ctext.

(b) Summer (c) Autumn (d) Winter

(e) Desert (f) Seabed (g) Toy bricks (h) Plasticine

Figure 10. BPS generated samples in response to prompts regard-
ing time, place, and building materials. Refer to the supplementary
material for detailed textual prompts.

5.3. Comparison

We compare our method with T2I-Adapter (Mou et al.,
2023), ControlNet (Zhang et al., 2023), and the original
SD (Rombach et al., 2022), using the sketch condition in
the COCO17 dataset. The dataset consists of 164K images,
with the corresponding sketch maps generated by the edge
prediction model proposed by Su et al. (2021). T2I-Adapter,
ControlNet, and BPS are trained for 10 epochs using the
experimental setup in Section 5.1. As shown in Fig. 11,
while T2I-Adapter exhibits imaginative capabilities (as indi-
cated by the pink box), both T2I-Adapter and ControlNet
exhibit limited attention to details, as evident in the red and
yellow boxes. In contrast, BPS demonstrates a refined and
hierarchical treatment of details. Furthermore, even in the
presence of significant textual errors, BPS demonstrates the
ability to achieve relatively unaffected generation quality.
However, SD, ControlNet, and T2I-Adapter are noticeably
impacted, as highlighted in the blue box.

Table 3. User Preference Ranking for Result Quality and Condi-
tion Fidelity. Score 1 to 3 indicates worst to best.

T2I-Adapter ControlNet BPS

Result Quality 1.868 1.77 2.38

Condition Fidelity 1.95 1.53 2.52

For quantitative evaluation, we employ FID (Seitzer, 2020),
CLIP Score (ViT-L/14, Radford et al. (2021)), as presented
in Tab.4. We randomly sample 5000, 2500, and 2500 im-
ages from the validation set, training set, and testing set,
respectively, to obtain the conditions for generation. While
there is a slight difference in the CLIP Score due to the
impact of the stochastic multilevel textual control we intro-
duced, BPS achieves the best FID score. Furthermore, we
conduct the human evaluation following the experimental
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(a) Ctext

“a kitchen with a
lot of junks on

the floor”

(b) Cadd (c) GT (d) SD (e) Ours (f) ControlNet (g) T2I-Adapter

“three zebras
grazing in a
field of grass

and trees”

“a plate of food
and a cup of

coffee on a table”

“a little boy in a
field of bluebells

with a teddy
bear”

“a group of gis in
a field with trees

in the
background”

 

Figure 11. Visualization comparison: our BPS, Stable Diffusion (Rombach et al., 2022), T2I-Adapter (Mou et al., 2023), ControlNet
(Zhang et al., 2023), and Ground Truth (GT).

Table 4. Quantitative comparison (FID/CLIP Score). Stable diffusion employs text as the condition, while the other methods utilize
text+sketch as the condition.

SD T2I-Adapter (Epoch=10) ControlNet BPS (Epoch=10) BPS (Epoch=15)

FID ↓ 20.59 18.39 19.41 10.49 10.04

CLIP Score ↑ 0.2647 0.2642 0.2361 0.2614 0.2614

design in Zhang et al. (2023). We sample 25 unseen hand-
drawn sketches and assign each sketch to three methods:
T2I-Adapter sketch model, ControlNet, and BPS. We in-
vite 20 users to rank these 25 groups of three results based
on “the image quality showcased” and “the fidelity to the
sketch.” User Preference Ranking is used as the preference
metric, where users rank each result on a scale of 1 to 3
(lower is worse). As shown in Tab. 3, the results indicate a
preference for BPS among the users.

5.4. More Investigation

Additionally, we examine the noteworthy considerations in
applications, i.e. time efficiency, data scarcity, and interven-
tion strength.

Implication of time-step information. In the sketch-to-

image task, we conduct a controlled experiment by setting
the time input of BPS to a constant value, and follow the
other setup outlined in Section 5.1. According to Fig.12,
the performance declines throughout various training stages
when time-step information is absent. It highlights the need
to incorporate an additional input, t, into the learning mod-
ule to enable adaptive adjustment of intervention intensity
in the original gradient direction.

Time efficiency. We study time efficiency by training the
model up to 15 epochs using the COCO17 dataset. Fig.12
illustrates the FID score of the integrated SD with BPS. It
demonstrates satisfactory performance as early as the fourth
iteration of training. Moreover, comparing to the initial
point, BPS significantly improves the performance of SD.

Data scarcity. To assess the model’s generalization ability

8
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Figure 12. Performance comparison of BPS with constant time
input and the original BPS.

in scenarios with limited data, we randomly select subsets
of 40, 320, 2562, 20500, and 164K images from the train-
ing and validation sets for fine-tuning. Fig.13 presents the
fine-tuning performance after 15 iterations using sketches
from the test dataset. Our model demonstrates exceptional
performance even with a limited number of samples. More
results are in the Appendix.

(a) 164K (b) 20.5K (c) 2562 (d) 320 (e) 40

Figure 13. The generation results of models trained with different
training set sizes.

Intervention ability. The findings depicted in Fig.14 under-
score the significant influence of the intervention weights
(wi, where 1 ≤ i ≤ 21) within the BPS framework on the
outcomes of the interventions. Specifically, decreasing these
weights contributes to an increase in diversity among the
generated results.

6. Discussion and Limitations
In this paper, we formulate the problem of generative model
domain adaptation and propose a Bayesian fine-tuning
framework, which uses the score functions of a pretrained
diffusion model as the prior scores and updates them to ob-
tain the posterior scores using Bayes’ theorem. It explores
two crucial aspects of domain adaptation: the choice of
approximation functions, represented by the neural network
structure, and the definition of conditions specific to the task
domain. To tackle the first aspect, we introduce a neural

(a) × 1 (b) × 0.5 (c) × 0.25

(e) × 1 (f) × 0.8 (g) × 0.5

Figure 14. The impact of intervention weights on generated results
in layout-to-image and sketch-to-image tasks. The subheading
indicates the multiplier applied to the initial weight.

network architecture, Bayesian power steering, for the im-
plementation of the Bayesian formulation in hierarchical
levels of the feature space. Our BPS offers several advan-
tages, including (1) exceptional domain recognition and
control across different tasks, (2) a compact parameteriza-
tion and fast convergence, and (3) suitability for data-scarce
scenarios with broad applicability. However, our approach
still faces certain challenges that warrant further investiga-
tion: (a) developing a more refined structure to capture the
degree of intervention for multiple conditional inputs, and
(b) adaptive adjustment of intervention weights to achieve
desired outcomes in extended domain scenarios. These
issues remain areas for future study.
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APPENDIX

In the appendix, we provide supplementary theoretical derivations for the BPS introduced in Section 3. Furthermore, we
include more detailed description of the implementation of BPS and additional experimental results.

A. Derivation of Equation (5)
Recall that we have

ϵ∗ (zt, t, ctext) := E [η | zt, ctext] = −
√
1− ᾱt∇ log p (zt | ctext)

through Tweedie’s formula (Efron, 2011), and

p(zt | ctext , cadd) =
p(cadd | ctext , zt)p(zt | ctext )

p(cadd | ctext )
(11)

by Bayes’ theorem.

Take the logarithm of both sides of Equation (11) and subsequently compute the gradient with respect to zt, then we obtain

∇ log p(zt | ctext, cadd) = ∇ log p(cadd | ctext, zt) +∇ log p(zt | ctext)−∇ log p(cadd | ctext )

= ∇ log p(cadd | ctext , zt) +∇ log p(zt | ctext),

where p(cadd | ctext) is constant for zt so that ∇ log p(cadd | ctext ) = 0.

Combining the above formulas, the integrated denoise function can be derived as follows.

ϵ∗(zt, t, ctext, cadd) := E [η | zt, ctext, cadd] = −
√
1− ᾱt∇ log p(zt | ctext, cadd)

= −
√
1− ᾱt [∇ log p(cadd | zt, ctext) +∇ log p(zt | ctext)]

= −
√
1− ᾱt∇ log p(cadd | zt, ctext) + ϵ∗(zt, t, ctext),

which complete the derivation.
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Figure 15. Architecture of pre-trained model and learnable modules for vector data.
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B. Generation of 2D Data
In this setting, the samples exhibit a multimodal distribution, with a probability of 0.7 uniformly distributed on the first
ring and 0.3 on the second ring. The centers of the rings are positioned at coordinates (0, 0) and (5, 0) in the 2D coordinate
space. Both rings have identical sizes and feature inner and outer radii of 0.6 and 1 respectively.

During the pretraining stage, we randomly sampled 500K samples from the rings to train the prior denoise model. In the
fine-tuning stage, only 100 samples with support set information (i.e., labels indicating the originating ring) were available
for training. The objective is to generate samples adhering to the specified ring distribution.

B.1. Network Structure

We develop a U-net architecture specifically designed for vector data. This pre-trained U-Net model, shown in Fig. 15(a),
serves as the backbone for fine-tuning. Data features are scaled into 2, 4, 8, 16, and 32 dimensions across blocks, each
comprising a Residual block and a linear layer, as depicted in Fig. 15(b).

The fine-tuning process involves learnable modules following the structure illustrated in Fig. 15(c). Notably, these modules
incorporate a “zero layer” - a fully connected layer initialized with zero weights. The intermediate outputs from the learnable
module are first processed through the zero layer before being combined with the outputs of the pre-trained model. This
ensures a smooth evolution of the original signals (i.e., the outputs of the pre-trained model) during the training process,
facilitating model convergence.

B.2. Quantitative Evaluation

We evaluate distinct integration modes to fine-tune the pre-trained model. After generating samples using the ground truth
labels and the integrated model, we employ a linear binary classifier to determine the model to which the samples belong.
The computed accuracy and precision metrics are then used to assess the efficacy of the integrated model configurations.

Figure 16. Accuracy and precision of model classification using generated samples from aforementioned integration modes at different
training stages with fine-tuning sample size n = 12. Five groups of samples are randomly selected for experimentation across different
modes.

As shown in Fig. 16, the integrated modes ALL, EMD, and EM achieve the best performance in terms of both metrics and
exhibit the fastest convergence rates. Although extended training allows modes ME-D, E-D, and E to approach similar
precision levels, they still trail the performance of modes ALL, EMD, and EM in terms of accuracy, even with prolonged
training. In contrast, the models under modes M, MD, and D exhibit the poorest overall performance. These results
preliminarily suggest that interventions on the early intermediate outputs of the pre-trained model are crucial for optimal
fine-tuning.

Furthermore, to model realistic scenarios with limited data resources, fine-tuning is performed using a small number of
labeled samples, ranging from 12 to 400. In this experiment, we use accuracy as the evaluation metric to validate the
performance of the different integrated models. This approach allows us to assess the robustness of these integration models
under resource-constrained settings.
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Figure 17. Accuracy of model classification using generated samples from distinct integration modes across data sample sizes.

Notably, even as the training sample size decreases, the integrated modes ALL, EMD, and EM exhibit the highest robustness,
with their performance accuracy remaining relatively stable at the peak level. In contrast, the other modes experience varying
degrees of decline in convergence speed and overall performance, with models under modes M and M-D showing the most
significant drops. And modes ME-D and E-D demonstrate relative instability under the most data-constrained conditions
(n=12, 25). This trend is more clearly illustrated in the comparison of different models at the same training epoch, as shown
in the figure below.

Figure 18. Accuracy of model classification using generated samples from distinct integration modes across training stages.

C. Image Generation
C.1. Training Parameters

We train multiple BPS models for various tasks, as detailed below.

Segmentation-to-image. For this structure condition, we utilize ADE20K (Zhou et al., 2017), consisting of 25,574 images,
as the training dataset. Its semantic segmentation encompasses a remarkable 193,238 annotated object parts, including
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intricate sub-parts. The BPS model is trained using 2 NVIDIA A100 80GB GPUs, with the Stable Diffusion V1.5 as the
base model. The batch size is set to 256, achieved through a physical batch size of 16 and 4× gradient accumulation. We do
not use ema weights.

Layout-to-Image. We evaluate the performance of bounding box layout-to-image using the COCO17 dataset (Lin et al.,
2014). Data preprocessing follows the approach outlined in Cheng et al. (2023), where we filter images to contain a range of
3 to 8 objects. Additionally, objects occupying less than 2% of the image area are excluded. Consequently, our training
dataset comprises 112,680 samples, and the validation dataset contains 3,097 samples. The BPS model is trained using 2
NVIDIA A100 80GB GPUs, with the Stable Diffusion V1.5 as the base model. The effective batch size is 128 after applying
gradient accumulation. We do not use ema weights.

Artistic drawing. To train our model for this application, we utilize the WikiArt Dataset (Tan et al., 2018). The dataset was
carefully selected to include works from painters with more consistent styles, resulting in a training set of 6,285 samples
from 17 artists and 12 styles. The artists included in the dataset are Camille Pissarro, Childe Hassam, Claude Monet, Edgar
Degas, Eugene Boudin, Gustave Dore, Ivan Aivazovsky, Marc Chagall, Pablo Picasso, Paul Cezanne, Pierre Auguste Renoir,
Raphael Kirchner, Fernando Botero, Bernardo Bellotto, Cornelis Springer, Katsushika Hokusai, and Hiroshige. The art
styles represented in the dataset span various genres, including Impressionism, Realism, Pointillism, Romanticism, Naive
Art Primitivism, Cubism, Analytical Cubism, Synthetic Cubism, Post Impressionism, Art Nouveau Modern, Rococo, and
Ukiyo-e. We train the BPS model on 2 NVIDIA A100 80GB GPUs. The batch size is set to 512, achieved through a physical
batch size of 32 and 16× gradient accumulation. We do not use ema weights.

Sketch-to-image. For this application, we leverage the COCO17 dataset (Lin et al., 2014) as our training data, comprising
a rich collection of 164,000 images. To generate the corresponding sketch maps, we employ the edge prediction model
proposed by (Su et al., 2021). The BPS model is trained using 4 NVIDIA A100 80GB GPUs, with the Stable Diffusion V1.5
as the base model. The batch size is set to 256, achieved through a physical batch size of 32 and 8× gradient accumulation.
We do not use ema weights.
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Figure 19. Architecture of BPS.

C.2. Network Structure: BPS

The BPS network structure employs a top-heavy design, as depicted in Fig 19. The dark block incorporates a residual block
that primarily utilizes a Scale-shift-norm mechanism to fuse temporal and conditional information. On the other hand,
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the light block consists of a layer of residual blocks. Notably, the blocks incorporate several “zero conv.” - convolution
layers initialized with zero weights. The intermediate outputs from the learnable module are first processed through the zero
convolution layer before being combined with the outputs of the pre-trained model. This ensures a smooth evolution of
the original signals (i.e., the outputs of the pre-trained model) during the training process, facilitating model convergence
(Zhang et al., 2023).

C.3. Inference Settings

Sampler: we employ Denoising Diffusion Implicit Model (DDIM) as the sampler for our approach. We utilize 50 steps to
sample each image.

Prompts: the segmentation-to-image and Layout-to-Image tasks utilize object descriptions as text prompts (e.g., “oven,
microwave, book”). For the Artistic Drawing task, the description includes both the subject matter and the artist (e.g.,
“chestnut trees at Louveciennes from Camille Pissarro’s brush”). Lastly, the Sketch-to-image task adopts prompts generated
by the BLIP method (Li et al., 2022).

C.4. Quantitative evaluation

Segmentation-to-image. The performance of the BPS model is evaluated on the ADE20K dataset (Zhou et al., 2017) using
the Mean Intersection-over-Union (mIoU) metric to assess conditioning fidelity. The state-of-the-art segmentation method,
OneFormer (Jain et al., 2023), achieves an mIoU of 0.58 on this dataset. We generate images using segmentations from the
ADE20K validation set and then feed the generative results to OneFormer for segmentation detection and computation of
reconstructed IoUs. The BPS model achieve a score of 0.366, outperforming the ControlNet approach (Zhang et al., 2023),
which reported a score of 0.35.

Layout-to-Image. The generated images are evaluated at a resolution of 256 × 256. We adopt the Fréchet Inception
Distance (FID) metric, as used in (Cheng et al., 2023), to assess the performance of the BPS model on this task. After
training for 30 and 60 epochs, the BPS model achieves FID scores of 20.47 and 20.24, respectively, which are comparable to
the state-of-the-art score of 20.27 reported in (Cheng et al., 2023). This indicates that the BPS model, even with a relatively
simple network structure, can achieve results on par with the current state-of-the-art.

Sketch-to-image. We employ FID (Seitzer, 2020), CLIP Score (ViT-L/14, Radford et al. (2021)), as presented in Tab. 4. We
randomly sample 5000, 2500, and 2500 images from the validation set, training set, and testing set, respectively, to obtain
the sketch conditions for generation. While there is a slight difference in the CLIP Score due to the impact of the stochastic
multilevel textual control we introduced, BPS achieve the best FID score, surpassing the competitio.

C.5. Qualitative Evaluation

The BPS model does not consider Ctext as an input. Investigating the integration of the BPS model with diverse textual
prompts is necessary. The following example demonstrates the effective integration of inputs derived from various textual
sources with the BPS model. Detailed textual descriptions are shown in Fig. C.5.
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(a) Cadd (b) “Nestled amidst lush fo-
liage, the country house un-
veils its enchanting beauty as
summer cascades upon it.”

(c) “Amidst the fall’s magi-
cal embrace, a country house
stands adorned with a vibrant
carpet of fallen leaves.”

(d) “On a serene winter day,
the country house stands
gracefully amidst a pristine
blanket of snow. ”

(e) “A wooden house built in
the desert.”

(f) “a house is built under the
sea.”

(g) “” a country house is con-
structed with toy bricks.”

(h) “a House made of toy plas-
ticine.”

Furthermore, regarding the generation tasks discussed in the paper, we provide the following generation samples. These
experimental results demonstrate the BPS model’s powerful generative capabilities and strong conditioning fidelity.
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Figure 20. Segmentation-to-image. The first row is the condition, and the rest of the rows in each column are the corresponding generated
structures
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“train”

“oven, microwave, book”

“bottle, chair, dining table, wine glass”

“cat, bed, cup”

Figure 21. Layout-to-Image. The left column is the condition and the right column is the generated result.
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+

+

+

+

+

+

Figure 22. Artistic drawing. The left column is the line condition and the source image, the right column is the generated result.
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Figure 23. Sketch-to-image. The first row is the condition, and the rest of the rows in each column are the corresponding generated
structures.

D. Comparison
Fig. 24 presents a comparative analysis of the various methodologies employed in this study. The text data, generated using
BLIP (Li et al., 2022), aligns coherently with the main context of the research.
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“a kitchen with
a lot of junks
on the floor”

Ours ControlNet T2I-Adapter

“a plate of
food and a cup
of coffee on a

table”

Ours ControlNet T2I-Adapter

“three zebras
grazing in a
field of grass

and trees”

“a little boy in
a field of

bluebells with
a teddy bear”

“a group of gis
in a field with

trees in the
background”

Figure 24. Comparison between our BPS, ControlNet (Zhang et al., 2023), T2I-Adapter (Mou et al., 2023).

E. Ablation Study
E.1. Data Efficiency

This study utilized the coco17 dataset, with a random selection of data from the training and validation sets for model
training. The models were then tested on the separate test set, and the generated results are presented below. Columns (a)-(e)
in Fig. 25 provide a comparative analysis of the generation results obtained from models trained with datasets of different
sizes.
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“a church and a
body of water
with a boat in

the fore”

(a) 164K (b) 20.5K (c) 2562 (d) 320 (e) 40

“a children’s
room with teddy
bears sitting at a

table”

“a cat laying on a
laptop computer
on a bed with a
cat laying on top
of the keyboard”

“an elephant
standing in a
field of green

grass and trees”

“a teddy bear
sitting on a chair
in a living room”

“a cat wearing a
tie and a shirt

and a tie”

Figure 25. Comparative analysis of the generation results achieved by models trained using datasets of varying sizes.

E.2. Intervention Strength

This study examined the impact of varying intervention weights on control effects in two distinct tasks: the layout-to-image
task and the sketch-to-image task.

Layout-to-image. In this experiment, the weights wi, i = 1, ..., 21 were uniformly initialized to 1. The effects generated
under different weight settings, specifically 1, 0.8, and 0.5, are illustrated in columns (a), (b), and (c) of the figure below.

Sketch-to-image. In this experiment, the weights were initialized as wi = [16, 16, 8, 8, 4, 4, 2, 2, 16] for i = 1, ..., 9, and
wi = 1 for i = 10, ..., 21, in line with the configuration described in subsection 4.2. Columns (a), (b), and (c) in Fig. E.2
demonstrate the down-weighting of intervention weights for the encoder and middle block to 1, 1/2, and 1/4, respectively.
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“zebra, zebra,
zebra”

(a) (b) (c)

“knife, pizza”

“bird, bird,
bird”

(a) Intervention weight settings and their impact on gen-
eration effects in the Layout-to-image task are depicted
in the figure. Columns (a), (b), and (c) represent different
intervention weights applied to the same BPS model.

“a church and a
body of water
with a boat in

the fore”

(a) (b) (c)

“a teddy bear
sitting on a
chair in a

living room”

“an elephant
standing in a
field of green

grass and
trees”

(b) Intervention weight settings and their impact on gen-
eration effects in the sketch-to-image task are depicted in
the figure. Columns (a), (b), and (c) represent different
intervention weights applied to the same BPS model.

25


