

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 THINK BEFORE YOU RETRIEVE: LEARNING TEST-TIME ADAPTIVE SEARCH WITH SMALL LANGUAGE MODELS

006 **Anonymous authors**

007 Paper under double-blind review

011 ABSTRACT

013 Effective information retrieval requires reasoning over partial evidence and refining
 014 strategies as information emerges. Yet current approaches fall short: neural
 015 retrievers lack reasoning capabilities, large language models (LLMs) provide semantic
 016 depth but at prohibitive cost, and query rewriting or decomposition limits improvement to static transformations. As a result, existing methods fail to
 017 capture the iterative dynamics of exploration, feedback, and revision that complex user queries demand. We introduce Orion, a training framework that enables
 018 compact models (350M-1.2B parameters) to perform iterative retrieval through learned search strategies. Orion combines: (1) synthetic trajectory generation and
 019 supervised fine-tuning to encourage diverse exploration patterns in models, (2)
 020 reinforcement learning (RL) that rewards effective query refinement and backtracking behaviors, and (3) inference-time beam search algorithms that exploit
 021 the self-reflection capabilities learned during RL. Despite using only 3% of the
 022 training data available, our 1.2B model achieves 77.6% success on SciFact (vs. 72.6% for prior retrievers), 25.2% on BRIGHT (vs. 22.1%), 63.2% on NFCorpus
 023 (vs. 57.8%), and remains competitive on FEVER, HotpotQA, and MSMarco. It
 024 outperforms retrievers up to 200-400 \times larger on five of six benchmarks. These
 025 findings suggest that retrieval performance can emerge from learned strategies,
 026 not just model scale, when models are trained to search, reflect, and revise.

032 1 INTRODUCTION

033 Information retrieval has traditionally been framed as a one-shot task: given a query, return the most
 034 relevant documents. This formulation assumes that a query fully specifies the user’s information
 035 need and that relevance can be resolved in a single pass over the corpus (Thakur et al., 2021). Modern
 036 neural retrievers have advanced this paradigm significantly (Wang et al., 2020; Karpukhin et al.,
 037 2020; Shao et al., 2025; Das et al., 2025; Akkalyoncu Yilmaz et al., 2019; Chen et al., 2024), learning
 038 sophisticated representations that encode semantic similarity beyond lexical overlap, achieving
 039 strong performance on classic retrieval benchmarks.

040 However, this one-shot assumption breaks down for complex information needs that require multi-hop reasoning or exploratory search. Current solutions either attempt query reformulation (Yan
 041 et al., 2025; Wang et al., 2023), i.e., enriching queries with anticipated evidence, or decomposition
 042 (Ammann et al., 2025; Fu et al., 2021), i.e., breaking questions into sub-queries. Both strategies
 043 commit to a search plan before observing corpus evidence. When decomposition misses key entities
 044 (the “lost-in-retrieval” problem (Zhu et al., 2025b)) or expansion drifts from corpus vocabulary, no
 045 recovery mechanism exists. In particular, Tang et al. (2021) showed the severity: models that answer
 046 multi-hop questions correctly still fail on 50-60% of the constituent sub-questions.

047 Interactive retrieval methods (Trivedi et al., 2023; Press et al., 2023; Zhu et al., 2025b; Gao et al.,
 048 2025) address this by interleaving retrieval and reasoning, showing that adaptive loops outperform
 049 static pipelines. However, these retrieval-augmented generation (RAG) systems place adaptivity in
 050 the reasoning layer (LLM controller or generator) rather than in the retrieval layer. The retriever
 051 itself remains static, invoked repeatedly but never trained to adapt its search strategy. This overlooks
 052 a key point: *the retrieval policy is as important as the reasoning policy*. Deciding how to refine

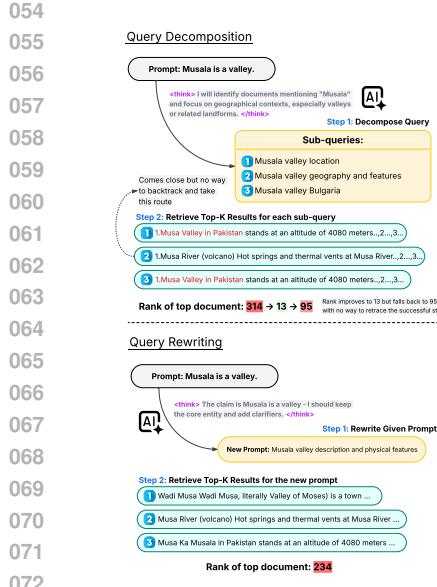
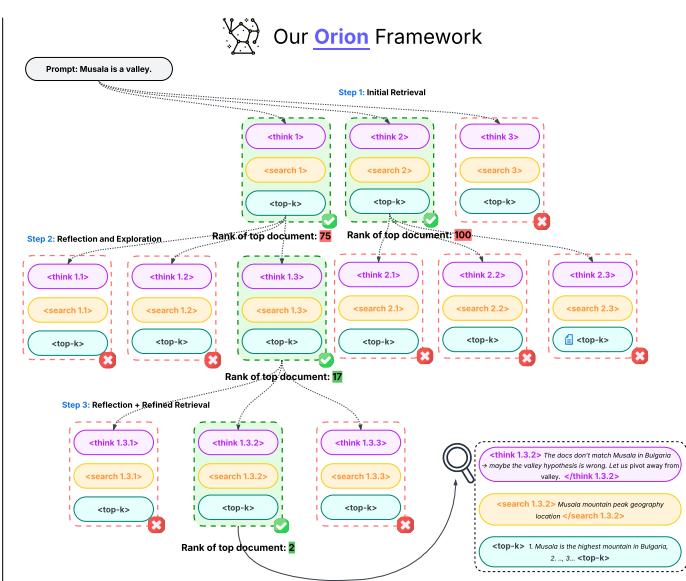


Figure 1: Overview of *Orion*. We illustrate two established query reformulation baselines alongside our proposed Orion framework on an example from the FEVER dataset. While query decomposition fails without corpus feedback and query rewriting yields static reformulations that ignore retrieval results, Orion performs tree-based exploration with structured reasoning spans, revising its strategy as it incorporates contradictory evidence and shifts from valley- to mountain-focused queries—effectively backtracking, refining, and exploring to recover relevant evidence.

queries, explore alternatives, or backtrack from failures is part of retrieval, not just generation. At the same time, scaling analyses (Portes et al., 2025; Zeng et al., 2025) show that retrieval performance grows predictably with model size and pretraining compute. Yet these gains mainly reflect stronger single-shot matching through better embeddings and in-context learning, they do not yield adaptive search policies. Neither costly LLM controllers nor stronger embeddings resolve the core limitation: retrieval models lack the ability to adapt their search strategy in response to observed evidence.

We introduce a different approach: making the retriever itself adaptive. We call this paradigm **test-time adaptive search** and present Orion, a training framework that enables compact models (350M-1.2B parameters) to learn dynamic search policies through synthetic trajectory supervision and turn-level reinforcement learning. Unlike systems that rely on LLMs for test-time reasoning (Jin et al., 2025) or enhance static retrievers with reasoning-aware training (Shao et al., 2025; Das et al., 2025), we train models to internalize diverse search strategies: when to explore alternatives, when to refine promising directions, and when to backtrack from failures.

A key innovation is our turn-level reward structure that leverages standard IR metrics to provide dense feedback at each search step rather than sparse outcome-only signals. This enables models to learn when and how to backtrack from unproductive search directions, a capability that conventional outcome-based training fails to capture. Moreover, our inference algorithm employs beam search with explicit structural markers (`<think>`, `<search_query>`, `<top_k_response>`) that cleanly separate reasoning from querying, keeping search queries concise while allowing thinking spans to incorporate rich retrieval feedback across turns. As Figure 1 illustrates, this design enables systematic exploration of multiple search paths with strategic backtracking when initial directions prove unproductive—moving from failed decomposition attempts to successful evidence recovery through adaptive query reformulation.

Empirically, we demonstrate that compact models can achieve substantial retrieval performance when trained with adaptive search strategies. Despite using models up to 400x smaller, Orion achieves 25.2% nDCG@10 on BRIGHT and 77.6% on SciFact, outperforming both pre-trained and instruction-tuned models, including specialized 3B query rewriting systems. These gains emerge not from stronger embeddings or larger scale, but from learned adaptive behavior: recognizing when

108 queries fail, exploring alternatives systematically, and recovering from unproductive search paths.
 109 Our findings suggest that retrieval intelligence may depend more on learning appropriate search be-
 110 haviors than on model scale alone, illuminating the potential for compact models to achieve strong
 111 performance through targeted training on the core principles of adaptive search.
 112

113 2 RELATED WORK

114
 115 **Conventional Retrievals** Classical IR pipelines, lexical metrics and one-pass dense retrieval, op-
 116 timize a single query, produce top-k hop, and assume that the right evidence is surfaceable with a
 117 static query (Voorhees & Tice, 2000; Chen et al., 2017; Maia et al., 2018; Hasibi et al., 2017; Wang
 118 et al., 2024; Zhao et al., 2024; Karpukhin et al., 2020; Akkalyoncu Yilmaz et al., 2019). While
 119 recent improvements teach retrievers to better follow task intent or ranking signals (Zhuang et al.,
 120 2025; Zhang et al., 2025a; Kim & Diaz, 2025; Ko et al., 2025; Rathee et al., 2025), these methods
 121 still commit early to a single retrieval state: they neither plan, backtrack, nor adapt the retrieval
 122 policy within a session when initial evidence is off-manifold. In high-ambiguity settings, this “fire-
 123 and-forget” assumption turns errors in the first hop into answer-level failures. This motivates our
 124 approach to introduce an iterative, policy-driven search that can revise hypotheses mid-trajectory.
 125

126 **Reasoning-based Retrievers and Query Rewriting** A complementary line trains the retriever to
 127 favor evidence that supports multi-step reasoning rather than shallow matches. For example, Shao
 128 et al. (2025) builds hard negatives and challenging queries per document, while Das et al. (2025)
 129 synthesizes reasoning-conditioned relevance from chain-of-thought traces; both improve reasoning-
 130 heavy IR and help downstream RAG. Listwise or pointwise rerankers (Liu et al., 2025; Fan et al.,
 131 2025a) push similar supervision during training and then run think-free at inference. On the query
 132 side, systems learn to rewrite underspecified or conversational queries directly against retrieval feed-
 133 back, and some transform documents to produce retrieval-friendly views (Zhu et al., 2025a; Ko et al.,
 134 2025; Qin et al., 2025; Yadav et al., 2025; Cha et al., 2025). These advances reduce intent mismatch,
 135 but remain single-turn: after one rewrite or rerank the loop stops. Our work closes this by making
 136 retrieval itself a multi-turn control policy with turn-level rewards that couple what the model thinks
 137 to what it searches next.

138 **Agentic Retrieval** A fast-growing body of “agentic” systems trains LLMs to reason while they
 139 search: the model alternates thinking, issuing tool calls, reading results, and updating plans.
 140 Outcome-rewarded agents (Jin et al., 2025; Jiang et al., 2025) show large gains by letting the model
 141 decide when to search and how to reformulate queries against live engines, but can overfit to reward
 142 sparsity or exploit quirks of real search APIs. Process- and critic-guided variants (Chang et al., 2024;
 143 Dong et al., 2025), retrieval-within-context exemplars (Wang et al., 2025), and latent steering (Xin
 144 et al., 2025) inject intermediate guidance and filtering to stabilize trajectories. Other works scale
 145 the loop to “deep research” (Li et al., 2025c; Wu et al., 2025; Zheng et al., 2025), or restructure
 146 the loop with explicit refine-steps (Shi et al., 2025; Sun et al., 2025a; Peng & Wei, 2025), simple
 147 data-centric SFT over realistic web traces (Sun et al., 2025c), or unifying frameworks that couple
 148 reasoning and retrieval with curriculum or hybrid knowledge access (Li et al., 2025b;a). Several
 149 papers reduce reliance on expensive live search, either by simulating search during training (Sun
 150 et al., 2025b; Fan et al., 2025b) or by formalizing the loop as information-foraging over evolving
 151 “scent” (Qian & Liu, 2025). Despite their breadth, these agents typically target general QA or open-
 152 web tasks, emphasize outcome accuracy over retrieval-policy competence, and require long, brittle
 153 trajectories and heavyweight LLM backbones. In contrast, we formulate multi-turn retrieval as a
 154 compact, behavior-shaped policy problem and show that small models learn to plan retrieval under
 turn budgets using group-relative preference optimization (GRPO).

155 **Reward Design for Multi-Turn IR** Outcome-only rewards (answer correctness) are simple but
 156 sparse, while process-level signals for query quality, evidence selection, and refinement provide
 157 denser credit and more stable learning (Zhang et al., 2025b). Recent work adds process feedback
 158 (Peng & Wei, 2025; Sun et al., 2025a), lightweight critics (Li et al., 2025a), and gym-style evalua-
 159 tions (Xiong et al., 2025) to reduce over-querying and tool misuse, but most supervise generation or
 160 tool use rather than the retrieval step itself. We instead attach rewards directly to each retrieval turn
 161 and regularize exploration with structured behaviors, yielding short, predictable plans that continue
 to improve beyond the first hop, where single-shot retrieval and one-off rewriting struggle.

162 Our contribution is domain-agnostic: we cast multi-turn search as a behavioral policy that reasons
 163 first and then retrieves, and optimize small (350M-1.2B) models with turn-level retrieval rewards.
 164 This directly addresses gaps left by single-shot IR (no replanning), reasoning-aware retrievers (no
 165 closed-loop search), and agentic RAG (long, costly, outcome-dominated training), and empirically
 166 supports iterative planning under tight budgets.
 167

168 3 THE ORION FRAMEWORK

170 3.1 PROBLEM FORMULATION: SEARCH AS A REINFORCEMENT LEARNING TASK

172 We formalize multi-turn retrieval as a sequential process. Given an initial user query q_0 and a
 173 document corpus, traditional retrieval produces a single ranking. *Test-time adaptive search* extends
 174 this by generating a sequence of search actions, where each step refines the query based on observed
 175 evidence.

176 At turn t (analogous to a time step in RL), the environment state is $s_t = (q_0, H_t)$, where the history
 177 $H_t = \{(\phi_i, q_i, \mathcal{R}(q_i))\}_{i=1}^{t-1}$ records prior interactions. Here, ϕ_i is the reasoning trace, q_i the issued
 178 query, and \mathcal{R} the deterministic retriever that returns documents for a given query.

179 Each action a_t consists of two parts: the reasoning step ϕ_t and the refined query q_t . The policy first
 180 generates reasoning from the current state, $\phi_t \sim \pi_\theta(\cdot | s_t)$, and then refines the query, $q_t \sim \pi_\theta(\cdot |$
 181 $s_t, \phi_t)$. The history is updated as $H_{t+1} = H_t \cup \{(\phi_t, q_t, \mathcal{R}(q_t))\}$. To guide generation, we delimit
 182 components using the structural tokens shown in Table 1.

184 Table 1: Structural tokens used to delimit reasoning, queries, and retrieval responses.
 185

186 Token	187 Purpose
188 <user_query>...</user_query>	Original query q_0 (fixed)
189 <think>...</think>	Reasoning trace ϕ_t
190 <search_query>...</search_query>	Refined queries q_t ($t > 0$) submitted to \mathcal{R}
<top_k_response>...</top_k_response>	Retrieved results $\mathcal{R}(q_t)$

192 An episode terminates when the target document appears in the top- k results or when the maximum
 193 number of turns $T_{\max} = 5$ is reached. We train LLM policies π_θ with parameters θ to maximize
 194 expected retrieval success through turn-level RL, with KL regularization against a reference policy
 195 π_{ref} .

197 3.2 SYNTHETIC TRAJECTORY GENERATION

199 One challenge in training retrieval models is the mismatch between benchmarks dominated by short,
 200 factoid-style queries (Nguyen et al., 2016; Thakur et al., 2021) and real-world search demands that
 201 require multi-step reasoning, reformulation, and hypothesis testing. While ReasonIR (Shao et al.,
 202 2025) addressed part of this gap by generating longer queries and showing that decomposition de-
 203 grades performance, we view synthetic data generation as a way of teaching models *how to search*:
 204 treating retrieval as a process that unfolds through cycles of reasoning, querying, and refinement.

205 We model multi-turn search through diverse behavioral strategies that capture various search pat-
 206 terns, motivated by prior findings that diversity, rather than scale alone, is key for generalization
 207 (Jung et al., 2025; Wen et al., 2025). Following established approaches in query reformulation
 208 (Diaz, 2016; Balaneshin-kordan & Kotov, 2016), we treat queries as nodes in a reformulation graph
 209 where each node can spawn alternative search directions. This framework allows us to synthesize
 210 behavioral archetypes such as breadth-first and depth-first traversal, evidence-driven reformulation,
 211 stochastic wandering, and trajectory-aware strategies like recognizing early success or reflecting
 212 on failure. To capture these patterns, we construct an ultra-feedback pool (Cui et al., 2024) of
 213 multi-turn search traces generated by eight popular LLMs on the training splits of several retrieval
 214 datasets, ensuring robustness against model-specific biases while sampling structured think-query-
 215 retrieve cycles that preserve diversity and coherent reasoning flows. Further details are provided in
 Appendix B.2, which discuss in detail the different data generation algorithms and ultra-feedback
 models.

216 Additionally, we explore whether models benefit from structured exposure to search behaviors
 217 through curriculum learning during SFT, where training progresses from simple reformulation
 218 strategies to complex multi-hypothesis coordination, or whether random presentation of diverse be-
 219 havioral patterns proves equally effective. We also examine individual algorithm training to isolate
 220 the contribution of specific search behaviors, and employ model souping techniques inspired by
 221 SmollM3 and Llama-Nemotron-Super’s approach, which uses MergeKit to combine behavioral
 222 specialists with exponential weighting that favors sophisticated strategies (Bakouch et al., 2025;
 223 Goddard et al., 2024; Bercovich et al., 2025). These comparisons aim to reveal how models best
 224 internalize the spectrum of search capabilities encoded in our synthetic data.

226 3.3 TRAINING FRAMEWORK

228 Our training consists of two stages: SFT establishes multi-turn search scaffolding, followed by
 229 GRPO (Shao et al., 2024) that refines search behavior through turn-level rewards.

231 **Supervised Fine-Tuning** We perform supervised fine-tuning on the synthetic dataset to establish
 232 the structural framework of multi-turn search. Each training example includes explicit markers for
 233 reasoning, query emission, and retrieval results, ensuring the model learns to generate well-formed
 234 cycles of `<think>`, `<search_query>`, and `<top_k_response>` tokens in this order. This
 235 stage grounds the model in the format and temporal flow of iterative search traces, aligning internal
 236 reasoning with external retrieval actions across multiple turns. Unlike conventional fine-tuning on
 237 single-turn queries, it establishes the behavioral foundation for subsequent training with GRPO.

238 **Group-Relative Policy Optimization** Building on this initialization, we apply GRPO to refine
 239 search behavior with retrieval-based feedback. At each turn, the model generates multiple reasoning-
 240 query candidates, which are executed against the retriever and scored. Each generation includes a
 241 “think” segment followed by a search query. For each query, we compute a reward that combines
 242 two normalized components: (i) the cosine similarity of the retrieved document to the query and (ii)
 243 the rank of the best-matching document in the corpus. Similarity scores are normalized to $[0, 1]$ by
 244 mapping negative values as $(\text{sim} + 1)/2$, while rank is normalized as $1 - \text{rank}/|C|$, where $|C|$ is
 245 the size of the corpus. Each signal contributes equally to the reward.

246 From G sampled generations per turn (where G denotes the group size), the highest-reward candi-
 247 date is selected to advance the context for the next turn. While context advancement is greedy at
 248 each turn, GRPO training incorporates all candidates through group-relative policy updates. Ad-
 249 vantages are normalized relative to the candidate set, and policy gradients are computed using all
 250 candidates, not just the highest-reward one. KL regularization against a reference model stabilizes
 251 language generation, while group size and horizon (both set to 4) govern exploration depth. The full
 252 algorithm is provided in Appendix B.3.

254 3.4 INFERENCE WITH ORION

256 Drawing inspiration from DeepConf’s confidence-based filtering (Fu et al., 2025) and graph-based
 257 reformulation techniques (Diaz, 2016), Orion leverages the enhanced self-reflection capabilities
 258 developed through our SFT and GRPO training stages to perform adaptive search via structured
 259 beam management. While DeepConf computes token confidence as $C_i = -\frac{1}{k} \sum_{j=1}^k \log P_i(j)$ over
 260 top- k token probabilities, Orion evaluates retrieval effectiveness through structured relevance as-
 261 sessment. For each beam thread containing the complete context history ending with `<think>`,
 262 `<search_query>`, and `<top_k_response>`, we prompt the model with a new follow-up think-
 263 reflection: “Given turn t and search query q_t , the retrieved documents are relevant to the user query
 264 $\{q_0\}$.”. We then compute perplexity as $\text{PPL} = \exp\left(-\frac{1}{N} \sum_{i=1}^N \log P(x_i|x_{<i})\right)$ on the model’s
 265 relevance judgment. This approach captures learned metacognitive assessment of search quality
 266 rather than surface-level token uncertainty, providing a semantically grounded confidence signal for
 267 beam ranking. As detailed in Algorithm 1, the method maintains a search tree where each query
 268 expands into M candidate branches, with M denoting the number of alternatives pursued per beam.
 269 Each node then generates M children, after which survival-based pruning retains the top B candi-
 270 dates, where B is the beam size controlling how many hypotheses survive to the next step. Running

270 **Algorithm 1** Orion-Beam-Search for Test-Time Adaptive Retrieval

271 **Require:** User query q_0 , policy π_θ , retriever \mathcal{R} , beam size B , expansion width M , max turns T_{\max}

272 1: Initialize active beams $\mathcal{B}_0 = \{(q_0, \emptyset, 0)\}$, where each beam is (query, history, confidence)

273 2: **for** $t = 1$ to T_{\max} **do**

274 3: $\mathcal{B}_{\text{candidates}} \leftarrow \emptyset$

275 4: **for** each beam $(q_i, H_i, c_i) \in \mathcal{B}_{t-1}$ **do**

276 5: Sample M reasoning-query pairs: $\{(\phi_{i,j}, q_{i,j})\}_{j=1}^M \sim \pi_\theta(\cdot | q_i, H_i)$

277 6: **for** $j = 1$ to M **do**

278 7: Execute retrieval: $r_{i,j} \leftarrow \mathcal{R}(q_{i,j})$

279 8: Construct context: $\text{ctx}_{i,j} \leftarrow H_i \cup \{(\phi_{i,j}, q_{i,j}, r_{i,j})\}$

280 9: Generate relevance prompt: $p \leftarrow \text{"Given turn } \{t\} \text{ and search query } \{q_t\}, \text{ the retrieved documents are relevant to the user query } \{q_0\}."$

281 10: Compute perplexity: $\text{ppl}_{i,j} \leftarrow \exp\left(-\frac{1}{N} \sum_{k=1}^N \log \pi_\theta(y_k | y_{<k}, \text{ctx}_{i,j}, p)\right)$

282 11: Add candidate: $\mathcal{B}_{\text{candidates}} \leftarrow \mathcal{B}_{\text{candidates}} \cup \{(q_{i,j}, \text{ctx}_{i,j}, \text{ppl}_{i,j}^{-1})\}$

283 12: **end for**

284 13: **end for**

285 14: Sort candidates: $\mathcal{B}_{\text{sorted}} \leftarrow \{b \in \mathcal{B}_{\text{candidates}} : c(b_1) \geq c(b_2) \geq \dots \geq c(b_n)\}$

286 15: Select survivors: $\mathcal{B}_t \leftarrow \text{top-}B(\mathcal{B}_{\text{sorted}})$

287 16: **if** any beam achieves retrieval success **then**

288 17: **return** best beam from \mathcal{B}_t

289 18: **end if**

290 19: **end for**

291 20: **return** highest confidence beam from $\mathcal{B}_{T_{\max}}$

294

295

296 inference in this way balances exploration of diverse alternatives with focused refinement on the
297 model-perceived most promising trajectories.

4 EXPERIMENTS

4.1 EVALUATION SETUP

304 **Benchmarks** We evaluate on five datasets that reflect different aspects of search complexity. From
305 the BEIR benchmark (Thakur et al., 2021), single-hop IR is measured on NFCorpus (biomedical
306 retrieval), while multi-hop tasks include FEVER and SciFact (fact-checking) and HotpotQA (question
307 answering). We also use BRIGHT (SU et al., 2025), a dataset of reasoning-intensive queries from
308 domains such as economics, mathematics, and programming that require deeper analysis to identify
309 relevant documents. Because our models are not explicitly trained on such reasoning-heavy tasks,
310 BRIGHT tests whether the learned search strategies generalize beyond the training distribution and
311 adapt to more challenging retrieval settings.

312 **Metrics** We evaluate retrieval effectiveness using nDCG@k (ranking quality with graded relevance),
313 Success@k (whether target documents appear in the top-k results), Recall@K (proportion of relevant
314 documents retrieved in the top-k results), and MRR (mean reciprocal rank emphasizing early
315 precision). Together, these metrics capture both effectiveness and efficiency.

4.2 MODELS AND BASELINES

320 **Orion Models** We build on the LFM2 architecture with 350M, 700M, and 1.2B parameter variants.
321 LFM2’s hybrid design, combining multiplicative gates with short convolutions, delivers significant
322 inference speed gains over standard transformers, making it well-suited for production retrieval
323 systems (Liquid AI, 2025a;b). The smaller parameter counts let us test whether learned search
strategies can compensate for reduced model scale.

324 **Baselines** We compare against three categories of systems. First, general-purpose instruction-
 325 tuned LLMs, including models from the GPT, Llama, and Qwen families. These represent the costly
 326 test-time reasoning approaches that Orion is designed to replace. Second, traditional IR baselines
 327 such as BM25 and dense retrieval with MiniLM-L6-v2 embeddings. We deliberately use the com-
 328 pact MiniLM (all-MiniLM-L6-v2; 22.7M parameters) as the retrieval backend to create challenging
 329 conditions where learned strategies must compensate for weaker embeddings (Sun et al., 2024),
 330 underscoring the practical value of our approach. Third, state-of-the-art baselines such as DeepRe-
 331 trieval (Jiang et al., 2025), which introduces a 3B-parameter model for relevant query generation.
 332 Additional discussion of baseline choices is provided in Appendix A.

333 4.3 RESULTS

336 **Classic information retrieval benchmarks.** On BEIR tasks (Table 2,
 337 nDCG@10), we observe distinct performance patterns across fact-checking scenarios.
 338 For scientific verification like SciFact, our approach performs competitively with baselines, while on FEVER we
 339 achieve comparable results to LLMs but trail specialized retrievers like DeepRe-
 340 trieval (84.1%) and BM25 dense (82.5%). This divide suggests that learned search
 341 strategies show benefits when domain expertise is required, though lexical matching
 342 remains effective. Our models also show consistent performance on biomedical
 343 tasks like NFCorpus where traditional dense methods struggle.

352 **Reasoning-intensive retrieval tasks.** BRIGHT (Table 3) shows varied performance
 353 patterns across reasoning domains. Our overall average compares favorably
 354 to baselines, with notable performance on coding tasks where we achieve 32.9%
 355 on Pony while trailing BM25 dense on LeetCode. We observe consistent results
 356 across the theorem-based category, with Orion-Medium achieving the highest
 357 score on AoPS, despite no math or coding training data. These results suggest that learned search strategies transfer across complex reasoning
 358 scenarios.

365 5 DISCUSSION

368 **Does RL help beyond SFT?** A central question for
 369 Orion is whether RL delivers benefits that go beyond
 370 what SFT alone provides. This is most clearly illustrated
 371 on BRIGHT, where base retrievers perform poorly, un-
 372 der scoring that static embedding similarity cannot sus-
 373 tain multi-turn search (Table 4). SFT nearly doubles
 374 performance by teaching models to produce structured
 375 `<think>` and `<search_query>` sequences, but this
 376 scaffolding primarily induces mechanistic turn-taking
 377 without real strategy: once an initial trajectory goes
 astray, the model rarely recovers (Figure 2). Adding
 GRPO produces only modest topline gains (Table 4), yet

333 Table 2: **nDCG@10 scores (%) across classic infor-
 334 mation retrieval tasks from the BEIR benchmark.** Standard deviations are omitted as they are negligible
 335 (often zero). The best score on each dataset is shown
 336 in bold. *Parameter counts approximated by Abacha
 337 et al. 2025; [†]values imported from the original paper
 338 due to unavailable model checkpoints.

Model/Retriever	Multi-Hop			Single-Hop
	FEVER	HotpotQA	SciFact	NFCorpus
<i>General-Purpose LLMs</i>				
GPT-4.1	61.3	74.8	72.4	57.8
GPT4.1-mini	58.8	71.3	72.3	56.5
GPT-4o (200B*)	59.5	73.6	70.8	55.8
GPT-4o-mini (8B*)	54.9	68.6	69.8	53.7
Llama 3.1-40SB	64.8	73.8	70.3	56.2
Llama 3.1-70B	63.4	72.7	70.7	56.5
Llama 3.1-8B	59.7	68.1	70.2	55.3
Llama-3.2-3B	57.6	66.6	67.1	55.0
Qwen3-235B	60.2	72.5	72.6	57.0
Qwen2.5-7B	56.7	66.8	69.2	55.1
Qwen2.5-3B	54.7	64.8	67.2	56.3
<i>Retrieval Baselines</i>				
BM25 (dense)	82.5	70.0	64.5	37.0
BM25 (sparse)	44.2	61.1	57.3	14.7
MiniLM-L6-v2 (22.7M)	42.5	48.7	50.5	39.9
DeepRetrieval [†] (3B)	84.1	70.1	66.4	37.7
<i>Orion Models (ours)</i>				
Orion-Large(1.2B)	65.3	71.6	77.6	63.2
Orion-Medium(700M)	63.3	68.5	71.1	60.5
Orion-Small(350M)	57.7	64.1	70.9	60.5

333 Table 4: **Multi-turn search performance**
 334 **of Orion-Large on BRIGHT** (nDCG@10). SFT nearly doubles performance over Base
 335 (+9.2–14.8%), while GRPO yields only modest additional gains (+1–2%).

Method	Orion Models		
	1.2B	700M	350M
Base	0.104	0.098	0.062
SFT	0.207	0.195	0.154
GRPO	0.212	0.199	0.156

378 Table 3: **nDCG@10 scores (%) on reasoning-intensive retrieval tasks from the BRIGHT bench-**
 379 **mark:** biology (Bio.), earth science (Earth.), economics (Econ.), psychology (Psy.), robotics (Rob.),
 380 stack overflow (Stack.), sustainable living (Sus.), LeetCode (Leet.), Pony, AoPS, TheoremQA with
 381 question retrieval (TheoQ.) and with theorem retrieval (TheoT.). “Avg.” denotes the macro average
 382 score across 12 datasets. Standard deviations are omitted as they are negligible (often zero). The
 383 best score on each dataset is shown in bold. *Parameter counts approximated by Abacha et al. 2025.

Model/Retriever	StackExchange						Coding		Theorem-based			Avg.	
	Bio.	Earth.	Econ.	Psy.	Rob.	Stack.	Sus.	Leet.	Pony	AoPS	TheoQ.	TheoT.	
<i>General-Purpose LLMs</i>													
GPT-4.1	39.7	40.9	24.9	33.2	17.9	14.9	29.1	20.1	14.9	4.4	19.9	7.8	22.1
GPT-4.1-mini	38.0	38.4	26.2	32.8	18.6	14.0	29.1	21.2	10.2	4.1	19.9	7.3	21.2
GPT-4o (200B*)	30.4	35.6	20.7	30.3	16.6	11.5	22.0	18.9	14.5	2.6	10.7	5.7	18.3
GPT-4o-mini (8B*)	27.0	31.7	16.7	31.7	14.4	13.3	26.1	17.1	10.8	3.6	10.3	3.2	16.7
Llama 3.1-405B	36.6	35.1	21.3	29.6	12.4	22.6	18.2	6.2	1.1	13.2	2.5	18.3	
Llama 3.1-70B	32.6	36.8	21.8	29.7	16.1	13.7	24.2	21.3	5.5	1.1	14.5	3.2	18.0
Llama 3.1-8B	32.2	32.4	21.7	26.7	15.5	10.6	22.3	15.0	5.1	2.3	10.7	1.4	16.7
Llama-3.2-3B	23.4	28.2	16.8	23.2	12.0	10.3	18.6	13.8	4.8	0.7	6.7	0.7	13.6
Qwen3-235B	43.4	38.8	22.8	33.1	20.4	14.9	30.4	18.0	12.1	3.7	18.8	7.0	21.8
Qwen2.5-7B	25.6	26.4	15.8	25.4	11.7	10.5	21.4	16.4	10.2	2.1	10.5	4.4	15.4
Qwen2.5-3B	22.0	25.6	14.5	21.7	11.7	12.3	16.8	17.6	5.9	2.2	10.8	1.3	13.5
<i>Retrieval Baselines</i>													
BM25 (dense)	18.1	27.5	15.7	12.6	13.2	19.3	15.2	24.2	7.7	6.5	10.4	4.8	14.6
BM25 (sparse)	7.7	14.1	10.3	6.3	9.7	9.4	9.1	12.8	0.4	1.0	2.8	0.0	7.0
MiniLM-L6-v2 (22.7M)	16.7	20.5	11.6	12.1	12.3	7.8	14.0	20.9	1.5	2.7	6.5	0.5	11.1
<i>Orion Models (ours)</i>													
Orion-Large (1.2B)	37.8	41.8	23.5	26.8	18.5	21.7	31.5	23.2	32.9	5.8	25.9	13.3	25.2
Orion-Medium (700M)	33.9	39.4	25.1	26.7	19.6	20.9	26.9	23.3	30.9	7.3	25.4	11.4	24.2
Orion-Small (350M)	31.3	34.3	21.1	25.7	19.0	22.2	24.2	16.8	24.4	5.7	20.1	9.8	21.2

404 these small improvements mask more significant behavioral shifts. Recall rises more noticeably (See
 405 Table 9), reflecting broader coverage of relevant documents and more stable trajectories across runs.
 406 Most crucially, RL induces backtracking behavior: as shown in Figure 2, Orion-Large with GRPO
 407 exhibits a drastic increase in backtracking compared to Orion-SFT. This echoes recent findings that
 408 RL often imparts capabilities rather than large static metric gains (Shao et al., 2024). In Orion, the
 409 induced capability is adaptive recovery, that is, knowing when and how to pivot during multi-turn
 410 search. While SFT provides the scaffolding, RL equips models with the strategic ability to use it
 411 effectively.

412
 413 **Does Behavioral Diversity in Synthetic Data Matter?** Here, We ask what kinds of behaviors should be encoded
 414 in synthetic trajectories if models are to acquire effective
 415 search strategies. Cross-dataset comparisons reveal that no
 416 single algorithm consistently dominates (Tables 7, 8). In-
 417 stead, effectiveness is tightly coupled to task structure. On
 418 BRIGHT, where reasoning errors quickly cascade, recov-
 419 ery mechanisms such as backtracking and validation are
 420 indispensable (Table 5). In contrast, multi-hop fact veri-
 421 fication tasks like FEVER & HotpotQA benefit from ex-
 422 ploratory behaviors that uncover complementary evidence
 423 spans, more granular results are presented in Appendix D.3.

424 Taken together, these results underscore a central insight:
 425 robust retrieval competence does not arise from mastering a
 426 single tactic, but from the ability to orchestrate exploration,
 427 exploitation, and recovery as complementary tools, deploying each in contextually appropriate ways.
 428 In line with classic IR theory, the “right” behavior is not universal but contingent on the evidence
 429 landscape and error tolerance of each benchmark (Vakkari, 1999; 2001; Sutcliffe & Ennis, 1998).
 430 Our findings extend this principle to multi-turn neural search, showing that adaptability across be-
 431 havioral archetypes is itself the capacity that models must learn.

Table 5: nDCG@10 performance of different search behaviours on BRIGHT. Bold values indicate the best-performing behaviour.

Algorithm	BRIGHT
Early-Success Validator	0.175
Wrong-Direction Specialist	0.173
Greedy Hill Climber	0.169
Best-First Hypothesis Selector	0.168
Exploitation-Heavy Validator	0.166
Depth-First Driller	0.166
Multi-Beam Parallel	0.149
Adaptive Context Learner	0.140
Random Walk Wanderer	0.140
Breadth-First Explorer	0.113

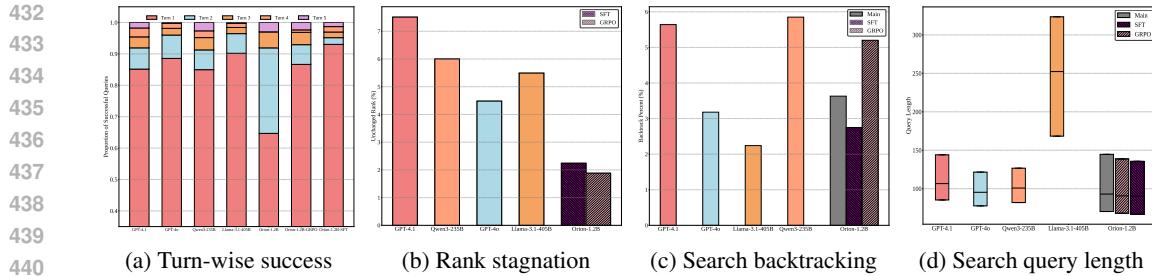


Figure 2: We present further behavioral analysis of Orion-Large on BRIGHT: (a) demonstrates how successful queries distribute across search turns for different models, while (b) illustrates the proportion of queries with unchanged rankings across turns, indicating repetitive search patterns and the inability to overcome search stagnation. (c) measures backtracking behavior by counting queries where rankings (r) deteriorate then recover ($r_{i-1} > r_i < r_{i+1}$), while (d) shows search query length distribution, demonstrating our models generate relatively succinct search queries. Results for Orion-Small and Orion-Medium variants are provided in Appendix D.3.

Should models learn to fail better in retrieval? Retrieval intelligence is not only about early success but about failing productively. In manual inspection, we noticed that general-purpose LLMs often fall into “revolving loops,” repeating near-identical queries without escape. Orion shares this vulnerability, but more often manages to break free-pivoting with substantive reformulations rather than shallow lexical edits. This qualitative difference shows up quantitatively: proprietary models exhibit high rank stagnation (Figure 2b), while Orion’s lower stagnation reflects more active in-the-moment recovery. GRPO further strengthens this behavior by increasing backtracking (Figure 2c), signaling a greater willingness to revisit failed directions when initial searches falter.

Yet failure is a double-edged sword. Recovery that comes too late, or occurs too often, distorts the distribution of successful turns (Figure 2a), with later steps yielding diminishing returns. This coincides with excessive looping but also reflects the inherent difficulty of later turns, underscoring the tension between resilience and efficiency. Similar dynamics appear on FEVER and HotpotQA (Appendix Figure D.3), where Orion again shows higher backtracking and lower stagnation than GPT-4.1 and Qwen2.5. These patterns suggest that effective models must balance recovery capabilities with efficiency, learning to backtrack strategically while avoiding excessive course-correction that impedes overall progress. Future training strategies should target this balance directly, rewarding decisive recovery while penalizing shallow repetition.

6 CONCLUSION

In summary, Orion shows that retrieval intelligence is not a function of scale but of strategy. By combining synthetic trajectories, reinforcement learning, and beam search, compact models (350M–1.2B) learn to detect failure, redirect search, and recover systematically—capabilities that emerge from targeted behavioral training rather than massive parameter counts. Despite being hundreds of times smaller than prevailing LLMs, Orion matches or surpasses them across six benchmarks, excelling on reasoning-heavy datasets like BRIGHT. For production systems, this means that reliable, cost-efficient retrieval no longer requires expensive controllers: compact models trained on diverse behaviors suffice. The broader lesson is clear—the future of retrieval lies in models that know how to search, not just in building ever-larger models.

7 ETHICS STATEMENT

This work investigates methods for improving information retrieval through adaptive search strategies in compact models. The research does not involve human subjects, sensitive personal data, or deployment in high-risk domains. All datasets used are publicly available retrieval benchmarks (e.g., BEIR, BRIGHT, FEVER, SciFact, HotpotQA, NFCorpus, MS MARCO) that contain curated, non-personal text.

486 The primary societal benefit of this work is efficiency: Orion demonstrates that strong retrieval
 487 performance can be achieved with models several hundred times smaller than existing systems.
 488 This reduces energy consumption and compute cost, lowering barriers to research and deployment.
 489 It also enables broader access to effective retrieval without requiring reliance on proprietary LLMs.

490 At the same time, retrieval systems can amplify biases present in training data or surface harmful
 491 content. While Orion focuses on adaptive search strategies rather than corpus construction, we ac-
 492 knowledge that our methods inherit dataset biases and limitations. Future work should investigate
 493 fairness-aware training objectives and evaluate adaptive retrieval across diverse cultural and linguis-
 494 tic contexts.

495 Finally, although our experiments are limited to static academic benchmarks, real-world deployment
 496 of retrieval models must carefully consider privacy, misinformation risks, and potential misuse.
 497 By framing retrieval competence as strategy rather than scale, our work seeks to promote more
 498 transparent and resource-conscious directions for information systems.

500 REFERENCES

502 Asma Ben Abacha, Wen wai Yim, Yujuan Fu, Zhaoyi Sun, Meliha Yetisgen, Fei Xia, and Thomas
 503 Lin. Medec: A benchmark for medical error detection and correction in clinical notes, 2025. URL
 504 <https://arxiv.org/abs/2412.19260>.

505 Zeynep Akkalyoncu Yilmaz, Shengjin Wang, Wei Yang, Haotian Zhang, and Jimmy Lin. Applying
 506 BERT to document retrieval with birch. In Sebastian Padó and Ruihong Huang (eds.),
 507 *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and
 508 the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP): Sys-
 509 tem Demonstrations*, pp. 19–24, Hong Kong, China, November 2019. Association for Compu-
 510 tational Linguistics. doi: 10.18653/v1/D19-3004. URL <https://aclanthology.org/D19-3004/>.

512 Paul J. L. Ammann, Jonas Golde, and Alan Akbik. Question decomposition for retrieval-augmented
 513 generation, 2025. URL <https://arxiv.org/abs/2507.00355>.

515 Elie Bakouch, Loubna Ben Allal, Anton Lozhkov, Nouamane Tazi, Lewis Tunstall, Carlos Miguel
 516 Patiño, Edward Beeching, Aymeric Roucher, Aksel Joonas Reedi, Quentin Gallouédec, Kashif
 517 Rasul, Nathan Habib, Clémentine Fourrier, Hynek Kydlicek, Guilherme Penedo, Hugo Larcher,
 518 Mathieu Morlon, Vaibhav Srivastav, Joshua Lochner, Xuan-Son Nguyen, Colin Raffel, Leandro
 519 von Werra, and Thomas Wolf. SmolLM3: smol, multilingual, long-context reasoner. <https://huggingface.co/blog/smollm3>, 2025.

521 Saeid Balaneshin-kordan and Alexander Kotov. Sequential query expansion using concept graph.
 522 In *Proceedings of the 25th ACM International on Conference on Information and Knowledge
 523 Management*, CIKM '16, pp. 155–164, New York, NY, USA, 2016. Association for Computing
 524 Machinery. ISBN 9781450340731. doi: 10.1145/2983323.2983857. URL <https://doi.org/10.1145/2983323.2983857>.

527 Akhiad Bercovich, Itay Levy, Izik Golan, Mohammad Dabbah, Ran El-Yaniv, Omri Puny, Ido Galil,
 528 Zach Moshe, Tomer Ronen, Najeeb Nabwani, Ido Shahaf, Oren Tropp, Ehud Karpas, Ran Zil-
 529 berstein, Jiaqi Zeng, Soumye Singhal, Alexander Bukharin, Yian Zhang, Tugrul Konuk, Gerald
 530 Shen, Ameya Sunil Mahabaleshwarkar, Bilal Kartal, Yoshi Suhara, Olivier Delalleau, Zijia Chen,
 531 Zhilin Wang, David Mosallanezhad, Adi Renduchintala, Haifeng Qian, Dima Rekesh, Fei Jia,
 532 Somshubra Majumdar, Vahid Noroozi, Wasi Uddin Ahmad, Sean Narenthiran, Aleksander Ficek,
 533 Mehrzad Samadi, Jocelyn Huang, Siddhartha Jain, Igor Gitman, Ivan Moshkov, Wei Du, Shub-
 534 ham Toshniwal, George Armstrong, Branislav Kisacanin, Matvei Novikov, Daria Gitman, Evelina
 535 Bakhturina, Prasoon Varshney, Makesh Narsimhan, Jane Polak Scowcroft, John Kamalu, Dan Su,
 536 Kezhi Kong, Markus Kliegl, Rabeeh Karimi Mahabadi, Ying Lin, Sanjeev Satheesh, Jupinder Par-
 537 mar, Pritam Gundecha, Brandon Norick, Joseph Jennings, Shrimai Prabhumoye, Syeda Nahida
 538 Akter, Mostofa Patwary, Abhinav Khattar, Deepak Narayanan, Roger Waleffe, Jimmy Zhang,
 539 Bor-Yiing Su, Guyue Huang, Terry Kong, Parth Chadha, Sahil Jain, Christine Harvey, Elad
 Segal, Jining Huang, Sergey Kashirsky, Robert McQueen, Izzy Putterman, George Lam, Arun
 Venkatesan, Sherry Wu, Vinh Nguyen, Manoj Kilaru, Andrew Wang, Anna Warno, Abhilash

540 Somasamudramath, Sandip Bhaskar, Maka Dong, Nave Assaf, Shahar Mor, Omer Ullman Ar-
 541 gov, Scot Junkin, Oleksandr Romanenko, Pedro Larroy, Monika Katariya, Marco Rovinelli, Viji
 542 Balas, Nicholas Edelman, Anahita Bhiwandiwalla, Muthu Subramaniam, Smita Ithape, Karthik
 543 Ramamoorthy, Yuting Wu, Suguna Varshini Velury, Omri Almog, Joyjit Daw, Denys Fridman,
 544 Erick Galinkin, Michael Evans, Shaona Ghosh, Katherine Luna, Leon Derczynski, Nikki Pope,
 545 Eileen Long, Seth Schneider, Guillermo Siman, Tomasz Grzegorzek, Pablo Ribalta, Monika
 546 Katariya, Chris Alexiuk, Joey Conway, Trisha Saar, Ann Guan, Krzysztof Pawelec, Shyamala
 547 Prayaga, Oleksii Kuchaiev, Boris Ginsburg, Oluwatobi Olabiyi, Kari Briski, Jonathan Cohen,
 548 Bryan Catanzaro, Jonah Alben, Yonatan Geifman, and Eric Chung. Llama-nemotron: Efficient
 549 reasoning models, 2025. URL <https://arxiv.org/abs/2505.00949>.

550 Sungguk Cha, DongWook Kim, Taeseung Hahn, Mintae Kim, Youngsub Han, and Byoung-Ki Jeon.
 551 Generalized reinforcement learning for retriever-specific query rewriter with unstructured real-
 552 world documents, 2025. URL <https://arxiv.org/abs/2507.23242>.

553 Chia-Yuan Chang, Zhimeng Jiang, Vineeth Rakesh, Menghai Pan, Chin-Chia Michael Yeh, Guanchu
 554 Wang, Mingzhi Hu, Zhichao Xu, Yan Zheng, Mahashweta Das, and Na Zou. Main-rag: Multi-
 555 agent filtering retrieval-augmented generation, 2024. URL [https://arxiv.org/abs/](https://arxiv.org/abs/2501.00332)
 556 2501.00332.

557 Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. Reading Wikipedia to answer open-
 558 domain questions. In Regina Barzilay and Min-Yen Kan (eds.), *Proceedings of the 55th Annual
 559 Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 1870–
 560 1879, Vancouver, Canada, July 2017. Association for Computational Linguistics. doi: 10.18653/
 561 v1/P17-1171. URL <https://aclanthology.org/P17-1171/>.

562 Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng Liu. Bge m3-embedding:
 563 Multi-lingual, multi-functionality, multi-granularity text embeddings through self-knowledge dis-
 564 tillation, 2024. URL <https://arxiv.org/abs/2402.03216>.

565 Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Bingxiang He, Wei Zhu, Yuan Ni, Guotong Xie,
 566 Ruobing Xie, Yankai Lin, Zhiyuan Liu, and Maosong Sun. Ultrafeedback: Boosting language
 567 models with scaled ai feedback, 2024. URL <https://arxiv.org/abs/2310.01377>.

568 Debrup Das, Sam O’ Nuallain, and Razieh Rahimi. Rader: Reasoning-aware dense retrieval models,
 569 2025. URL <https://arxiv.org/abs/2505.18405>.

570 Fernando Diaz. Pseudo-query reformulation. In *Proceedings of the 38th European Conference on
 571 IR Research*, 2016.

572 Guanting Dong, Jiajie Jin, Xiaoxi Li, Yutao Zhu, Zhicheng Dou, and Ji-Rong Wen. RAG-critic:
 573 Leveraging automated critic-guided agentic workflow for retrieval augmented generation. In
 574 Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Pro-
 575 ceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Vol-
 576 ume 1: Long Papers)*, pp. 3551–3578, Vienna, Austria, July 2025. Association for Compu-
 577 tational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.179. URL
 578 <https://aclanthology.org/2025.acl-long.179/>.

579 Peggy A Ertmer and Timothy J Newby. The expert learner: Strategic, self-regulated, and reflective.
 580 *Instructional science*, 24(1):1–24, 1996.

581 Eyal Even-Dar and Yishay Mansour. Convergence of optimistic and incremental q-learning. *Ad-
 582 vances in neural information processing systems*, 14, 2001.

583 Yongqi Fan, Xiaoyang Chen, Dezhij Ye, Jie Liu, Haijin Liang, Jin Ma, Ben He, Yingfei Sun, and
 584 Tong Ruan. Tfrank: Think-free reasoning enables practical pointwise llm ranking, 2025a. URL
 585 <https://arxiv.org/abs/2508.09539>.

586 Yuchen Fan, Kaiyan Zhang, Heng Zhou, Yuxin Zuo, Yanxu Chen, Yu Fu, Xinwei Long, Xuekai
 587 Zhu, Che Jiang, Yuchen Zhang, Li Kang, Gang Chen, Cheng Huang, Zhizhou He, Bingning
 588 Wang, Lei Bai, Ning Ding, and Bowen Zhou. Ssrl: Self-search reinforcement learning, 2025b.
 589 URL <https://arxiv.org/abs/2508.10874>.

594 Ruiliu Fu, Han Wang, Xuejun Zhang, Jun Zhou, and Yonghong Yan. Decomposing complex ques-
 595 tions makes multi-hop QA easier and more interpretable. In Marie-Francine Moens, Xuanjing
 596 Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), *Findings of the Association for Compu-
 597 tational Linguistics: EMNLP 2021*, pp. 169–180, Punta Cana, Dominican Republic, November
 598 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.findings-emnlp.17.
 599 URL <https://aclanthology.org/2021.findings-emnlp.17/>.

600 Yichao Fu, Xuewei Wang, Yuandong Tian, and Jiawei Zhao. Deep think with confidence, 2025.
 601 URL <https://arxiv.org/abs/2508.15260>.

603 Yunfan Gao, Yun Xiong, Yijie Zhong, Yuxi Bi, Ming Xue, and Haofen Wang. Synergizing rag and
 604 reasoning: A systematic review, 2025. URL <https://arxiv.org/abs/2504.15909>.

606 Charles Goddard, Shamane Siriwardhana, Malikeh Ehghaghi, Luke Meyers, Vladimir Karpukhin,
 607 Brian Benedict, Mark McQuade, and Jacob Solawetz. Arcee’s MergeKit: A toolkit for merg-
 608 ing large language models. In Franck Dernoncourt, Daniel Preořuc-Pietro, and Anastasia
 609 Shimorina (eds.), *Proceedings of the 2024 Conference on Empirical Methods in Natural Lan-
 610 guage Processing: Industry Track*, pp. 477–485, Miami, Florida, US, November 2024. Associa-
 611 tion for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-industry.36. URL <https://aclanthology.org/2024.emnlp-industry.36>.

613 Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
 614 Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and appli-
 615 cations. *arXiv preprint arXiv:1812.05905*, 2018.

617 Faegheh Hasibi, Fedor Nikolaev, Chenyan Xiong, Krisztian Balog, Svein Erik Bratsberg, Alexander
 618 Kotov, and Jamie Callan. Dbpedia-entity v2: A test collection for entity search. In *Proceedings
 619 of the 40th International ACM SIGIR Conference on Research and Development in Information
 620 Retrieval, SIGIR ’17*, pp. 1265–1268, New York, NY, USA, 2017. Association for Computing
 621 Machinery. ISBN 9781450350228. doi: 10.1145/3077136.3080751. URL <https://doi.org/10.1145/3077136.3080751>.

623 Pengcheng Jiang, Jiacheng Lin, Lang Cao, Runchu Tian, SeongKu Kang, Zifeng Wang, Jimeng Sun,
 624 and Jiawei Han. Deepretrieval: Hacking real search engines and retrievers with large language
 625 models via reinforcement learning, 2025. URL <https://arxiv.org/abs/2503.00223>.

627 Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and
 628 Jiawei Han. Search-r1: Training llms to reason and leverage search engines with reinforcement
 629 learning, 2025. URL <https://arxiv.org/abs/2503.09516>.

631 Jaehun Jung, Seungju Han, Ximing Lu, Skyler Hallinan, David Acuna, Shrimai Prabhumoye,
 632 Mostafa Patwary, Mohammad Shoeybi, Bryan Catanzaro, and Yejin Choi. Prismatic synthe-
 633 sis: Gradient-based data diversification boosts generalization in llm reasoning, 2025. URL
 634 <https://arxiv.org/abs/2505.20161>.

635 Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
 636 Chen, and Wen tau Yih. Dense passage retrieval for open-domain question answering, 2020. URL
 637 <https://arxiv.org/abs/2004.04906>.

638 To Eun Kim and Fernando Diaz. Ltrr: Learning to rank retrievers for llms, 2025. URL <https://arxiv.org/abs/2506.13743>.

641 Ting-Wen Ko, Jyun-Yu Jiang, and Pu-Jen Cheng. Beyond independent passages: Adaptive pas-
 642 sage combination retrieval for retrieval augmented open-domain question answering, 2025. URL
 643 <https://arxiv.org/abs/2507.04069>.

645 Richard E Korf. Artificial intelligence search algorithms, 1999.

646 Chaofan Li, Jianlyu Chen, Yingxia Shao, Chaozhuo Li, Quanqing Xu, Defu Lian, and Zheng
 647 Liu. Reinforced IR: A self-boosting framework for domain-adapted information retrieval. In

648 Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 22061–22073, Vienna, Austria, July 2025a. Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.1071. URL <https://aclanthology.org/2025.acl-long.1071/>.

649

650

651

652

653

654 Weitao Li, Boran Xiang, Xiaolong Wang, Zhinan Gou, Weizhi Ma, and Yang Liu. Ur²: Unify
655 rag and reasoning through reinforcement learning, 2025b. URL <https://arxiv.org/abs/2508.06165>.

656

657

658 Xiaoxi Li, Jiajie Jin, Guanting Dong, Hongjin Qian, Yutao Zhu, Yongkang Wu, Ji-Rong Wen, and
659 Zhicheng Dou. Webthinker: Empowering large reasoning models with deep research capability,
660 2025c. URL <https://arxiv.org/abs/2504.21776>.

661

662 Liquid AI. Introducing lfm2: The fastest on-device foundation models on the mar-
663 ket. Blog post, Liquid AI, July10 2025a. URL <https://www.liquid.ai/blog/liquid-foundation-models-v2-our-second-series-of-generative-ai-models>.
664 Accessed: [insert access date].

665

666 Liquid AI. Lfm2-1.2b: Liquid foundation model 2. <https://huggingface.co/LiquidAI/LFM2-1.2B>, 2025b. Hugging Face Model Repository.

667

668 Wenhan Liu, Xinyu Ma, Weiwei Sun, Yutao Zhu, Yuchen Li, Dawei Yin, and Zhicheng Dou.
669 Reasonrank: Empowering passage ranking with strong reasoning ability, 2025. URL <https://arxiv.org/abs/2508.07050>.

670

671

672 Édouard Lucas. *Récréations mathématiques*, volume 1. Gauthier-Villars, 1882.

673

674 Macedo Maia, Siegfried Handschuh, André Freitas, Brian Davis, Ross McDermott, Manel Zarrouk,
675 and Alexandra Balahur. Www'18 open challenge: Financial opinion mining and question
676 answering. In *Companion Proceedings of the The Web Conference 2018*, WWW '18, pp.
677 1941–1942, Republic and Canton of Geneva, CHE, 2018. International World Wide Web Con-
678 ferences Steering Committee. ISBN 9781450356404. doi: 10.1145/3184558.3192301. URL
679 <https://doi.org/10.1145/3184558.3192301>.

680

681 Edward F Moore. The shortest path through a maze. In *Proc. of the International Symposium on the
682 Theory of Switching*, pp. 285–292. Harvard University Press, 1959.

683

684 Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan Majumder, and
685 Li Deng. MS MARCO: A human generated machine reading comprehension dataset. *CoRR*,
686 abs/1611.09268, 2016. URL <https://arxiv.org/abs/1611.09268>.

687

688 Sanket S. Pawar, Abhijeet Manepatil, Aniket Kadam, and Prajakta Jagtap. Keyword search in infor-
689 mation retrieval and relational database system: Two class view. In *2016 International Conference
690 on Electrical, Electronics, and Optimization Techniques (ICEEOT)*, pp. 4534–4540, 2016. doi:
10.1109/ICEEOT.2016.7755576.

691

692 K Pearson. Theproblem of therandom walk. *Nature (London, UK)*, 72(1865):294, 1905.

693

694 Xianshu Peng and Wei Wei. GRAT: Guiding retrieval-augmented reasoning through process re-
695 wards tree search. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher
696 Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association for Computational
697 Linguistics (Volume 1: Long Papers)*, pp. 27861–27875, Vienna, Austria, July 2025. Association
698 for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.1352.
699 URL <https://aclanthology.org/2025.acl-long.1352/>.

700

701 Jacob Portes, Connor Jennings, Erica Ji Yuen, Sasha Doubov, and Michael Carbin. Retrieval capa-
702 bilities of large language models scale with pretraining flops, 2025. URL <https://arxiv.org/abs/2508.17400>.

702 Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah Smith, and Mike Lewis. Mea-
 703 suring and narrowing the compositionality gap in language models. In Houda Bouamor, Juan
 704 Pino, and Kalika Bali (eds.), *Findings of the Association for Computational Linguistics: EMNLP*
 705 2023, pp. 5687–5711, Singapore, December 2023. Association for Computational Linguistics.
 706 doi: 10.18653/v1/2023.findings-emnlp.378. URL <https://aclanthology.org/2023.findings-emnlp.378/>.

708 Hongjin Qian and Zheng Liu. Scent of knowledge: Optimizing search-enhanced reasoning with
 709 information foraging, 2025. URL <https://arxiv.org/abs/2505.09316>.

710 Xubo Qin, Jun Bai, Jiaqi Li, Zixia Jia, and Zilong Zheng. Tongsearch-qr: Reinforced query reason-
 711 ing for retrieval, 2025. URL <https://arxiv.org/abs/2506.11603>.

712 Mandeep Rathee, V Venktesh, Sean MacAvaney, and Avishek Anand. Test-time corpus feedback:
 713 From retrieval to rag, 2025. URL <https://arxiv.org/abs/2508.15437>.

714 Bart Selman and Carla P Gomes. Hill-climbing search. *Encyclopedia of cognitive science*, 81
 715 (333–335):10, 2006.

716 Rulin Shao, Rui Qiao, Varsha Kishore, Niklas Muennighoff, Xi Victoria Lin, Daniela Rus, Bryan
 717 Kian Hsiang Low, Sewon Min, Wen tau Yih, Pang Wei Koh, and Luke Zettlemoyer. Reasonir:
 718 Training retrievers for reasoning tasks, 2025. URL <https://arxiv.org/abs/2504.20595>.

719 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 720 Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
 721 matical reasoning in open language models, 2024. URL <https://arxiv.org/abs/2402.03300>.

722 Yaorui Shi, Sihang Li, Chang Wu, Zhiyuan Liu, Junfeng Fang, Hengxing Cai, An Zhang, and Xiang
 723 Wang. Search and refine during think: Autonomous retrieval-augmented reasoning of llms, 2025.
 724 URL <https://arxiv.org/abs/2505.11277>.

725 Volker Steinbiss, Bach-Hiep Tran, and Hermann Ney. Improvements in beam search. In *ICSLP*,
 726 volume 94, pp. 2143–2146, 1994.

727 Hongjin SU, Howard Yen, Mengzhou Xia, Weijia Shi, Niklas Muennighoff, Han yu Wang, Liu
 728 Haisu, Quan Shi, Zachary S Siegel, Michael Tang, Ruoxi Sun, Jinsung Yoon, Sercan O Arik,
 729 Danqi Chen, and Tao Yu. BRIGHT: A realistic and challenging benchmark for reasoning-
 730 intensive retrieval. In *The Thirteenth International Conference on Learning Representations*,
 731 2025. URL <https://openreview.net/forum?id=ykuc5q381b>.

732 Hao Sun, Hengyi Cai, Yuchen Li, Xuanbo Fan, Xiaochi Wei, Shuaiqiang Wang, Yan Zhang, and
 733 Dawei Yin. Enhancing retrieval-augmented generation via evidence tree search. In Wanxiang Che,
 734 Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the*
 735 *63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*,
 736 pp. 24116–24127, Vienna, Austria, July 2025a. Association for Computational Linguistics. ISBN
 737 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.1175. URL <https://aclanthology.org/2025.acl-long.1175/>.

738 Hao Sun, Zile Qiao, Jiayan Guo, Xuanbo Fan, Yingyan Hou, Yong Jiang, Pengjun Xie, Yan Zhang,
 739 Fei Huang, and Jingren Zhou. Zerosearch: Incentivize the search capability of llms without
 740 searching, 2025b. URL <https://arxiv.org/abs/2505.04588>.

741 Shuang Sun, Huatong Song, Yuhao Wang, Ruiyang Ren, Jinhao Jiang, Junjie Zhang, Fei Bai,
 742 Jia Deng, Wayne Xin Zhao, Zheng Liu, Lei Fang, Zhongyuan Wang, and Ji-Rong Wen. Sim-
 743 pledeepsearcher: Deep information seeking via web-powered reasoning trajectory synthesis,
 744 2025c. URL <https://arxiv.org/abs/2505.16834>.

745 Weiwei Sun, Zhengliang Shi, Wu Jiu Long, Lingyong Yan, Xinyu Ma, Yiding Liu, Min Cao, Dawei
 746 Yin, and Zhaochun Ren. MAIR: A massive benchmark for evaluating instructed retrieval. In
 747 Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference*
 748 *on Empirical Methods in Natural Language Processing*, pp. 14044–14067, Miami, Florida, USA,

756 November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.
 757 778. URL <https://aclanthology.org/2024.emnlp-main.778/>.

758

759 Alistair Sutcliffe and Mark Ennis. Towards a cognitive theory of information retrieval. *Interacting*
 760 *with Computers*, 10(3):321–351, 1998. doi: 10.1016/S0953-5438(98)00013-7.

761

762 Yixuan Tang, Hwee Tou Ng, and Anthony Tung. Do multi-hop question answering systems know
 763 how to answer the single-hop sub-questions? In Paola Merlo, Jorg Tiedemann, and Reut
 764 Tsarfaty (eds.), *Proceedings of the 16th Conference of the European Chapter of the Association*
 765 *for Computational Linguistics: Main Volume*, pp. 3244–3249, Online, April 2021. Association
 766 for Computational Linguistics. doi: 10.18653/v1/2021.eacl-main.283. URL <https://aclanthology.org/2021.eacl-main.283/>.

767

768 Nandan Thakur, Nils Reimers, Andreas Rücklé, Abhishek Srivastava, and Iryna Gurevych. BEIR: A
 769 heterogeneous benchmark for zero-shot evaluation of information retrieval models. In *Thirty-fifth*
 770 *Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round*
 771 *2)*, 2021. URL <https://openreview.net/forum?id=wCu6T5xFjeJ>.

772

773 Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Interleaving re-
 774 trieval with chain-of-thought reasoning for knowledge-intensive multi-step questions, 2023. URL
 775 <https://arxiv.org/abs/2212.10509>.

776

777 Pertti Vakkari. Task complexity, problem structure and information actions: Integrating studies on
 778 information seeking and retrieval. *Information processing & management*, 35(6):819–837, 1999.

779

780 Pertti Vakkari. A theory of the task-based information retrieval process: a summary and gen-
 781 eralisation of a longitudinal study. *Journal of Documentation*, 57(1):44–60, 02 2001. ISSN
 782 0022-0418. doi: 10.1108/EUM0000000007075. URL <https://doi.org/10.1108/EUM0000000007075>.

783

784 Ellen M. Voorhees and Dawn M. Tice. Building a question answering test collection. In *Pro-
 785 ceedings of the 23rd Annual International ACM SIGIR Conference on Research and Develop-
 786 ment in Information Retrieval*, SIGIR '00, pp. 200–207, New York, NY, USA, 2000. Association
 787 for Computing Machinery. ISBN 1581132263. doi: 10.1145/345508.345577. URL
 788 <https://doi.org/10.1145/345508.345577>.

789

790 Liang Wang, Nan Yang, and Furu Wei. Query2doc: Query expansion with large language mod-
 791 els. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023 Conference*
 792 *on Empirical Methods in Natural Language Processing*, pp. 9414–9423, Singapore, December
 793 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.585. URL
 794 <https://aclanthology.org/2023.emnlp-main.585/>.

795

796 Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Dixin Jiang, Rangan Ma-
 797 jumder, and Furu Wei. Text embeddings by weakly-supervised contrastive pre-training, 2024.
 798 URL <https://arxiv.org/abs/2212.03533>.

799

800 Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou. Minilm: Deep self-
 801 attention distillation for task-agnostic compression of pre-trained transformers, 2020.

802

803 Zhengren Wang, Jiayang Yu, Dongsheng Ma, Zhe Chen, Yu Wang, Zhiyu Li, Feiyu Xiong, Yan-
 804 feng Wang, Weinan E, Linpeng Tang, and Wentao Zhang. Rare: Retrieval-augmented reasoning
 805 modeling, 2025. URL <https://arxiv.org/abs/2503.23513>.

806

807 Haoyang Wen, Jiang Guo, Yi Zhang, Jiarong Jiang, and Zhiguo Wang. On synthetic data strategies
 808 for domain-specific generative retrieval. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova,
 809 and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association*
 810 *for Computational Linguistics (Volume 1: Long Papers)*, pp. 7961–7976, Vienna, Austria, July
 811 2025. Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/
 812 2025.acl-long.392. URL <https://aclanthology.org/2025.acl-long.392/>.

813

814 Jialong Wu, Baixuan Li, Runnan Fang, Wenbiao Yin, Liwen Zhang, Zhengwei Tao, Dingchu Zhang,
 815 Zekun Xi, Gang Fu, Yong Jiang, Pengjun Xie, Fei Huang, and Jingren Zhou. Webdancer: Towards
 816 autonomous information seeking agency, 2025. URL <https://arxiv.org/abs/2505.22648>.

810 Chunlei Xin, Shuheng Zhou, Huijia Zhu, Weiqiang Wang, Xuanang Chen, Xinyan Guan, Yaojie
 811 Lu, Hongyu Lin, Xianpei Han, and Le Sun. Sparse latents steer retrieval-augmented gener-
 812 ation. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar
 813 (eds.), *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics*
 814 (*Volume 1: Long Papers*), pp. 4547–4562, Vienna, Austria, July 2025. Association for Com-
 815 putational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.228. URL
 816 <https://aclanthology.org/2025.acl-long.228/>.

817 Guangzhi Xiong, Qiao Jin, Xiao Wang, Yin Fang, Haolin Liu, Yifan Yang, Fangyuan Chen, Zhixing
 818 Song, Dengyu Wang, Minjia Zhang, Zhiyong Lu, and Aidong Zhang. Rag-gym: Systematic
 819 optimization of language agents for retrieval-augmented generation, 2025. URL <https://arxiv.org/abs/2502.13957>.

820 Nitin Yadav, Changsung Kang, Hongwei Shang, and Ming Sun. Generating query-relevant docu-
 821 ment summaries via reinforcement learning, 2025. URL <https://arxiv.org/abs/2508.08404>.

822 Ruiran Yan, Zheng Liu, and Defu Lian. O1 embedder: Let retrievers think before action, 2025. URL
 823 <https://arxiv.org/abs/2502.07555>.

824 Hansi Zeng, Julian Killingback, and Hamed Zamani. Scaling sparse and dense retrieval in decoder-
 825 only llms, 2025. URL <https://arxiv.org/abs/2502.15526>.

826 Weinan Zhang, Junwei Liao, Ning Li, Kounianhua Du, and Jianghao Lin. Agentic information
 827 retrieval, 2025a. URL <https://arxiv.org/abs/2410.09713>.

828 Wenlin Zhang, Xiangyang Li, Kuicai Dong, Yichao Wang, Pengyue Jia, Xiaopeng Li, Yingyi
 829 Zhang, Derong Xu, Zhaocheng Du, Huifeng Guo, Ruiming Tang, and Xiangyu Zhao. Pro-
 830 cess vs. outcome reward: Which is better for agentic rag reinforcement learning, 2025b. URL
 831 <https://arxiv.org/abs/2505.14069>.

832 Wayne Xin Zhao, Jing Liu, Ruiyang Ren, and Ji-Rong Wen. Dense text retrieval based on pretrained
 833 language models: A survey. *ACM Trans. Inf. Syst.*, 42(4), February 2024. ISSN 1046-8188. doi:
 834 10.1145/3637870. URL <https://doi.org/10.1145/3637870>.

835 Yuxiang Zheng, Dayuan Fu, Xiangkun Hu, Xiaojie Cai, Lyumanshan Ye, Pengrui Lu, and Pengfei
 836 Liu. Deepresearcher: Scaling deep research via reinforcement learning in real-world environ-
 837 ments, 2025. URL <https://arxiv.org/abs/2504.03160>.

838 Changtai Zhu, Siyin Wang, Ruijun Feng, Kai Song, and Xipeng Qiu. Convsearch-r1: Enhancing
 839 query reformulation for conversational search with reasoning via reinforcement learning, 2025a.
 840 URL <https://arxiv.org/abs/2505.15776>.

841 Rongzhi Zhu, Xiangyu Liu, Zequn Sun, Yiwei Wang, and Wei Hu. Mitigating lost-in-retrieval prob-
 842 lems in retrieval augmented multi-hop question answering, 2025b. URL <https://arxiv.org/abs/2502.14245>.

843 Yuchen Zhuang, Aaron Trinh, Rushi Qiang, Haotian Sun, Chao Zhang, Hanjun Dai, and Bo Dai.
 844 Towards better instruction following retrieval models, 2025. URL <https://arxiv.org/abs/2505.21439>.

845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863

864	APPENDIX	
865		
866		
867	A Difference Between Orion and Previous Work	17
868		
869	B Detailed Orion Methodology	18
870		
871	B.1 Synthetic Trajectory Generation	18
872	B.2 Synthetic Search Behaviors	19
873	B.3 GRPO Algorithms	20
874		
875		
876	C Detailed Experimental Setup	21
877		
878	C.1 Model Specifications and Training Details	21
879	C.2 Dataset Construction	21
880	C.3 Implementation and Hardware Infrastructure	22
881		
882		
883	D Additional Ablations	23
884		
885	D.1 Effect of Structural Markers on Multi-turn Search	23
886	D.2 Effect of Different Training Strategies on SFT	24
887	D.3 Effect of Learning Components on Search Behavior	25
888	D.4 Effect of Data Scaling in GRPO Training	26
889	D.5 Effect of Z-Score Normalization on Reward Computation	27
890		
891		
892	E Complete Set of Evaluation Results	28
893		
894	F Orion Example	30
895		
896	G Prompts	31
897		
898		
899	A DIFFERENCE BETWEEN ORION AND PREVIOUS WORK	
900		

Orion addresses a fundamentally different challenge from most existing retrieval enhancement methods. While prior work has largely focused on static improvements to retrievers or on leveraging external search infrastructure, we study how compact models can adaptively decide what to search for next during inference. This shift in focus changes the nature of the baselines and the comparisons that matter.

Reasoning-aware retrievers and rerankers illustrate this contrast. Approaches such as ReasonIR(Shao et al., 2025), RADER (Das et al., 2025), or Rank1 (Liu et al., 2025) augment retrieval by designing better training objectives, mining harder negatives, or refining rankings over a fixed candidate set. Yet these methods remain bound to a single-shot paradigm: once the initial query is issued, the system has no mechanism to backtrack from failed hypotheses or to explore new search directions. Orion instead operates at a different layer of the problem, the exploration process itself, by modeling how to reformulate queries across turns. These directions are not competitive but complementary: reasoning-aware retrievers improve how queries and documents are encoded, while Orion determines what to search for next. In fact, Orion’s strategies can be layered on top of strong retrievers like ReasonIR or RADER, replacing the reliance on costly GPT-4o rewrites for multi-turn search.

A second line of related work involves **systems that rely on production search engines**, such as Search-R1 (Jin et al., 2025). These methods delegate the hardest parts of retrieval to mature

918 infrastructures, web-scale corpora, continuously updated indexes, and heavily optimized ranking
 919 algorithms. Orion is deliberately studied under a more constrained setting: a fixed, offline corpus
 920 and a lightweight retriever (MiniLM-L6-v2). Within this environment, success cannot be attributed
 921 to superior infrastructure; instead, the model must genuinely learn strategies of multi-step reasoning,
 922 hypothesis refinement, and recovery from errors.

923 The **most direct comparisons** arise against models explicitly designed for iterative information
 924 seeking. State-of-the-art agentic systems such as GPT-4.1, GPT-4o, Llama 3.1-3.1-405B, Qwen3-
 925 235B serve as natural baselines, as they possess the reasoning capabilities needed to engage in
 926 multi-turn retrieval. DeepRetrieval (Jiang et al., 2025) is our closest methodological neighbor. Like
 927 Orion, it applies RL to retrieval, confirming that RL can improve search. However, its focus lies
 928 on unsupervised query generation via PPO, while Orion models full trajectories, assigns structured
 929 rewards at the turn level, and integrates reasoning spans to guide exploration. In this sense, their
 930 work validates the importance of adaptive retrieval, but differs in execution.

931 Finally, the scale comparison underscores Orion’s contribution. Despite being only 1.2B parameters,
 932 Orion consistently outperforms models 200-400 \times larger on five of six benchmarks. For reference,
 933 DeepRetrieval reports efficiency gains over GPT-4o with a 3B model. Orion matches or surpasses
 934 those results with a model 2.5 \times smaller, while directly competing with the largest reasoning-capable
 935 systems. Moreover, Orion appears to generalize across out-of-distribution datasets without requir-
 936 ing dataset-specific retraining, in contrast to DeepRetrieval, where separate models are trained for
 937 each domain. This efficiency and robustness together demonstrate that adaptive search, when ex-
 938 plicitly modeled, can both close the gap to far larger models and broaden applicability across diverse
 939 retrieval settings.

940 B DETAILED ORION METHODOLOGY

941 B.1 SYNTHETIC TRAJECTORY GENERATION

942 **Ultra-Feedback Pool Construction** We collected multi-turn search behaviors from 8 language
 943 models (GPT-4.1, GPT-4.1-mini, GPT-4o, GPT-4o-mini, Llama 3.1-3.1-405B, Llama 3.1-8B, Llama
 944 3.2-3B, Qwen2.5-7B) across 4 retrieval datasets (FiQA, HotpotQA, MS Marco, SciFact). Each
 945 model performed 5-turn iterative retrieval on the same user queries, creating a diverse pool of search
 946 behaviors.

947 For each user query q_i , we obtained from each model M_j :

- 948 • Search traces (refined queries): $\{q_{i,j,t}\}_{t=1}^5$ (search queries per turn)
- 949 • Thinking traces: $\{\phi_{i,j,t}\}_{t=1}^5$ (reasoning for turn t : initial planning for $t = 1$, reflection +
 950 planning for $t > 1$)
- 951 • Retrieval results: $\{R_{i,j,t}\}_{t=1}^5$ (top- k documents retrieved for query $q_{i,j,t}$)
- 952 • Performance metrics: $\{\cos_{i,j,t}, \text{rank}_{i,j,t}\}_{t=1}^5$ (cosine similarity to target, ground truth rank)

953 The flow structure is: $\phi_{i,j,t} \rightarrow q_{i,j,t} \rightarrow \mathcal{R}(q_{i,j,t}) \rightarrow \phi_{i,j,t+1} \rightarrow q_{i,j,t+1}$

954 This creates an ultra-feedback pool $\mathcal{U} = \{(q_0, \{(\phi_{i,j,t}, q_{i,j,t}, R_{i,j,t}, \cos_{i,j,t}, \text{rank}_{i,j,t})\})\}$ containing
 955 diverse search patterns for each query. While, we use a unified think-sequence generator, context
 956 from ultra-feedback source models and system-prompt minimal edit requirement force the diversity
 957 from the original model’s reflections & planning to be retained while still producing semantically
 958 coherent think sequences on a new thread of search queries.

972 B.2 SYNTHETIC SEARCH BEHAVIORS
973974 Below, we summarize the synthetic search behaviors that form the basis of our synthetic data gen-
975 eration process.
976977 Table 6: Synthetic search behaviors used in our framework. Each behavior represents a distinct strat-
978 egy, spanning systematic exploration (e.g., breadth-first, depth-first), adaptive refinement (e.g., adapt-
979 ive context learning, hill climbing), and validation approaches (e.g., early-success, exploita-
980 tion-heavy). Together, these archetypes illustrate how models can navigate, adapt, and coordinate across
981 diverse search pathways.
982

983 Behavior	984 What It Does	985 Example
986 Adaptive Context 987 Learner (Pawar et al., 2016)	988 Learns from search results and 989 adds relevant keywords from 990 retrieved documents	991 Query: “climate change” → sees 992 papers mention “carbon 993 emissions” → next query: “climate 994 change carbon emissions”
995 Random Walk 996 Wanderer (Pearson, 1905)	997 Explores randomly in different 998 directions without a clear plan	999 “solar panels” → “renewable 1000 energy” → “wind turbines” → 1001 “energy storage” (jumping around 1002 topics)
1003 Breadth-First 1004 Explorer (Moore, 1005 1959)	1006 Systematically covers all related 1007 topics before going deeper	1008 First: “AI applications”, “AI 1009 ethics”, “AI history” → then dive 1010 deeper into each area
1011 Depth-First 1012 Driller (Lucas, 1013 1882)	1014 Goes deep into one direction until 1015 exhausted, then backtracks	1016 “machine learning” → “neural 1017 networks” → “deep learning” → 1018 “transformers” → “attention 1019 mechanisms” (keeps drilling 1020 down)
1021 Wrong-Direction 1022 Specialist (Ertmer & Newby, 1996)	1023 Recognizes when searches are 1024 getting worse and explains why	1025 “Looking for Python tutorials but 1026 keep finding snake facts - my 1027 query is too ambiguous”
1028 Early-Success 1029 Validator (Haarnoja et al., 1030 2018)	1031 Recognizes good results early and 1032 sticks with successful approaches	1033 First query works well → “This is 1034 giving me relevant papers, let me 1035 refine this direction further”
1036 Exploitation- 1037 Heavy Validator (Even-Dar & 1038 Mansour, 2001)	1039 Keeps optimizing successful 1040 queries without trying new 1041 approaches	1042 Found good results with “deep 1043 learning NLP” → keeps refining: 1044 “deep learning natural language 1045 processing”, “deep learning text 1046 analysis”
1047 Greedy Hill 1048 Climber (Selman & Gomes, 2006)	1049 Always picks the next query that 1050 seems like the biggest 1051 improvement	1052 Tests multiple query variations and 1053 always picks the one that got the 1054 best results
1055 Best-First 1056 Hypothesis 1057 Selector (Korf, 1058 1999)	1059 Manages multiple search ideas and 1060 picks the most promising one to 1061 pursue	1062 Has 3 search directions, evaluates 1063 which is working best, focuses on 1064 that one
1065 Multi-Beam 1066 Parallel (Steinbiss et al., 1994)	1067 Runs several different search 1068 strategies at the same time	1069 Simultaneously searches “climate 1070 data”, “weather patterns”, and 1071 “temperature trends”

1026 B.3 GRPO ALGORITHMS
10271028 We present our GRPO training and reward algorithms in Algorithms 2 and 3 below.
10291030 **Algorithm 2** GRPO-based Retrieval Training
10311032 **Require:** Dataset D , policy π_θ , reference π_{ref} , retriever \mathcal{R} , group size G , horizon T_{max}

```

1: for all  $q \in D$  do
2:   Initialize history  $H_1 \leftarrow \emptyset$ 
3:   for  $t = 1$  to  $T_{\text{max}}$  do
4:     Sample  $G$  candidate actions:  $(\phi_t^{(i)}, q_t^{(i)}) \sim \pi_\theta(\cdot \mid q_0, H_t)$ 
5:     for  $i = 1$  to  $G$  do
6:        $r_t^{(i)} \leftarrow \mathcal{R}(q_t^{(i)})$ 
7:        $R^{(i)} \leftarrow \text{reward\_function}(r_t^{(i)})$ 
8:     end for
9:      $A^{(i)} \leftarrow R^{(i)} - \frac{1}{G} \sum_j R^{(j)}$ 
10:     $\theta \leftarrow \theta - \eta \nabla_\theta \left[ -\frac{1}{G} \sum_i A^{(i)} \log \pi_\theta(a_t^{(i)} \mid q_0, H_t) + \beta D_{\text{KL}}^t(\pi_\theta \parallel \pi_{\text{ref}}) \right]$ 
11:    Sample  $i^* \propto R^{(i)}$ 
12:     $H_{t+1} \leftarrow H_t \cup \{(\phi_t^{(i^*)}, q_t^{(i^*)}, r_t^{(i^*)})\}$ 
13:    if  $\text{success}(r_t^{(i^*)})$  then
14:      break
15:    end if
16:  end for
17: end for

```

1052 **Algorithm 3** Turn-level Reward Computation in GRPO-based Retrieval1053 **Require:** Current context ctx_t , group size G , corpus \mathcal{C} , retriever \mathcal{R} , top- k size K

```

1: Initialize lists:  $\{\theta_{t,i}, q_{t,i}, R_{t,i}\}_{i=1}^G$ 
2: for  $i = 1$  to  $G$  do
3:   Sample think segment:  $\theta_{t,i} \sim \pi_\theta(\cdot \mid \text{ctx}_t)$ 
4:   Sample search query:  $q_{t,i} \sim \pi_\theta(\cdot \mid \text{ctx}_t, \theta_{t,i})$ 
5:   Retrieve documents:  $\mathcal{D}_{t,i} = \mathcal{R}(q_{t,i})$ 
6:   Compute evaluation metrics:

```

1061 $\text{sim}_{t,i} = \max_{d \in \mathcal{D}_{t,i}} \text{sim}(q_{t,i}, d)$, $r_{t,i}^{\text{rank}} = \text{rank of document achieving maximum similarity}$
1062

1063 7: Normalize similarity and rank:

1064 $\sigma(\text{sim}_{t,i}) = \begin{cases} \text{sim}_{t,i}, & \text{if } \text{sim}_{t,i} \geq 0 \\ (\text{sim}_{t,i} + 1)/2, & \text{otherwise} \end{cases}$, $\rho(r_{t,i}^{\text{rank}}) = \begin{cases} 1 - r_{t,i}^{\text{rank}}/|\mathcal{C}|, & r_{t,i}^{\text{rank}} < \infty \\ 0, & \text{otherwise} \end{cases}$
1065

1066 8: Compute reward: $R_{t,i} = 0.5 \cdot \sigma(\text{sim}_{t,i}) + 0.5 \cdot \rho(r_{t,i}^{\text{rank}})$
1067 9: **end for**

1068 10: Select best generation:

1069 $i^* = \arg \max_i R_{t,i}$, $\theta_t^* = \theta_{t,i^*}$, $q_t^* = q_{t,i^*}$, $\mathcal{D}_t^* = \text{top-}k \text{ of } \mathcal{D}_{t,i^*}$
1070

1071 11: Update context for next turn:

1072 $\text{ctx}_{t+1} = \text{ctx}_t \cup \{\theta_t^*, s_t^*, \mathcal{D}_t^*\}$
1073

1074 12: **return** queries $\{q_{t,i}\}_{i=1}^G$, think generations $\{\theta_{t,i}\}_{i=1}^G$, top- k documents \mathcal{D}_t^* , and rewards
1075 $\{R_{t,i}\}_{i=1}^G$

1080 C DETAILED EXPERIMENTAL SETUP
10811082 C.1 MODEL SPECIFICATIONS AND TRAINING DETAILS
1083

1084 Base Model Architecture Our Orion models are built on the LFM2 architecture, which employs a
1085 hybrid design combining 10 double-gated short-range LIV convolution blocks and 6 grouped query
1086 attention (GQA) blocks. The architecture uses a vocabulary size of 65,536 tokens with bfloat16
1087 precision and supports context lengths up to 32,768 tokens. All models were pre-trained on approx-
1088 imately 10 trillion tokens with knowledge distillation from LFM1-7B as the teacher model.

1089 Synthetic Data Generation Models Our ultra-feedback pool was constructed using eight diverse
1090 language models across three families:

- 1092 • **GPT Family:** GPT-4.1-mini, GPT-4o, GPT-4o-mini
- 1093 • **Llama Family:** Llama 3.1-405B, Llama 3.1-70B, Llama 3.1-8B, Llama 3.2-3B
- 1094 • **Qwen Family:** Qwen2.5-7B

1096 Each model performed 5-turn iterative retrieval on the same user queries from training splits, cre-
1097 ating diverse search behaviors. For each query q_i , we obtained from each model M_j : search
1098 traces $\{q_{i,j,t}\}_{t=1}^5$, thinking traces $\{\phi_{i,j,t}\}_{t=1}^5$, retrieval results $\{R_{i,j,t}\}_{t=1}^5$, and performance met-
1099 rics $\{\cos_{i,j,t}, \text{rank}_{i,j,t}\}_{t=1}^5$.

1100 Training Hyperparameters Supervised fine-tuning employed AdamW optimizer with learning
1101 rate 5×10^{-5} , weight decay 0.01, and fixed learning rate schedule. Gradient clipping was applied
1102 with maximum norm 1.0. For GRPO training, we used group size $G = 4$, KL regularization coeffi-
1103 cient $\beta = 0.1$, and reward shifting parameter $\epsilon = 0.2$.

1104 Structural Token Masking During training, we apply differential masking to struc-
1105 tural tokens. End tokens ($</\text{think}>$, $</\text{search_query}>$) were included as gen-
1106 eration targets, while content within $<\text{user_query}>\dots</\text{user_query}>$ and
1107 $<\text{top_k_response}>\dots</\text{top_k_response}>$ spans was masked. Start tokens ($<\text{think}>$,
1108 $<\text{search_query}>$) were also masked to focus learning on reasoning content and query
1109 formulation rather than structural markers.

1112 C.2 DATASET CONSTRUCTION
1113

1114 Synthetic Data Distribution Our 100K training corpus maintains balanced representation with
1115 each dataset contributing exactly 25%:

- 1117 • MS Marco: 25K samples – web search queries
- 1118 • SciFact: 25K samples – scientific claim verification
- 1119 • HotpotQA: 25K samples – multi-hop reasoning
- 1120 • FEVER: 25K samples – fact-checking

1122 GRPO training used a concentrated 40K subset (10K per dataset) selected for diversity and reasoning
1123 complexity.

1125 Behavioral Archetype Distribution Our synthetic data incorporates 10 distinct search behaviors,
1126 each contributing equally (10% each), these are discussed in detail in Appendix B.2. Each archetype
1127 implements distinct exploration-exploitation strategies, from systematic coverage to failure recovery
1128 patterns.

1130 C.2.1 RETRIEVAL ENVIRONMENT CONFIGURATION
1131

1132 Dense Retrieval Backend In information retrieval settings, there are two primary approaches:
1133 sparse methods like BM25 that rely on exact term matching and statistical weighting, and dense
methods that encode queries and documents into continuous vector representations for semantic

1134 Table 7: nDCG@10 scores of different search behaviors across 12 BRIGHT domains. Performance
 1135 varies notably by category, with stronger results in StackExchange domains than in coding
 1136 or theorem-based tasks.

1137

1138 Algorithm	StackExchange						Coding		Theorem-based			
	Bio.	Earth.	Econ.	Psy.	Rob.	Stack.	Sus.	Leet.	Pony	AoPS	TheoQ.	TheoT.
1140 Adaptive Context Learner	0.209	0.281	0.189	0.255	0.139	0.130	0.155	0.162	0.045	0.037	0.074	0.016
1141 Random Walk Wanderer	0.201	0.216	0.148	0.202	0.145	0.105	0.153	0.178	0.190	0.040	0.084	0.019
1142 Breadth-First Explorer	0.181	0.214	0.147	0.178	0.106	0.077	0.165	0.093	0.070	0.046	0.084	0.005
1143 Depth-First Driller	0.254	0.307	0.206	0.241	0.155	0.122	0.239	0.198	0.134	0.041	0.091	0.020
1144 Wrong-Direction Specialist	0.225	0.314	0.166	0.275	0.162	0.144	0.213	0.186	0.234	0.039	0.103	0.022
1145 Early-Success Validator	0.261	0.313	0.232	0.262	0.154	0.156	0.213	0.169	0.164	0.035	0.115	0.040
1146 Exploitation-Heavy Validator	0.264	0.337	0.205	0.294	0.159	0.157	0.179	0.174	0.096	0.027	0.092	0.041
1147 Greedy Hill Climber	0.238	0.325	0.205	0.308	0.155	0.157	0.203	0.203	0.104	0.039	0.079	0.036
1148 Best-First Hypothesis Selector	0.244	0.317	0.206	0.265	0.146	0.163	0.244	0.169	0.129	0.034	0.090	0.029
1149 Multi-Beam Parallel	0.217	0.266	0.189	0.253	0.149	0.156	0.186	0.112	0.136	0.060	0.077	0.031

1150

1151 Table 8: nDCG@10 performance of different search behaviours across FEVER, HotpotQA, NFCorpus,
 1152 and SciFact. Bold values indicate the best-performing behaviour for each dataset.

1153

1154 Algorithm	Multi-Hop			Single-Hop
	FEVER	HotpotQA	SciFact	NFCorpus
1155 Early-Success Validator	0.495	0.260	0.680	0.505
1156 Wrong-Direction Specialist	0.495	0.537	0.697	0.543
1157 Greedy Hill Climber	0.363	0.209	0.637	0.502
1158 Best-First Hypothesis Selector	0.383	0.371	0.656	0.515
1159 Exploitation-Heavy Validator	0.383	0.203	0.633	0.489
1160 Depth-First Driller	0.574	0.566	0.670	0.538
1161 Multi-Beam Parallel	0.347	0.290	0.634	0.474
1162 Adaptive Context Learner	0.213	0.160	0.645	0.486
1163 Random Walk Wanderer	0.557	0.651	0.656	0.536
1164 Breadth-First Explorer	0.552	0.601	0.642	0.547

1165

1166

1167

1168 similarity matching. For all our experiments, we use dense retrieval with MiniLM-L6-v2 embeddings,
 1169 which despite being a compact model (22.7M parameters) provides fast semantic search
 1170 while leaving room for improvement on BEIR subsets and BRIGHT, demonstrating that learned
 1171 search strategies can compensate for suboptimal retrieval backends (Thakur et al., 2021; SU et al.,
 1172 2025).

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183 C.3 IMPLEMENTATION AND HARDWARE INFRASTRUCTURE
 1184 All experiments were conducted on NVIDIA H100 SXM GPUs with 80GB HBM3 memory using
 1185 asynchronous SQL-based dense retrieval. Training used 8xH100 GPUs per node, 128 vCPUs
 1186 (Intel Sapphire Rapids), and 1.6TB system memory. Models were trained with Hugging Face’s
 1187 `transformers` library. For inference and evaluation, we used the OpenAI API for GPT models,
 1188 the Together AI API for Llama 3.1-405B, and vLLM for all others. MiniLM-L6-v2 (384-dim
 1189 vectors) was used as the dense retriever across all datasets and baselines.

1188 Table 9: Ablation results of different SFT training strategies on BRIGHT, FEVER, and HotpotQA.
 1189 Metrics: nDCG@10 (N@10), Recall@100 (R@100), Mean Reciprocal Rank (MRR), and Suc-
 1190 ccess@10 (S@10).

Model	BRIGHT				FEVER				HotpotQA			
	N@10	R@100	MRR	S@10	N@10	R@100	MRR	S@10	N@10	R@100	MRR	S@10
<i>Base Models</i>												
LFM2-1.2B	0.104	0.152	0.089	0.164	0.435	0.684	0.377	0.627	0.545	0.499	0.507	0.692
LFM2-700M	0.098	0.141	0.084	0.153	0.405	0.632	0.352	0.580	0.500	0.451	0.464	0.636
LFM2-350M	0.062	0.080	0.053	0.095	0.284	0.456	0.243	0.418	0.376	0.328	0.345	0.490
<i>SFT (Model Souping)</i>												
LFM2-1.2B	0.207	0.279	0.176	0.321	0.634	0.869	0.583	0.811	0.686	0.627	0.662	0.805
LFM2-700M	0.195	0.277	0.166	0.306	0.629	0.873	0.577	0.808	0.675	0.619	0.652	0.793
LFM2-350M	0.154	0.232	0.131	0.244	0.566	0.820	0.514	0.745	0.633	0.587	0.608	0.755
<i>SFT (Curriculum Learning)</i>												
LFM2-1.2B	0.196	0.271	0.167	0.302	0.622	0.861	0.574	0.791	0.674	0.620	0.653	0.788
LFM2-700M	0.187	0.269	0.161	0.290	0.620	0.867	0.570	0.795	0.667	0.615	0.645	0.782
LFM2-350M	0.146	0.224	0.125	0.230	0.557	0.812	0.507	0.730	0.624	0.581	0.601	0.739
<i>SFT (Random Shuffling)</i>												
LFM2-1.2B	0.195	0.271	0.167	0.302	0.622	0.861	0.574	0.791	0.674	0.620	0.653	0.788
LFM2-700M	0.187	0.269	0.161	0.290	0.620	0.867	0.570	0.795	0.667	0.615	0.645	0.782
LFM2-350M	0.144	0.222	0.124	0.226	0.551	0.806	0.502	0.720	0.620	0.578	0.599	0.733
<i>SFT (No-Thinking)</i>												
LFM2-1.2B	0.187	0.275	0.161	0.292	0.576	0.842	0.527	0.750	0.660	0.619	0.637	0.782
LFM2-700M	0.180	0.272	0.152	0.290	0.557	0.835	0.506	0.739	0.655	0.609	0.630	0.778
LFM2-350M	0.140	0.221	0.122	0.222	0.526	0.820	0.474	0.713	0.615	0.585	0.592	0.738
<i>SFT (No Special Tokens)</i>												
LFM2-1.2B	0.191	0.267	0.164	0.296	0.617	0.857	0.568	0.785	0.669	0.618	0.648	0.783
LFM2-700M	0.185	0.268	0.159	0.288	0.616	0.864	0.566	0.790	0.662	0.613	0.640	0.777
LFM2-350M	0.138	0.218	0.119	0.217	0.542	0.800	0.495	0.710	0.612	0.574	0.591	0.725

D ADDITIONAL ABLATIONS

D.1 EFFECT OF STRUCTURAL MARKERS ON MULTI-TURN SEARCH

A key design question is whether explicit structural markers (`</think>`, `</search_query>`) are necessary for learning multi-turn search strategies, or whether models can develop these capabilities through implicit behavioral patterns alone.

We compare models trained with full structural scaffolding against those trained without special tokens, using random shuffling as the baseline training approach for both conditions to ensure fair comparison. As shown in Table 9 and Table 10, the results reveal surprisingly modest performance differences. On BRIGHT, removing structural tokens drops nDCG@10 from only 19.5% to 19.1% - a mere 0.4 percentage point difference. Similar minimal gaps appear across other benchmarks: FEVER (62.2% vs 61.7%) and HotpotQA (67.4% vs 66.9%).

This robustness suggests that models learn search patterns primarily from the underlying behavioral content in our synthetic data rather than relying on explicit formatting cues. The consistent alternation between reasoning and querying in our training trajectories provides sufficient implicit structure for models to internalize multi-turn search dynamics. While structural tokens improve training interpretability and debugging, they are not strictly necessary for developing adaptive search behaviors, but we consider them lightweight scaffolds. They segment reasoning (`</think>`), and querying (`</search_query>`) into clear units, making the process more interpretable and giving the model

1242 Table 10: Ablation results of different SFT training strategies on MS Marco, NFCorpus, and Sci-
 1243 Fact. Metrics: nDCG@10 (N@10), Recall@100 (R@100), Mean Reciprocal Rank (MRR), and
 1244 Success@10 (S@10).

1246	1247	1248	1249 MS Marco				1249 NFCorpus				1249 SciFact			
			Model	N@10	R@100	MRR	S@10	N@10	R@100	MRR	S@10	N@10	R@100	MRR
<i>Base Models</i>														
1250	LFM2-1.2B	0.727	0.372	0.758	0.907	0.538	0.292	0.506	0.726	0.630	0.897	0.576	0.812	
1251	LFM2-700M	0.712	0.333	0.735	0.915	0.524	0.289	0.492	0.708	0.616	0.865	0.567	0.787	
1252	LFM2-350M	0.506	0.239	0.499	0.698	0.481	0.244	0.448	0.665	0.559	0.800	0.502	0.742	
<i>SFT (Model Souping)</i>														
1254	LFM2-1.2B	0.836	0.454	0.875	0.954	0.582	0.328	0.560	0.753	0.723	0.930	0.688	0.850	
1255	LFM2-700M	0.814	0.435	0.855	0.938	0.564	0.313	0.543	0.737	0.703	0.924	0.665	0.840	
1256	LFM2-350M	0.828	0.430	0.855	0.969	0.535	0.306	0.518	0.691	0.683	0.908	0.641	0.829	
<i>SFT (Curriculum Learning)</i>														
1258	LFM2-1.2B	0.831	0.453	0.871	0.946	0.572	0.322	0.554	0.734	0.713	0.922	0.681	0.835	
1259	LFM2-700M	0.814	0.435	0.855	0.938	0.554	0.310	0.536	0.719	0.697	0.923	0.662	0.830	
1260	LFM2-350M	0.823	0.426	0.851	0.961	0.526	0.301	0.510	0.676	0.675	0.901	0.636	0.815	
<i>SFT (Random Shuffling)</i>														
1263	LFM2-1.2B	0.831	0.453	0.871	0.946	0.571	0.321	0.554	0.733	0.713	0.922	0.681	0.835	
1264	LFM2-700M	0.814	0.435	0.855	0.938	0.554	0.310	0.536	0.719	0.697	0.923	0.662	0.830	
1265	LFM2-350M	0.823	0.426	0.851	0.961	0.523	0.299	0.509	0.669	0.672	0.899	0.633	0.808	
<i>SFT (No-Thinking)</i>														
1267	LFM2-1.2B-FT	0.777	0.431	0.814	0.922	0.555	0.325	0.535	0.724	0.704	0.927	0.657	0.862	
1268	LFM2-700M-FT	0.866	0.478	0.921	1.000	0.556	0.311	0.536	0.715	0.687	0.928	0.649	0.829	
1269	LFM2-350M-FT	0.846	0.432	0.887	0.977	0.515	0.311	0.491	0.679	0.659	0.910	0.617	0.809	
<i>SFT (No Special Tokens)</i>														
1271	LFM2-1.2B	0.809	0.444	0.848	0.922	0.567	0.319	0.549	0.728	0.708	0.920	0.676	0.829	
1272	LFM2-700M	0.798	0.422	0.833	0.915	0.551	0.309	0.533	0.715	0.695	0.923	0.659	0.827	
1273	LFM2-350M	0.804	0.414	0.829	0.946	0.518	0.297	0.506	0.662	0.666	0.893	0.627	0.801	

1275
 1276 a simple signal of when to reflect versus retrieve. In this sense, they are less about performance gains
 1277 and more about providing structure and readability.

1280 D.2 EFFECT OF DIFFERENT TRAINING STRATEGIES ON SFT

1282 We analyze how different ways of incorporating behavioral archetypes influence the search strate-
 1283 gies learned through SFT. We compare four approaches: (1) random shuffling of archetypes across
 1284 training examples, (2) curriculum learning that progresses from simple reformulations to complex
 1285 multi-hypothesis strategies, and (3) model souping that merges specialist models.

1287 **Model Souping** Following SmolLM3’s & Llama-Nemotron-Super’s approach that uses MergeKit
 1288 to combine behavioral specialists with exponential weighting favoring sophisticated strategies (Bak-
 1289 ouch et al., 2025; Goddard et al., 2024; Bercovich et al., 2025), we combine specialist models trained
 1290 on individual behavioral archetypes. The merging process uses exponential weighting where be-
 1291 havioral archetypes appearing later in the curriculum sequence receive higher weights in the final
 1292 combination. This weighting scheme reflects the assumption that more complex search behaviors
 1293 (such as multi-hypothesis coordination) are more valuable than simpler reformulation strategies.
 1294 The technique allows combining the strengths of different search strategies without additional train-
 1295 ing overhead, creating a unified model that exhibits diverse search behaviors while emphasizing the
 1296 most sophisticated approaches.

1296 **Results** Tables 9 and 10 show that model souping consistently delivers the strongest performance.
 1297 On BRIGHT, the 1.2B model reaches 32.1% nDCG@10, compared to 19.6% for curriculum learning
 1298 and 19.5% for random shuffling. This suggests that merging specialists preserves distinct behavioral
 1299 competencies more effectively than joint training, where optimization dynamics may cause interfe-
 1300 rence across archetypes. By contrast, curriculum learning provides little improvement over random
 1301 shuffling. Once behavioral diversity is explicitly encoded through archetype design, temporal order-
 1302 ing contributes far less than diversity itself. This finding challenges the common assumption that
 1303 careful pedagogical sequencing is required for complex skill acquisition, pointing instead to only
 1304 behavioral diversity as the key driver.

1305 D.3 EFFECT OF LEARNING COMPONENTS ON SEARCH BEHAVIOR

1306 Learning components in our framework refer to three distinct stages that each contribute to search
 1307 behavior: SFT, GRPO, and inference-time beam search. We analyze how different search behaviors
 1308 manifest across these training stages. To understand how different synthetic behavioral archetypes
 1309 contribute to overall performance, we conducted individual algorithm studies using the ten distinct
 1310 search behaviors detailed in Appendix B.2 and Table 6. These behavioral archetypes, ranging from
 1311 systematic exploration strategies like breadth-first and depth-first search to adaptive refinement ap-
 1312 proaches like hill climbing and context learning, form the foundation of our SFT stage and allow us
 1313 to isolate the contribution of specific search strategies across different retrieval scenarios.

1314 The results reveal specialization patterns across task domains (Tables 7 and 8). On StackExchange
 1315 domains, exploitation-heavy strategies consistently dominate, with Exploitation-Heavy Validator
 1316 achieving top-3 performance in 5 of 7 BRIGHT topics and reaching 33.7% on Earth Sciences.
 1317 Conversely, these same exploitation strategies perform poorly on multi-hop reasoning tasks, where
 1318 exploration-based approaches like Random Walk Wanderer excel (65.1% on HotpotQA vs bottom-
 1319 tier StackExchange performance). Most remarkably, Wrong-Direction Specialist shows perfect task
 1320 specialization, ranking first on fact verification (SciFact: 69.7%) and coding tasks (Pony: 23.4%)
 1321 while remaining mediocre on traditional Q&A. These patterns suggest that effective multi-turn
 1322 search requires different behavioral strategies for different reasoning demands: systematic explo-
 1323 ration for multi-hop reasoning, focused exploitation for domain-specific Q&A, and error-recognition
 1324 capabilities for verification tasks. The clear algorithmic specialization observed across domains val-
 1325 idates our approach of training models on diverse behavioral archetypes, as no single search strategy
 1326 proves universally effective across the breadth of retrieval scenarios. This finding aligns with prior
 1327 literature on domain-specific information retrieval systems that demonstrate improved performance
 1328 through task-adapted search strategies (Vakkari, 1999; 2001; Sutcliffe & Ennis, 1998).

1329 The behavioral patterns become more nuanced when examining how training stages affect search
 1330 dynamics across our complete model pipeline (Figures 3 and 4). Turn-wise success distributions
 1331 (Figure 3a) show the proportion of successful queries resolved at each turn, representing completion
 1332 counts of successful traces divided by total successful traces. A higher Turn 1 proportion indicates
 1333 that when models do succeed, they tend to succeed immediately, while more distributed patterns sug-
 1334 gest models that can recover and succeed even after initial failures. Importantly, these distributions
 1335 only reflect the composition of successful queries and do not indicate overall performance levels.
 1336 Our Orion models show more distributed success patterns compared to general-purpose LLMs, in-
 1337 dicating an ability to continue searching effectively rather than giving up after early unsuccessful
 1338 attempts. Rank stagnation analysis (Figure 3b) further supports this interpretation, with our models
 1339 showing substantially lower stagnation rates (2-4%) compared to general-purpose LLMs (4-8%),
 1340 indicating reduced tendency toward repetitive, ineffective query patterns. Across all three model
 1341 sizes, GRPO training shows reduced stagnation rates compared to SFT variants, indicating that RL
 1342 may help models avoid repetitive query patterns, while the inference-time beam search approach
 1343 (Main) demonstrates more varied turn-wise success distributions, showing the ability to recover.

1344 The training stage effects become particularly evident in backtracking behavior and query efficiency
 1345 metrics (Figure 4). Backtracking analysis (Figure 4a) reveals that our Main variants show the high-
 1346 est backtracking rates, particularly for Orion-700M and Orion-350M, indicating that inference-time
 1347 beam search encourages more exploratory behavior that occasionally requires course-correction.
 1348 Among the trained variants, GRPO consistently outperforms SFT across all model sizes in back-
 1349 tracking capability, with GRPO showing higher backtracking rates than SFT, suggesting that RL
 may be enabling more adaptive search strategies that can recover from suboptimal directions. How-

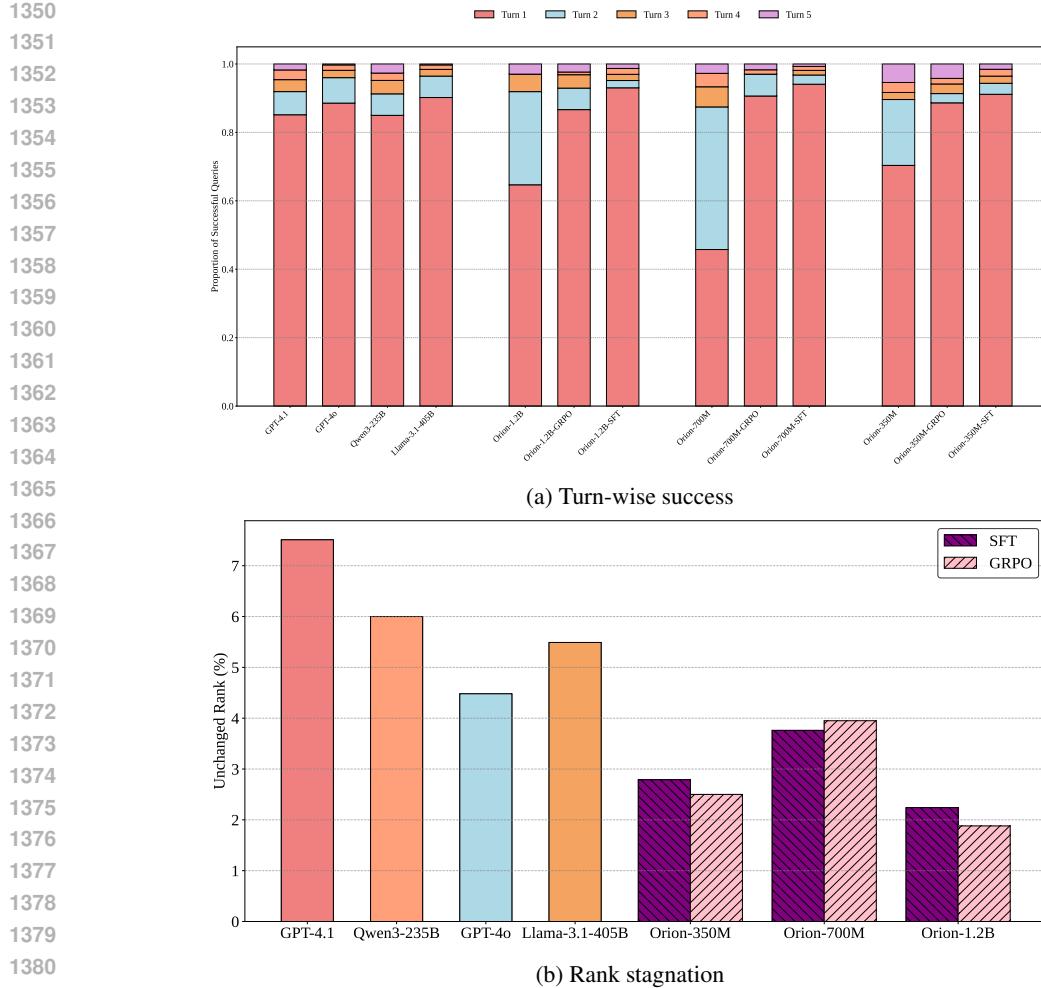


Figure 3: Search behavior analysis across models: (a) demonstrates how successful queries distribute across search turns for different models, while (b) illustrates the proportion of queries with unchanged rankings across turns, indicating repetitive search patterns and the inability to overcome search stagnation.

ever, the pattern is not uniform across sizes, Orion-1.2B Main shows lower backtracking than its GRPO variant. Query length distributions (Figure 4b) analyze the distribution of search queries as produced by the different models and reveal that our SFT and GRPO variants consistently generate much shorter queries, with medians substantially lower than external LLMs like Llama-3.1-405B which produces highly variable and verbose queries. The Main variants show slightly higher query lengths, potentially due to inference-time beam search encouraging more elaborate query formulations during the exploration process. Notably, the 1.2B model demonstrates the most stable behavior across training stages, with SFT, GRPO, and Main variants producing similar query length distributions, suggesting that larger model capacity leads to more consistent succinct query generation patterns regardless of the specific training approach.

D.4 EFFECT OF DATA SCALING IN GRPO TRAINING

We evaluated the impact of training data size on GRPO by experimenting with 10K, 40K, and 80K total datapoints. Performance improved as the dataset grew, with 40K datapoints providing a strong balance between effectiveness and efficiency. While 80K datapoints yielded slightly better results, the gains were marginal relative to the increased training time and computational complexity, so we report results using 40K datapoints in the main experiments.

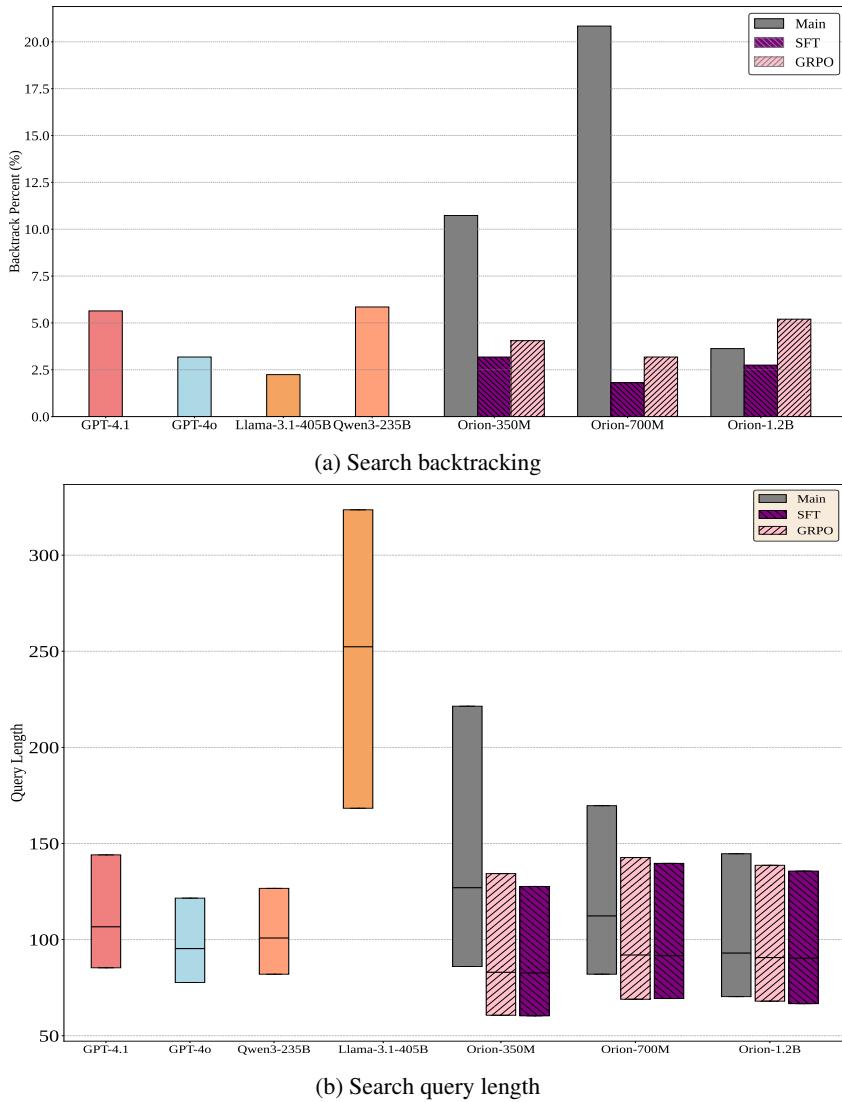


Figure 4: Adaptive search capabilities: (c) measures backtracking behavior by counting queries where rankings (r) deteriorate then recover ($r_{i-1} > r_i < r_{i+1}$), while (d) shows search query length distribution across all three Orion model variants, demonstrating our models generate relatively succinct search queries.

D.5 EFFECT OF Z-SCORE NORMALIZATION ON REWARD COMPUTATION

We experimented with normalizing rewards via corpus-level z-scores to account for varying score distributions across the four corpora in the GRPO dataset. While this approach aimed to stabilize learning by standardizing reward magnitudes, it did not improve performance and was therefore not used in the final model.

From Table 11, we observe that adding more data slightly improves most metrics, with the largest gains seen when combined with z-score normalization. However, the improvement is marginal ($\sim 1\text{--}2\%$) compared to the baseline, suggesting 40K datapoints without normalization strikes the best balance between efficiency and performance.

1458 Table 11: Ablation results on the effect of data scale in GRPO. Metrics: nDCG@10 (N@10), Re-
 1459 call@100 (R@100), Mean Reciprocal Rank (MRR), and Success@10 (S@10).

1460

1461 Model	1462 BRIGHT				1463 FEVER				1464 HotpotQA			
	1465 N@10	1466 R@100	1467 MRR	1468 S@10	1469 N@10	1470 R@100	1471 MRR	1472 S@10	1473 N@10	1474 R@100	1475 MRR	1476 S@10
<i>Data Size Ablations</i>												
LFM2-1.2B-10k-data	0.208	0.276	0.175	0.327	0.631	0.871	0.579	0.809	0.685	0.629	0.661	0.805
LFM2-1.2B-40k-data	0.212	0.290	0.180	0.335	0.643	0.873	0.591	0.822	0.692	0.631	0.666	0.815
LFM2-1.2B-80k-data	0.217	0.285	0.183	0.342	0.643	0.879	0.590	0.823	0.692	0.631	0.667	0.813
<i>Z-Score Normalization Ablations</i>												
LFM2-1.2B-10k-data-z-score	0.211	0.279	0.178	0.334	0.636	0.872	0.583	0.816	0.691	0.630	0.666	0.813
LFM2-1.2B-40k-data-z-score	0.216	0.292	0.186	0.329	0.642	0.873	0.589	0.821	0.692	0.632	0.667	0.817

1469

1470

1471 Table 12: Ablation results on the effect of z-score normalization in GRPO reward computation. Met-
 1472 rics: nDCG@10 (N@10), Recall@100 (R@100), Mean Reciprocal Rank (MRR), and Success@10
 1473 (S@10).

1474

1475 Model	1476 MS Marco				1477 NFCorpus				1478 SciFact			
	1479 N@10	1480 R@100	1481 MRR	1482 S@10	1483 N@10	1484 R@100	1485 MRR	1486 S@10	1487 N@10	1488 R@100	1489 MRR	1490 S@10
<i>Data Size Ablations</i>												
LFM2-1.2B-10k-data	0.845	0.436	0.884	0.969	0.591	0.321	0.571	0.757	0.711	0.929	0.673	0.848
LFM2-1.2B-40k-data	0.842	0.478	0.881	0.992	0.583	0.328	0.554	0.765	0.732	0.925	0.693	0.870
LFM2-1.2B-80k-data	0.840	0.459	0.889	0.953	0.594	0.324	0.567	0.769	0.707	0.928	0.669	0.842
<i>Z-Score Normalization Ablations</i>												
LFM2-1.2B-10k-data-z-score	0.867	0.462	0.939	0.969	0.585	0.324	0.566	0.748	0.720	0.928	0.685	0.848
LFM2-1.2B-40k-data-z-score	0.874	0.465	0.913	1.000	0.578	0.321	0.552	0.759	0.719	0.934	0.675	0.870

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

E COMPLETE SET OF EVALUATION RESULTS

1486

1487

1488

Tables 13 and 14 report the full evaluation results across all datasets, including additional metrics beyond the main text. For each metric, we show the “+/-” relative to a strong baseline (e.g., GPT-4.1 or Llama 3.1-405B), chosen per dataset to provide a clear and interpretable measure of Orion’s improvements over established models.

1512

1513

Table 13: Complete evaluation results for BRIGHT, FEVER, and HotpotQA. Metrics: Success@10 (S@10), nDCG@10 (N@10), Recall@100 (R@100), and Mean Reciprocal Rank (MRR). *Parameter counts approximated by Abacha et al. 2025; \dagger values not evaluated due to unavailable model checkpoints.

1517

Model	BRIGHT (macro average)				FEVER				HotpotQA			
	S@10	nDCG@10	R@100	MRR	S@10	nDCG@10	R@100	MRR	S@10	nDCG@10	R@100	MRR
<i>General Purpose LLMs</i>												
GPT-4.1	0.351	0.222	0.323	0.187	0.826	0.613	0.869	0.548	0.898	0.748	0.696	0.719
GPT-4.1-mini	0.335	0.213	0.320	0.180	0.794	0.588	0.851	0.527	0.867	0.713	0.663	0.681
GPT-4o (200B*)	0.307	0.191	0.294	0.163	0.803	0.595	0.854	0.533	0.889	0.736	0.678	0.704
GPT-4o-mini (8B*) [†]	0.276	0.172	0.278	0.147	0.752	0.549	0.828	0.490	0.842	0.686	0.646	0.651
Llama 3.1-405B	0.304	0.192	0.311	0.162	0.847	0.648	0.890	0.588	0.896	0.738	0.692	0.706
Llama 3.1-70B	0.295	0.186	0.306	0.159	0.840	0.634	0.885	0.573	0.886	0.727	0.678	0.693
Llama 3.1-8B	0.277	0.172	0.278	0.146	0.808	0.597	0.860	0.533	0.840	0.681	0.642	0.646
Llama 3.2-3B	0.228	0.141	0.241	0.123	0.788	0.576	0.850	0.512	0.818	0.666	0.621	0.632
Qwen3-235B	0.345	0.218	0.325	0.184	0.809	0.602	0.859	0.541	0.881	0.725	0.665	0.691
Qwen2.5-7B	0.268	0.165	0.262	0.139	0.779	0.567	0.849	0.504	0.818	0.668	0.623	0.635
Qwen2.5-3B	0.222	0.135	0.251	0.117	0.751	0.547	0.834	0.488	0.793	0.648	0.614	0.617
<i>Retrieval Baselines</i>												
BM25 (dense)	0.272	0.097	0.315	0.127	0.827	0.578	0.935	0.540	0.954	0.619	0.827	0.802
BM25 (sparse)	0.194	0.070	0.225	0.091	0.689	0.482	0.850	0.450	0.867	0.563	0.752	0.729
DeepRetrieval (3B) [†]	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
<i>Orion Models (ours)</i>												
Orion-Large	0.375	0.249	0.338	0.210	0.859	0.653	0.892	0.598	0.848	0.716	0.652	0.690
	(+0.024)	(+0.027)	(+0.015)	(+0.023)	(+0.012)	(+0.005)	(+0.002)	(+0.010)	(-0.050)	(-0.032)	(-0.044)	(-0.029)
Orion-Medium	0.426	0.257	0.406	0.209	0.862	0.633	0.906	0.573	0.836	0.685	0.634	0.659
	(+0.075)	(+0.035)	(+0.083)	(+0.022)	(+0.015)	(-0.015)	(+0.016)	(-0.015)	(-0.062)	(-0.063)	(-0.062)	(-0.060)
Orion-Small	0.338	0.241	0.378	0.201	0.804	0.577	0.865	0.518	0.809	0.641	0.611	0.615
	(-0.013)	(+0.019)	(+0.055)	(+0.014)	(-0.043)	(-0.071)	(-0.025)	(-0.070)	(-0.089)	(-0.107)	(-0.085)	(-0.104)

1538

1539

1540

Table 14: Complete evaluation results for MS Marco, NFCorpus, and SciFact. Metrics: Success@10 (S@10), nDCG@10 (N@10), Recall@100 (R@100), and Mean Reciprocal Rank (MRR). *Parameter counts approximated by Abacha et al. 2025; \dagger values not evaluated due to unavailable model checkpoints.

1545

Model	MS Marco				NFCorpus				SciFact			
	S@10	nDCG@10	R@100	MRR	S@10	nDCG@10	R@100	MRR	S@10	nDCG@10	R@100	MRR
<i>General Purpose LLMs</i>												
GPT-4.1	0.992	0.877	0.463	0.944	0.753	0.578	0.322	0.547	0.876	0.724	0.950	0.680
GPT-4.1-mini	0.992	0.857	0.470	0.890	0.738	0.565	0.332	0.536	0.886	0.723	0.950	0.675
GPT-4o (200B*)	1.000	0.861	0.465	0.888	0.736	0.558	0.326	0.533	0.880	0.708	0.937	0.658
GPT-4o-mini (8B*) [†]	0.992	0.844	0.439	0.883	0.728	0.537	0.314	0.503	0.858	0.698	0.941	0.654
Llama 3.1-405B	0.992	0.849	0.469	0.897	0.722	0.562	0.333	0.547	0.869	0.703	0.957	0.656
Llama 3.1-70B	0.977	0.839	0.464	0.873	0.726	0.565	0.339	0.545	0.875	0.707	0.946	0.658
Llama 3.1-8B	0.992	0.838	0.432	0.869	0.740	0.553	0.324	0.523	0.871	0.702	0.952	0.653
Llama 3.2-3B	0.977	0.846	0.436	0.904	0.739	0.550	0.313	0.520	0.831	0.671	0.933	0.624
Qwen3-235B	1.000	0.870	0.477	0.940	0.745	0.570	0.327	0.543	0.884	0.726	0.950	0.679
Qwen2.5-7B	0.992	0.848	0.459	0.902	0.733	0.551	0.321	0.524	0.863	0.692	0.936	0.643
Qwen2.5-3B	0.962	0.823	0.445	0.875	0.737	0.563	0.322	0.545	0.847	0.672	0.930	0.621
<i>Retrieval Baselines</i>												
BM25 (dense)	0.945	0.835	0.537	0.884	0.769	0.374	0.264	0.575	0.808	0.661	0.888	0.614
BM25 (sparse)	0.756	0.642	0.398	0.691	0.641	0.267	0.211	0.471	0.703	0.560	0.793	0.529
DeepRetrieval (3B) [†]	N/A											
<i>Orion Models (Ours)</i>												
Orion-Large	0.992	0.849	0.482	0.887	0.804	0.632	0.338	0.603	0.882	0.776	0.957	0.735
	(-0.008)	(-0.021)	(+0.005)	(-0.053)	(+0.051)	(+0.054)	(+0.016)	(+0.056)	(+0.006)	(+0.052)	(+0.007)	(+0.055)
Orion-Medium	0.984	0.890	0.443	0.926	0.809	0.605	0.336	0.573	0.854	0.711	0.934	0.665
	(-0.016)	(+0.020)	(-0.034)	(+0.014)	(+0.056)	(+0.027)	(+0.014)	(+0.026)	(-0.022)	(-0.013)	(-0.016)	(-0.015)
Orion-Small	0.977	0.874	0.476	0.946	0.782	0.577	0.323	0.545	0.866	0.709	0.932	0.671
	(-0.023)	(+0.004)	(-0.001)	(+0.006)	(+0.029)	(-0.001)	(+0.001)	(-0.002)	(-0.010)	(-0.015)	(-0.018)	(-0.009)

1565

1566 F ORION EXAMPLE
15671568 Table 15: Case study on HotpotQA: Orion successfully backtracks and recovers the target document,
1569 while GPT-4o loops without recovery. Considering top-5 as success.
15701571 **Question:** In which professional wrestling promotion did Randy Savage perform, after he left
1572 the World Wrestling Federation?
15731574 **Ground Truth:** World Championship Wrestling (WCW)1575 **Orion-1.2B (successful)**

1576 Rank progression: 12 → 13 → 8 → 1 (success)

1577 Backtracking: Yes
15781579 <think> As I embark on this search, I need to initialize my beam search strategy to explore
1580 the various paths related to Randy Savage’s career after leaving the World Wrestling Feder-
1581 ation. My first step is to establish multiple hypotheses about where he might have transitioned
1582 his career. I can envision several beams: one focusing on his post-FW career, another on his
1583 professional wrestling promotions, and a third on his overall career trajectory. I will start by for-
1584 mulating a beam that directly addresses the question of his post-FW career. With this structured
1585 approach, I can formulate my search query: “Randy Savage professional wrestling promotion
1586 after leaving World Wrestling Federation.” This query encapsulates my intent to explore the
1587 connections between his career changes and the specific promotions he was involved with after
1588 leaving the WWE.”</think>1589 <search> Randy Savage professional wrestling promotion after leaving World Wrestling
1590 Federation </search>

1591 <top-k> Doc mentions Randy Savage in WCW. </top-k>

1592 <think> As I delve into the next phase of my search, I need to acknowledge the parallel beam
1593 that focuses on Randy Savage professional wrestling promotion after leaving World Wrestling
1594 Federation. This beam presents a promising avenue, as it directly addresses the user’s query
1595 about the specific promotion where Randy Savage left the WWF. However, I must also con-
1596 sider the broader context of his career trajectory and the various promotions he may have been
1597 involved with.</think>

1598 <search> Randy Savage WCW career </search>

1599 ⇒ **Final Rank: 1, success.**1600 **GPT-4o (failed)**
1601

1602 Rank progression: 7 → 11 → 11 → 8 → 7 (failure)

1603 Backtracking: No

1604 <think> I will identify key terms related to Randy Savage’s career post-World Wrestling
1605 Federation, focusing on wrestling promotions active during that period. Then, I will search for
1606 documents containing these terms, emphasizing semantic similarity to capture relevant infor-
1607 mation. </think>1608 <search> Randy Savage wrestling promotion after World Wrestling Federation
1609 </search>

1610 <top-k> Docs mention WWF history but not WCW. </top-k>

1612 <think> The search results did not directly address Randy Savage’s career immediately after
1613 leaving the World Wrestling Federation. I will refine the search query to focus specifically on
1614 Randy Savage’s next wrestling promotion, emphasizing his transition timeline and the major
1615 promotions he joined. </think>

1616 <search> Randy Savage wrestling promotion after WWF transition timeline </search>

1617 ⇒ **Final Rank: 7, target not found.**1618
1619

1620 **G PROMPTS**
1621

1622

1623 **Baselines: Planning Phase (Turn N)**

1624

1625 This is an information retrieval task. Your goal is to find documents that are relevant to this
1626 target query: “{original_query}”

1627

Turn 1 Analysis: {turn_1_think_resp}

Turn 1 Search Query: {turn_1_search_q}

Top-5 results:

{turn_1_results_text}

1631

Turn 2 Analysis: {turn_2_think_resp}

Turn 2 Search Query: {turn_2_search_q}

Top-5 results:

{turn_2_results_text}

1632

.

.

.

Turn $\{n - 1\}$ Analysis: {turn_n - 1_think_resp}Turn $\{n - 1\}$ Search Query: {turn_n - 1_search_q}

Top-5 results:

{turn_n - 1_results_text}

1644

Analyze the search results from your previous query. Write exactly 2 sentences (under 40 words total) explaining what happened and how you plan on improving the search query to better retrieve the target document based on the user query.

1648

1649

Baselines: Search Query Phase (Turn N)

1650

1651

This is an information retrieval task. Your goal is to find documents that are relevant to this target query: “{original_query}”

1652

1653

Turn 1 Analysis: {turn_1_think_resp}

Turn 1 Search Query: {turn_1_search_q}

Top-5 results:

{turn_1_results_text}

1654

1655

Turn 2 Analysis: {turn_2_think_resp}

Turn 2 Search Query: {turn_2_search_q}

Top-5 results:

{turn_2_results_text}

1656

1657

.

.

.

Turn $\{n - 1\}$ Analysis: {turn_n - 1_think_resp}Turn $\{n - 1\}$ Search Query: {turn_n - 1_search_q}

Top-5 results:

{turn_n - 1_results_text}

1658

1659

Turn $\{n\}$ Analysis: {turn_n_planning_response} Based on your analysis above, generate a new search query to find the target documents. Output ONLY the search query text. No

1670

1671

1672

1673

1674
 1675 explanations, no quotes, no formatting, no XML tags, no JSON - just plain text for semantic
 1676 similarity search.

1677

1678 Orion: Complete Operation (Turn N)

```

1679 <user_query>{original_query}</user_query>
1680
1681 <think>{turn_1_think_response}</think>
1682
1683 <search_query>{turn_1_search_query}</search_query>
1684
1685 <top_k_response>
1686 1. {turn_1_result_1_text}
1687 2. {turn_1_result_2_text}
1688 3. {turn_1_result_3_text}
1689 4. {turn_1_result_4_text}
1690 5. {turn_1_result_5_text}
1691 </top_k_response>
1692
1693 <think>{turn_2_think_response}</think>
1694
1695 <search_query>{turn_2_search_query}</search_query>
1696
1697 <top_k_response>
1698 1. {turn_2_result_1_text}
1699 2. {turn_2_result_2_text}
1700 3. {turn_2_result_3_text}
1701 4. {turn_2_result_4_text}
1702 5. {turn_2_result_5_text}
1703 </top_k_response>
1704 .
1705 .
1706 .
1707 <think>{turn_n - 1_think_response}</think>
1708
1709 <search_query>{turn_n - 1_search_query}</search_query>
1710
1711 <top_k_response>
1712 1. {turn_n - 1_result_1_text}
1713 2. {turn_n - 1_result_2_text}
1714 3. {turn_n - 1_result_3_text}
1715 4. {turn_n - 1_result_4_text}
1716 5. {turn_n - 1_result_5_text}
1717 </top_k_response>
1718
1719 <think>{turn_n_think_response}</think>
1720
1721 <search_query>
```

1722
 1723
 1724
 1725
 1726
 1727