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ABSTRACT

Effective information retrieval requires reasoning over partial evidence and refin-
ing strategies as information emerges. Yet current approaches fall short: neural
retrievers lack reasoning capabilities, large language models (LLMs) provide se-
mantic depth but at prohibitive cost, and query rewriting or decomposition lim-
its improvement to static transformations. As a result, existing methods fail to
capture the iterative dynamics of exploration, feedback, and revision that com-
plex user queries demand. We introduce Orion, a training framework that enables
compact models (350M-1.2B parameters) to perform iterative retrieval through
learned search strategies. Orion combines: (1) synthetic trajectory generation and
supervised fine-tuning to encourage diverse exploration patterns in models, (2)
reinforcement learning (RL) that rewards effective query refinement and back-
tracking behaviors, and (3) inference-time beam search algorithms that exploit
the self-reflection capabilities learned during RL. Despite using only 3% of the
training data available, our 1.2B model achieves 77.6% success on SciFact (vs.
72.6% for prior retrievers), 25.2% on BRIGHT (vs. 22.1%), 63.2% on NFCorpus
(vs. 57.8%), and remains competitive on FEVER, HotpotQA, and MSMarco. It
outperforms retrievers up to 200-400× larger on five of six benchmarks. These
findings suggest that retrieval performance can emerge from learned strategies,
not just model scale, when models are trained to search, reflect, and revise.

1 INTRODUCTION

Information retrieval has traditionally been framed as a one-shot task: given a query, return the most
relevant documents. This formulation assumes that a query fully specifies the user’s information
need and that relevance can be resolved in a single pass over the corpus (Thakur et al., 2021). Mod-
ern neural retrievers have advanced this paradigm significantly (Wang et al., 2020; Karpukhin et al.,
2020; Shao et al., 2025; Das et al., 2025; Akkalyoncu Yilmaz et al., 2019; Chen et al., 2024), learn-
ing sophisticated representations that encode semantic similarity beyond lexical overlap, achieving
strong performance on classic retrieval benchmarks.

However, this one-shot assumption breaks down for complex information needs that require multi-
hop reasoning or exploratory search. Current solutions either attempt query reformulation (Yan
et al., 2025; Wang et al., 2023), i.e., enriching queries with anticipated evidence, or decomposition
(Ammann et al., 2025; Fu et al., 2021), i.e., breaking questions into sub-queries. Both strategies
commit to a search plan before observing corpus evidence. When decomposition misses key entities
(the “lost-in-retrieval” problem (Zhu et al., 2025b)) or expansion drifts from corpus vocabulary, no
recovery mechanism exists. In particular, Tang et al. (2021) showed the severity: models that answer
multi-hop questions correctly still fail on 50-60% of the constituent sub-questions.

Interactive retrieval methods (Trivedi et al., 2023; Press et al., 2023; Zhu et al., 2025b; Gao et al.,
2025) address this by interleaving retrieval and reasoning, showing that adaptive loops outperform
static pipelines. However, these retrieval-augmented generation (RAG) systems place adaptivity in
the reasoning layer (LLM controller or generator) rather than in the retrieval layer. The retriever
itself remains static, invoked repeatedly but never trained to adapt its search strategy. This overlooks
a key point: the retrieval policy is as important as the reasoning policy. Deciding how to refine
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Prompt: Musala is a valley.

Query Rewriting 

Step 1: Rewrite Given Prompt

Step 2: Retrieve Top-K Results for the new prompt

Wadi Musa Wadi Musa, literally Valley of Moses) is a town ...

Musa River (volcano) Hot springs and thermal vents at Musa River ...

Musa Ka Musala in Pakistan stands at an altitude of 4080 meters ...

Rank of  top document: 234 

Prompt: Musala is a valley.

Query Decomposition

Step 2: Retrieve Top-K Results for each sub-query

1.Musa Valley in Pakistan stands at an altitude of 4080 meters..,2...,3...

1.Musa River (volcano) Hot springs and thermal vents at Musa River..,2...,3...

1.Musa Valley in Pakistan stands at an altitude of 4080 meters..,2...,3...

Rank of  top document: 314 ?  13 ?  95 

Our Orion Framework

<think>  I w ill identif y  documents mentioning " Musala"  

and focus on geographical contexts, especially  valleys 

or related landforms. </ think>

Prompt: Musala is a valley.

<think 1> 

Step 1: Init ial Retrieval

<think 3> <think 2> 

<search 1> <search 2> <search 3>

<top-k> <top-k> <top-k>

Step 2: Ref lection and Exploration

<think 1.1> <think 1.3> <think 1.2> 

<search 1.1> <search 1.2> <search 1.3>

<top-k> <top-k> <top-k>

<think 2.1> <think 2.3> <think 2.2> 

<search 2.1> <search 2.2> <search 2.3>

<top-k> <top-k> <top-k>

<think 1.3.1> <think 1.3.3> <think 1.3.2> 

<search 1.3.1> <search 1.3.2> <search 1.3.3>

<top-k> <top-k> <top-k>

Rank of  top document: 2 

Step 3: Ref lection + Ref ined Retrieval 

New Prompt: Musala valley description and physical features

<think>  The claim is Musala is a valley -  I should keep 

the core entity  and add clarif iers. </ think>

<think 1.3.2> The docs don?t match Musala in Bulgaria 

?  maybe the valley hypothesis is wrong. Let us pivot away from 

valley.  </ think 1.3.2>

<search 1.3.2> Musala mountain peak geography 

location </search 1.3.2>

<top-k>  1. Musala is the highest mountain in Bulgaria, 

2. .., 3... <top-k>

Sub-queries:

Musala valley location

Musala valley geography and features

Musala valley Bulgaria

Step 1: Decompose Query

Rank of  top document: 17

Rank of  top document: 75 Rank of  top document: 100

Comes close but no way 

to backtrack and take 

this route

Rank improves to 13 but falls back to 95, 

with no way to retrace the successful step.

Figure 1: Overview of Orion. We illustrate two established query reformulation baselines alongside
our proposed Orion framework on an example from the FEVER dataset. While query decompo-
sition fails without corpus feedback and query rewriting yields static reformulations that ignore
retrieval results, Orion performs tree-based exploration with structured reasoning spans, revising
its strategy as it incorporates contradictory evidence and shifts from valley- to mountain-focused
queries-effectively backtracking, refining, and exploring to recover relevant evidence.

queries, explore alternatives, or backtrack from failures is part of retrieval, not just generation. At the
same time, scaling analyses (Portes et al., 2025; Zeng et al., 2025) show that retrieval performance
grows predictably with model size and pretraining compute. Yet these gains mainly reflect stronger
single-shot matching through better embeddings and in-context learning, they do not yield adaptive
search policies. Neither costly LLM controllers nor stronger embeddings resolve the core limitation:
retrieval models lack the ability to adapt their search strategy in response to observed evidence.

We introduce a different approach: making the retriever itself adaptive. We call this paradigm
test-time adaptive search and present Orion, a training framework that enables compact models
(350M-1.2B parameters) to learn dynamic search policies through synthetic trajectory supervision
and turn-level reinforcement learning. Unlike systems that rely on LLMs for test-time reasoning
(Jin et al., 2025) or enhance static retrievers with reasoning-aware training (Shao et al., 2025; Das
et al., 2025), we train models to internalize diverse search strategies: when to explore alternatives,
when to refine promising directions, and when to backtrack from failures.

A key innovation is our turn-level reward structure that leverages standard IR metrics to provide
dense feedback at each search step rather than sparse outcome-only signals. This enables models
to learn when and how to backtrack from unproductive search directions, a capability that conven-
tional outcome-based training fails to capture. Moreover, our inference algorithm employs beam
search with explicit structural markers (<think>, <search query>, <top k response>)
that cleanly separate reasoning from querying, keeping search queries concise while allowing think-
ing spans to incorporate rich retrieval feedback across turns. As Figure 1 illustrates, this design
enables systematic exploration of multiple search paths with strategic backtracking when initial di-
rections prove unproductive—moving from failed decomposition attempts to successful evidence
recovery through adaptive query reformulation.

Empirically, we demonstrate that compact models can achieve substantial retrieval performance
when trained with adaptive search strategies. Despite using models up to 400× smaller, Orion
achieves 25.2% nDCG@10 on BRIGHT and 77.6% on SciFact, outperforming both pre-trained and
instruction-tuned models, including specialized 3B query rewriting systems. These gains emerge
not from stronger embeddings or larger scale, but from learned adaptive behavior: recognizing when
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queries fail, exploring alternatives systematically, and recovering from unproductive search paths.
Our findings suggest that retrieval intelligence may depend more on learning appropriate search be-
haviors than on model scale alone, illuminating the potential for compact models to achieve strong
performance through targeted training on the core principles of adaptive search.

2 RELATED WORK

Conventional Retrievals Classical IR pipelines, lexical metrics and one-pass dense retrieval, op-
timize a single query, produce top-k hop, and assume that the right evidence is surfaceable with a
static query (Voorhees & Tice, 2000; Chen et al., 2017; Maia et al., 2018; Hasibi et al., 2017; Wang
et al., 2024; Zhao et al., 2024; Karpukhin et al., 2020; Akkalyoncu Yilmaz et al., 2019). While
recent improvements teach retrievers to better follow task intent or ranking signals (Zhuang et al.,
2025; Zhang et al., 2025a; Kim & Diaz, 2025; Ko et al., 2025; Rathee et al., 2025), these methods
still commit early to a single retrieval state: they neither plan, backtrack, nor adapt the retrieval
policy within a session when initial evidence is off-manifold. In high-ambiguity settings, this “fire-
and-forget” assumption turns errors in the first hop into answer-level failures. This motivates our
approach to introduce an iterative, policy-driven search that can revise hypotheses mid-trajectory.

Reasoning-based Retrievers and Query Rewriting A complementary line trains the retriever to
favor evidence that supports multi-step reasoning rather than shallow matches. For example, Shao
et al. (2025) builds hard negatives and challenging queries per document, while Das et al. (2025)
synthesizes reasoning-conditioned relevance from chain-of-thought traces; both improve reasoning-
heavy IR and help downstream RAG. Listwise or pointwise rerankers (Liu et al., 2025; Fan et al.,
2025a) push similar supervision during training and then run think-free at inference. On the query
side, systems learn to rewrite underspecified or conversational queries directly against retrieval feed-
back, and some transform documents to produce retrieval-friendly views (Zhu et al., 2025a; Ko et al.,
2025; Qin et al., 2025; Yadav et al., 2025; Cha et al., 2025). These advances reduce intent mismatch,
but remain single-turn: after one rewrite or rerank the loop stops. Our work closes this by making
retrieval itself a multi-turn control policy with turn-level rewards that couple what the model thinks
to what it searches next.

Agentic Retrieval A fast-growing body of “agentic” systems trains LLMs to reason while they
search: the model alternates thinking, issuing tool calls, reading results, and updating plans.
Outcome-rewarded agents (Jin et al., 2025; Jiang et al., 2025) show large gains by letting the model
decide when to search and how to reformulate queries against live engines, but can overfit to reward
sparsity or exploit quirks of real search APIs. Process- and critic-guided variants (Chang et al., 2024;
Dong et al., 2025), retrieval-within-context exemplars (Wang et al., 2025), and latent steering (Xin
et al., 2025) inject intermediate guidance and filtering to stabilize trajectories. Other works scale
the loop to “deep research” (Li et al., 2025c; Wu et al., 2025; Zheng et al., 2025), or restructure
the loop with explicit refine-steps (Shi et al., 2025; Sun et al., 2025a; Peng & Wei, 2025), simple
data-centric SFT over realistic web traces (Sun et al., 2025c), or unifying frameworks that couple
reasoning and retrieval with curriculum or hybrid knowledge access (Li et al., 2025b;a). Several
papers reduce reliance on expensive live search, either by simulating search during training (Sun
et al., 2025b; Fan et al., 2025b) or by formalizing the loop as information-foraging over evolving
“scent” (Qian & Liu, 2025). Despite their breadth, these agents typically target general QA or open-
web tasks, emphasize outcome accuracy over retrieval-policy competence, and require long, brittle
trajectories and heavyweight LLM backbones. In contrast, we formulate multi-turn retrieval as a
compact, behavior-shaped policy problem and show that small models learn to plan retrieval under
turn budgets using group-relative preference optimization (GRPO).

Reward Design for Multi-Turn IR Outcome-only rewards (answer correctness) are simple but
sparse, while process-level signals for query quality, evidence selection, and refinement provide
denser credit and more stable learning (Zhang et al., 2025b). Recent work adds process feedback
(Peng & Wei, 2025; Sun et al., 2025a), lightweight critics (Li et al., 2025a), and gym-style evalua-
tions (Xiong et al., 2025) to reduce over-querying and tool misuse, but most supervise generation or
tool use rather than the retrieval step itself. We instead attach rewards directly to each retrieval turn
and regularize exploration with structured behaviors, yielding short, predictable plans that continue
to improve beyond the first hop, where single-shot retrieval and one-off rewriting struggle.
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Our contribution is domain-agnostic: we cast multi-turn search as a behavioral policy that reasons
first and then retrieves, and optimize small (350M-1.2B) models with turn-level retrieval rewards.
This directly addresses gaps left by single-shot IR (no replanning), reasoning-aware retrievers (no
closed-loop search), and agentic RAG (long, costly, outcome-dominated training), and empirically
supports iterative planning under tight budgets.

3 THE ORION FRAMEWORK

3.1 PROBLEM FORMULATION: SEARCH AS A REINFORCEMENT LEARNING TASK

We formalize multi-turn retrieval as a sequential process. Given an initial user query q0 and a
document corpus, traditional retrieval produces a single ranking. Test-time adaptive search extends
this by generating a sequence of search actions, where each step refines the query based on observed
evidence.

At turn t (analogous to a time step in RL), the environment state is st = (q0, Ht), where the history
Ht = {(ϕi, qi,R(qi))}t−1

i=1 records prior interactions. Here, ϕi is the reasoning trace, qi the issued
query, andR the deterministic retriever that returns documents for a given query.

Each action at consists of two parts: the reasoning step ϕt and the refined query qt. The policy first
generates reasoning from the current state, ϕt ∼ πθ(· | st), and then refines the query, qt ∼ πθ(· |
st, ϕt). The history is updated as Ht+1 = Ht ∪ {(ϕt, qt,R(qt))}. To guide generation, we delimit
components using the structural tokens shown in Table 1.

Table 1: Structural tokens used to delimit reasoning, queries, and retrieval responses.

Token Purpose

<user query>. . .</user query> Original query q0 (fixed)
<think>. . .</think> Reasoning trace ϕt

<search query>. . .</search query> Refined queries qt (t > 0) submitted to R
<top k response>. . .</top k response> Retrieved results R(qt)

An episode terminates when the target document appears in the top-k results or when the maximum
number of turns Tmax = 5 is reached. We train LLM policies πθ with parameters θ to maximize
expected retrieval success through turn-level RL, with KL regularization against a reference policy
πref.

3.2 SYNTHETIC TRAJECTORY GENERATION

One challenge in training retrieval models is the mismatch between benchmarks dominated by short,
factoid-style queries (Nguyen et al., 2016; Thakur et al., 2021) and real-world search demands that
require multi-step reasoning, reformulation, and hypothesis testing. While ReasonIR (Shao et al.,
2025) addressed part of this gap by generating longer queries and showing that decomposition de-
grades performance, we view synthetic data generation as a way of teaching models how to search:
treating retrieval as a process that unfolds through cycles of reasoning, querying, and refinement.

We model multi-turn search through diverse behavioral strategies that capture various search pat-
terns, motivated by prior findings that diversity, rather than scale alone, is key for generalization
(Jung et al., 2025; Wen et al., 2025). Following established approaches in query reformulation
(Diaz, 2016; Balaneshin-kordan & Kotov, 2016), we treat queries as nodes in a reformulation graph
where each node can spawn alternative search directions. This framework allows us to synthesize
behavioral archetypes such as breadth-first and depth-first traversal, evidence-driven reformulation,
stochastic wandering, and trajectory-aware strategies like recognizing early success or reflecting
on failure. To capture these patterns, we construct an ultra-feedback pool (Cui et al., 2024) of
multi-turn search traces generated by eight popular LLMs on the training splits of several retrieval
datasets, ensuring robustness against model-specific biases while sampling structured think-query-
retrieve cycles that preserve diversity and coherent reasoning flows. Further details are provided in
Appendix B.2, which discuss in detail the different data generation algorithms and ultra-feedback
models.
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Additionally, we explore whether models benefit from structured exposure to search behaviors
through curriculum learning during SFT, where training progresses from simple reformulation
strategies to complex multi-hypothesis coordination, or whether random presentation of diverse be-
havioral patterns proves equally effective. We also examine individual algorithm training to isolate
the contribution of specific search behaviors, and employ model souping techniques inspired by
SmolLM3 and Llama-Nemotron-Super’s approach, which uses MergeKit to combine behavioral
specialists with exponential weighting that favors sophisticated strategies (Bakouch et al., 2025;
Goddard et al., 2024; Bercovich et al., 2025). These comparisons aim to reveal how models best
internalize the spectrum of search capabilities encoded in our synthetic data.

3.3 TRAINING FRAMEWORK

Our training consists of two stages: SFT establishes multi-turn search scaffolding, followed by
GRPO (Shao et al., 2024) that refines search behavior through turn-level rewards.

Supervised Fine-Tuning We perform supervised fine-tuning on the synthetic dataset to establish
the structural framework of multi-turn search. Each training example includes explicit markers for
reasoning, query emission, and retrieval results, ensuring the model learns to generate well-formed
cycles of <think>, <search query>, and <top k response> tokens in this order. This
stage grounds the model in the format and temporal flow of iterative search traces, aligning internal
reasoning with external retrieval actions across multiple turns. Unlike conventional fine-tuning on
single-turn queries, it establishes the behavioral foundation for subsequent training with GRPO.

Group-Relative Policy Optimization Building on this initialization, we apply GRPO to refine
search behavior with retrieval-based feedback. At each turn, the model generates multiple reasoning-
query candidates, which are executed against the retriever and scored. Each generation includes a
“think” segment followed by a search query. For each query, we compute a reward that combines
two normalized components: (i) the cosine similarity of the retrieved document to the query and (ii)
the rank of the best-matching document in the corpus. Similarity scores are normalized to [0, 1] by
mapping negative values as (sim+1)/2, while rank is normalized as 1 − rank /|C|, where |C| is
the size of the corpus. Each signal contributes equally to the reward.

From G sampled generations per turn (where G denotes the group size), the highest-reward candi-
date is selected to advance the context for the next turn. While context advancement is greedy at
each turn, GRPO training incorporates all candidates through group-relative policy updates. Ad-
vantages are normalized relative to the candidate set, and policy gradients are computed using all
candidates, not just the highest-reward one. KL regularization against a reference model stabilizes
language generation, while group size and horizon (both set to 4) govern exploration depth. The full
algorithm is provided in Appendix B.3.

3.4 INFERENCE WITH ORION

Drawing inspiration from DeepConf’s confidence-based filtering (Fu et al., 2025) and graph-based
reformulation techniques (Diaz, 2016), Orion leverages the enhanced self-reflection capabilities
developed through our SFT and GRPO training stages to perform adaptive search via structured
beam management. While DeepConf computes token confidence as Ci = − 1

k

∑k
j=1 logPi(j) over

top-k token probabilities, Orion evaluates retrieval effectiveness through structured relevance as-
sessment. For each beam thread containing the complete context history ending with <think>,
<search query>, and <top k response>, we prompt the model with a new follow-up think-
reflection: “Given turn t and search query qt, the retrieved documents are relevant to the user query
{q0}.”. We then compute perplexity as PPL = exp

(
− 1

N

∑N
i=1 logP (xi|x<i)

)
on the model’s

relevance judgment. This approach captures learned metacognitive assessment of search quality
rather than surface-level token uncertainty, providing a semantically grounded confidence signal for
beam ranking. As detailed in Algorithm 1, the method maintains a search tree where each query
expands into M candidate branches, with M denoting the number of alternatives pursued per beam.
Each node then generates M children, after which survival-based pruning retains the top B candi-
dates, where B is the beam size controlling how many hypotheses survive to the next step. Running
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Algorithm 1 Orion-Beam-Search for Test-Time Adaptive Retrieval

Require: User query q0, policy πθ, retrieverR, beam size B, expansion width M , max turns Tmax

1: Initialize active beams B0 = {(q0, ∅, 0)}, where each beam is (query,history, confidence)
2: for t = 1 to Tmax do
3: Bcandidates ← ∅
4: for each beam (qi, Hi, ci) ∈ Bt−1 do
5: Sample M reasoning-query pairs: {(ϕi,j , qi,j)}Mj=1 ∼ πθ(·|qi, Hi)
6: for j = 1 to M do
7: Execute retrieval: ri,j ← R(qi,j)
8: Construct context: ctxi,j ← Hi ∪ {(ϕi,j , qi,j , ri,j)}
9: Generate relevance prompt: p← “Given turn {t} and search query {qt},

the retrieved documents are relevant to the user query
{q0}.”

10: Compute perplexity: ppli,j ← exp
(
− 1

N

∑N
k=1 log πθ(yk|y<k, ctxi,j , p)

)
11: Add candidate: Bcandidates ← Bcandidates ∪ {(qi,j , ctxi,j ,ppl−1

i,j )}
12: end for
13: end for
14: Sort candidates: Bsorted ← {b ∈ Bcandidates : c(b1) ≥ c(b2) ≥ . . . ≥ c(bn)}
15: Select survivors: Bt ← top-B(Bsorted)
16: if any beam achieves retrieval success then
17: return best beam from Bt
18: end if
19: end for
20: return highest confidence beam from BTmax

inference in this way balances exploration of diverse alternatives with focused refinement on the
model-perceived most promising trajectories.

4 EXPERIMENTS

4.1 EVALUATION SETUP

Benchmarks We evaluate on five datasets that reflect different aspects of search complexity. From
the BEIR benchmark (Thakur et al., 2021), single-hop IR is measured on NFCorpus (biomedical re-
trieval), while multi-hop tasks include FEVER and SciFact (fact-checking) and HotpotQA (question
answering). We also use BRIGHT (SU et al., 2025), a dataset of reasoning-intensive queries from
domains such as economics, mathematics, and programming that require deeper analysis to identify
relevant documents. Because our models are not explicitly trained on such reasoning-heavy tasks,
BRIGHT tests whether the learned search strategies generalize beyond the training distribution and
adapt to more challenging retrieval settings.

Metrics We evaluate retrieval effectiveness using nDCG@k (ranking quality with graded rele-
vance), Success@k (whether target documents appear in the top-k results), Recall@K (proportion
of relevant documents retrieved in the top-k results), and MRR (mean reciprocal rank emphasizing
early precision). Together, these metrics capture both effectiveness and efficiency.

4.2 MODELS AND BASELINES

Orion Models We build on the LFM2 architecture with 350M, 700M, and 1.2B parameter vari-
ants. LFM2’s hybrid design, combining multiplicative gates with short convolutions, delivers signifi-
cant inference speed gains over standard transformers, making it well-suited for production retrieval
systems (Liquid AI, 2025a;b). The smaller parameter counts let us test whether learned search
strategies can compensate for reduced model scale.

6
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Baselines We compare against three categories of systems. First, general-purpose instruction-
tuned LLMs, including models from the GPT, Llama, and Qwen families. These represent the costly
test-time reasoning approaches that Orion is designed to replace. Second, traditional IR baselines
such as BM25 and dense retrieval with MiniLM-L6-v2 embeddings. We deliberately use the com-
pact MiniLM (all-MiniLM-L6-v2; 22.7M parameters) as the retrieval backend to create challenging
conditions where learned strategies must compensate for weaker embeddings (Sun et al., 2024),
underscoring the practical value of our approach. Third, state-of-the-art baselines such as DeepRe-
trieval (Jiang et al., 2025), which introduces a 3B-parameter model for relevant query generation.
Additional discussion of baseline choices is provided in Appendix A.

4.3 RESULTS

Table 2: nDCG@10 scores (%) across classic infor-
mation retrieval tasks from the BEIR benchmark.
Standard deviations are omitted as they are negligible
(often zero). The best score on each dataset is shown
in bold. ∗Parameter counts approximated by Abacha
et al. 2025; †values imported from the original paper
due to unavailable model checkpoints.

Multi-Hop Single-Hop

Model/Retriever FEVER HotpotQA SciFact NFCorpus

General-Purpose LLMs

GPT-4.1 61.3 74.8 72.4 57.8
GPT-4.1-mini 58.8 71.3 72.3 56.5
GPT-4o (200B∗) 59.5 73.6 70.8 55.8
GPT-4o-mini (8B∗) 54.9 68.6 69.8 53.7

Llama 3.1-405B 64.8 73.8 70.3 56.2
Llama 3.1-70B 63.4 72.7 70.7 56.5
Llama 3.1-8B 59.7 68.1 70.2 55.3
Llama-3.2-3B 57.6 66.6 67.1 55.0

Qwen3-235B 60.2 72.5 72.6 57.0
Qwen2.5-7B 56.7 66.8 69.2 55.1
Qwen2.5-3B 54.7 64.8 67.2 56.3

Retrieval Baselines

BM25 (dense) 82.5 70.0 64.5 37.0
BM25 (sparse) 44.2 61.1 57.3 14.7
MiniLM-L6-v2 (22.7M) 42.5 48.7 50.5 39.9
DeepRetrieval†(3B) 84.1 70.1 66.4 37.7

Orion Models (ours)

Orion-Large(1.2B) 65.3 71.6 77.6 63.2
Orion-Medium(700M) 63.3 68.5 71.1 60.5
Orion-Small(350M) 57.7 64.1 70.9 60.5

Classic information retrieval bench-
marks. On BEIR tasks (Table 2,
nDCG@10), we observe distinct perfor-
mance patterns across fact-checking sce-
narios. For scientific verification like
SciFact, our approach performs competi-
tively with baselines, while on FEVER we
achieve comparable results to LLMs but
trail specialized retrievers like DeepRe-
trieval (84.1%) and BM25 dense (82.5%).
This divide suggests that learned search
strategies show benefits when domain ex-
pertise is required, though lexical match-
ing remains effective. Our models also
show consistent performance on biomed-
ical tasks like NFCorpus where traditional
dense methods struggle.

Reasoning-intensive retrieval tasks.
BRIGHT (Table 3) shows varied perfor-
mance patterns across reasoning domains.
Our overall average compares favorably
to baselines, with notable performance
on coding tasks where we achieve 32.9%
on Pony while trailing BM25 dense on
LeetCode. We observe consistent results
across the theorem-based category, with
Orion-Medium achieving the highest
score on AoPS, despite no math or coding
training data. These results suggest that learned search strategies transfer across complex reasoning
scenarios.

5 DISCUSSION

Table 4: Multi-turn search performance
of Orion-Large on BRIGHT (nDCG@10).
SFT nearly doubles performance over Base
(+9.2–14.8%), while GRPO yields only
modest additional gains (+1–2%).

Orion Models

Method 1.2B 700M 350M

Base 0.104 0.098 0.062
SFT 0.207 0.195 0.154
GRPO 0.212 0.199 0.156

Does RL help beyond SFT? A central question for
Orion is whether RL delivers benefits that go beyond
what SFT alone provides. This is most clearly illustrated
on BRIGHT, where base retrievers perform poorly, un-
derscoring that static embedding similarity cannot sus-
tain multi-turn search (Table 4). SFT nearly doubles
performance by teaching models to produce structured
<think> and <search query> sequences, but this
scaffolding primarily induces mechanistic turn-taking
without real strategy: once an initial trajectory goes
astray, the model rarely recovers (Figure 2). Adding
GRPO produces only modest topline gains (Table 4), yet
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Table 3: nDCG@10 scores (%) on reasoning-intensive retrieval tasks from the BRIGHT bench-
mark: biology (Bio.), earth science (Earth.), economics (Econ.), psychology (Psy.), robotics (Rob.),
stack overflow (Stack.), sustainable living (Sus.), LeetCode (Leet.), Pony, AoPS, TheoremQA with
question retrieval (TheoQ.) and with theorem retrieval (TheoT.). “Avg.” denotes the macro average
score across 12 datasets. Standard deviations are omitted as they are negligible (often zero). The
best score on each dataset is shown in bold. ∗Parameter counts approximated by Abacha et al. 2025.

StackExchange Coding Theorem-based

Model/Retriever Bio. Earth. Econ. Psy. Rob. Stack. Sus. Leet. Pony AoPS TheoQ. TheoT. Avg.
General-Purpose LLMs

GPT-4.1 39.7 40.9 24.9 33.2 17.9 14.9 29.1 20.1 14.9 4.4 19.9 7.8 22.1
GPT-4.1-mini 38.0 38.4 26.2 32.8 18.6 14.0 29.1 21.2 10.2 4.1 19.9 7.3 21.2
GPT-4o (200B∗) 30.4 35.6 20.7 30.3 16.6 11.5 22.0 18.9 14.5 2.6 10.7 5.7 18.3
GPT-4o-mini (8B∗) 27.0 31.7 16.7 31.7 14.4 13.3 26.1 17.1 10.8 3.6 10.3 3.2 16.7

Llama 3.1-405B 36.6 35.1 21.3 29.6 14.0 12.4 22.6 18.2 6.2 1.1 13.2 2.5 18.3
Llama 3.1-70B 32.6 36.8 21.8 29.7 16.1 13.7 24.2 21.3 5.5 1.1 14.5 3.2 18.0
Llama 3.1-8B 32.2 32.4 21.7 26.7 15.5 10.6 22.3 15.0 5.1 2.3 10.7 1.4 16.7
Llama-3.2-3B 23.4 28.2 16.8 23.2 12.0 10.3 18.6 13.8 4.8 0.7 6.7 0.7 13.6

Qwen3-235B 43.4 38.8 22.8 33.1 20.4 14.9 30.4 18.0 12.1 3.7 18.8 7.0 21.8
Qwen2.5-7B 25.6 26.4 15.8 25.4 11.7 10.5 21.4 16.4 10.2 2.1 10.5 4.4 15.4
Qwen2.5-3B 22.0 25.6 14.5 21.7 11.7 12.3 16.8 17.6 5.9 2.2 10.8 1.3 13.5

Retrieval Baselines

BM25 (dense) 18.1 27.5 15.7 12.6 13.2 19.3 15.2 24.2 7.7 6.5 10.4 4.8 14.6
BM25 (sparse) 7.7 14.1 10.3 6.3 9.7 9.4 9.1 12.8 0.4 1.0 2.8 0.0 7.0
MiniLM-L6-v2 (22.7M) 16.7 20.5 11.6 12.1 12.3 7.8 14.0 20.9 1.5 2.7 6.5 0.5 11.1

Orion Models (ours)

Orion-Large (1.2B) 37.8 41.8 23.5 26.8 18.5 21.7 31.5 23.2 32.9 5.8 25.9 13.3 25.2
Orion-Medium (700M) 33.9 39.4 25.1 26.7 19.6 20.9 26.9 23.3 30.9 7.3 25.4 11.4 24.2
Orion-Small (350M) 31.3 34.3 21.1 25.7 19.0 22.2 24.2 16.8 24.4 5.7 20.1 9.8 21.2

these small improvements mask more significant behavioral shifts. Recall rises more noticeably (See
Table 9), reflecting broader coverage of relevant documents and more stable trajectories across runs.
Most crucially, RL induces backtracking behavior: as shown in Figure 2, Orion-Large with GRPO
exhibits a drastic increase in backtracking compared to Orion-SFT. This echoes recent findings that
RL often imparts capabilities rather than large static metric gains (Shao et al., 2024). In Orion, the
induced capability is adaptive recovery, that is, knowing when and how to pivot during multi-turn
search. While SFT provides the scaffolding, RL equips models with the strategic ability to use it
effectively.

Table 5: nDCG@10 performance of
different search behaviours on BRIGHT.
Bold values indicate the best-performing
behaviour.

Algorithm BRIGHT

Early-Success Validator 0.175
Wrong-Direction Specialist 0.173
Greedy Hill Climber 0.169
Best-First Hypothesis Selector 0.168
Exploitation-Heavy Validator 0.166
Depth-First Driller 0.166
Multi-Beam Parallel 0.149
Adaptive Context Learner 0.140
Random Walk Wanderer 0.140
Breadth-First Explorer 0.113

Does Behavioral Diversity in Synthetic Data Matter?
Here, We ask what kinds of behaviors should be encoded
in synthetic trajectories if models are to acquire effective
search strategies. Cross-dataset comparisons reveal that no
single algorithm consistently dominates (Tables 7, 8). In-
stead, effectiveness is tightly coupled to task structure. On
BRIGHT, where reasoning errors quickly cascade, recov-
ery mechanisms such as backtracking and validation are
indispensable (Table 5). In contrast, multi-hop fact veri-
fication tasks like FEVER & HotpotQA benefit from ex-
ploratory behaviors that uncover complementary evidence
spans, more granular results are presented in Appendix D.3.

Taken together, these results underscore a central insight:
robust retrieval competence does not arise from mastering a
single tactic, but from the ability to orchestrate exploration,
exploitation, and recovery as complementary tools, deploying each in contextually appropriate ways.
In line with classic IR theory, the “right” behavior is not universal but contingent on the evidence
landscape and error tolerance of each benchmark (Vakkari, 1999; 2001; Sutcliffe & Ennis, 1998).
Our findings extend this principle to multi-turn neural search, showing that adaptability across be-
havioral archetypes is itself the capacity that models must learn.
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Figure 2: We present further behavioral analysis of Orion-Large on BRIGHT: (a) demonstrates
how successful queries distribute across search turns for different models, while (b) illustrates the
proportion of queries with unchanged rankings across turns, indicating repetitive search patterns and
the inability to overcome search stagnation. (c) measures backtracking behavior by counting queries
where rankings (r) deteriorate then recover (ri−1 > ri < ri+1), while (d) shows search query
length distribution, demonstrating our models generate relatively succinct search queries. Results
for Orion-Small and Orion-Medium variants are provided in Appendix D.3.

Should models learn to fail better in retrieval? Retrieval intelligence is not only about early
success but about failing productively. In manual inspection, we noticed that general-purpose LLMs
often fall into “revolving loops,” repeating near-identical queries without escape. Orion shares this
vulnerability, but more often manages to break free-pivoting with substantive reformulations rather
than shallow lexical edits. This qualitative difference shows up quantitatively: proprietary models
exhibit high rank stagnation (Figure 2b), while Orion’s lower stagnation reflects more active in-the-
moment recovery. GRPO further strengthens this behavior by increasing backtracking (Figure 2c),
signaling a greater willingness to revisit failed directions when initial searches falter.

Yet failure is a double-edged sword. Recovery that comes too late, or occurs too often, distorts
the distribution of successful turns (Figure 2a), with later steps yielding diminishing returns. This
coincides with excessive looping but also reflects the inherent difficulty of later turns, underscoring
the tension between resilience and efficiency. Similar dynamics appear on FEVER and HotpotQA
(Appendix Figure D.3), where Orion again shows higher backtracking and lower stagnation than
GPT-4.1 and Qwen2.5. These patterns suggest that effective models must balance recovery capabil-
ities with efficiency, learning to backtrack strategically while avoiding excessive course-correction
that impedes overall progress. Future training strategies should target this balance directly, reward-
ing decisive recovery while penalizing shallow repetition.

6 CONCLUSION

In summary, Orion shows that retrieval intelligence is not a function of scale but of strategy.
By combining synthetic trajectories, reinforcement learning, and beam search, compact models
(350M–1.2B) learn to detect failure, redirect search, and recover systematically—capabilities that
emerge from targeted behavioral training rather than massive parameter counts. Despite being hun-
dreds of times smaller than prevailing LLMs, Orion matches or surpasses them across six bench-
marks, excelling on reasoning-heavy datasets like BRIGHT. For production systems, this means that
reliable, cost-efficient retrieval no longer requires expensive controllers: compact models trained on
diverse behaviors suffice. The broader lesson is clear—the future of retrieval lies in models that
know how to search, not just in building ever-larger models.

7 ETHICS STATEMENT

This work investigates methods for improving information retrieval through adaptive search strate-
gies in compact models. The research does not involve human subjects, sensitive personal data,
or deployment in high-risk domains. All datasets used are publicly available retrieval benchmarks
(e.g., BEIR, BRIGHT, FEVER, SciFact, HotpotQA, NFCorpus, MS MARCO) that contain curated,
non-personal text.
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The primary societal benefit of this work is efficiency: Orion demonstrates that strong retrieval
performance can be achieved with models several hundred times smaller than existing systems.
This reduces energy consumption and compute cost, lowering barriers to research and deployment.
It also enables broader access to effective retrieval without requiring reliance on proprietary LLMs.

At the same time, retrieval systems can amplify biases present in training data or surface harmful
content. While Orion focuses on adaptive search strategies rather than corpus construction, we ac-
knowledge that our methods inherit dataset biases and limitations. Future work should investigate
fairness-aware training objectives and evaluate adaptive retrieval across diverse cultural and linguis-
tic contexts.

Finally, although our experiments are limited to static academic benchmarks, real-world deployment
of retrieval models must carefully consider privacy, misinformation risks, and potential misuse.
By framing retrieval competence as strategy rather than scale, our work seeks to promote more
transparent and resource-conscious directions for information systems.
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A DIFFERENCE BETWEEN ORION AND PREVIOUS WORK

Orion addresses a fundamentally different challenge from most existing retrieval enhancement meth-
ods. While prior work has largely focused on static improvements to retrievers or on leveraging ex-
ternal search infrastructure, we study how compact models can adaptively decide what to search for
next during inference. This shift in focus changes the nature of the baselines and the comparisons
that matter.

Reasoning-aware retrievers and rerankers illustrate this contrast. Approaches such as Rea-
sonIR(Shao et al., 2025), RADER (Das et al., 2025), or Rank1 (Liu et al., 2025) augment retrieval
by designing better training objectives, mining harder negatives, or refining rankings over a fixed
candidate set. Yet these methods remain bound to a single-shot paradigm: once the initial query is
issued, the system has no mechanism to backtrack from failed hypotheses or to explore new search
directions. Orion instead operates at a different layer of the problem, the exploration process it-
self, by modeling how to reformulate queries across turns. These directions are not competitive but
complementary: reasoning-aware retrievers improve how queries and documents are encoded, while
Orion determines what to search for next. In fact, Orion’s strategies can be layered on top of strong
retrievers like ReasonIR or RADER, replacing the reliance on costly GPT-4o rewrites for multi-turn
search.

A second line of related work involves systems that rely on production search engines, such
as Search-R1 (Jin et al., 2025). These methods delegate the hardest parts of retrieval to mature

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

infrastructures, web-scale corpora, continuously updated indexes, and heavily optimized ranking
algorithms. Orion is deliberately studied under a more constrained setting: a fixed, offline corpus
and a lightweight retriever (MiniLM-L6-v2). Within this environment, success cannot be attributed
to superior infrastructure; instead, the model must genuinely learn strategies of multi-step reasoning,
hypothesis refinement, and recovery from errors.

The most direct comparisons arise against models explicitly designed for iterative information
seeking. State-of-the-art agentic systems such as GPT-4.1, GPT-4o, Llama 3.1-3.1-405B, Qwen3-
235B serve as natural baselines, as they possess the reasoning capabilities needed to engage in
multi-turn retrieval. DeepRetrieval (Jiang et al., 2025) is our closest methodological neighbor. Like
Orion, it applies RL to retrieval, confirming that RL can improve search. However, its focus lies
on unsupervised query generation via PPO, while Orion models full trajectories, assigns structured
rewards at the turn level, and integrates reasoning spans to guide exploration. In this sense, their
work validates the importance of adaptive retrieval, but differs in execution.

Finally, the scale comparison underscores Orion’s contribution. Despite being only 1.2B parameters,
Orion consistently outperforms models 200-400× larger on five of six benchmarks. For reference,
DeepRetrieval reports efficiency gains over GPT-4o with a 3B model. Orion matches or surpasses
those results with a model 2.5× smaller, while directly competing with the largest reasoning-capable
systems. Moreover, Orion appears to generalize across out-of-distribution datasets without requir-
ing dataset-specific retraining, in contrast to DeepRetrieval, where separate models are trained for
each domain. This efficiency and robustness together demonstrate that adaptive search, when ex-
plicitly modeled, can both close the gap to far larger models and broaden applicability across diverse
retrieval settings.

B DETAILED ORION METHODOLOGY

B.1 SYNTHETIC TRAJECTORY GENERATION

Ultra-Feedback Pool Construction We collected multi-turn search behaviors from 8 language
models (GPT-4.1, GPT-4.1-mini, GPT-4o, GPT-4o-mini, Llama 3.1-3.1-405B, Llama 3.1-8B, Llama
3.2-3B, Qwen2.5-7B) across 4 retrieval datasets (FiQA, HotpotQA, MS Marco, SciFact). Each
model performed 5-turn iterative retrieval on the same user queries, creating a diverse pool of search
behaviors.

For each user query qi, we obtained from each model Mj :

• Search traces (refined queries): {qi,j,t}5t=1 (search queries per turn)

• Thinking traces: {ϕi,j,t}5t=1 (reasoning for turn t: initial planning for t = 1, reflection +
planning for t > 1)

• Retrieval results: {Ri,j,t}5t=1 (top-k documents retrieved for query qi,j,t)

• Performance metrics: {cosi,j,t, ranki,j,t}5t=1 (cosine similarity to target, ground truth rank)

The flow structure is: ϕi,j,t → qi,j,t → R(qi,j,t)→ ϕi,j,t+1 → qi,j,t+1

This creates an ultra-feedback pool U = {(q0, {(ϕi,j,t, qi,j,t, Ri,j,t, cosi,j,t, ranki,j,t)})} containing
diverse search patterns for each query. While, we use a unified think-sequence generator, context
from ultra-feedback source models and system-prompt minimal edit requirement force the diversity
from the original model’s reflections & planning to be retained while still producing semantically
coherent think sequences on a new thread of search queries.
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B.2 SYNTHETIC SEARCH BEHAVIORS

Below, we summarize the synthetic search behaviors that form the basis of our synthetic data gen-
eration process.

Table 6: Synthetic search behaviors used in our framework. Each behavior represents a distinct strat-
egy, spanning systematic exploration (e.g., breadth-first, depth-first), adaptive refinement (e.g., adap-
tive context learning, hill climbing), and validation approaches (e.g., early-success, exploitation-
heavy). Together, these archetypes illustrate how models can navigate, adapt, and coordinate across
diverse search pathways.

Behavior What It Does Example

Adaptive Context
Learner (Pawar
et al., 2016)

Learns from search results and
adds relevant keywords from
retrieved documents

Query: “climate change” → sees
papers mention “carbon
emissions” → next query: “climate
change carbon emissions”

Random Walk
Wanderer
(Pearson, 1905)

Explores randomly in different
directions without a clear plan

“solar panels” → “renewable
energy” → “wind turbines” →
“energy storage” (jumping around
topics)

Breadth-First
Explorer (Moore,
1959)

Systematically covers all related
topics before going deeper

First: “AI applications”, “AI
ethics”, “AI history” → then dive
deeper into each area

Depth-First
Driller (Lucas,
1882)

Goes deep into one direction until
exhausted, then backtracks

“machine learning” → “neural
networks” → “deep learning” →
“transformers” → “attention
mechanisms” (keeps drilling
down)

Wrong-Direction
Specialist (Ertmer
& Newby, 1996)

Recognizes when searches are
getting worse and explains why

“Looking for Python tutorials but
keep finding snake facts - my
query is too ambiguous”

Early-Success
Validator
(Haarnoja et al.,
2018)

Recognizes good results early and
sticks with successful approaches

First query works well → “This is
giving me relevant papers, let me
refine this direction further”

Exploitation-
Heavy Validator
(Even-Dar &
Mansour, 2001)

Keeps optimizing successful
queries without trying new
approaches

Found good results with “deep
learning NLP” → keeps refining:
“deep learning natural language
processing”, “deep learning text
analysis”

Greedy Hill
Climber (Selman
& Gomes, 2006)

Always picks the next query that
seems like the biggest
improvement

Tests multiple query variations and
always picks the one that got the
best results

Best-First
Hypothesis
Selector (Korf,
1999)

Manages multiple search ideas and
picks the most promising one to
pursue

Has 3 search directions, evaluates
which is working best, focuses on
that one

Multi-Beam
Parallel (Steinbiss
et al., 1994)

Runs several different search
strategies at the same time

Simultaneously searches “climate
data”, “weather patterns”, and
“temperature trends”
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B.3 GRPO ALGORITHMS

We present our GRPO training and reward algorithms in Algorithms 2 and 3 below.

Algorithm 2 GRPO-based Retrieval Training

Require: Dataset D, policy πθ, reference πref, retrieverR, group size G, horizon Tmax

1: for all q ∈ D do
2: Initialize history H1 ← ∅
3: for t = 1 to Tmax do
4: Sample G candidate actions: (ϕ(i)

t , q
(i)
t ) ∼ πθ(· | q0, Ht)

5: for i = 1 to G do
6: r

(i)
t ← R(q

(i)
t )

7: R(i) ← reward function(r
(i)
t )

8: end for
9: A(i) ← R(i) − 1

G

∑
j R

(j)

10: θ ← θ − η∇θ

[
− 1

G

∑
i A

(i) log πθ(a
(i)
t | q0, Ht) + βDt

KL(πθ∥πref)
]

11: Sample i∗ ∝ R(i)

12: Ht+1 ← Ht ∪ {(ϕ(i∗)
t , q

(i∗)
t , r

(i∗)
t )}

13: if success(r(i
∗)

t ) then
14: break
15: end if
16: end for
17: end for

Algorithm 3 Turn-level Reward Computation in GRPO-based Retrieval

Require: Current context ctxt, group size G, corpus C, retrieverR, top-k size K
1: Initialize lists: {θt,i, qt,i, Rt,i}Gi=1
2: for i = 1 to G do
3: Sample think segment: θt,i ∼ πθ(· | ctxt)
4: Sample search query: qt,i ∼ πθ(· | ctxt, θt,i)
5: Retrieve documents: Dt,i = R(qt,i)
6: Compute evaluation metrics:

simt,i = max
d∈Dt,i

sim(qt,i, d), rrank
t,i = rank of document achieving maximum similarity

7: Normalize similarity and rank:

σ(simt,i) =

{
simt,i, if simt,i ≥ 0

(simt,i + 1)/2, otherwise
, ρ(rrank

t,i ) =

{
1− rrank

t,i /|C|, rrank
t,i <∞

0, otherwise

8: Compute reward: Rt,i = 0.5 · σ(simt,i) + 0.5 · ρ(rrank
t,i )

9: end for
10: Select best generation:

i∗ = argmax
i

Rt,i, θ∗t = θt,i∗ , q∗t = qt,i∗ , D∗
t = top-k of Dt,i∗

11: Update context for next turn:

ctxt+1 = ctxt ∪ {θ∗t , s∗t ,D∗
t }

12: return queries {qt,i}Gi=1, think generations {θt,i}Gi=1, top-k documents D∗
t , and rewards

{Rt,i}Gi=1
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C DETAILED EXPERIMENTAL SETUP

C.1 MODEL SPECIFICATIONS AND TRAINING DETAILS

Base Model Architecture Our Orion models are built on the LFM2 architecture, which employs a
hybrid design combining 10 double-gated short-range LIV convolution blocks and 6 grouped query
attention (GQA) blocks. The architecture uses a vocabulary size of 65,536 tokens with bfloat16
precision and supports context lengths up to 32,768 tokens. All models were pre-trained on approx-
imately 10 trillion tokens with knowledge distillation from LFM1-7B as the teacher model.

Synthetic Data Generation Models Our ultra-feedback pool was constructed using eight diverse
language models across three families:

• GPT Family: GPT-4.1-mini, GPT-4o, GPT-4o-mini
• Llama Family: Llama 3.1-405B, Llama 3.1-70B, Llama 3.1-8B, Llama 3.2-3B
• Qwen Family: Qwen2.5-7B

Each model performed 5-turn iterative retrieval on the same user queries from training splits, cre-
ating diverse search behaviors. For each query qi, we obtained from each model Mj : search
traces {qi,j,t}5t=1, thinking traces {ϕi,j,t}5t=1, retrieval results {Ri,j,t}5t=1, and performance met-
rics {cosi,j,t, ranki,j,t}5t=1.

Training Hyperparameters Supervised fine-tuning employed AdamW optimizer with learning
rate 5 × 10−5, weight decay 0.01, and fixed learning rate schedule. Gradient clipping was applied
with maximum norm 1.0. For GRPO training, we used group size G = 4, KL regularization coeffi-
cient β = 0.1, and reward shifting parameter ϵ = 0.2.

Structural Token Masking During training, we apply differential masking to struc-
tural tokens. End tokens (</think>, </search query>) were included as gen-
eration targets, while content within <user query>...</user query> and
<top k response>...</top k response> spans was masked. Start tokens (<think>,
<search query>) were also masked to focus learning on reasoning content and query
formulation rather than structural markers.

C.2 DATASET CONSTRUCTION

Synthetic Data Distribution Our 100K training corpus maintains balanced representation with
each dataset contributing exactly 25%:

• MS Marco: 25K samples – web search queries
• SciFact: 25K samples – scientific claim verification
• HotpotQA: 25K samples – multi-hop reasoning
• FEVER: 25K samples – fact-checking

GRPO training used a concentrated 40K subset (10K per dataset) selected for diversity and reasoning
complexity.

Behavioral Archetype Distribution Our synthetic data incorporates 10 distinct search behaviors,
each contributing equally (10% each), these are discussed in detail in Appendix B.2. Each archetype
implements distinct exploration-exploitation strategies, from systematic coverage to failure recovery
patterns.

C.2.1 RETRIEVAL ENVIRONMENT CONFIGURATION

Dense Retrieval Backend In information retrieval settings, there are two primary approaches:
sparse methods like BM25 that rely on exact term matching and statistical weighting, and dense
methods that encode queries and documents into continuous vector representations for semantic
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Table 7: nDCG@10 scores of different search behaviors across 12 BRIGHT domains. Perfor-
mance varies notably by category, with stronger results in StackExchange domains than in coding
or theorem-based tasks.

StackExchange Coding Theorem-based

Algorithm Bio. Earth. Econ. Psy. Rob. Stack. Sus. Leet. Pony AoPS TheoQ. TheoT.

Adaptive Context Learner 0.209 0.281 0.189 0.255 0.139 0.130 0.155 0.162 0.045 0.037 0.074 0.016
Random Walk Wanderer 0.201 0.216 0.148 0.202 0.145 0.105 0.153 0.178 0.190 0.040 0.084 0.019
Breadth-First Explorer 0.181 0.214 0.147 0.178 0.106 0.077 0.165 0.093 0.070 0.046 0.084 0.005
Depth-First Driller 0.254 0.307 0.206 0.241 0.155 0.122 0.239 0.198 0.134 0.041 0.091 0.020
Wrong-Direction Specialist 0.225 0.314 0.166 0.275 0.162 0.144 0.213 0.186 0.234 0.039 0.103 0.022
Early-Success Validator 0.261 0.313 0.232 0.262 0.154 0.156 0.213 0.169 0.164 0.035 0.115 0.040
Exploitation-Heavy Validator 0.264 0.337 0.205 0.294 0.159 0.157 0.179 0.174 0.096 0.027 0.092 0.041
Greedy Hill Climber 0.238 0.325 0.205 0.308 0.155 0.157 0.203 0.203 0.104 0.039 0.079 0.036
Best-First Hypothesis Selector 0.244 0.317 0.206 0.265 0.146 0.163 0.244 0.169 0.129 0.034 0.090 0.029
Multi-Beam Parallel 0.217 0.266 0.189 0.253 0.149 0.156 0.186 0.112 0.136 0.060 0.077 0.031

Table 8: nDCG@10 performance of different search behaviours across FEVER, HotpotQA, NFCor-
pus, and SciFact. Bold values indicate the best-performing behaviour for each dataset.

Multi-Hop Single-Hop

Algorithm FEVER HotpotQA SciFact NFCorpus

Early-Success Validator 0.495 0.260 0.680 0.505
Wrong-Direction Specialist 0.495 0.537 0.697 0.543
Greedy Hill Climber 0.363 0.209 0.637 0.502
Best-First Hypothesis Selector 0.383 0.371 0.656 0.515
Exploitation-Heavy Validator 0.383 0.203 0.633 0.489
Depth-First Driller 0.574 0.566 0.670 0.538
Multi-Beam Parallel 0.347 0.290 0.634 0.474
Adaptive Context Learner 0.213 0.160 0.645 0.486
Random Walk Wanderer 0.557 0.651 0.656 0.536
Breadth-First Explorer 0.552 0.601 0.642 0.547

similarity matching. For all our experiments, we use dense retrieval with MiniLM-L6-v2 embed-
dings, which despite being a compact model (22.7M parameters) provides fast semantic search
while leaving room for improvement on BEIR subsets and BRIGHT, demonstrating that learned
search strategies can compensate for suboptimal retrieval backends (Thakur et al., 2021; SU et al.,
2025).

C.3 IMPLEMENTATION AND HARDWARE INFRASTRUCTURE

All experiments were conducted on NVIDIA H100 SXM GPUs with 80GB HBM3 memory us-
ing asynchronous SQL-based dense retrieval. Training used 8×H100 GPUs per node, 128 vCPUs
(Intel Sapphire Rapids), and 1.6TB system memory. Models were trained with Hugging Face’s
transformers library. For inference and evaluation, we used the OpenAI API for GPT mod-
els, the Together AI API for Llama 3.1-405B, and vLLM for all others. MiniLM-L6-v2 (384-dim
vectors) was used as the dense retriever across all datasets and baselines.
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Table 9: Ablation results of different SFT training strategies on BRIGHT, FEVER, and HotpotQA.
Metrics: nDCG@10 (N@10), Recall@100 (R@100), Mean Reciprocal Rank (MRR), and Suc-
cess@10 (S@10).

BRIGHT FEVER HotpotQA

Model N@10 R@100 MRR S@10 N@10 R@100 MRR S@10 N@10 R@100 MRR S@10

Base Models

LFM2-1.2B 0.104 0.152 0.089 0.164 0.435 0.684 0.377 0.627 0.545 0.499 0.507 0.692
LFM2-700M 0.098 0.141 0.084 0.153 0.405 0.632 0.352 0.580 0.500 0.451 0.464 0.636
LFM2-350M 0.062 0.080 0.053 0.095 0.284 0.456 0.243 0.418 0.376 0.328 0.345 0.490

SFT (Model Souping)

LFM2-1.2B 0.207 0.279 0.176 0.321 0.634 0.869 0.583 0.811 0.686 0.627 0.662 0.805
LFM2-700M 0.195 0.277 0.166 0.306 0.629 0.873 0.577 0.808 0.675 0.619 0.652 0.793
LFM2-350M 0.154 0.232 0.131 0.244 0.566 0.820 0.514 0.745 0.633 0.587 0.608 0.755

SFT (Curriculum Learning)

LFM2-1.2B 0.196 0.271 0.167 0.302 0.622 0.861 0.574 0.791 0.674 0.620 0.653 0.788
LFM2-700M 0.187 0.269 0.161 0.290 0.620 0.867 0.570 0.795 0.667 0.615 0.645 0.782
LFM2-350M 0.146 0.224 0.125 0.230 0.557 0.812 0.507 0.730 0.624 0.581 0.601 0.739

SFT (Random Shuffling)

LFM2-1.2B 0.195 0.271 0.167 0.302 0.622 0.861 0.574 0.791 0.674 0.620 0.653 0.788
LFM2-700M 0.187 0.269 0.161 0.290 0.620 0.867 0.570 0.795 0.667 0.615 0.645 0.782
LFM2-350M 0.144 0.222 0.124 0.226 0.551 0.806 0.502 0.720 0.620 0.578 0.599 0.733

SFT (No-Thinking)

LFM2-1.2B 0.187 0.275 0.161 0.292 0.576 0.842 0.527 0.750 0.660 0.619 0.637 0.782
LFM2-700M 0.180 0.272 0.152 0.290 0.557 0.835 0.506 0.739 0.655 0.609 0.630 0.778
LFM2-350M 0.140 0.221 0.122 0.222 0.526 0.820 0.474 0.713 0.615 0.585 0.592 0.738

SFT (No Special Tokens)

LFM2-1.2B 0.191 0.267 0.164 0.296 0.617 0.857 0.568 0.785 0.669 0.618 0.648 0.783
LFM2-700M 0.185 0.268 0.159 0.288 0.616 0.864 0.566 0.790 0.662 0.613 0.640 0.777
LFM2-350M 0.138 0.218 0.119 0.217 0.542 0.800 0.495 0.710 0.612 0.574 0.591 0.725

D ADDITIONAL ABLATIONS

D.1 EFFECT OF STRUCTURAL MARKERS ON MULTI-TURN SEARCH

A key design question is whether explicit structural markers (</think>, </search query>)
are necessary for learning multi-turn search strategies, or whether models can develop these capa-
bilities through implicit behavioral patterns alone.

We compare models trained with full structural scaffolding against those trained without special
tokens, using random shuffling as the baseline training approach for both conditions to ensure fair
comparison. As shown in Table 9 and Table 10, the results reveal surprisingly modest performance
differences. On BRIGHT, removing structural tokens drops nDCG@10 from only 19.5% to 19.1%
- a mere 0.4 percentage point difference. Similar minimal gaps appear across other benchmarks:
FEVER (62.2% vs 61.7%) and HotpotQA (67.4% vs 66.9%).

This robustness suggests that models learn search patterns primarily from the underlying behavioral
content in our synthetic data rather than relying on explicit formatting cues. The consistent alterna-
tion between reasoning and querying in our training trajectories provides sufficient implicit structure
for models to internalize multi-turn search dynamics. While structural tokens improve training inter-
pretability and debugging, they are not strictly necessary for developing adaptive search behaviors,
but we consider them lightweight scaffolds. They segment reasoning (</think>), and querying
(</search query>) into clear units, making the process more interpretable and giving the model
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Table 10: Ablation results of different SFT training strategies on MS Marco, NFCorpus, and Sci-
Fact. Metrics: nDCG@10 (N@10), Recall@100 (R@100), Mean Reciprocal Rank (MRR), and
Success@10 (S@10).

MS Marco NFCorpus SciFact

Model N@10 R@100 MRR S@10 N@10 R@100 MRR S@10 N@10 R@100 MRR S@10

Base Models

LFM2-1.2B 0.727 0.372 0.758 0.907 0.538 0.292 0.506 0.726 0.630 0.897 0.576 0.812
LFM2-700M 0.712 0.333 0.735 0.915 0.524 0.289 0.492 0.708 0.616 0.865 0.567 0.787
LFM2-350M 0.506 0.239 0.499 0.698 0.481 0.244 0.448 0.665 0.559 0.800 0.502 0.742

SFT (Model Souping)

LFM2-1.2B 0.836 0.454 0.875 0.954 0.582 0.328 0.560 0.753 0.723 0.930 0.688 0.850
LFM2-700M 0.814 0.435 0.855 0.938 0.564 0.313 0.543 0.737 0.703 0.924 0.665 0.840
LFM2-350M 0.828 0.430 0.855 0.969 0.535 0.306 0.518 0.691 0.683 0.908 0.641 0.829

SFT ( Curriculum Learning)

LFM2-1.2B 0.831 0.453 0.871 0.946 0.572 0.322 0.554 0.734 0.713 0.922 0.681 0.835
LFM2-700M 0.814 0.435 0.855 0.938 0.554 0.310 0.536 0.719 0.697 0.923 0.662 0.830
LFM2-350M 0.823 0.426 0.851 0.961 0.526 0.301 0.510 0.676 0.675 0.901 0.636 0.815

SFT (Random Shuffling)

LFM2-1.2B 0.831 0.453 0.871 0.946 0.571 0.321 0.554 0.733 0.713 0.922 0.681 0.835
LFM2-700M 0.814 0.435 0.855 0.938 0.554 0.310 0.536 0.719 0.697 0.923 0.662 0.830
LFM2-350M 0.823 0.426 0.851 0.961 0.523 0.299 0.509 0.669 0.672 0.899 0.633 0.808

SFT (No-Thinking)

LFM2-1.2B-FT 0.777 0.431 0.814 0.922 0.555 0.325 0.535 0.724 0.704 0.927 0.657 0.862
LFM2-700M-FT 0.866 0.478 0.921 1.000 0.556 0.311 0.536 0.715 0.687 0.928 0.649 0.829
LFM2-350M-FT 0.846 0.432 0.887 0.977 0.515 0.311 0.491 0.679 0.659 0.910 0.617 0.809

SFT (No Special Tokens)

LFM2-1.2B 0.809 0.444 0.848 0.922 0.567 0.319 0.549 0.728 0.708 0.920 0.676 0.829
LFM2-700M 0.798 0.422 0.833 0.915 0.551 0.309 0.533 0.715 0.695 0.923 0.659 0.827
LFM2-350M 0.804 0.414 0.829 0.946 0.518 0.297 0.506 0.662 0.666 0.893 0.627 0.801

a simple signal of when to reflect versus retrieve. In this sense, they are less about performance gains
and more about providing structure and readability.

D.2 EFFECT OF DIFFERENT TRAINING STRATEGIES ON SFT

We analyze how different ways of incorporating behavioral archetypes influence the search strate-
gies learned through SFT. We compare four approaches: (1) random shuffling of archetypes across
training examples, (2) curriculum learning that progresses from simple reformulations to complex
multi-hypothesis strategies, and (3) model souping that merges specialist models.

Model Souping Following SmolLM3’s & Llama-Nemotron-Super’s approach that uses MergeKit
to combine behavioral specialists with exponential weighting favoring sophisticated strategies (Bak-
ouch et al., 2025; Goddard et al., 2024; Bercovich et al., 2025), we combine specialist models trained
on individual behavioral archetypes. The merging process uses exponential weighting where be-
havioral archetypes appearing later in the curriculum sequence receive higher weights in the final
combination. This weighting scheme reflects the assumption that more complex search behaviors
(such as multi-hypothesis coordination) are more valuable than simpler reformulation strategies.
The technique allows combining the strengths of different search strategies without additional train-
ing overhead, creating a unified model that exhibits diverse search behaviors while emphasizing the
most sophisticated approaches.
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Results Tables 9 and 10 show that model souping consistently delivers the strongest performance.
On BRIGHT, the 1.2B model reaches 32.1% nDCG@10, compared to 19.6% for curriculum learning
and 19.5% for random shuffling. This suggests that merging specialists preserves distinct behavioral
competencies more effectively than joint training, where optimization dynamics may cause interfer-
ence across archetypes. By contrast, curriculum learning provides little improvement over random
shuffling. Once behavioral diversity is explicitly encoded through archetype design, temporal order-
ing contributes far less than diversity itself. This finding challenges the common assumption that
careful pedagogical sequencing is required for complex skill acquisition, pointing instead to only
behavioral diversity as the key driver.

D.3 EFFECT OF LEARNING COMPONENTS ON SEARCH BEHAVIOR

Learning components in our framework refer to three distinct stages that each contribute to search
behavior: SFT, GRPO, and inference-time beam search. We analyze how different search behaviors
manifest across these training stages. To understand how different synthetic behavioral archetypes
contribute to overall performance, we conducted individual algorithm studies using the ten distinct
search behaviors detailed in Appendix B.2 and Table 6. These behavioral archetypes, ranging from
systematic exploration strategies like breadth-first and depth-first search to adaptive refinement ap-
proaches like hill climbing and context learning, form the foundation of our SFT stage and allow us
to isolate the contribution of specific search strategies across different retrieval scenarios.

The results reveal specialization patterns across task domains (Tables 7 and 8). On StackExchange
domains, exploitation-heavy strategies consistently dominate, with Exploitation-Heavy Validator
achieving top-3 performance in 5 of 7 BRIGHT topics and reaching 33.7% on Earth Sciences.
Conversely, these same exploitation strategies perform poorly on multi-hop reasoning tasks, where
exploration-based approaches like Random Walk Wanderer excel (65.1% on HotpotQA vs bottom-
tier StackExchange performance). Most remarkably, Wrong-Direction Specialist shows perfect task
specialization, ranking first on fact verification (SciFact: 69.7%) and coding tasks (Pony: 23.4%)
while remaining mediocre on traditional Q&A. These patterns suggest that effective multi-turn
search requires different behavioral strategies for different reasoning demands: systematic explo-
ration for multi-hop reasoning, focused exploitation for domain-specific Q&A, and error-recognition
capabilities for verification tasks. The clear algorithmic specialization observed across domains val-
idates our approach of training models on diverse behavioral archetypes, as no single search strategy
proves universally effective across the breadth of retrieval scenarios. This finding aligns with prior
literature on domain-specific information retrieval systems that demonstrate improved performance
through task-adapted search strategies (Vakkari, 1999; 2001; Sutcliffe & Ennis, 1998).

The behavioral patterns become more nuanced when examining how training stages affect search
dynamics across our complete model pipeline (Figures 3 and 4). Turn-wise success distributions
(Figure 3a) show the proportion of successful queries resolved at each turn, representing completion
counts of successful traces divided by total successful traces. A higher Turn 1 proportion indicates
that when models do succeed, they tend to succeed immediately, while more distributed patterns sug-
gest models that can recover and succeed even after initial failures. Importantly, these distributions
only reflect the composition of successful queries and do not indicate overall performance levels.
Our Orion models show more distributed success patterns compared to general-purpose LLMs, in-
dicating an ability to continue searching effectively rather than giving up after early unsuccessful
attempts. Rank stagnation analysis (Figure 3b) further supports this interpretation, with our models
showing substantially lower stagnation rates (2-4%) compared to general-purpose LLMs (4-8%),
indicating reduced tendency toward repetitive, ineffective query patterns. Across all three model
sizes, GRPO training shows reduced stagnation rates compared to SFT variants, indicating that RL
may help models avoid repetitive query patterns, while the inference-time beam search approach
(Main) demonstrates more varied turn-wise success distributions, showing the ability to recover.

The training stage effects become particularly evident in backtracking behavior and query efficiency
metrics (Figure 4). Backtracking analysis (Figure 4a) reveals that our Main variants show the high-
est backtracking rates, particularly for Orion-700M and Orion-350M, indicating that inference-time
beam search encourages more exploratory behavior that occasionally requires course-correction.
Among the trained variants, GRPO consistently outperforms SFT across all model sizes in back-
tracking capability, with GRPO showing higher backtracking rates than SFT, suggesting that RL
may be enabling more adaptive search strategies that can recover from suboptimal directions. How-
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Figure 3: Search behavior analysis across models: (a) demonstrates how successful queries dis-
tribute across search turns for different models, while (b) illustrates the proportion of queries with
unchanged rankings across turns, indicating repetitive search patterns and the inability to overcome
search stagnation.

ever, the pattern is not uniform across sizes, Orion-1.2B Main shows lower backtracking than its
GRPO variant. Query length distributions (Figure 4b) analyze the distribution of search queries as
produced by the different models and reveal that our SFT and GRPO variants consistently generate
much shorter queries, with medians substantially lower than external LLMs like Llama-3.1-405B
which produces highly variable and verbose queries. The Main variants show slightly higher query
lengths, potentially due to inference-time beam search encouraging more elaborate query formula-
tions during the exploration process. Notably, the 1.2B model demonstrates the most stable behavior
across training stages, with SFT, GRPO, and Main variants producing similar query length distri-
butions, suggesting that larger model capacity leads to more consistent succinct query generation
patterns regardless of the specific training approach.

D.4 EFFECT OF DATA SCALING IN GRPO TRAINING

We evaluated the impact of training data size on GRPO by experimenting with 10K, 40K, and 80K
total datapoints. Performance improved as the dataset grew, with 40K datapoints providing a strong
balance between effectiveness and efficiency. While 80K datapoints yielded slightly better results,
the gains were marginal relative to the increased training time and computational complexity, so we
report results using 40K datapoints in the main experiments.
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Figure 4: Adaptive search capabilities: (c) measures backtracking behavior by counting queries
where rankings (r) deteriorate then recover (ri−1 > ri < ri+1), while (d) shows search query length
distribution across all three Orion model variants, demonstrating our models generate relatively
succinct search queries.

D.5 EFFECT OF Z-SCORE NORMALIZATION ON REWARD COMPUTATION

We experimented with normalizing rewards via corpus-level z-scores to account for varying score
distributions across the four corpora in the GRPO dataset. While this approach aimed to stabilize
learning by standardizing reward magnitudes, it did not improve performance and was therefore not
used in the final model.

From Table 11, we observe that adding more data slightly improves most metrics, with the largest
gains seen when combined with z-score normalization. However, the improvement is marginal
(∼1–2%) compared to the baseline, suggesting 40K datapoints without normalization strikes the
best balance between efficiency and performance.
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Table 11: Ablation results on the effect of data scale in GRPO. Metrics: nDCG@10 (N@10), Re-
call@100 (R@100), Mean Reciprocal Rank (MRR), and Success@10 (S@10).

BRIGHT FEVER HotpotQA

Model N@10 R@100 MRR S@10 N@10 R@100 MRR S@10 N@10 R@100 MRR S@10

Data Size Ablations

LFM2-1.2B-10k-data 0.208 0.276 0.175 0.327 0.631 0.871 0.579 0.809 0.685 0.629 0.661 0.805
LFM2-1.2B-40k-data 0.212 0.290 0.180 0.335 0.643 0.873 0.591 0.822 0.692 0.631 0.666 0.815
LFM2-1.2B-80k-data 0.217 0.285 0.183 0.342 0.643 0.879 0.590 0.823 0.692 0.631 0.667 0.813

Z-Score Normalization Ablations

LFM2-1.2B-10k-data-z-score 0.211 0.279 0.178 0.334 0.636 0.872 0.583 0.816 0.691 0.630 0.666 0.813
LFM2-1.2B-40k-data-z-score 0.216 0.292 0.186 0.329 0.642 0.873 0.589 0.821 0.692 0.632 0.667 0.817

Table 12: Ablation results on the effect of z-score normalization in GRPO reward computation. Met-
rics: nDCG@10 (N@10), Recall@100 (R@100), Mean Reciprocal Rank (MRR), and Success@10
(S@10).

MS Marco NFCorpus SciFact

Model N@10 R@100 MRR S@10 N@10 R@100 MRR S@10 N@10 R@100 MRR S@10

Data Size Ablations

LFM2-1.2B-10k-data 0.845 0.436 0.884 0.969 0.591 0.321 0.571 0.757 0.711 0.929 0.673 0.848
LFM2-1.2B-40k-data 0.842 0.478 0.881 0.992 0.583 0.328 0.554 0.765 0.732 0.925 0.693 0.870
LFM2-1.2B-80k-data 0.840 0.459 0.889 0.953 0.594 0.324 0.567 0.769 0.707 0.928 0.669 0.842

Z-Score Normalization Ablations

LFM2-1.2B-10k-data-z-score 0.867 0.462 0.939 0.969 0.585 0.324 0.566 0.748 0.720 0.928 0.685 0.848
LFM2-1.2B-40k-data-z-score 0.874 0.465 0.913 1.000 0.578 0.321 0.552 0.759 0.719 0.934 0.675 0.870

E COMPLETE SET OF EVALUATION RESULTS

Tables 13 and 14 report the full evaluation results across all datasets, including additional metrics
beyond the main text. For each metric, we show the “+/-” relative to a strong baseline (e.g., GPT-
4.1 or Llama 3.1-405B), chosen per dataset to provide a clear and interpretable measure of Orion’s
improvements over established models.
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Table 13: Complete evaluation results for BRIGHT, FEVER, and HotpotQA. Metrics: Suc-
cess@10 (S@10), nDCG@10 (N@10), Recall@100 (R@100), and Mean Reciprocal Rank (MRR).
∗Parameter counts approximated by Abacha et al. 2025; †values not evaluated due to unavailable
model checkpoints.

BRIGHT (macro average) FEVER HotpotQA

Model S@10 nDCG@10 R@100 MRR S@10 nDCG@10 R@100 MRR S@10 nDCG@10 R@100 MRR

General Purpose LLMs

GPT-4.1 0.351 0.222 0.323 0.187 0.826 0.613 0.869 0.548 0.898 0.748 0.696 0.719
GPT-4.1-mini 0.335 0.213 0.320 0.180 0.794 0.588 0.851 0.527 0.867 0.713 0.663 0.681
GPT-4o (200B∗) 0.307 0.191 0.294 0.163 0.803 0.595 0.854 0.533 0.889 0.736 0.678 0.704
GPT-4o-mini (8B∗) 0.276 0.172 0.278 0.147 0.752 0.549 0.828 0.490 0.842 0.686 0.646 0.651

Llama 3.1-405B 0.304 0.192 0.311 0.162 0.847 0.648 0.890 0.588 0.896 0.738 0.692 0.706
Llama 3.1-70B 0.295 0.186 0.306 0.159 0.840 0.634 0.885 0.573 0.886 0.727 0.678 0.693
Llama 3.1-8B 0.277 0.172 0.278 0.146 0.808 0.597 0.860 0.533 0.840 0.681 0.642 0.646
Llama 3.2-3B 0.228 0.141 0.241 0.123 0.788 0.576 0.850 0.512 0.818 0.666 0.621 0.632

Qwen3-235B 0.345 0.218 0.325 0.184 0.809 0.602 0.859 0.541 0.881 0.725 0.665 0.691
Qwen2.5-7B 0.268 0.165 0.262 0.139 0.779 0.567 0.849 0.504 0.818 0.668 0.623 0.635
Qwen2.5-3B 0.222 0.135 0.251 0.117 0.751 0.547 0.834 0.488 0.793 0.648 0.614 0.617

Retrieval Baselines

BM25 (dense) 0.272 0.097 0.315 0.127 0.827 0.578 0.935 0.540 0.954 0.619 0.827 0.802
BM25 (sparse) 0.194 0.070 0.225 0.091 0.689 0.482 0.850 0.450 0.867 0.563 0.752 0.729
DeepRetrieval (3B)† N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Orion Models (ours)

Orion-Large
0.375

(+0.024)
0.249

(+0.027)
0.338

(+0.015)
0.210

(+0.023)
0.859

(+0.012)
0.653

(+0.005)
0.892

(+0.002)
0.598

(+0.010)
0.848

(-0.050)
0.716

(-0.032)
0.652

(-0.044)
0.690

(-0.029)

Orion-Medium
0.426

(+0.075)
0.257

(+0.035)
0.406

(+0.083)
0.209

(+0.022)
0.862

(+0.015)
0.633

(-0.015)
0.906

(+0.016)
0.573

(-0.015)
0.836

(-0.062)
0.685

(-0.063)
0.634

(-0.062)
0.659

(-0.060)

Orion-Small
0.338

(-0.013)
0.241

(+0.019)
0.378

(+0.055)
0.201

(+0.014)
0.804

(-0.043)
0.577

(-0.071)
0.865

(-0.025)
0.518

(-0.070)
0.809

(-0.089)
0.641

(-0.107)
0.611

(-0.085)
0.615

(-0.104)

Table 14: Complete evaluation results for MS Marco, NFCorpus, and SciFact. Metrics: Suc-
cess@10 (S@10), nDCG@10 (N@10), Recall@100 (R@100), and Mean Reciprocal Rank (MRR).
∗Parameter counts approximated by Abacha et al. 2025; †values not evaluated due to unavailable
model checkpoints.

MS Marco NFCorpus SciFact

Model S@10 nDCG@10 R@100 MRR S@10 nDCG@10 R@100 MRR S@10 nDCG@10 R@100 MRR

General Purpose LLMs

GPT-4.1 0.992 0.877 0.463 0.944 0.753 0.578 0.322 0.547 0.876 0.724 0.950 0.680
GPT-4.1-mini 0.992 0.857 0.470 0.890 0.738 0.565 0.332 0.536 0.886 0.723 0.950 0.675
GPT-4o (200B∗) 1.000 0.861 0.465 0.888 0.736 0.558 0.326 0.533 0.880 0.708 0.937 0.658
GPT-4o-mini (8B∗) 0.992 0.844 0.439 0.883 0.728 0.537 0.314 0.503 0.858 0.698 0.941 0.654

Llama 3.1-405B 0.992 0.849 0.469 0.897 0.722 0.562 0.333 0.547 0.869 0.703 0.957 0.656
Llama 3.1-70B 0.977 0.839 0.464 0.873 0.726 0.565 0.339 0.545 0.875 0.707 0.946 0.658
Llama 3.1-8B 0.992 0.838 0.432 0.869 0.740 0.553 0.324 0.523 0.871 0.702 0.952 0.653
Llama 3.2-3B 0.977 0.846 0.436 0.904 0.739 0.550 0.313 0.520 0.831 0.671 0.933 0.624

Qwen3-235B 1.000 0.870 0.477 0.940 0.745 0.570 0.327 0.543 0.884 0.726 0.950 0.679
Qwen2.5-7B 0.992 0.848 0.459 0.902 0.733 0.551 0.321 0.524 0.863 0.692 0.936 0.643
Qwen2.5-3B 0.962 0.823 0.445 0.875 0.737 0.563 0.322 0.545 0.847 0.672 0.930 0.621

Retrieval Baselines

BM25 (dense) 0.945 0.835 0.537 0.884 0.769 0.374 0.264 0.575 0.808 0.661 0.888 0.614
BM25 (sparse) 0.756 0.642 0.398 0.691 0.641 0.267 0.211 0.471 0.703 0.560 0.793 0.529
DeepRetrieval (3B)† N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Orion Models (Ours)

Orion-Large
0.992

(-0.008)
0.849

(-0.021)
0.482

(+0.005)
0.887

(-0.053)
0.804

(+0.051)
0.632

(+0.054)
0.338

(+0.016)
0.603

(+0.056)
0.882

(+0.006)
0.776

(+0.052)
0.957

(+0.007)
0.735

(+0.055)

Orion-Medium
0.984

(-0.016)
0.890

(+0.020)
0.443

(-0.034)
0.926

(+0.014)
0.809

(+0.056)
0.605

(+0.027)
0.336

(+0.014)
0.573

(+0.026)
0.854

(-0.022)
0.711

(-0.013)
0.934

(-0.016)
0.665

(-0.015)

Orion-Small
0.977

(-0.023)
0.874

(+0.004)
0.476

(-0.001)
0.946

(+0.006)
0.782

(+0.029)
0.577

(-0.001)
0.323

(+0.001)
0.545

(-0.002)
0.866

(-0.010)
0.709

(-0.015)
0.932

(-0.018)
0.671

(-0.009)
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F ORION EXAMPLE

Table 15: Case study on HotpotQA: Orion successfully backtracks and recovers the target document,
while GPT-4o loops without recovery. Considering top-5 as success.

Question: In which professional wrestling promotion did Randy Savage perform, after he left
the World Wrestling Federation?
Ground Truth: World Championship Wrestling (WCW)

Orion-1.2B (successful)
Rank progression: 12 → 13 → 8 → 1 (success)

Backtracking: Yes

<think> As I embark on this search, I need to initialize my beam search strategy to explore
the various paths related to Randy Savage’s career after leaving the World Wrestling Federa-
tion. My first step is to establish multiple hypotheses about where he might have transitioned
his career. I can envision several beams: one focusing on his post-FW career, another on his
professional wrestling promotions, and a third on his overall career trajectory. I will start by for-
mulating a beam that directly addresses the question of his post-FW career. With this structured
approach, I can formulate my search query: R̈andy Savage professional wrestling promotion
after leaving World Wrestling Federation.̈ This query encapsulates my intent to explore the
connections between his career changes and the specific promotions he was involved with after
leaving the WWE.”</think>
<search> Randy Savage professional wrestling promotion after leaving World Wrestling
Federation </search>
<top-k> Doc mentions Randy Savage in WCW. </top-k>

<think> As I delve into the next phase of my search, I need to acknowledge the parallel beam
that focuses on R̈andy Savage professional wrestling promotion after leaving World Wrestling
Federation.T̈his beam presents a promising avenue, as it directly addresses the user’s query
about the specific promotion where Randy Savage left the WWF. However, I must also con-
sider the broader context of his career trajectory and the various promotions he may have been
involved with.</think>
<search> Randy Savage WCW career </search>
⇒ Final Rank: 1, success.

GPT-4o (failed)
Rank progression: 7 → 11 → 11 → 8 → 7 (failure)

Backtracking: No

<think> I will identify key terms related to Randy Savage’s career post-World Wrestling
Federation, focusing on wrestling promotions active during that period. Then, I will search for
documents containing these terms, emphasizing semantic similarity to capture relevant infor-
mation. </think>
<search> Randy Savage wrestling promotion after World Wrestling Federation
</search>

<top-k> Docs mention WWF history but not WCW. </top-k>

<think> The search results did not directly address Randy Savage’s career immediately after
leaving the World Wrestling Federation. I will refine the search query to focus specifically on
Randy Savage’s next wrestling promotion, emphasizing his transition timeline and the major
promotions he joined. </think>
<search> Randy Savage wrestling promotion after WWF transition timeline </search>
⇒ Final Rank: 7, target not found.
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G PROMPTS

Baselines: Planning Phase (Turn N )

This is an information retrieval task. Your goal is to find documents that are relevant to this
target query: “{original query}”

Turn 1 Analysis: {turn 1 think resp}
Turn 1 Search Query: {turn 1 search q}
Top-5 results:
{turn 1 results text}

Turn 2 Analysis: {turn 2 think resp}
Turn 2 Search Query: {turn 2 search q}
Top-5 results:
{turn 2 results text}

.

.

.

Turn {n− 1} Analysis: {turn n− 1 think resp}
Turn {n− 1} Search Query: {turn n− 1 search q}
Top-5 results:
{turn n− 1 results text}

Analyze the search results from your previous query. Write exactly 2 sentences (under 40
words total) explaining what happened and how you plan on improving the search query to
better retrieve the target document based on the user query.

Baselines: Search Query Phase (Turn N )

This is an information retrieval task. Your goal is to find documents that are relevant to this
target query: “{original query}”

Turn 1 Analysis: {turn 1 think resp}
Turn 1 Search Query: {turn 1 search q}
Top-5 results:
{turn 1 results text}

Turn 2 Analysis: {turn 2 think resp}
Turn 2 Search Query: {turn 2 search q}
Top-5 results:
{turn 2 results text}

.

.

.

Turn {n− 1} Analysis: {turn n− 1 think resp}
Turn {n− 1} Search Query: {turn n− 1 search q}
Top-5 results:
{turn n− 1 results text}

Turn {n} Analysis: {turn n planning response} Based on your analysis above, generate
a new search query to find the target documents. Output ONLY the search query text. No
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explanations, no quotes, no formatting, no XML tags, no JSON - just plain text for semantic
similarity search.

Orion: Complete Operation (Turn N )

<user query>{original query}</user query>

<think>{turn 1 think response}</think>

<search query>{turn 1 search query}</search query>

<top k response>
1. {turn 1 result 1 text}
2. {turn 1 result 2 text}
3. {turn 1 result 3 text}
4. {turn 1 result 4 text}
5. {turn 1 result 5 text}
</top k response>

<think>{turn 2 think response}</think>

<search query>{turn 2 search query}</search query>

<top k response>
1. {turn 2 result 1 text}
2. {turn 2 result 2 text}
3. {turn 2 result 3 text}
4. {turn 2 result 4 text}
5. {turn 2 result 5 text}
</top k response>

.

.

.

<think>{turn n− 1 think response}</think>

<search query>{turn n− 1 search query}</search query>

<top k response>
1. {turn n− 1 result 1 text}
2. {turn n− 1 result 2 text}
3. {turn n− 1 result 3 text}
4. {turn n− 1 result 4 text}
5. {turn n− 1 result 5 text}
</top k response>

<think>{turn n think response}</think>

<search query>
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