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Abstract

We develop practical and theoretically grounded membership inference attacks
(MIAs) against both independent and identically distributed (i.i.d.) data and graph-
structured data. Building on the Bayesian decision-theoretic framework of [1],
we derive the Bayes-optimal membership inference rule for node-level MIAs
against graph neural networks, addressing key open questions about optimal query
strategies in the graph setting. We introduce BASE and G-BASE, tractable approx-
imations of the Bayes-optimal membership inference. G-BASE achieves superior
performance compared to previously proposed classifier-based node-level MIA
attacks. BASE, which is also applicable to non-graph data, matches or exceeds
the performance of prior state-of-the-art MIAs, such as LiRA and RMIA, at a
significantly lower computational cost. Finally, we show that BASE and RMIA
are equivalent under a specific hyperparameter setting, providing a principled,
Bayes-optimal justification for the RMIA attack.

1 Introduction

Machine learning models are known to leak information about their training data [2–5], driving
growing interest in understanding and quantifying such leakage. Due to the complexity of modern
models, formally characterizing their information leakage remains a formidable challenge. As a
result, privacy is often assessed empirically via so-called privacy auditing—designing attacks to
identify data leakage and guide mitigation strategies.

Membership inference attacks (MIAs), where an adversary seeks to infer whether a specific data
point was included in the training set of a model, represent the most fundamental privacy attack.
Importantly, MIAs already pose a serious privacy threat: disclosing the mere presence of a data
point in the training set may constitute a serious privacy violation and directly contravenes privacy
regulations such as the GDPR. The European Data Protection Board explicitly cites MIAs in its
guidance on when a machine learning model can be considered anonymous [6]. Moreover, MIAs can
serve as a key component in data reconstruction attacks by filtering out unlikely candidates, thereby
narrowing the search space [7], and can be used to establish lower bounds on the privacy guarantees
of differentially-private algorithms [8].

State-of-the-art MIAs often rely on shadow models—auxiliary models trained under similar condi-
tions as the target model—to empirically characterize behavioral differences between training and
non-training data. Existing attacks fall into two main categories: classifier-based and statistic-based.
Classifier-based attacks use features from shadow models, such as losses or logits, to train a binary
classifier [2, 9, 10]. Statistic-based attacks instead compute statistical metrics using signals from both
the target and shadow models [1, 11–13]. A Bayes-optimal strategy to membership inference was
proposed in [1], but an exact computation is intractable, necessitating approximations. State-of-the-art
methods such as LiRA [11] and RMIA [13], instead, are based on a hypothesis testing formula-
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tion [14]. While these approaches achieve strong empirical performance and outperform classifier-
based attacks, their theoretical connection to the Bayes-optimal membership inference remains unclear.
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Figure 1: ROC curves of our attack and prior
MIAs on the Flickr dataset, averaged over
10 GCN target models.

Most existing work on MIAs assumes data points are inde-
pendent and identically distributed (i.i.d.). Recently, however,
MIAs have been studied in the context of graph-structured data,
particularly against graph neural networks (GNNs). In this set-
ting, message passing introduces structural dependencies—each
node or edge can influence many others—making membership
signals harder to isolate and challenging key assumptions under-
lying classical attacks. MIAs on graph-structured data can be
grouped by the information they aim to recover: (i) node-level
attacks attempt to infer whether a specific node was part of the
training set [15–19]; (ii) edge-level attacks target the presence
of specific edges [20–24]; and (iii) graph-level attacks aim to
determine whether an entire graph instance was used in the
training [25–27]. At the node level, existing approaches are exclusively classifier-based. Given the
success of statistic-based methods on the i.i.d. data, extending such strategies to graph data may lead
to stronger attacks. However, this remains an open problem.

Our contribution. Motivated by the need for practical, theoretically grounded privacy auditing tools,
we develop novel MIAs for both i.i.d. and graph data. Specifically, we design Bayes-optimal attacks
building on the Bayesian decision-theoretic framework of [1], yielding attacks that are both effective
and tractable. The proposed attacks tend to match or outperform the state-of-the-art, especially on
larger datasets. Our key contributions include:

• We derive the Bayes-optimal decision rule for node-level membership inference on graph data,
extending the results of Sablayrolles et al. [1] beyond the i.i.d. setting. This result formalizes how
graph structure should be exploited in membership inference against GNNs.

• Guided by this Bayes-optimal rule, we propose G-BASE, a practical attack on GNNs that achieves
state-of-the-art performance on graph data, significantly outperforming existing classifier-based
methods.

• We propose BASE, a practical Bayes-optimal attack achieving state-of-the-art performance while
being significantly more cost-efficient than prior methods such as RMIA [13] and LiRA [11].

• We reveal a close connection between BASE and RMIA: the two are equivalent (for a specific
value of RMIA’s threshold γ) up to a monotonically increasing transformation. However, BASE
achieves the same performance with significantly lower computational cost, requiring much fewer
model queries.

2 Related Work

MIAs for i.i.d. data. Relevant works include [2],[1], [14], [11] (LiRA), and [13] (RMIA). Shokri
et al. [2] introduced classifier-based black-box MIAs: the adversary trains multiple shadow models
on known datasets to mimic the target model, then trains a binary-classifier attack model on their
outputs labeled by the ground truth training membership status. Sablayrolles et al. [1] proposed
a Bayes-optimal framework in which membership inference amounts to computing the posterior
probability that a data point is in the training set, given the trained model. Under mild assumptions,
the optimal inference depends only on the loss, motivating black-box attacks where the attacker can
observe only the model’s output (e.g., the loss) on the target sample. Ye et al. [14] cast MIAs as a
hypothesis testing game: a challenger samples a data point from either the training set or the rest of the
data population (with equal probability), and an adversary, with access to the data population, must
decide between two hypothesis—whether the model was trained on a dataset including or excluding
the target point. State-of-the-art black-box attacks, such as LiRA [11] and RMIA [13], build on this
formulation. LiRA performs a likelihood-ratio test between the two hypotheses, representing them
via the distributions of losses (or logits) on the target data point. LiRA assumes the (transformed)
logits exhibit Gaussian-like behavior, resulting in a parametric test. In RMIA, the test compares the
case where the target data point is in the training set to the case where it is replaced by an auxiliary
sample drawn randomly from the population. The test score is the tail probability of the resulting
likelihood ratio.
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MIAs for graph data. Existing node-level attacks [15–19] all adopt a classifier-based approach.
These attacks involve three phases: training a shadow model, training a binary-classifier attack
model, and performing membership inference. The attack model takes as input features the vector
derived from the shadow model’s outputs—either posterior probabilities [15–17, 19] or predicted
labels [18]—for nodes that were included or not in the training set. Despite their promise, statistic-
based methods have not yet been explored for node-level MIAs.

3 Preliminaries

Graph notation. For graph data, we consider a graph denoted by G = (V, E ,X,Y ), where V is the
set of n nodes, E the set of edges, X ∈ Rn×d the node feature matrix, and Y ∈ Rn×c the one-hot
encoded node-label matrix, such that each node v ∈ V has an associated feature-label pair (xv,yv),
which are assumed to be sensitive data. We denote by A ∈ Rn×n the adjacency matrix of graph G,
where Auv = 1 if (u, v) ∈ E and 0 otherwise, and by N (v) = {u : (u, v) ∈ E , u ̸= v} the set
of neighbors of node v. For convenience, in the analysis sections, we will refer to a graph G as
G = (X,Y ,A), where the sets of nodes and edges are implicitly defined by X and A, respectively.

Graph neural networks (GNNs). GNNs [28–33], learn node embeddings that capture both structural
and feature information. These embeddings are then used for various downstream tasks such as node
classification. GNNs operate via message passing, where nodes aggregate information from their
neighbors to update their embeddings. Formally, the embedding of node v ∈ V at level ℓ+ 1 of an
L-layer GNN is computed as

h(ℓ+1)
v = UPDATE

(
h(ℓ)
v , AGGREGATE

({
h(ℓ)
u , u ∈ N (v)

}))
, (1)

where both AGGREGATE, a permutation-invariant function, and UPDATE are differentiable and h(0)
v

is the input feature vector of node v. The computation of h(L)
v , the final embedding of node v, thus

depends on its L-hop neighborhood, which we denote by NL(v). For notational convenience, we
denote the final embedding of node v by zv = h(L)

v and refer to it simply as the node embedding.

For node classification, a softmax operation is typically applied to the node embeddings to produce
class probabilities,

P (yv|θ,X,A) ≈ softmax(zv)y ≡ fθ(X,A)vy (2)
where fθ(X,A)v denotes the softmax-normalized prediction vector for node v, computed by a GNN
fθ with parameters θ, and y denotes the index of the nonzero element of yv . The model is typically
trained by minimizing the negative log-likelihood loss ℓ(fθ(X,A)v,yv) = − logP (yv|θ,X,A)
(i.e., the cross-entropy loss for node classification) over the labeled nodes, i.e., minimizing

L(θ,X, Y,A) =
∑
v∈V

ℓ(fθ(X,A)v,yv) = −
∑
v∈V

logP (yv|θ,X,A) . (3)

4 Bayes-Optimal Node-Level MIAs Against GNNs

We extend the Bayesian membership inference strategy in [1] to GNNs. We begin by framing the
MIA as an indistinguishability game and then proceed to derive the Bayes-optimal decision rule for
membership inference. Finally, we discuss tractable approximations and sampling strategies that
yield powerful and practical MIAs.

4.1 Node Membership Inference Attack Game

Following [11, 14], we formulate the MIA as a game between a challenger and an adversary.
Definition 1. (Membership inference game on graph data)

1. The challenger samples a subset of graph G, Gtrain = (Vtrain, Etrain) ⊂ G, where Vtrain ∈ V and
Etrain = {(u, v) : u, v ∈ Vtrain, (u, v) ∈ E}, and trains a GNN model fθ on Gtrain. Let mv denote
the membership status of node v ∈ V ,

mv =

{
1 , v ∈ Vtrain
0 , v /∈ Vtrain

. (4)
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2. The challenger flips a fair coin to generate a bit b. If b = 0, it samples a target node v from
G\Gtrain. Otherwise, it samples a target node v from Gtrain.

3. The challenger gives the adversary the full graph G = (X,Y ,A), the target node v, and
black-box access to the trained model fθ.

4. The adversary may also have additional side informationH (e.g., knowledge about the training
algorithm or model architecture). Using this information, the adversary performs a MIA m̂v ←
MIA(fθ, v,G,H), where m̂v is an estimate of the membership status of node v, mv .

5. The attack is successful on a target node v if m̂v = mv .

Threat model. We assume that the target graph Gtrain ⊂ G is sampled from a larger, fixed graph G
that is accessible to the adversary. This setup offers a flexible and practical way to model the data
distribution. Notably, this corresponds to the train on subgraph, test on full setting introduced in [15].
When G is large relative to Gtrain, this setup corresponds to the data population pool assumption widely
adopted in membership inference [14, 13, 11]. While giving the adversary access to G simplifies the
analysis of the Bayes-optimal attack, it also results in a stronger adversary. Nevertheless, this worst
case assumption is suitable for privacy auditing, where conservative evaluations are preferred. We
adopt a black-box setting, where the adversary has unlimited query access to the target model and can
generate soft predictions for any valid input graph. Knowledge of the model’s architecture, training
algorithm, and objective function is encompassed inH. In contrast, a white-box setting would grant
the adversary direct access to model parameters or activations.

GNN training can be categorized into transductive and inductive. In the transductive setting, only
part of the graph is labeled and used for loss computation. However, message-passing is performed
over all nodes, producing an embedding for each node. The goal of this semi-supervised learning
approach is typically to predict the labels of the unlabeled nodes. The inductive setting, on the other
hand, corresponds to fully supervised learning. In this setting, message-passing is only performed
between labeled nodes. The goal is then to generalize to unseen nodes. As noted in [16], the inductive
setting is the most relevant, as it provides a clear distinction between member and non-member
nodes. In contrast, the transductive setting—where the model is primarily used by the data holder to
predict labels for unlabeled nodes and remains under their control—does not raise significant privacy
concerns. We therefore focus our analysis and experiments on the inductive setting.

4.2 The Bayes-Optimal Decision Rule

Assume that the target node whose membership status we aim to infer is node v ∈ I, and let NL(v)
be its L-hop neighborhood. Also, letM = {mu : u ∈ V} denote the membership indicator variables
of all n nodes in the graph G, and M̃ =M\{mv} represent the membership statuses of all nodes
except the target node v. Given the attack game and threat model defined in Section 4.1, a Bayesian
adversary seeks to compute the posterior probability that the target node is in the training set, i.e.,
P (mv = 1|θ,G). The following theorem provides a closed-form expression for this posterior.
Theorem 1. Given the graph G = (X,Y ,A) and the L-layer GNN model θ, the posterior probability
P (mv = 1|θ,G) is given by

P (mv = 1|θ,G) = EM̃∼P (M̃|θ,G)

[
σ

(
− SL(fθ, v,M̃,G) + log Λ(θ,M̃,X,A)

− log

∫
e−SL(fϕ,v,M̃,G)+log Λ(ϕ,M̃,X,A)p(ϕ|mv = 0,M̃,G)dϕ+ log

λ

1− λ

)]
, (5)

where

SL(fθ, v,M̃,G) = ℓ(fθ(X,AM)v,yv) + ∆LNL(v)(fθ) , (6)

with
∆LNL(v)(fθ) =

∑
u∈NL(v)

mu(ℓ(fθ(X,AM)u, yu)− ℓ(fθ(X,AM̃)u, yu)) , (7)

and

Λ(θ,M̃,X,A) =
p(θ|mv = 1,M̃,X,A)

p(θ|mv = 0,M̃,X,A)
, (8)
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the latter representing the likelihood ratio prior to observing the labels. In (5), λ = P (mv = 1)
denotes the prior probability that node v is a member of the training set, before observing the model,
and σ is the sigmoid function. Also, the n× n matrices AM and AM̃ in (6) and (7) are defined as

(AM)uw =

{
Auw , mu = mw = 1,
0 , otherwise and (AM̃)uw =

{
(AM)uw , u, w ̸= v,
0 , otherwise

for u,w ∈ V .

Proof. See Appendix B.1.

In (5), SL(fθ, v,M̃,G) represents the loss-based signal for the target node v, while the first loga-
rithmic term corresponds to the expected signal over the distribution of the models induced by the
membership configuration M̃, p(ϕ|mv = 0M̃,G). The term ∆LNL(v) captures how the inclusion
or exclusion of the target node influences the loss values of its neighbors (since an L-layer GNN
aggregates information from nodes within the L-hop neighborhood, the optimal attack must consider
this local graph structure around the target node, see Figure 2).

The presence of the term (7) in the graph data setting, in contrast to the i.i.d. case (see [1, Thm. 2]
and Corollary 1 in Section 5.1), highlights a key distinction: dependencies between data points play a
central role.

To make predictions, we set a decision threshold τ such that target node v is inferred to be part of the
training set if P (mv = 1|θ,G) > τ . For auditing purposes, it is important to evaluate performance
across the full range of false positive rates, particularly at low false positive rates, and we compute
the receiver operating characteristic (ROC) curve by sweeping over τ ∈ [0, 1]. Appendix C provides
a detailed discussion on how an adversary can select the decision threshold τ by attacking simulated
target models.

4.3 G-BASE: Practical Bayes-Optimal MIA against GNNs

The Bayes-optimal membership inference score function in Theorem 1 is computationally intractable
and thus necessitates approximations. In this section, we introduce a practical and effective approxi-
mation to the Bayes-optimal decision rule, resulting in a powerful MIA.

First, the Bayesian membership inference involves computing a log-likelihood ratio of the membership
indicator (see (12)). When attempting to approximate (5), we need to pick a prior (8) on the
likelihood ratio, before observing the labels. A natural and simplifying approximation is to set
Λ(θ,M̃,X,A) = 1. Intuitively, distinguishing the distribution of models trained on node v from
the distribution of models not trained on v is more difficult when the labels are unobserved, and
log Λ(θ,M̃,X,A) small in comparison to the posterior likelihood ratio that we are estimating.
Consequently, we would expect it to be small in comparison to the loss signal. The outcome is that
the prior LLR term vanishes from (5).

The rest of the intractability stems from the two nested expectations in Equation (5): one over
the membership statuses of all non-target samples, M̃, and the other over the model distribution,
p(ϕ|mv = 0,M̃,G). The expectation over M̃ requires sampling from the conditional distribution
P (M̃|θ,G), which is infeasible (it is essentially the joint membership inference problem over all
non-target nodes). To address this, we propose three approximate sampling strategies to generate
samples from P (M̃|θ,G): i) model-independent sampling, which assumes independence from the
target model, i.e., P (M̃|θ,G) ≈ P (M̃|G); ii) 0-hop MIA sampling, which leverages a MIA attack
for the i.i.d. setting to obtain per-node membership probabilities; and iii) Markov chain Monte Carlo
sampling, which accounts explicitly for the dependence on the target model θ. These strategies are
discussed in greater detail in Appendix B.2. Given any of these sampling strategies, we generate
M samples M̃1, . . . ,M̃M and approximate the outer expectation EM̃∼P (M̃|θ,G)[·] in (5) with the
sample average.

The remaining expectation over the model distribution p(ϕ|mv = 0,M̃,G) (the integral term in
(5)) is also intractable. We approximate it via Monte Carlo sampling using a set of shadow models
trained on subgraphs of G, interpreting p(ϕ|mv = 0,M̃,G) as the distribution of models trained on
the subgraph defined by M̃ with the target node excluded. However, directly sampling from this
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Figure 2: Visualization of the Bayes-optimal attack. From left to right: the challenger trains the target model θ on Gtrain, and
provides the trained model, a target node v, the underlying graph G, and (optionally) auxiliary information H detailing the
training procedure. The adversary then samples K graphs and trains a corresponding set of shadow models {ϕi}Ki=1. These
sampled graphs may or may not contain the target node v. Finally, the adversary estimates the membership of v using the
Bayes-optimal decision rule in (5), approximated via the Monte Carlo method in (9).

distribution would require training a separate set of shadow models for each pair (v,M̃), which
is computationally infeasible. For N target nodes, M samples of M̃, and K shadow models per
configuration, this would amount to training N ×M ×K models. To reduce the number of shadow
models, we approximate p(ϕ|mv = 0,M̃,G) by a distribution p(ϕ|G) only dependent on the data
population. This simplification allows us to reuse the same set of shadow models across all targets
and sampled membership configurations M̃. More precisely, the adversary samples subgraphs
G1, . . . ,GK from G and use them to train shadow models. Ideally, the adversary should sample
subgraphs and train shadow models using a similar procedure as the challenger. However, this
distribution is constrained by the adversary’s side information.

The integral in (5) can then be approximated as

log

∫
e−SL(fϕ,v,M̃,G)p(ϕ|mv = 0,M̃,G)dϕ ≈ log

(
1

K

K∑
k=1

e−SL(fϕk
,v,M̃,G)

)
, ϕk ← T (Gk) ,

(9)

where T is the training algorithm.

Incorporating both approximations into (5), we arrive at the following attack:

Definition 2. (G-BASE attack) For a given threshold τ , and a set of shadow models {ϕk}Kk=1, target
sample v is inferred to be part of the training set if P (mv = 1|θ,D) > τ , where

P (mv = 1|θ,G) ≈ 1

M

M∑
i=1

σ

(
−SL(fθ, v,M̃i,G)−log

(
1

K

K∑
k=1

e−SL(fϕk
,v,M̃i,G)

)
+log

λ

1− λ

)

We refer to this attack as the graph Bayes-approximate membership status estimation (G-BASE)
attack. An illustration of the G-BASE attack is shown in Figure 2. The distinction between online
and offline variants is discussed in Appendix F.

5 Bayes-Optimal MIAs for i.i.d. Data

In this section, we consider MIAs in the i.i.d. setting. We first show that the formulation in (5)–(8)
recovers the result for the i.i.d. case presented in [1] (Theorem 2) as a special case. We then introduce
a practical approximation of the Bayes-optimal decision rule that yields a powerful attack. The formal
definition of the membership inference game in the i.i.d. setting is provided in Appendix D.

5.1 The Bayes-Optimal Decision Rule

The result below follows as a corollary of Theorem 1.
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Corollary 1. Let D = {(xv,yv)}nv=1 be a set of n i.i.d. data samples and denote tλ = log λ
1−λ . For

i.i.d. data, assuming the prior p(θ|mv,M̃, {xv}nv=1) is independent of mv , (5)–(8) reduces to

P (mv = 1|θ,D)

= EM̃∼P (M̃|θ,D)

[
σ

(
−ℓ(fθ(xv),yv)− log

∫
e−ℓ(fθ(xv),yv)p(ϕ|mv = 0,M̃,D)dϕ+ tλ

)]
,

i.e., the result in [1, Thm. 2] with the temperature parameter absorbed into the loss function.

Proof. See Appendix E.1.

5.2 BASE: Practical Bayes-Optimal MIA for i.i.d. Data

As for the graph case, the Bayes-optimal decision rule stated in Theorem 1 and in [1, Thm. 2] (for i.i.d.
data) is computationally intractable. For the i.i.d. case, [1] proposed several approximations; however,
the resulting attacks underperform compared to those in [11, 13]. In this section, we introduce an
alternative approximation to the Bayes-optimal decision rule for the i.i.d. setting that yields a practical
and powerful attack.

Due to space constraints, we present the formal definition of the proposed attack below and refer the
reader to Appendix E.2 for further details.

Definition 3. (BASE attack) For a given threshold τ , and a set of shadow models {ϕk}Kk=1, target
sample v is inferred to be part of the training set if P (mv = 1|θ,D) > τ , where

P (mv|θ,D) = σ

(
− ℓ(fθ(xv),yv)− log

(
1

K

K∑
k=1

e−ℓ(fϕk
(xv),yv)

)
+ log

λ

1− λ

)
. (10)

We refer to this attack as the Bayes-approximate membership status estimation (BASE) attack.

As shown in Section 6 and Appendix H, despite relying on a coarse approximation of the Bayes-
optimal decision rule in (5), the BASE attack matches or exceeds the performance of state-of-the-art
attacks [11, 13].

Connection to RMIA. We formally establish a connection between the BASE attack and the RMIA
attack proposed in [13]. To this end, we introduce a notion of equivalence for score-based MIAs (i.e.
any MIA that produce soft membership scores that are thresholded into hard membership predictions).

Definition 4. (MIA equivalence) Two score-based MIAs are said to be equivalent if, for any decision
threshold for one attack, there exists a decision threshold for the other attack that yields identical
hard predictions.

In particular, equivalent attacks produce identical ROC curves.

The following theorem shows that the BASE attack is closely related to the RMIA attack [13].

Theorem 2. The BASE attack is equivalent (in the sense of Definition 4) to RMIA when γ = 1. More
precisely, the membership prediction scores produced by RMIA with γ = 1 is related to those of
BASE via a monotone increasing function.

Proof. See Appendix E.3.

This result provides a theoretical justification for viewing RMIA as a Bayes-optimal attack, up to the
approximation on the shadow model distribution.

Despite the equivalence between BASE and RMIA (in the sense of Definition 4), BASE offers signifi-
cantly improved efficiency. In RMIA, the target model and shadow models need to be queried for each
target sample and a sufficiently large number of population samples. In a practical implementation,
a sampled subset Z ∼ D is typically used in place of the full population D for efficiency, which
can degrade performance [13]. BASE, on the other hand, only needs to query the models using the
target samples to match the performance of RMIA with Z = D, which is also the best performing
configuration of RMIA, see [13, Table 4].
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6 Experiments

We evaluate the attack performance of BASE and G-BASE across a range of datasets and model
architectures. This section focuses on attacks against GNNs; results on i.i.d. data (CIFAR-10 and
CIFAR-100) are presented in Appendix H.4. Open source code is available to reproduce our results.1

Setup. Experiments are conducted on 6 graph datasets: Cora, Citeseer, Pubmed, Flickr, Amazon-
Photo, and Github. Cora, Citeseer and Pubmed are citation networks previously used in node-level
MIA work [15–17]. For both the target and shadow models, we consider 2-layer GNN architectures:
GCN [30], GRAPHSAGE with max aggregation [31], and GAT [32]. The models are trained
inductively on randomly-induced subgraphs containing 50% of the nodes, and 50% of the dataset
is used as target samples, evenly split between members and non-members.2 Attack performance
is measured in terms of the area under the receiver operating characteristic curve (AUC), and true
positive rate (TPR) at 1% and 0.1% false positive rate (FPR). The AUC captures the average attack
performance across all FPRs, while the attack performance at low FPR is most relevant in practice, as
high TPR at a low FPR is essential for confident and reliable membership inference [11]. Additional
details of the training procedure and hyperparameter selection are provided in Appendix A.

Baseline attacks. We compare the performance of BASE and G-BASE against LiRA [11] and
RMIA [13], the current state-of-the-art MIAs for i.i.d. data. We also compare against node-level MLP-
classifier attacks against GNNs from prior work [15–17]. To strengthen these baselines, we enhance
the MLP-classifier attacks by using multiple shadow models to generate attack features, following
the shadow training framework of [2]. The attacks are implemented based on the descriptions in their
respective papers, incorporating information from the authors’ code when available.

Online and offline setting. We evaluate both online and offline attacks, as defined in Appendix F,
and compare BASE and G-BASE with LiRA and RMIA in both settings. Since MLP-classifier attacks
use shadow models solely to generate training data for the MLP attack model, rather than to estimate
reference model distributions, they are insensitive to whether the target nodes are included in any of
the shadow models. In our setup, the shadow models are trained partially on target samples; therefore,
the MLP-classifier attacks are formally considered online attacks.

Attacks against GNNs. Figure 1 shows ROC curves for G-BASE (using model-independent
sampling) and several baselines on Flickr, using a 2-layer GCN architecture and 8 shadow models in
online mode. G-BASE outperforms other baselines across the full range of FPRs on a majority of the
benchmarks, especially on the larger datasets. Table 1 shows the performance of BASE and G-BASE
and the baseline MIAs across multiple datasets and GNN target models. All attacks use the same set
of K shadow models for a fair comparison. The number of sampled graphs M in G-BASE is set to 8.
For K = 8 (online) and K = 4 (offline), we evaluate G-BASE for model-independent sampling (MI),
0-hop MIA sampling (MIA), and Gibbs sampling (see Section 4.3), using BASE as the 0-hop MIA.
In the large K experiments, we use 0-hop MIA sampling in all cases except for Flicker where we use
model-independent sampling. Further results on the sampling strategy are presented and analyzed in
Appendix H.2. The MLP-classifier attack is evaluated in two variants: using 0-hop query outputs
as attack features, and using concatenated 0-hop and 2-hop query outputs to form attack features
(0+2-hop). The hyperparameters for offline BASE and offline RMIA are selected using Bayesian
optimization [34], with cross-validation over shadow models acting as simulated target models.

We make the following key observations: The MLP-classifier attacks are not competitive with our
attacks BASE and G-BASE, or LiRA and RMIA across all datasets and target models and perform
as random guessing on the larger, more challenging datasets. For K = 4 and 8 shadow models,
BASE and G-BASE consistently outperform all baselines on the larger and more challenging datasets
Pubmed, Flickr, Amazon-Photo, and Github. On these datasets, G-BASE effectively leverages local
neighborhood information of the target node to enhance the attack performance. On the smaller
datasets Cora and Citeseer (≈ 3000 nodes out of which half is used to train the models), LiRA
achieves comparatively good performance in terms of AUC. However, BASE, and G-BASE achieve
superior performance in the more relevant low-FPR regime. Similarly, on Amazon-Photo (≈ 7500
nodes), which is still smaller than the remaining datasets whose sizes range from approximately 20K
to 90K nodes, the performance of LiRA is comparable to that of BASE, G-BASE, and RMIA. As the
dataset size increases, however, LiRA’s performance is overtaken by the other methods, indicating

1https://github.com/MarcusLassila/MIA-audit-GNN
2On Flickr and Github, only 20% are used as target samples when using 128 or 64 shadow models.
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Table 1: Comparison of different attacks across datasets and model architectures. Performance is measured in terms of AUC
and TPR at 1% and 0.1% FPR. The result is reported as the sample mean ± standard deviation over 10 random target models
and samples of target nodes. The parameter K denotes the number of shadow models. The attacks are evaluated in online
mode for K = 8 and K = 128 and otherwise offline mode. Our attacks BASE and G-BASE achieves top performance in the
majority of cases, sometimes with a significant margin.

CORA (GCN) CITESEER (GAT) PUBMED (GRAPHSAGE)

K ATTACK AUC (%) TPR@FPR (%) AUC (%) TPR@FPR (%) AUC (%) TPR@FPR (%)

1% 0.1% 1% 0.1% 1% 0.1%

8

MLP (0-HOP) 69.84± 1.74 3.83± 1.32 0.56± 0.51 73.15± 2.11 5.50± 1.34 0.97± 0.82 50.29± 0.58 1.10± 0.22 0.13± 0.07
MLP (0+2-HOP) 70.14± 2.74 3.96± 1.65 0.93± 0.82 75.39± 2.44 7.71± 1.50 2.12± 1.40 51.20± 0.56 1.16± 0.25 0.12± 0.05
LIRA 82.35± 1.30 8.01± 4.42 1.02± 1.55 85.89± 0.63 13.38± 3.59 1.66± 1.73 52.77± 0.50 1.17± 0.14 0.12± 0.05
RMIA 82.45± 1.45 17.44± 1.72 4.64± 2.25 84.84± 1.13 22.23± 3.62 5.50± 4.45 57.44± 0.56 3.07± 0.51 0.55± 0.10
BASE 82.45± 1.45 17.47± 1.73 4.64± 2.25 84.84± 1.13 22.29± 3.64 5.51± 4.43 57.44± 0.56 3.07± 0.51 0.55± 0.10
G-BASE (MI) 77.15± 1.51 7.19± 3.08 0.68± 0.92 81.78± 0.67 13.62± 2.52 1.44± 0.89 62.92± 0.66 5.38± 0.49 1.20± 0.35
G-BASE (MIA) 77.42± 1.40 15.36± 3.04 5.05± 4.60 83.31± 0.78 21.19± 4.27 6.92± 4.61 62.96± 0.74 5.58± 1.03 1.16± 0.49
G-BASE (GIBBS) 76.86± 1.61 14.02± 2.51 4.40± 2.84 84.39± 0.67 21.38± 4.16 5.26± 3.80 64.10± 0.69 6.28± 0.56 1.85± 0.59

4

LIRA 82.37± 1.71 12.38± 6.09 2.10± 1.84 84.68± 1.05 18.39± 2.62 5.01± 2.95 55.40± 0.66 1.57± 0.25 0.18± 0.14
RMIA 80.57± 1.52 17.67± 1.69 7.87± 3.66 83.53± 1.29 26.70± 3.39 12.26± 5.19 56.73± 0.46 2.95± 0.41 0.57± 0.23
BASE 81.47± 1.14 17.87± 2.43 7.12± 3.99 84.83± 1.31 25.28± 3.22 10.37± 3.93 56.82± 0.60 3.02± 0.44 0.62± 0.24
G-BASE (MI) 74.25± 1.79 9.41± 2.33 3.03± 1.67 76.26± 1.24 13.92± 2.27 4.80± 3.24 61.97± 0.66 5.22± 0.38 1.35± 0.30
G-BASE (MIA) 73.60± 1.38 10.38± 2.97 3.53± 2.06 76.65± 1.33 15.22± 2.34 4.02± 2.36 62.06± 0.64 5.33± 0.47 1.27± 0.26
G-BASE (GIBBS) 73.83± 1.74 10.21± 2.68 3.10± 1.49 77.08± 1.19 14.69± 1.57 4.92± 3.46 62.58± 0.64 5.59± 0.42 1.58± 0.31

128

LIRA 89.49± 1.07 34.62± 5.63 19.51± 4.99 91.88± 0.74 47.14± 3.17 29.77± 6.14 56.40± 0.44 3.07± 0.40 0.73± 0.21
RMIA 83.28± 1.22 20.10± 2.31 7.86± 4.36 85.59± 1.25 25.27± 3.32 7.23± 4.36 57.58± 0.59 3.23± 0.45 0.58± 0.14
BASE 83.28± 1.22 20.10± 2.31 7.86± 4.36 85.59± 1.25 25.27± 3.32 7.23± 4.36 57.58± 0.59 3.23± 0.45 0.58± 0.14
G-BASE 77.21± 1.34 17.40± 5.39 7.33± 4.48 84.41± 0.85 25.51± 3.65 7.81± 3.19 63.09± 0.45 5.44± 0.69 1.18± 0.35

64

LIRA 86.39± 1.17 33.10± 5.45 19.35± 5.42 88.11± 0.92 45.15± 2.95 26.70± 5.64 56.34± 0.77 2.12± 0.41 0.42± 0.24
RMIA 81.38± 1.18 20.69± 2.98 11.60± 4.02 84.54± 1.30 31.22± 2.97 16.90± 3.18 57.44± 0.52 3.46± 0.54 0.86± 0.29
BASE 82.49± 1.18 21.85± 3.66 11.11± 4.06 85.98± 1.15 32.35± 3.10 15.82± 4.93 57.58± 0.62 3.55± 0.49 0.91± 0.37
G-BASE 74.88± 1.13 13.62± 2.58 4.34± 2.63 79.23± 1.01 21.12± 1.67 8.63± 4.41 63.62± 0.55 6.49± 0.36 2.09± 0.45

FLICKR (GCN) AMAZON-PHOTO (GAT) GITHUB (GRAPHSAGE)

K ATTACK AUC (%) TPR@FPR (%) AUC (%) TPR@FPR (%) AUC (%) TPR@FPR (%)

1% 0.1% 1% 0.1% 1% 0.1%

8

MLP (0-HOP) 50.20± 0.24 1.02± 0.11 0.12± 0.03 52.11± 1.08 1.56± 0.49 0.27± 0.19 49.99± 0.38 0.91± 0.35 0.11± 0.07
MLP (0+2-HOP) 50.35± 0.31 1.06± 0.08 0.11± 0.03 52.20± 1.28 1.62± 0.29 0.22± 0.16 50.01± 0.44 0.94± 0.07 0.09± 0.04
LIRA 51.63± 0.26 1.04± 0.12 0.10± 0.03 55.32± 0.86 2.23± 0.21 0.30± 0.21 51.27± 0.28 1.05± 0.08 0.11± 0.04
RMIA 56.23± 0.57 1.92± 0.21 0.27± 0.05 56.35± 0.93 2.19± 0.66 0.36± 0.22 54.13± 0.59 2.05± 0.31 0.34± 0.09
BASE 56.23± 0.57 1.92± 0.21 0.27± 0.05 56.35± 0.93 2.20± 0.67 0.36± 0.23 54.13± 0.59 2.05± 0.31 0.34± 0.09
G-BASE (MI) 60.04± 1.01 2.82± 0.30 0.44± 0.06 56.89± 0.45 3.70± 0.83 0.79± 0.38 57.40± 1.09 2.93± 0.44 0.49± 0.15
G-BASE (MIA) 57.48± 0.55 2.51± 0.19 0.39± 0.09 56.77± 0.85 3.99± 0.62 0.82± 0.47 57.38± 1.40 3.00± 0.52 0.55± 0.18
G-BASE (GIBBS) 57.88± 0.91 2.33± 0.27 0.37± 0.15 56.53± 0.64 4.44± 0.60 0.76± 0.49 57.47± 1.43 3.18± 0.54 0.55± 0.17

4

LIRA 55.71± 0.61 1.58± 0.12 0.17± 0.05 56.71± 1.24 3.17± 0.51 0.47± 0.27 53.16± 0.58 1.35± 0.18 0.16± 0.07
RMIA 56.15± 0.49 2.03± 0.20 0.32± 0.08 56.21± 1.07 3.55± 0.81 1.06± 0.52 53.98± 0.60 2.05± 0.22 0.36± 0.07
BASE 56.18± 0.50 2.05± 0.22 0.29± 0.04 56.61± 1.06 3.58± 0.85 0.88± 0.68 53.97± 0.61 2.07± 0.22 0.36± 0.10
G-BASE (MI) 60.04± 1.01 2.88± 0.26 0.50± 0.06 57.81± 0.71 4.94± 0.78 1.63± 0.44 57.78± 1.22 3.10± 0.56 0.58± 0.15
G-BASE (MIA) 57.71± 0.66 2.48± 0.21 0.40± 0.07 57.74± 0.85 4.82± 0.88 1.38± 0.37 57.72± 1.06 3.12± 0.47 0.60± 0.19
G-BASE (GIBBS) 58.63± 0.95 2.48± 0.32 0.37± 0.07 57.94± 0.54 4.61± 1.00 1.69± 0.82 58.16± 1.48 3.44± 0.64 0.73± 0.26

128

LIRA 54.87± 0.35 1.95± 0.20 0.21± 0.09 58.73± 0.91 6.43± 0.77 3.52± 0.47 53.68± 1.01 2.01± 0.43 0.28± 0.16
RMIA 56.00± 0.35 2.25± 0.38 0.36± 0.17 56.52± 0.76 2.67± 0.83 0.58± 0.33 54.66± 0.89 2.18± 0.41 0.38± 0.17
BASE 56.00± 0.35 2.25± 0.38 0.36± 0.17 56.52± 0.76 2.67± 0.83 0.58± 0.33 54.66± 0.89 2.18± 0.41 0.38± 0.17
G-BASE 58.94± 0.81 2.87± 0.38 0.44± 0.13 54.88± 0.98 3.82± 0.74 0.93± 0.51 57.02± 1.58 2.96± 0.56 0.51± 0.15

64

LIRA 56.13± 0.36 1.98± 0.27 0.23± 0.10 57.82± 1.12 5.64± 0.92 2.65± 0.53 54.07± 0.78 1.39± 0.31 0.17± 0.11
RMIA 56.12± 0.32 2.28± 0.23 0.41± 0.14 56.46± 1.03 3.95± 0.77 1.58± 0.43 54.76± 0.85 2.47± 0.43 0.49± 0.21
BASE 56.12± 0.33 2.28± 0.24 0.41± 0.14 56.95± 1.07 4.13± 0.78 1.46± 0.68 54.80± 0.83 2.50± 0.41 0.55± 0.23
G-BASE 59.66± 0.71 3.14± 0.17 0.52± 0.09 56.74± 0.72 4.92± 0.67 1.71± 0.58 57.99± 1.67 3.16± 0.62 0.77± 0.24

that the proposed approaches scale more effectively to larger graphs. As predicted by Theorem 2,
in the online setting, BASE and RMIA yield nearly identical results. Minor differences stem from
RMIA using only half of the nodes in the Z set; including all nodes in the Z set, makes the attacks
equivalent, as established in Theorem 2. However, as noted in 5.2, BASE requires significantly less
computation in terms of model queries, compared to RMIA. In fact, BASE requires only a single
query of the target and shadow models, whereas RMIA also need to query the models over the Z set.
In the case of a large number of shadow models, the performance of LiRA increases significantly. On
some datasets, most notably Cora and Citeseer, LiRA performs very well. However, on larger datasets,
e.g. Flickr and Pubmed, the performance gain of LiRA is more modest. Our attacks BASE and
G-BASE are more principled and robust against datasets and models, and achieve top performance
in many settings and also for a large number of shadow models K. However, we consider attacks
that rely on a large number of shadow model to be of less practical relevance, since training a large
number of shadow models is often infeasible for large models and large real-world datasets.

Comparing online and offline attacks. Since the same target models and target nodes are used
to evaluate all attacks for a given dataset and GNN architecture in Table 1, the online and offline
attacks are directly comparable. Despite using only half the number of shadow models, there are
several cases where offline BASE and G-BASE is outperforming its online counterpart. This trend is
most clear when comparing the large K attacks, presumably because of the diminishing returns of
increasing the number of shadow models from 64 to 128. In light of Theorem 1, this is indeed what
we would expect since the target node is explicitly absent from the distribution of reference models.
Furthermore, the added hyperparameter in the offline versions of RMIA and BASE is likely another
contributing factor to this phenomenon.
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Robustness to mismatched adversary assumptions. We evaluate and compare the attacks in a
more challenging setting where the adversary lacks precise knowledge of the challenger’s training
procedure and model architecture. Specifically, the challenger trains a 2-layer GCN on 35% of Cora,
while the adversary trains 8 2-layer GAT shadow models on 50% of the nodes, following the shadow
model training procedure outlined in Appendix A. Furthermore, the challenger trains the shadow
model using a SGD optimizer with momentum, while the adversary uses an Adam optimizer.

Figure 3 presents the results of our attacks and baseline attacks (see Appendix H.1 for more re-
sults). In this setting, all attacks show degraded performance, with AUC scores dropping by
around 10 percentage points or more across all attacks, compared to the performance against
a GCN target model on Cora (see Table 1 and Table 8). LiRA suffers the most, losing
around 15 AUC percentage points and performing worse than MLP-classifier attacks in the
low FPR regime. In contrast, our attacks and RMIA are more robust to mismatches in model
and training procedures introduced by the adversary, achieving the highest TPR at low FPRs.
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Figure 3: ROC of a mismatched attack av-
eraged over 10 independent target models.
Shadow models utilize a GAT architecture
and different training procedure. 8 shadow
models for online; 4 for offline.

Computational aspects. An advantage of BASE over prior
state-of-the-art attacks LiRA and RMIA is its improved effi-
ciency. In Section 5.2, in light of the equivalence between
BASE and RMIA, we discussed how BASE requires much
fewer model queries compared to RMIA. In addition to ad-
vantages such as being more stealthy and robust to imposed
limits on allowed queries, it also improves the computational
efficiency of the inference phase of the attack.

Compared to LiRA, there is no advantage in terms of model
queries since LiRA also only requires querying the models
with the target samples. However, LiRA typically requires a
larger number of shadow models to reach its full potential as
our results indicate (see Table 1 and Table 12), and which is
also found in [13]. Training the shadow models is the most
costly part, especially for larger models and datasets. By achieving good performance at a lower
number of shadow models, BASE has a computational performance advantage over LiRA.

As for G-BASE, although it is a tractable approximation of the Bayes-optimal membership inference
on graph data, it is less efficient than the 0-hop attacks—the MIAs designed for i.i.d. data and adapted
to graph data by ignoring the edges. This is not surprising since G-BASE uses a more complex loss
signal and has to estimate an expectation over target node neighborhoods. However, it is the inability
to parallelize the membership inference over multiple target nodes that is the true bottleneck of
G-BASE in our experimental settings. Since the loss signal of G-BASE includes a term that depends
on the difference in loss values over a neighborhood when the target node is included and when it
is not (see Figure 2), it is not trivial to parallelize the computation of the loss signals over several
target nodes. The 0-hop MIAs, on the other hand, can compute their loss signals over a large batch
of target nodes in parallel. Thus, the time complexity of inference with G-BASE has an additional
factor of N ×M compared to BASE, where N is the number of target nodes and M is the number
of sampled graphs. We found that G-BASE performs well with only M = 8 (see Appendix H.2 for
results regarding this), but the number of target nodes is typically on the order of thousands, and
consequently this factor is the dominating factor. Nevertheless, G-BASE remains computationally
tractable, and we believe it is ultimately more important to accurately assess data leakage than to be
efficient, in agreement with [11]. However, further improvements in the efficiency and parallelization
of the attack are interesting and important directions of future research. In Appendix H.3, we quantify
the efficiency of our attacks, LiRA, and RMIA in terms of wall-clock time.

Conclusions. We proposed BASE and G-BASE, practical and theoretically-grounded MIAs for
i.i.d. and graph data. By deriving the Bayes-optimal inference rule for node-level attacks on GNNs,
we addressed key challenges posed by structural dependencies in graphs. Our attacks match or
surpass existing state-of-the-art methods (LiRA and RMIA) while, in the case of BASE, requiring
significantly lower computational overhead. Our results bridge the gap between theoretical optimality
and practical implementation of MIAs, offering an efficient framework for privacy auditing across
both classical and graph-based learning settings.
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A Experimental Setup

Target Model Training. We consider target models trained in a supervised manner for node
classification tasks, using the commonly adopted cross-entropy loss as the objective function. We
evaluate three target model architectures: graph convolutional networks (GCNs) [30], GraphSAGE
[31] with max aggregation, and graph attention networks (GATs) [32] using 4 attention heads in the
first layer and 2 in the second. Optimization is performed using Adam [35]. For each dataset and
model, hyperparameters are selected via a grid search, including the learning rate, weight decay,
number of training epochs, dropout rate, and dimension of the first GNN layer.3 In particular,
we search over {0.01, 0.001} for the learning rate, {0.0001, 0.00001} for the weight decay, and
{0.0, 0.25, 0.5} for the dropout rate. For the hidden dimension of the first layer, we search in
{32, 64, 128, 256, 512}, with 32 or 512 excluded depending on the dataset. The initial search space
for the number of epochs is typically {20, 50, 100, 200, 400, 800, 1600}, and is sometimes later
refined. Target models with very small generalization gaps are often difficult to attack, making it
harder to discern differences in MIA performance. To avoid this issue, we restrict the grid search
to configurations that yield an average generalization gap of at least 8%. This represents a realistic
generalization gap, sufficient to enable meaningful attacks without excessive overfitting that would
distort expected attack performance. We emphasize that our goal is not to produce the best performing
target model, but rather to obtain well-performing target models with a representative generalization
gap.

The dataset-model combinations evaluated in Table 1 correspond to the best-performing model
architecture selected for each dataset. The corresponding train and test accuracies of the target models
are reported in Table 2.

Table 2: Train and test accuracy of the target model on the different datasets and architectures used in Table 1. The accuracies
are reported as mean ± standard deviation, over the 10 different target models used in all except the mismatched adversary
experiments.

Dataset (model) Train accuracy (%) Test accuracy (%)

Cora (GCN) 96.07± 0.37 80.67± 1.10
Citeseer (GAT) 92.36± 0.43 73.80± 0.97
Pubmed (GraphSAGE) 96.30± 0.26 87.14± 0.28
Flickr (GCN) 57.48± 1.05 47.08± 0.61
Amazon-photo (GAT) 99.77± 0.06 91.44± 0.77
Github (GraphSAGE) 93.68± 1.88 84.37± 0.91

Shadow model training. Shadow models are trained using the same hyperparameter settings as the
target model, implicitly assuming adversarial side-knowledge. This setting is particularly relevant
for MIA auditing, as it yields an upper bound on the attack performance. To facilitate efficient MIA
auditing in the online setting (see Appendix F for a discussion of online vs. offline settings), we
adopt the shadow model training procedure proposed in [11] and also used in [13]. Specifically, each
shadow model is trained on half of the data population (e.g., half the nodes in a graph dataset), such
that each data sample is included in the training set of half of the models. Pseudo-code for our precise
shadow model training procedure is provided in Algorithm 1. For graph data, the data population is a
graph dataset, and sampling data points corresponds to sampling nodes, retaining the edges between
sampled nodes. This procedure guarantees a balanced set of in-models (models trained with the
target data point) and out-models (models trained without it) for each data point. In the offline setting,
for each target sample, the in-models for that sample are filtered out, so that only out-models are
used in the attack. This filtering approach eliminates the need for a separate, disjoint dataset to train
shadow models, an important advantage in graph-data settings, since splitting a graph in disjoint parts
reduces the number of edges, leading to sparse graphs when the full graph has low average degree.
The downside of the filtering approach is that only half of the shadow models are used for attacking
any given target sample.

3The second layer always produces embeddings with dimensionality equal to the number of classes.
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Algorithm 1 Shadow Model Training Procedure.
1: Input: Data population G, training algorithm T , and even number of shadow models 2N .
2: Φ← ∅
3: for k = 1 to N do
4: Gk ∼ Uniform(G), |Gk| = 1

2 |G|
5: Gck = {z : z ∈ G, z /∈ Gk}
6: ϕk ← T (Gk)
7: ϕc

k ← T (Gck)
8: Φ← Φ ∪ {ϕk,ϕ

c
k}

9: end for
10: return Φ

B Bayes-Optimal Node-Level MIAs Against GNNs

B.1 Proof of Theorem 1

The proof follows along the lines of the proofs of [1, Thms. 1 and 2] for the case of i.i.d. data. We
begin by applying the law of total expectation to express P (mv = 1|θ,G) as an expectation over the
unknown membership statuses of the remaining nodes,

P (mv = 1|θ,G) = EM̃∼P (M̃|θ,G)[P (mv = 1|M̃,θ,G)] . (11)

Unlike [1], where the expectation is taken over the data samples, our threat model assumes that
the full graph G is known to the adversary. Consequently, we marginalize only over the unknown
membership indicator variables of the non-target nodes.

The term P (mv = 1|M̃,θ,G) can be computed using Bayes’ rule, yielding

P (mv = 1|θ,G) = EM̃∼P (M̃|θ,G)

σ(log p(θ|mv = 1,M̃,G)
p(θ|mv = 0,M̃,G)

+ log
λ

1− λ

) , (12)

where λ = P (mv = 1|M̃,G) is the prior probability that node v is a member of the training
set, before observing the model. Under our threat model, conditioning only on the data and the
membership indicators of other nodes does not provide any information about the target node
membership status. Hence, λ = P (mv = 1).

Finally, we need to compute the log ratio of model posteriors in (12). Assuming the negative log-
likelihood loss function defined in (3), the posterior distribution of the model parameters can be
expressed using Bayes’ rule in terms of the loss function and a prior p(θ|M,X,A) as

p(θ|M,G) = p({yv}v:mv=1|θ,M,X,A)p(θ|M,X,A)∫
p({yv}v:mv=1|ϕ,M,X,A)p(ϕ|M,X,A)dϕ

(a)
=

∏
v:mv=1 p(yv|θ,M,X,A)p(θ|M,X,A)∫ ∏
v:mv=1 p(yv|ϕ,M,X,A)p(ϕ|M,X,A)dϕ

(b)
=

e−
∑

v∈V mvℓ(fθ(X,AM)v,yv)p(θ|M,X,A)∫
e−

∑
v∈V mvℓ(fϕ(X,AM)v,yv)p(ϕ|M,X,A)dϕ

, (13)

where (a) follows since, from (1), each embedding zv is a function of (X,A,θ,M); by [36,
Sec. 3.3], this implies that zv is independent of zu given (X,A,θ,M) for all v ̸= u. Applying
the softmax and indexing with yv, see (2), preserves this independence. Step (b) follows from the
definition of the loss function in (3). Also, the n× n matrices AM and AM̃ are defined as

(AM)uw =

{
Auw , mu = mw = 1,
0 , otherwise and (AM̃)uw =

{
(AM)uw , u, w ̸= v,
0 , otherwise

for u,w ∈ V . In words, AM is the adjacency matrix of the subgraph of G induced by the nodes
masked byM, while AM̃ corresponds to the subgraph of this resulting graph obtained by removing
the target node and all its adjacent edges.
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We can now evaluate the log likelihood-ratio in terms of the loss function:

log
p(θ|mv = 1,M̃,G)
p(θ|mv = 0,M̃,G)

= −
∑
u∈V

muℓ(fθ(X,AM)u,yu) +
∑

u∈V\{v}

muℓ(fθ(X,AM̃)u,yu)

+ log
p(θ|mv = 1,M̃,X,A)

p(θ|mv = 0,M̃,X,A)

− log

∫
e−

∑
u∈V muℓ(fϕ(X,AM)u,yu)p(ϕ|mv = 1,M̃,X,A)dϕ∫

e−
∑

u∈V\{v} muℓ(fϕ′ (X,AM̃)u,yu)p(ϕ′|mv = 0,M̃,X,A)dϕ′

(c)
= −ℓ(fθ(X,AM)v,yv)−∆LNL(v) + log

p(θ|mv = 1,M̃,X,A)

p(θ|mv = 0,M̃,X,A)

− log

∫
e−ℓ(fϕ(X,AM)v,yv)−∆LNL(v)

p(ϕ|mv = 1M̃,X,A)

p(ϕ|mv = 0M̃,X,A)

× e−
∑

u∈V\{v} muℓ(fϕ(X,AM̃)u,yu)p(ϕ|mv = 0,M̃,X,A)∫
e−

∑
u∈V\{v} muℓ(fϕ′ (X,AM̃)u,yu)p(ϕ′|mv = 0,M̃,X,A)dϕ′ dϕ

(d)
= −ℓ(fθ(X,AM)v,yv)−∆LNL(v) + log Λ(θ,M̃,X,A)

− log

∫
e−ℓ(fϕ(X,AM)v,yv)−∆LNL(v)+log Λ(ϕ,M̃,X,A)p(ϕ|mv = 0,M̃,G)dϕ , (14)

where in step (c) we have used

−
∑
u∈V

muℓ(fθ(X,AM)u,yu) +
∑

u∈V\{v}

muℓ(fθ(X,AM̃)u,yu)

= −ℓ(fθ(X,AM)v,yv)−
∑

u∈V\{v}

mu(ℓ(fθ(X,AM)u,yu)− ℓ(fθ(X,AM̃)u,yu))

= −ℓ(fθ(X,AM)v,yv)−
∑

u∈NL(v)

mu(ℓ(fθ(X,AM)u,yu)− ℓ(fθ(X,AM̃)u,yu))

= −ℓ(fθ(X,AM)v,yv)−∆LNL(v)

since the inclusion or exclusion of node v affects only the predictions within its L-hop neighborhood
NL(v), assuming an L-layer GNN. Furthermore, in step (d) we used (13) to simplify the model
distribution that is integrated over and substituted Λ(ϕ,M̃,X,A) = p(ϕ|mv=1,M̃,X,A)

p(ϕ|mv=0,M̃,X,A)
for the prior

likelihood ratio (before observing the labels).

Combining (12) and (14) concludes the proof.

B.2 G-BASE: Practical Bayes-Optimal MIA against GNNs

We elaborate on the proposed sampling strategies used to approximate the expectation over the
membership statuses of all non-target samples, M̃, i.e., the term EM̃∼P (M̃|θ,G) in Equation (5).
In practice, we compute samples of all the indicator variablesM and obtain M̃ by discarding the
indicator variable of the target node. This allows us to get samples of M̃ for multiple target nodes
from a single sampleM.

Model-independent sampling. The simplest approximation assumes that the membership inference
configurationM is independent of the target model, thereby ignoring the conditioning on θ, i.e.,
P (M|θ,G) ≈ P (M|G). Under this assumption, we approximate P (M|G) by treating each member-
ship indicator mv ∈M as i.i.d. according to a Bernoulli distribution with parameter λ = P (mv = 1).
We then generate samples ofM asM = {mv : mv ∼ Ber(λ), v ∈ V}.
0-hop MIA sampling. Recall that P (M|θ,G) is the joint distribution of the membership of all
nodes. A natural approximation is to apply a per-node MIA to estimate individual membership
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probabilities and assume independence across nodes. Concretely, we apply a 0-hop MIA—i.e., we
ignore the graph structure and treat nodes as i.i.d. samples. This reduces the problem to the standard
i.i.d. setting, where well-established MIA methods can be applied. Any i.i.d.-based MIA that yields
membership scores convertible to probabilities can be used. Here, we adopt the attack introduced in
Section 5.2 which approximates the Bayes-optimal inference rule in the i.i.d setting. We then generate
samples from the approximate posterior asM = {mv : mv ∼ Ber(P (mv|θ,Xv,yv)), v ∈ V},
where P (mv|θ,Xv,yv) is the membership probability of node v assigned by the BASE attack.

Metropolis-Hastings sampling. To account for the dependence ofM on the target model θ, we
develop a Markov chain Monte Carlo (MCMC) method based on the Metropolis-Hastings algorithm.
The goal is to construct a Markov chain over membership configurationsM with P (M|θ,G) as its
stationary distribution. To apply Metropolis-Hastings, we need to be able to evaluate the unnormalized
(up to a multiplicative constant) probability mass function P (M|θ,G), i.e., a function P ∗(M|θ,G)
satisfying

P (M|θ,G) = P ∗(M|θ,G)∑
M′ P ∗(M′|θ,G)

.

We derive such a function using Bayes’ rule, assuming a uniform prior overM to eliminate the prior
terms,

P (M|θ,G) = p(θ|M,G)∑
M′ p(θ|M′,G)

.

Using (13) for the model posterior and assuming that the prior (before observing the labels) is
independent ofM and only depends on the graph under consideration, we obtain

P (M|θ,G) ∝ e−
∑

u∈V muℓ(fθ(X,AM)u,yu)∫
e−

∑
u∈V muℓ(fϕ(X,AM)u,yu)p(ϕ)dϕ

= P ∗(M|θ,G) . (15)

Our proposal distribution Q(M′|M) randomly flips a small proportion ϵ of the indicator variables
in the current stateM. Notably, this proposal distribution is symmetric, Q(M′|M) = Q(M|M′),
so it cancels from the Metropolis-Hastings acceptance ratio. To sample from this distribution, we
initialize the Markov chain at a randomly-selected configurationM(0). At iteration t, we propose a
new configurationM∗ by flipping a fraction ϵ of the membership indicators inM(t), and compute
the log acceptance ratio

log
p(θ|M∗,G)
p(θ|M(t),G)

=
∑
u∈V

(m(t)
u ℓ(fθ(X,AM(t))u,yu)−m∗

uℓ(fθ(X,AM∗)u,yu))

+ log

(∫
e−

∑
u∈V m(t)

u ℓ(fθ(X,AM(t) )u,yu)p(ϕ)dϕ

)
− log

(∫
e−

∑
u∈V m∗

uℓ(fθ(X,AM∗ )u,yu)p(ϕ)dϕ

)
.

(16)

Each integral can be efficiently approximated via Monte Carlo sampling using shadow models.
Notably, the same shadow models used to approximate the inner expectation in (5) can be reused here
to evaluate (16). We then accept the proposal with probability min(1, p(θ|M∗,G)/p(θ|M(t),G)).
Specifically, we draw u ∼ Uniform(0, 1) and set

(M(t+1), p(θ|M(t+1),G)) =

{
(M∗, p(θ|M∗,G)) if p∗

p(t) > u

(M(t), p(θ|M(t),G)) otherwise.

To obtain approximately independent samples, we insert a burn-in period at the beginning of the
chain and use thinning—collecting samples only after a sufficient number of iterations.

Gibbs sampling. Another MCMC sampling strategy that is well suited to our setup is Gibbs sampling.
The sample a an instance of indicator variablesM ∼ P (M|θ,M), the Gibbs method iteratively
samples individual components conditioned on the remaining indicator variables. More precisely,
the kth iteration of Gibbs sampling produces a sampleM(k) = {m(k)

1 , . . . ,m
(k)
n } by sampling the
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components sequentially:

m
(k)
1 ∼ P (m1|m(k−1)

2 , . . . ,m(k−1)
n ,θ,G)

m
(k)
2 ∼ P (m2|m(k)

1 ,m
(k−1)
3 , . . . ,m(k−1)

n ,θ,G)
...

m(k)
n ∼ P (mn|m(k)

1 , . . . ,m
(k)
n−1,θ,G)

We note that each of these conditional probabilities is given by the Bayes-optimal membership
inference formula (5):

P (mv|M̃,θ,G)

= σ

(
−SL(fθ, v,M̃,G)− log

∫
e−SL(fϕ,v,M̃,G)p(ϕ|mv = 0,M̃,G)dϕ+ log

λ

1− λ

)
.

Sampling from the conditional distributions simply amounts to sample from a Bernoulli distribution:

mu ∼ Ber(P (mu|m1, . . . ,mu−1,mu+1, . . . ,mn,θ,G)) .

This Gibbs sampling strategy is therefore a kind of MIA-based sampling that improves on the 0-hop
MIA sampling by accounting for the graph structure. A further advantage of the Gibbs sampling
strategy over the Metropolis-Hastings method is that it does not require tuning any parameters.
However, it is computationally demanding since a single iteration requires querying the models over
each node in the full graph G.

C Selecting the Decision Threshold

Since an adversary does not have access to ground truth membership labels, they cannot directly tune
the decision threshold (by sweeping τ ) to achieve a specific FPR. Instead, the adversary must choose
a threshold that is expected to yield an FPR close to the maximal tolerated FPR. For MIAs based on
shadow models, we propose finding such a threshold by designating a subset of the shadow models
as simulated target models, as suggested in [1, 37]. The simulated target models can be attacked
using the remaining shadow models, possibly employing cross-validation. Because the ground-truth
training data is known for the shadow models, the adversary can sweep over decision thresholds and
identify the values that are expected to approximately yield the desired FPR.

By repeating the threshold estimation process across multiple simulated target models, the adversary
can assess the variability in the resulting thresholds. A conservative adversary would choose a
threshold at least as large as the maximum threshold obtained. Another viable option is to choose the
mean of the thresholds. As shown in Table 3 (graph data) and Table 4 (i.i.d. data), the variation in
threshold values across target models is small, indicating that thresholds estimated from simulated
target models are fairly stable. RMIA exhibits the lowest threshold variance. However, the viability
of estimating the threshold using simulated target models also depends on how sensitive the resulting
FPR is to threshold fluctuations. Therefore, to demonstrate the effectiveness of this approach, we
train 10 shadow models to act as simulated target models. These simulated target models are attacked
and, using the ground truth knowledge about the training members, the decision thresholds resulting
in an FPR not exceeding 1% are computed. The estimated threshold is then taken as the average of
these decision thresholds. To run the attacks, 8 (online) and 4 (offline) separate shadow models are
used. Table 5 shows the TPR and FPR achieved when using the estimated threshold on real target
models. The FPR obtained using the estimated threshold does not deviate much from the target 1%
FPR. Hence, the TPR is also close to the TPR of the exact 1% FPR threshold. Despite the differences
in threshold variance between LiRA, RMIA, and our attacks (see Table 3 and Table 4), there is no
significant difference in the accuracy of the estimated threshold.

We conclude with a remark on alternative methods for threshold selection. For LiRA, the threshold
can be selected from the fitted Gaussian distribution. However, the accuracy of the estimated threshold
depends on how well the Gaussian distribution fits the logit-scaled confidence values. As such, this
approach also relies on an estimation based on population data, and on top, the heuristic observation
that logit-scaled confidence values often look normal distributed. For RMIA with γ = 1, the authors
argue that their attack is calibrated such that a threshold β = 1− α results in FPR α. Investigating

18



Table 3: Decision thresholds for RMIA, BASE and G-BASE resulting in the largest FPR less than or equal to the target FPR
(1% and 0.1%). The threshold is reported as the mean ± standard deviation, averaged over 10 different target models and sets
of target samples. A comparatively small standard deviation indicates that the threshold is not expected to vary too much over
different target models, allowing the adversary to estimate a threshold using shadow models as simulated target models. The
RMIA threshold does not satisfiy the empirical rule “threshold = 1− FPR” as reported in [13].

CORA (GCN) CITESEER (GAT) PUBMED (GRAPHSAGE)

K ATTACK THRESHOLD@FPR THRESHOLD@FPR TPR@FPR

1% 0.1% 1% 0.1% 1% 0.1%

8

RMIA 0.8566± 0.0078 0.9030± 0.0174 0.8240± 0.0124 0.8990± 0.0299 0.9474± 0.0039 0.9822± 0.0030
BASE 0.6024± 0.0098 0.6913± 0.0342 0.5907± 0.0097 0.6971± 0.0548 0.6052± 0.0093 0.7140± 0.0161
G-BASE (MIA) 0.5619± 0.0072 0.6204± 0.0327 0.5724± 0.0059 0.6471± 0.0309 0.5928± 0.0053 0.6771± 0.0175

4
RMIA (OFF) 0.8275± 0.0087 0.8612± 0.0128 0.7649± 0.0101 0.8315± 0.0145 0.9719± 0.0027 0.9926± 0.0016
BASE (OFF) 0.5358± 0.0062 0.6015± 0.0454 0.5540± 0.0075 0.6341± 0.0368 0.6240± 0.0093 0.7422± 0.0182
G-BASE (OFF) 0.7034± 0.0127 0.8160± 0.0324 0.7064± 0.0168 0.8466± 0.0311 0.6661± 0.0058 0.8031± 0.0213

FLICKR (GCN) AMAZON-PHOTO (GAT) GITHUB (GRAPHSAGE)

K ATTACK THRESHOLD@FPR THRESHOLD@FPR THRESHOLD@FPR

1% 0.1% 1% 0.1% 1% 0.1%

8

RMIA 0.8029± 0.0086 0.9142± 0.0099 0.9267± 0.0101 0.9675± 0.0144 0.9462± 0.0053 0.9785± 0.0038
BASE 0.9080± 0.0091 0.9873± 0.0036 0.7167± 0.0392 0.8866± 0.0762 0.6328± 0.0178 0.7250± 0.0300
G-BASE (MIA) 0.6770± 0.0108 0.7910± 0.0109 0.6031± 0.0188 0.7316± 0.0532 0.6162± 0.0114 0.6990± 0.0189

4
RMIA (OFF) 0.8695± 0.0074 0.9330± 0.0042 0.8679± 0.0084 0.9032± 0.0055 0.9490± 0.0119 0.9801± 0.0056
BASE (OFF) 0.9143± 0.0084 0.9884± 0.0036 0.5806± 0.0119 0.7219± 0.0830 0.6317± 0.0233 0.7421± 0.0258
G-BASE (OFF) 0.6965± 0.0109 0.8072± 0.0191 0.6822± 0.0121 0.8604± 0.0279 0.6677± 0.0108 0.7826± 0.0184

Table 4: Decision thresholds for BASE (without the sigmoid normalization), RMIA and LiRA resulting in the largest FPR less
than or equal to the target FPR (1% and 0.1%). The threshold is reported as the mean ± standard deviation, averaged over 10
different target models. A comparatively small standard deviation indicates that the threshold is not expected to vary too much
over different target models, allowing the adversary to estimate a threshold using shadow models as simulated target models.
The RMIA threshold does not satisfy the empirical rule threshold=1-FPR as reported in [13].

CIFAR-10 CIFAR-100

K ATTACK THRESHOLD@FPR THRESHOLD@FPR

1% 0.1% 1% 0.1%

32
BASE 0.5385± 0.0473 0.8159± 0.0669 0.8417± 0.0735 1.2240± 0.0914
RMIA 0.9624± 0.0047 0.9900± 0.0028 0.9429± 0.0139 0.9833± 0.0061
LIRA 0.6505± 0.0515 1.1098± 0.1126 0.8366± 0.0478 1.4039± 0.0804

16
BASE (OFF) 0.1766± 0.0279 0.3485± 0.0472 0.1920± 0.0440 0.4066± 0.0525
RMIA (OFF) 0.9645± 0.0050 0.9909± 0.0023 0.9647± 0.0078 0.9918± 0.0024
LIRA (OFF) −0.0837± 0.0223 −0.0323± 0.0136 −0.0770± 0.0201 −0.0210± 0.0080

8
BASE 0.6116± 0.0601 0.9740± 0.0839 0.9207± 0.0864 1.4146± 0.1155
RMIA 0.9675± 0.0035 0.99322± 0.0015 0.9505± 0.0102 0.9884± 0.0037
LIRA 0.9362± 0.0812 1.5689± 0.1635 1.1176± 0.0898 2.0389± 0.1434

4
BASE (OFF) 0.2312± 0.0364 0.4795± 0.0571 0.24979± 0.0569 0.5437± 0.0737
RMIA (OFF) 0.9698± 0.0032 0.9934± 0.0014 0.9689± 0.0059 0.9942± 0.0021
LIRA (OFF) −0.0664± 0.0199 −0.0221± 0.0101 −0.0581± 0.0162 −0.0132± 0.0056

Table 5: Attack performance using a threshold estimated by attacking 10 simulated target models. The estimated threshold is
the average 1% FPR threshold against the simulated target models. TPR at 1% FPR is reported for comparison. Performance is
measured as mean ± standard deviation against 10 target models. The FPR against the target models when using the estimated
threshold is close to 1%. Consequently, the TPR at the estimated threshold is close to the TPR at the 1% FPR threshold. This
method of estimating the threshold at a given fixed FPR does work for our attacks, LiRA, and RMIA.

CORA (GCN) CITESEER (GAT) PUBMED (GRAPHSAGE)

K ATTACK TPR@1%FPR (%) ESTIMATED THRESHOLD TPR@1%FPR (%) ESTIMATED THRESHOLD TPR@1%FPR (%) ESTIMATED THRESHOLD

TPR (%) FPR (%) TPR (%) FPR (%) TPR (%) FPR (%)

8

LIRA 9.25± 3.79 6.97± 0.65 0.83± 0.34 15.35± 3.20 12.78± 0.98 0.78± 0.30 1.22± 0.24 1.24± 0.14 1.04± 0.13
RMIA 15.83± 2.57 16.26± 2.00 1.05± 0.28 24.08± 2.03 21.46± 2.36 0.85± 0.22 3.07± 0.31 2.77± 0.15 0.87± 0.11
BASE 15.88± 2.57 17.19± 1.29 1.08± 0.39 24.09± 2.03 22.24± 1.13 0.87± 0.10 3.07± 0.31 2.87± 0.22 0.90± 0.13
G-BASE 14.00± 3.11 14.96± 1.70 1.03± 0.30 21.03± 2.90 21.85± 1.50 1.14± 0.30 5.33± 0.58 5.39± 0.39 1.01± 0.12

4

LIRA (OFF) 12.45± 3.60 11.73± 1.30 0.84± 0.30 18.17± 2.24 20.26± 0.86 1.22± 0.30 1.52± 0.19 2.04± 0.39 1.37± 0.29
RMIA (OFF) 16.94± 3.09 17.39± 1.14 1.09± 0.36 25.38± 3.42 23.87± 0.91 0.89± 0.32 3.41± 0.47 3.14± 0.27 0.88± 0.15
BASE (OFF) 17.36± 3.34 17.58± 1.14 1.03± 0.30 26.02± 3.38 24.57± 1.01 0.97± 0.22 3.30± 0.39 3.17± 0.24 0.91± 0.18
G-BASE (OFF) 11.31± 2.97 11.88± 1.18 1.15± 0.45 16.82± 2.72 15.75± 0.80 0.97± 0.31 5.60± 0.40 5.55± 0.31 1.00± 0.11

this heuristic rule further, we find that it generally does not hold. In Table 3 and Table 4 we see
that the thresholds resulting in an FPR at most 1% or 0.1% are lower than β = 0.99 or β = 0.999,
respectively, across all datasets. Moreover, Table 6 (graph data) and Table 7 (i.i.d data) show that the
actual FPR obtained when setting β = 0.9 and β = 0.99 is lower than 10% and 1%, respectively, as
would be expected if β = 1− α where to give FPR α. Consequently, the TPR obtained at β = 0.9
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Table 6: TPR and FPR at fixed threshold β for the RMIA attack with γ = 1, using the full population as the Z set. Setting
β = 1− α does result in a significantly lower FPR than α, at the cost of a lower TPR than what is possible to achieve at FPR
α. 256 shadow models are used for the online attack, and 128 for the offline attack.

CORA (GCN) CITESEER (GAT)

ATTACK β = 0.9 β = 0.99 β = 0.9 β = 0.99

TPR (%) FPR (%) TPR (%) FPR (%) TPR (%) FPR (%) TPR (%) FPR (%)

RMIA 2.73± 0.49 0.00± 0.00 0.00± 0.00 0.00± 0.00 3.31± 0.71 0.01± 0.04 0.00± 0.00 0.00± 0.00
RMIA (OFF) 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.10± 0.09 0.00± 0.00 0.00± 0.00 0.00± 0.00

Table 7: TPR and FPR values for RMIA and RMIA (OFF) on CIFAR-10 at decision thresholds β = 1 − α where
α ∈ {0.01, 0.001}. Results are reported as mean ± standard deviation over 10 runs.

K ATTACK
β = 0.99 β = 0.999

TPR (%) FPR (%) TPR (%) FPR (%)

32 RMIA 1.90± 0.09 0.11± 0.04 0.20± 0.03 0.00± 0.00
16 RMIA (OFF) 1.89± 0.11 0.13± 0.06 0.21± 0.03 0.00± 0.01
8 RMIA 1.82± 0.07 0.18± 0.04 0.20± 0.04 0.01± 0.00
4 RMIA (OFF) 1.82± 0.09 0.20± 0.05 0.20± 0.02 0.01± 0.01

and β = 0.99 is significantly lower than what is possible to achieve at FPR 10% and 1%, respectively.
As an example, at FPR 1%, online RMIA achieves a mean TPR of 24.00% on Citeseer (see Table 1),
whereas using the threshold β = 0.99 instead results in no true positives at all.

D Membership Inference Game for i.i.d. Data

The following definition of a membership inference game closely follows the one in [11, Def. 1] and
the ones in [14].
Definition 5. (Membership inference game)

1. The challenger samples a dataset Dtrain ⊂ D from a data population pool D and trains a
model θ on Dtrain.

2. The challenger flips a fair coin to generate a bit b. If b = 0, a data point v is randomly selected
from D\Dtrain. If b = 1, the data point v is selected from Dtrain.

3. The challenger gives the adversary the population pool D, the target sample v, and black-box
access to the trained model fθ.

4. The adversary may also have access to additional side information (such as knowledge about the
training algorithm or model architecture). Using this information, the adversary performs a MIA
m̂v ← MIA(fθ, v,D,H), where m̂v is an estimate of the membership status of sample v, mv .

5. The attack is successful on a data point v if m̂v = mv .

E BASE: Practical Bayes-Optimal MIA for i.i.d. Data

E.1 Proof of Corollary 1

The i.i.d. setting corresponds to A = I , where I is the identity matrix. In this case, since the data
points are independent, the neighborhood-dependent term (7) vanishes, G = D, and the membership
indicator satisfies mv = 1 if the data sample v ∈ [n] is included in the training set and mv = 0

otherwise. Hence, SL(fθ, v,M̃,D) in (6) reduces to the individual loss value of the target sample
v, i.e., SL(fθ, v,M̃,D) = ℓ(fθ(xv),yv). Finally, since p(θ|mv,M̃, {xv}nv=1) is independent of

mv by assumption, the log-likelihood ratio Λ(θ,M̃, {xv}nv=1) =
p(θ|mv=1,M̃,{xv}n

v=1)

p(θ|mv=0,M̃,{xv}n
v=1)

= 1 and it
vanishes from the Bayes-optimal membership inference rule (5).

E.2 BASE: Practical Bayes-Optimal MIA for i.i.d. Data

Recall that under the i.i.d. assumption, we have G = D and the loss-based signal simplifies
to SL(fθ, v,M̃,D) = ℓ(fθ(xv),yv) in Theorem 1. Now, since the loss-based signal no longer
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depends on M̃, the only dependence on M̃ in Bayes-optimal membership inference rule is contained
in the posterior model distribution p(ϕ|mv = 0,M̃,D). By approximating this posterior model
distribution by the prior p(ϕ|D), (which we denote simply by p(ϕ) to conform to the standard
notation), we have removed all the dependence on M̃ in the approximation and the outer expectation
over M̃ is trivial.

The posterior membership probability P (mv|θ,D) then simplifies to

P (mv|θ,D) = σ

(
−ℓ(fθ(xv),yv)− log

∫
e−ℓ(fϕ(xv),yv)p(ϕ)dϕ+ log

λ

1− λ

)
. (17)

The remaining expectation over the prior model distribution is still intractable but can be efficiently
approximated using Monte Carlo sampling of shadow models,

log

∫
e−ℓ(fθ(xv),yv)p(ϕ)dϕ ≈ log

 1

K

K∑
k=1

e−ℓ(fϕk
(xv),yv)

 , ϕk ← T (Dk) , (18)

where the shadow models are trained on sampled datasets Dk from the data population, in analogy
with (9). Substituting the Monte Carlo approximation from (18) into (17), we can formalize the
resulting attack as in Definition 3 (Section 5.2).

Note that neither the sigmoid function nor the membership prior term are necessary for the attack. As
shown in Lemma 1, an equivalent attack can be obtained by applying the inverse sigmoid function
and subtracting the prior term, which corresponds to a monotonic transformation. However, we
retain both the sigmoid function and prior term to preserve the interpretation of the attack score as a
posterior probability.

E.3 Proof of Theorem 2

We begin by establishing the following result.

Lemma 1. Two score-based MIAs are equivalent if their score functions are related by a monotonic
transformation.

Proof. Let a and b denote the vector of prediction scores for two MIAs A and B, respectively,
after attacking an arbitrary target model using N arbitrary target samples. Furthermore, let τA
be an arbitrary decision threshold for attack A, such that the positive predictions areMA = {i :
i ∈ {1, . . . , N}, ai > τA}. By assumption, there exists a strictly increasing function g such that
g(ai) = bi for all i ∈ {1, . . . , N}. Now let τB = g(τA), then the positive predictions of attack B
are given by

MB = {i : i ∈ {1, N}, bi > τB}
= {i : i ∈ {1, N}, g(ai) > g(τA)}
= {i : i ∈ {1, N}, ai > τA}
=MA ,

where the third equality follows from the fact that g(x) > g(y) if and only if x > y for a strictly
increasing function g. Since τA was arbitrary, A and B are equivalent by Definition 4.

The intuition behind the result of Lemma 1 is that a monotonic transformation preserves the order of
the membership scores. When a decision threshold is applied to MIA scores, only the target samples
with top-k highest score (with k depending on the threshold) are classified as members. However,
since the order of the scores is preserved, the top-k scores will correspond to the same target samples
for both MIAs.

Equipped with Lemma 1, we are now ready to prove Theorem 2. In particular, since the composition
of monotonic transformations is itself a monotonic transformation, it follows that Lemma 1 also
applies when the score functions are related by such a composition, which we will use repeatedly in
the proof that follows.
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The RMIA score function is defined as

ΛRMIA(xi, yi;θ) = Pr
(xj ,yj)∼π

[
p(θ|xi, yi)

p(θ|xj , yj)
≥ γ

]
, (19)

where θ is the target model parameters, (xi, yi) the feature-label pair defining the target sample, and
π the data population.

To prove that BASE is equivalent to RMIA when γ = 1, it suffices (by Lemma 1) to show that the
their score functions are related by a monotonic transformation. We do this in two steps:

1. We show that BASE is equivalent to an attack that computes the ratio between the target
model’s confidence value and the expected confidence value over the prior model distribution.
We refer to this attack as the mean confidence attack (MCA).

2. We derive the monotonic transformation that relates MCA to RMIA, which turns out to be
a cumulative distribution function (CDF), restricted to a domain determined by the data
population.

The two steps are detailed in the following.

1. The BASE score function is given by

ΛBASE(xi, yi;θ) = σ

(
−ℓ(fθ(xi), yi)− log

∫
e−ℓ(fϕ(xi),yi)p(ϕ)dϕ+ log

λ

1− λ

)
. (20)

Since the sigmoid function is strictly increasing, it can be removed to obtain an equivalent attack. After
removing the sigmoid, the prior term becomes an additive constant, which also defines a monotonic
transformation and can therefore be discarded. Applying the (strictly increasing) exponential function
to the resulting score function, we obtain

ΛMCA(xi, yi;θ) =
fθ(xi)yi∫

fϕ(xi)yip(ϕ)dϕ
=

fθ(xi)yi

Eϕ[fϕ(xi)yi
]

(21)

where we have used that the confidence is related to the negative log-likelihood loss function by
fθ(xi)yi = e−L(fθ(xi),yi). We note that MCA is a kind of difficulty calibration [37], using the
confidence value as the membership score and calibrating by dividing the expected value rather than
subtracting it.

2. Next, we show that the MCA score in (21) is related to the RMIA score function in (19) when
γ = 1. Applying Bayes’ rule to the likelihood ratio in RMIA, we can rewrite the score function as

ΛRMIA(xi, yi;θ) = Pr
(xj ,yj)∼π

[
p(yi|xi,θ)p(θ)

p(yj |xj ,θ)p(θ)

p(yj |xj)

p(yi|xi)
≥ 1

]

= Pr
(xj ,yj)∼π

[
p(yi|xi,θ)

p(yi|xi)
≥ p(yj |xj ,θ)

p(yj |xj)

]

= Pr
(xj ,yj)∼π

[
p(yi|xi,θ)

Eϕ[p(yi|xi,ϕ)]
≥ p(yj |xj ,θ)

Eϕ[p(yj |xj ,ϕ)]

]

= Pr
(xj ,yj)∼π

[
fθ(xi)yi

Eϕ[fϕ(xi)yi
]
≥

fθ(xj)yj

Eϕ[fϕ(xj)yj
]

]
. (22)

This expression corresponds to the CDF of the random variable X =
fθ(xj)yj

Eϕ[fϕ(xj)yj ]
evaluated at

ΛMCA(xi, yi;θ) =
fθ(xi)yi

Eϕ[fϕ(xi)yi ]
. While a CDF is always non-decreasing, it is not necessarily strictly

increasing. However, since the target sample (xi, yi) is also part of the data population π, (22) is
strictly increasing on the relevant domain. Specifically, as a function of the real variable fθ(xi)yi

Eϕ[fϕ(xi)yi ]
,

the CDF (22) can only be constant on intervals where there is no probability mass or density.
Therefore, RMIA and MCA are equivalent by Lemma 1.

Combining steps 1 and 2 proves that BASE is equivalent to RMIA with γ = 1.
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F Online vs. Offline Attacks

MIAs that use shadow models to estimate distributions of reference models can be designed as
online or offline attacks. In the online setting, the adversary can train shadow models on the target
sample. This requires no additional assumptions, as the adversary controls shadow model training
and can always include the target. However, in certain auditing scenarios, the online setting may be
impractical—it would necessitate retraining shadow models for every new audit point. In contrast,
the offline setting assumes that shadow models are trained once, without using any target samples.
This setting can be of importance when all the target samples are not determined when setting up the
attack. However, due to the shadow model training trick introduced in [11] (see also Algorithm 1), it
is possible to perform efficient privacy audits in the online setting. Following common terminology,
we refer to the shadow models trained on the target sample as in-models and otherwise they are
referred to as out-models.

According to its original paper [13], RMIA is ideally performed in online mode. Consequently, due
to the equivalence between BASE and RMIA (see Theorem 2), BASE should also benefit from the
use of in-models. However, the Bayes-optimal membership inference formula (5) involves only
out-models, consistent with [1]. However, since BASE and G-BASE are only approximations of the
Bayes-optimal rule, involving several approximations, we cannot rule out a potential benefit from
using in-models in our attack.

Following a similar line of argument as [13], to compensate for the lack of in-models in the offline
setting, we introduce a scaling factor α ∈ [0, 1] on the Monte Carlo loss term over shadow models,

P (mv|θ,D) = σ

(
− ℓ(fθ(xv),yv)− α log

(
1

K

K∑
k=1

e−ℓ(fϕk
(xv),yv)

)
+ log

λ

1− λ

)
. (23)

Intuitively, the loss value on the target sample is expected to be smaller when using an in-model
compared to an out-model. Thus, the LogSumExp over shadow models is expected to be a negative
number of greater magnitude when computed only over out-models in offline mode, as compared
to the mix of in- and out-models used in online mode. The scaling factor reduces the magnitude
of this term to better match the expected value when using in-models. In principle, this scaling
constant could also be used in online mode. We indeed found that this could marginally improve the
performance in some cases also in the online setting. However, we believe the small performance
benefits do not outweigh the disadvantages of introducing a hyperparamter in need of tuning, and
omit from using it in online mode. We also found little to no benefit from introducing it for G-BASE.

G Differential Privacy Bound for Bayes-Optimal Membership Inference

It is straightforward to bound the Bayes-optimal membership inference probability in terms of ϵ-
differential privacy (DP) [1]. DP is a mathematical framework that defines a notion of privacy for
individual data records through a measure of indistinguishability. It was originally proposed in the
context of databases, formalizing the intuitive notion that a query function on a database is private if
the inclusion or exclusion of a single data record only affects the query output by a small amount.

Definition 6. (ϵ-DP) A randomized mechanismM satisfies ϵ-DP if for any two datasets D and D′

differing in a single data sample, and any event E ⊂ Range(M), it holds that

log
P (M(D) ∈ E)

P (M(D′) ∈ E)
≤ ϵ . (24)

DP is often used as a guarantee for private machine learning. Consider a ϵ-DP training algorithm T
that outputs a set of weights θ given a training dataset D: θ ← T (D). Given D, the inclusion and
exclusion of the target sample v result in two datasets that differ only in one sample. Therefore,
the condition for ϵ-DP directly results in the following bound on the Bayes-optimal membership
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Table 8: Evaluation of attack performance in the case of a distribution shift in the shadow models. Specifically, the adversary
uses a model architecture and training procedure that differs from that of the challenger. Performance is measured in terms of
AUC and TPR at 1% and 0.1% FPR. The result is reported as the sample mean ± the standard deviation over 10 random target
models and samples of target nodes. The parameter K denotes the number of shadow models. All attacks undergo a decline in
performance compared to the ideal setting where adversary uses the same model architecture and training procedure as the
challenger. Our attacks BASE and G-BASE achieves top performance also in this setting.

CORA (GCN) CITESEER (GAT) PUBMED (GRAPHSAGE)

K ATTACK AUC (%) TPR@FPR (%) AUC (%) TPR@FPR (%) AUC (%) TPR@FPR (%)

1% 0.1% 1% 0.1% 1% 0.1%

8

MLP (0-HOP) 58.68± 2.33 2.08± 0.99 0.25± 0.30 62.82± 2.37 3.27± 1.47 0.51± 0.55 50.74± 0.49 1.05± 0.18 0.09± 0.07
MLP (0+2-HOP) 60.40± 2.24 2.45± 1.23 0.25± 0.32 64.22± 1.47 2.73± 1.21 0.19± 0.16 50.87± 0.73 1.14± 0.26 0.09± 0.05
LIRA 67.63± 0.88 1.85± 0.97 0.46± 0.58 66.74± 1.41 2.65± 1.35 0.23± 0.31 51.82± 0.57 1.17± 0.23 0.14± 0.10
RMIA 73.86± 1.02 5.97± 1.82 0.81± 0.39 74.96± 1.11 5.34± 1.66 1.14± 0.92 55.02± 0.56 1.50± 0.26 0.18± 0.07
BASE 73.86± 1.02 5.97± 1.82 0.81± 0.39 74.96± 1.11 5.35± 1.66 1.14± 0.92 55.02± 0.56 1.50± 0.26 0.18± 0.07
G-BASE (MIA) 69.34± 1.50 6.71± 2.28 1.43± 1.04 69.83± 0.75 7.48± 1.98 1.30± 1.21 57.09± 0.79 2.38± 0.27 0.42± 0.17

4

LIRA 71.76± 1.05 2.17± 1.11 0.41± 0.39 73.62± 1.33 3.29± 1.44 0.22± 0.26 52.05± 0.60 1.39± 0.24 0.18± 0.09
RMIA 72.89± 1.08 8.82± 1.70 2.35± 1.46 75.57± 1.07 9.23± 2.99 2.60± 2.12 54.61± 0.64 1.60± 0.28 0.17± 0.11
BASE 73.54± 1.06 8.76± 2.43 2.29± 1.45 76.24± 1.04 10.00± 2.91 3.27± 2.49 54.83± 0.57 1.91± 0.23 0.25± 0.09
G-BASE (MIA) 68.47± 1.66 5.29± 2.01 1.17± 0.65 68.74± 1.22 4.38± 0.77 0.36± 0.51 57.04± 0.65 2.68± 0.29 0.42± 0.09

probability (12):

P (mv = 1|θ,D) = EM̃∼P (M̃|θ,D)

σ(log p(θ|mv = 1,M̃,D)
p(θ|mv = 0,M̃,D)

+ log
λ

1− λ

) (25)

≤ EM̃∼P (M̃|θ,D)

[
σ

(
ϵ+ log

λ

1− λ

)]
(26)

= σ

(
ϵ+ log

λ

1− λ

)
. (27)

As ϵ → 0, the upper bound approaches λ. That is, the stronger the DP guarantee, the closer the
membership inference to a random guess using only the prior. This ϵ-DP bound is particularly simple
when λ = 0.5, i.e., prior to observing the model, we are maximally uncertain about the membership
status of the target sample. In this case, the bound becomes P (mv = 1|θ,D) ≤ σ(ϵ).

H Additional Experiments

In this appendix, we present additional experiments and results. Further results for the mismatched
adversary setting are presented in Section H.1. We compare our different sampling strategies for
G-BASE in Section H.2. Wall-clock time for membership inference across different attacks is reported
in Section H.3. In Section H.4, we present further results on the CIFAR-10 and CIFAR-100 datasets,
which are widely adopted benchmarks for MIAs on i.i.d. data. Finally, In Section H.5, we include
ROC curves in the low FPR regime for some other dataset-target model combinations not presented
in Table 1.

H.1 Robustness to Mismatched Adversary Assumptions

We evaluate the robustness of our attacks and the baseline MIAs in the scenario where the adversary
does not have perfect knowledge of the target model architecture and training procedure. In particular,
we run the attack using shadow models of a different architecture than the target model, trained
using a different optimizer (with hyperparameters tuned for the respective model and optimizer).
Specifically, the target models are trained using SGD with momentum, whereas the shadow models
are trained using Adam. Moreover, the target model is only trained on 35% of the dataset, whereas
the adversary trains the shadow models on 50% of the data by means of the usual shadow model
training procedure outlined in Algorithm 1. All models are 2-layer GNNs with the final embedding
having as many dimensions as there are classes.

Table 8 shows the attack performance over three different datasets. The shadow model architectures
are GAT (with 4 and 2 attention heads in the first and second layer, respectively), GraphSAGE with
max aggregation, and GCN, on Cora, Citeseer and Pubmed, respectively.

We observe a decline in attack performance across all attacks compared to the ideal setting (see
Table 1). LiRA suffers the most and is not competitive with our attacks BASE and G-BASE.
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Table 9: Comparison of different sampling strategies for G-BASE. We also include the performance of G-BASE when the
ground-truth sample M̃ is used (Ground-truth), i.e. the actual target training set mask, indicating how much performance
improvements can be made by a more accurate sampling method. Results are reported as mean ± standard deviation over 10
different target models and sets of target nodes. M = 8 samples of M̃ are used in all cases.

CORA (GCN) CITESEER (GAT) PUBMED (GRAPHSAGE)

K SAMPLING METHOD AUC (%) TPR@FPR (%) AUC (%) TPR@FPR (%) AUC (%) TPR@FPR (%)

1% 0.1% 1% 0.1% 1% 0.1%

8

MODEL-INDEPENDENT 77.15± 1.51 7.19± 3.08 0.68± 0.92 81.78± 0.67 13.62± 2.52 1.44± 0.89 62.92± 0.66 5.38± 0.49 1.20± 0.35
0-HOP MIA 77.42± 1.40 15.36± 3.04 5.05± 4.60 83.31± 0.78 21.19± 4.27 6.92± 4.61 62.96± 0.74 5.58± 1.03 1.16± 0.49
METROPOLIS-HASTINGS 76.30± 1.30 13.23± 1.79 3.26± 2.31 83.44± 0.83 19.82± 4.27 3.49± 2.79 63.50± 0.71 6.10± 0.66 1.19± 0.44
GIBBS 76.86± 1.61 14.02± 2.51 4.40± 2.84 84.39± 0.67 21.38± 4.16 5.26± 3.80 64.10± 0.69 6.28± 0.56 1.85± 0.59
GROUND-TRUTH 76.52± 1.07 19.47± 3.66 7.39± 3.92 85.27± 0.82 27.29± 3.96 8.40± 5.35 70.63± 0.44 11.04± 0.85 4.00± 0.69

4

MODEL-INDEPENDENT 74.25± 1.79 9.41± 2.33 3.03± 1.67 76.26± 1.24 13.92± 2.27 4.80± 3.24 61.97± 0.66 5.22± 0.38 1.35± 0.30
0-HOP MIA 73.60± 1.38 10.38± 2.97 3.53± 2.06 76.65± 1.33 15.22± 2.34 4.02± 2.36 62.06± 0.64 5.33± 0.47 1.27± 0.26
METROPOLIS-HASTINGS 73.90± 1.24 9.97± 2.71 4.42± 1.79 77.72± 1.00 14.68± 1.87 4.66± 2.81 62.11± 0.80 5.30± 0.49 1.24± 0.47
GIBBS 73.83± 1.74 10.21± 2.68 3.10± 1.49 77.08± 1.19 14.69± 1.57 4.92± 3.46 62.58± 0.64 5.59± 0.42 1.58± 0.31
GROUND-TRUTH 73.00± 0.99 11.34± 2.55 2.88± 1.49 80.06± 1.21 19.01± 2.41 6.34± 4.10 68.09± 0.53 8.18± 0.55 2.48± 0.39

FLICKR (GCN) AMAZON-PHOTO (GAT) GITHUB (GRAPHSAGE)

K ATTACK AUC (%) TPR@FPR (%) AUC (%) TPR@FPR (%) AUC (%) TPR@FPR (%)

1% 0.1% 1% 0.1% 1% 0.1%

8

MODEL-INDEPENDENT 60.04± 1.01 2.82± 0.30 0.44± 0.06 56.89± 0.45 3.70± 0.83 0.79± 0.38 57.40± 1.09 2.93± 0.44 0.49± 0.15
0-HOP MIA 57.48± 0.55 2.51± 0.19 0.39± 0.09 56.77± 0.85 3.99± 0.62 0.82± 0.47 57.38± 1.40 3.00± 0.52 0.55± 0.18
METROPOLIS-HASTINGS 56.98± 0.71 2.17± 0.24 0.29± 0.08 56.31± 0.86 3.37± 0.58 0.62± 0.40 56.35± 1.11 2.58± 0.55 0.39± 0.21
GIBBS 57.88± 0.91 2.33± 0.27 0.37± 0.15 56.53± 0.64 4.44± 0.60 0.76± 0.49 57.47± 1.43 3.18± 0.54 0.55± 0.17
GROUND-TRUTH 69.95± 1.79 8.58± 1.39 2.15± 0.50 61.98± 1.34 8.37± 1.34 2.99± 0.48 71.64± 3.99 11.58± 3.34 4.56± 2.03

4

MODEL-INDEPENDENT 60.04± 1.01 2.88± 0.26 0.50± 0.06 57.81± 0.71 4.94± 0.78 1.63± 0.44 57.78± 1.22 3.10± 0.56 0.58± 0.15
0-HOP MIA 57.71± 0.66 2.48± 0.21 0.40± 0.07 57.74± 0.85 4.82± 0.88 1.38± 0.37 57.72± 1.06 3.12± 0.47 0.60± 0.19
METROPOLIS-HASTINGS 56.99± 0.75 1.99± 0.22 0.29± 0.09 56.25± 1.11 3.76± 0.68 1.10± 0.59 56.37± 1.12 2.62± 0.64 0.47± 0.28
GIBBS 58.63± 0.95 2.48± 0.32 0.37± 0.07 57.94± 0.54 4.61± 1.00 1.69± 0.82 58.16± 1.48 3.44± 0.64 0.73± 0.26
GROUND-TRUTH 69.70± 1.83 7.54± 1.19 1.46± 0.31 62.43± 1.33 8.06± 1.34 2.81± 1.28 70.46± 3.78 9.61± 2.85 3.38± 1.71

H.2 Comparison of Sampling Strategies for G-BASE

In Section 4.3 and Appendix B.2, we proposed four different sampling strategies to sample from
P (M̃|θ,G), for the purpose of evaluating the outer Monte Carlo estimate in the G-BASE attack
Definition 2. Here, we further evaluate and compare the impact of the sampling strategy on the
attack performance of G-BASE. Table 9 shows the attack performance of G-BASE over different
datasets and model architectures, using each of our four sampling strategies; model-independent
sampling, 0-hop MIA sampling (using BASE), Metropolis-Hastings sampling, and Gibbs sampling.
The Metropolis-Hastings step size parameter ϵ, controlling the fraction of indicator variables that are
flipped in each step, is chosen such that the acceptance rate is in the range 0.2-0.4. We run the Gibbs
sampling for one iteration through all the indicator variables. Note that for 0-hop MIA sampling, the
same set of shadow models used for BASE (to obtain membership probabilities for this sampling
strategy), can be used for G-BASE, and the membership probabilities can be computed once, before
running the attack.

To gain insight into how much more the attack is able to gain from a more accurate sampling method,
we also run G-BASE using the ground-truth target training set as sample M̃. Surprisingly, using the
ground-truth M̃ does not help the G-BASE attack against a GCN target model on Cora. However,
on other datasets, the ground-truth sample improves the performance significantly, indicating that a
better sampling strategy can still make the attack more effective. We also note that, in many cases,
the choice of sampling strategy has only a modest effect on overall attack performance, particularly
for low values of M . The precision of the sampled graphs relative to the ground-truth target training
graph generally improves only slightly when using model-dependent sampling, which explains the
similar performance observed between model-independent sampling and more sophisticated methods.
However, there are instances where the sampling method has a more pronounced impact—for
example, model-independent sampling on Flickr.

Recall that we have effectively approximated the model distribution p(ϕ|mv = 0,M̃,G) by a
distribution p(ϕ|G), independent of v and M̃, when reusing the same set of shadow models for
each target node. A consequence of this approximation is that even when obtaining highly fidelity
samples M̃ ∼ P (M̃|θ,G), only the loss signal for the target model is precise, and the loss signals
for the shadow models will contain a lot of noise due to the mixture of member and non-member
nodes in their local neighborhood around the target node. If p(ϕ|mv = 0,M̃,G) were estimated
more accurately, e.g., by training shadow models on the nodes masked by M̃, then the fidelity of the
sampling strategy is expected to have a larger impact on the attack performance.
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Table 10: Performance of G-BASE under varying M (number of samples M̃). The sampling strategy is model-independent, 0-
hop MIA sampling, and Gibbs sampling, for Flickr, Amazon-Photo, Pubmed, respectively. The attack performance consistently
increases with an increasing M , but with signs of diminishing returns.

FLICKR (GCN) AMAZON-PHOTO (GAT) PUBMED (GRAPHSAGE)

MODE K M AUC (%) TPR@FPR (%) AUC (%) TPR@FPR (%) AUC (%) TPR@FPR (%)

1% 0.1% 1% 0.1% 1% 0.1%

ONLINE 8

4 59.12± 1.00 2.57± 0.34 0.41± 0.06 56.38± 0.66 3.27± 0.73 0.49± 0.39 63.76± 0.51 5.99± 0.65 1.64± 0.47
8 60.04± 1.02 2.89± 0.33 0.45± 0.11 57.02± 0.60 3.74± 0.84 0.69± 0.25 64.08± 0.67 6.16± 0.62 1.80± 0.67

16 60.60± 1.13 3.08± 0.34 0.49± 0.11 57.00± 0.89 4.24± 1.09 0.84± 0.40 64.54± 0.58 6.68± 0.66 1.87± 0.65
32 60.97± 1.17 3.19± 0.40 0.52± 0.13 57.23± 0.94 4.26± 0.82 1.26± 0.70 64.74± 0.47 6.71± 0.70 2.13± 0.64

OFFLINE 4

4 59.07± 0.88 2.65± 0.27 0.43± 0.08 57.00± 0.89 4.16± 0.94 1.33± 0.44 62.18± 0.62 5.49± 0.55 1.40± 0.28
8 60.09± 0.95 2.92± 0.38 0.45± 0.13 57.94± 0.78 4.78± 1.25 1.39± 0.57 62.87± 0.53 5.78± 0.67 1.51± 0.52

16 60.60± 1.13 3.11± 0.24 0.52± 0.10 57.99± 1.11 4.68± 0.95 1.53± 0.58 62.84± 0.65 5.80± 0.38 1.45± 0.42
32 61.02± 1.14 3.16± 0.42 0.54± 0.10 58.53± 1.08 4.98± 1.13 1.68± 0.56 63.02± 0.64 5.94± 0.42 1.50± 0.27

Table 11: Comparison of wall-clock time for the inference phase of our attacks, RMIA, and LiRA.

WALL-CLOCK TIME (S)

K ATTACK FLICKR (GCN) AMAZON-PHOTO (GAT) PUBMED (GRAPHSAGE)

8

LIRA 0.02585± 0.02018 0.02041± 0.01970 0.01382± 0.01850
RMIA 2.04167± 0.01045 0.19090± 0.00074 0.50807± 0.00149
BASE 0.01488± 0.00004 0.01096± 0.00008 0.00444± 0.00003
G-BASE (MIA) 6182.23± 342.81 680.38± 30.55 684.11± 146.37
G-BASE (GIBBS) 18377.06± 484.46 2013.80± 11.32 1944.71± 318.62

4

LIRA 0.01964± 0.00026 0.01361± 0.00030 0.00730± 0.00028
RMIA 2.04350± 0.01280 0.19179± 0.00101 0.50834± 0.00102
BASE 0.01508± 0.00004 0.01119± 0.00007 0.00468± 0.00004
G-BASE (MIA) 4203.32± 198.85 416.16± 19.29 408.95± 6.72
G-BASE (GIBBS) 12055.83± 576.11 1262.03± 20.53 1233.48± 17.46

How many graph samples is enough? The sampled graphs M̃ are used to compute a Monte
Carlo estimation of the outer expectation of the Bayes-optimal membership inference rule (5). We
therefore expect the attack performance to improve with an increasing M . In practice, however, we
are constrained by the available computational resources. To get insight into how many samples
are required to get a satisfactory performance, we run G-BASE with varying M over various target
models and different sampling strategies. Table 10 reports the measured attack performance. In
particular, we use G-BASE with model-independent sampling, 0-hop MIA sampling, and Gibbs
sampling for the Flicker, Amazon-Photo, and Pubmed target model, respectively. Although we
consistently observe an increasing attack performance as M increases, there are signs of diminishing
returns.

H.3 Wall-Clock Time of Membership Inference

To quantify the computational efficiency of our attacks, LiRA and RMIA, we measure wall-clock
time for their inference phase. Table 11 reports these times for various target models across multiple
datasets and GNN architectures. For G-BASE, we measure inference time under both 0-hop MIA
sampling (using BASE as the 0-hop MIA) and Gibbs sampling.

Among all attacks, BASE is the most efficient—approximately 20 to 200 times faster than RMIA
while achieving comparable performance. The results also show that G-BASE is orders of magnitude
slower, primarily due to the lack of parallelization across target nodes. Nevertheless, its inference
time remains tractable. We believe it is important to accurately evaluate the data leakage associated
with membership inference, even if this comes with a higher computational cost.

H.4 i.i.d. Data

To demonstrate BASE on i.i.d. data, we train a Wide ResNet [38] with depth 28 and width 2 on both
CIFAR-10 and CIFAR-100 for 100 epochs using standard data augmentations and early stopping.
Each experiment is averaged across ten target models. For CIFAR-10, the target model achieves a
mean training accuracy of 93.73%± 1.15% and a test accuracy of 80.45%± 1.53%. For CIFAR-100,
the model reaches a training accuracy of 75.97%± 6.68% and a test accuracy of 49.89%± 1.88%.
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Table 12: Comparison of different attacks on Wide ResNet-28-2 trained on CIFAR-10 and CIFAR-100. Performance is
measured in terms of AUC and TPR at 1% and 0.1% FPR, and the results are reported as mean ± standard deviation over 10
random target models.

CIFAR-10 CIFAR-100

K ATTACK AUC TPR@FPR (%) AUC TPR@FPR (%)

1% 0.1% 1% 0.1%

32
BASE 62.94± 2.06 5.92± 1.27 1.66± 0.43 74.80± 3.22 12.08± 3.35 4.11± 1.69
RMIA 62.94± 2.06 5.92± 1.27 1.66± 0.43 74.80± 3.22 12.08± 3.35 4.11± 1.69
LIRA 61.00± 1.45 5.21± 0.91 1.32± 0.33 72.65± 1.80 9.99± 1.86 2.47± 0.87

16
BASE (OFF) 61.67± 2.10 5.67± 1.29 1.64± 0.39 71.35± 3.36 8.89± 2.97 3.07± 1.42
RMIA (OFF) 62.45± 2.10 5.61± 1.23 1.57± 0.40 70.65± 3.30 7.35± 2.21 2.07± 0.94
LIRA (OFF) 60.51± 1.75 4.10± 0.61 0.94± 0.25 72.33± 2.66 8.36± 1.65 1.60± 0.69

8
BASE 62.64± 1.96 5.21± 0.99 1.19± 0.38 73.98± 3.18 10.34± 2.91 2.81± 0.95
RMIA 62.64± 1.96 5.21± 0.99 1.19± 0.38 73.98± 3.18 10.34± 2.91 2.81± 0.95
LIRA 58.79± 0.99 3.64± 0.67 0.85± 0.25 69.22± 1.60 7.29± 1.37 1.60± 0.58

4
BASE (OFF) 61.54± 1.98 5.05± 1.06 1.23± 0.39 71.26± 3.28 8.23± 2.62 2.45± 1.20
RMIA (OFF) 62.17± 1.96 4.94± 1.07 1.19± 0.39 70.48± 3.25 6.45± 1.88 1.45± 0.67
LIRA (OFF) 59.80± 1.67 3.77± 0.76 0.78± 0.24 71.00± 2.68 7.27± 1.45 1.26± 0.57
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Figure 4: Average ROC curves (10 runs) for the Amazon-Photo dataset with GraphSAGE as target model.

Table 12 presents the attack performance of BASE, RMIA, and LiRA. In the online setting, BASE and
RMIA exhibit identical performance, in line with Theorem 2. Both methods consistently outperform
LiRA across the evaluated configurations. In the offline setting, while the differences are less
pronounced, BASE achieves superior performance over both RMIA and LiRA at low false positive
rates.

H.5 ROC curves

To compare the attack performances in terms of TPR over all low FPRs, we provide average ROC
curves in Figures 4 to 7. K denotes the number of shadow models used. We see that in the online
setting, the ROC curves of BASE and RMIA are identical, as is expected in light of Theorem 2 (we
use γ = 1 in RMIA). In the offline setting, BASE and RMIA perform similarly, but not equivalently.
G-BASE achieves the best performance in terms of TPR at low FPR in all cases.

27



10−4 10−3 10−2 10−1 100
10−4

10−3

10−2

10−1

100

False Positive Rate

Tr
ue

Po
si

tiv
e

R
at

e

G-BASE (ours)
BASE (ours)
RMIA [13]
LiRA [11]
MLP 0 Hop [15]
MLP 0+2 Hop [16]

(a) Online, K = 8

10−4 10−3 10−2 10−1 100
10−4

10−3

10−2

10−1

100

False Positive Rate

Tr
ue

Po
si

tiv
e

R
at

e

G-BASE (ours)
BASE (ours)
RMIA [13]
LiRA [11]

(b) Offline, K = 4

Figure 5: Average ROC curves (10 runs) for the PubMed dataset with GCN as target model.
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Figure 6: Average ROC curves (10 runs) for the Flickr dataset with GAT as target model.
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Figure 7: Average ROC curves (10 runs) for the Github dataset with GraphSAGE as target model.

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We show that our attacks are competitive with previous state-of-the-art attacks
in Section 6. The asserted connection of our attack and the prior state-of-the-art attack
RMIA is proven in Section 5.2.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

28



• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper explicitly discusses limitations in terms of the datasets in which the
different methods are compared and selecting the decision threshold when the adversary
does not have access to the ground truth.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The set of assumptions is stated within each theorem. We provide complete and
carefully checked proofs of the theorems in the appendices provided in the supplemental ma-
terial. All the theorems, lemmas, formulas, and proofs are numbered and cross-referenced.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
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• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide a clear description of the experimental setup in Section 6 of the
main paper and Appendix A of the supplemental material. We provide a link to a repository
containing the code to reproduce our results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide a link to a repository containing the code to reproduce our results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify all the training and test details, including the datasets, model
architecture, performance metric, hyper-parameter tuning.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the ROC curves and extract the area under the curve, as well as the
true positive rate at a low false positive rate. These are suitable and typically used metrics in
all existing membership inference attacks.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]

Justification: The paper currently does not include explicit details about the computational
resources required; this will be provided in the supplemental material upon acceptance. The
paper introduces a new framework and computational resource details are not crucial for
understanding or replicating the main contributions and their impact.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper complies fully with the NeurIPS Code of Ethics, involving no ethical
concerns or misuse.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses positive societal impacts by enhancing privacy and
classical and graph-based learning scenarios. Although we design attacks, the purpose is
to understand the vulnerability of trained models, which eventually assists in the design of
privacy-enhancing mechanisms. No negative societal impacts were identified.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not involve datasets or models with high risks for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets and existing models used are clearly cited with references and
licenses properly respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA] .

Justification: The paper does not introduce any new datasets, models, or code assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .

Justification:The research presented in this paper does not involve crowdsourcing or human
subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification:The research does not involve human subjects and thus does not require IRB
approvals.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The research does not utilize large language models as part of its core method-
ology.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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