
Under review as a conference paper at ICLR 2023

NOISE+2NOISE: CO-TAUGHT DENOISING AUTOEN-
CODERS FOR TIME-SERIES DATA

Anonymous authors
Paper under double-blind review

ABSTRACT

We consider the task of learning to recover clean signals given only access to1

noisy data. Recent work in computer vision has addressed this problem in the2

context of images using denoising autoencoders (DAEs). However, to date DAEs3

for learning from noisy data have not been explored in the context of time-series4

data. DAEs for denoising images often rely on assumptions unlikely to hold in the5

context of time-series, e.g., multiple noisy samples of the same example. Here,6

we adapt DAEs to cleaning time-series data with noisy samples only. To recover7

the clean target signal when only given access to noisy target data, we leverage a8

noise-free auxiliary time-series signal that is related to the target signal. In addi-9

tion to leveraging the relationship between the target signal and auxiliary signal,10

we iteratively filter and learn from clean samples using an approach based on co-11

teaching. Applied to the task of recovering carbohydrate values for blood glucose12

management, our approach reduces noise (MSE) in patient-reported carbohydrates13

from 72g2 (95% CI: 54,93) to 18g2 (13,25), outperforming the best baseline (MSE14

= 33g2 (27,43)). We demonstrate strong time-series denoising performance, ex-15

tending the applicability of DAEs to a previously under-explored setting.16

1 INTRODUCTION17

Background. Denoising autoencoders (DAEs) (Vincent et al., 2008) have been used to accurately18

denoise various signals, including medical images (Gondara, 2016), ECG signals (Xiong et al.,19

2016), and power system measurements (Lin et al., 2019). With respect to time-series data, DAEs20

have been used for forecasting (Romeu et al., 2015), classification (Zheng et al., 2022) and impu-21

tation (Zhang & Yin, 2019), but generally require access to clean samples at training and do not22

provide de-noised outputs. In many real-world settings, clean samples are unavailable at training.23

Work in computer vision has addressed this problem through extensions that either require paired24

samples (Lehtinen et al., 2018) or rely on patch-based analysis (Krull et al., 2018; Laine et al., 2019;25

Xie et al., 2020; Batson & Royer, 2019). Similar approaches do not extend to time-series data,26

where paired samples rarely exist and patch-based techniques do not apply. Beyond approaches that27

rely on paired samples or patch-based analyses, researchers have recently proposed techniques that28

utilize knowledge of the noise distribution to recover the clean signal. These approaches either use29

the properties of the distribution to recover the clean signal after training on noisy data (Kim & Ye,30

2021; Moran et al., 2019), or rely on the noise having low expectation and variance compared to the31

signal, in which case a model trained on noisy data can approximate one trained on clean data (Xu32

et al., 2020). While these approaches may be considered in a time-series setting (and are treated as33

baselines here), their applicability is limited as noise in time-series settings is rarely weak or known.34

Our Contribution. In light of this gap, we adapt denoising autoencoders for time-series data. Our35

approach, ‘Noise+2Noise’, learns to map a noisy target signal to a clean signal given only noisy36

samples and an auxiliary clean signal. Inspired by work in image denoising (Lehtinen et al., 2018;37

Xu et al., 2020), we add additional noise to the noisy target signal during training and attempt to38

recover the original noisy signal. Provided that the noise has low expectation and variance, a network39

trained in this manner can learn to recover the true signal because the noise will minimally impact40

the expected value of the output of the network (Xu et al., 2020). The auxiliary signal is input41

along with the target signal into a denoising autoencoder, which allows our network to leverage the42

relationship between the auxiliary and target signals. To address the fact that the signal to noise43

ratio might not be weak, we adapt a co-teaching approach to train two DAEs (Jiang et al., 2018;44

1



Under review as a conference paper at ICLR 2023

Han et al., 2018). We use this approach to identify the cleaner samples; the most likely low-noise45

samples are identified as the low-loss samples of the other model and used for backpropagation.46

This co-teaching approach has never been applied to de-noising in a time-series or any other setting.47

It has also never been utilized in a continuous output setting. By adapting this co-teaching approach48

to DAEs, we provide a solution to denoising in this novel (time-series) setting.49

Real-world Inspiration. Disparate levels of noise across variables are common in data streams.50

Measurement reliability can vary across sensors, from essentially noiseless to highly corrupted.51

Throughout this work we take inspiration from a real-world problem affecting millions in the US:52

blood glucose management. Individuals with diabetes monitor several variables over time, including53

their blood glucose, insulin administrations, and carbohydrate intake. Blood glucose when measured54

by a continuous glucose monitor (CGM) has little noise, while the number of grams of carbohydrates55

in a meal are patient-reported, and, as a result, are often inaccurate. Recognizing the variation in the56

level of noise across signals in a data stream, we propose an approach that utilizes the more reliable57

variables (e.g., blood glucose) to update noisy variables like carbohydrates. Our approach aims to58

retrospectively correct measurements of patient-reported signals, like carbohydrates in the context59

of diabetes, which could lead to improved treatment decisions: patients can learn when they are60

over- or under-reporting and adjust in the future, ultimately improving health outcomes.61

2 RELATED WORK62

In denoising autoencoder training, a model input is corrupted and a network is tasked with recovering63

the original input. In this way, the network cannot learn the identity, unlike in basic autoencoder64

training (Vincent et al., 2008). Recent work in machine learning has focused on using DAEs to65

recover clean signals from only noisy signals. The vast majority of this work lies in image analysis66

and builds off of “noise2noise” (Lehtinen et al., 2018), an approach that uses multiple noisy instances67

of the same image to train a model to learn to denoise the image. Briefly, the approach relies on the68

fact that if the noise is mean zero, using a secondary noisy instance (besides the input image) as69

a target will produce a network that learns the clean image, in expectation, when enough training70

data is available. When paired samples are unavailable, others have proposed approaches based71

on exploiting patches sampled from the image (Krull et al., 2018; Laine et al., 2019; Xie et al.,72

2020; Batson & Royer, 2019), but these are not applicable to time-series data. Other approaches73

eschew relying on inter-variable relationships but rely heavily on a known noise function (Moran74

et al., 2019; Kim & Ye, 2021) or a low expectation and variance noise function (Xu et al., 2020).75

Our approach builds off of Xu et al. (2020), learning to reconstruct a noisy signal from only noisy76

samples of that signal, but in contrast to Moran et al. (2019) or Kim & Ye (2021), we do not make77

strong assumptions about the noise distribution. To get around these assumptions, we leverage an78

auxiliary signal and iteratively identify the cleaner samples within the dataset. Combined with the79

auxiliary signal these samples are used to train a DAE that treats these samples as ground truth.80

Our approach to denoising a noisy target signal by iteratively identifying clean samples is, in part,81

related to work in noisy-label learning. A common approach to learning from noisy labels involves82

identifying and reweighting samples with clean labels during training. Samples are filtered based83

on gradient values (Ren et al., 2020), Jacobian ranking(Mirzasoleiman et al., 2020) or some latent84

state (Lee et al., 2019; Wu et al., 2020). Co-teaching (Han et al., 2018), which builds off of mentor85

net (Jiang et al., 2018), is performed by training two networks in parallel. Each network is back-86

propgated using only samples within the current mini-batch for which the loss of the other network87

is lowest. Intuitively, samples with incorrect labels are likely to have higher loss and therefore be88

removed. Using two networks in parallel provides robustness to outliers and initially misclassified89

samples, which single-network boosting-style approaches are sensitive to. These approaches have90

been primarily explored in a supervised setting. In contrast, we consider an unsupervised setting in91

which labels are unavailable and, instead, the input signals themselves are corrupted. To the best of92

our knowledge, such a co-teaching approach has not been explored in the context of denoising.93

3 PROBLEM SETUP94

Problem Definition. Given a noisy target variable and a reliably measured auxiliary time-series, we95

aim to recover the true values of the target variable. We assume a relationship between the auxiliary96

2



Under review as a conference paper at ICLR 2023

Figure 1: ‘Noise+2Noise’. Sample selection is performed with each DAE’s output when given
the uncorrupted y signal, but backpropagation is performed on the model’s output when given a
corrupted y signal. The loss values of DAE1 are used to select the sample for backpropagation for
DAE2 and vice versa. PR(t) denotes the R(t)th percentile, where R(t) is a function of iteration t.

and target variables, and that some samples from the noise distribution associated with the target97

variable will be close to zero, although which samples is unknown in advance.98

Formalization. Let x ∈ R denote a sample of the target variable. Let n ∼ N , where n ∈ R99

denotes a random variable drawn from an unknown distribution N . Let b ∈ RT denote an auxiliary100

time-series that is related to x, such that a mapping f(b) → x exists. Given a sample y = x+n and101

b, we aim to learn to recover x.102

Assumptions. We assume that the distribution N is independent of both b and Y . We also assume103

that some values of n are near zero such that given training data with k samples {yi}ki=1 with noise104

values {ni}ki=1 and true signal values {xi}ki=1, there exists a subset S with sufficient size for training105

such that the mean and variance of ns∀s ∈ S are negligible compared to the mean and variance of106

xs∀s ∈ S. We assume that the distribution of low noise samples is such that they cover all regions107

of the input; i.e. that S does not exclude entire regions of Y . Finally, we assume that the relationship108

between b and x can be accurately captured with a recurrent neural network (RNN).109

4 METHODS110

Overview. Our method, ‘Noise+2Noise’ (N+2N), is summarized in Figure 1. We filter out noisy111

samples during training, refining the model parameters on selected samples of y estimated to have112

the least noise. These filtered samples are used to learn to denoise the signal. To identify the113

samples within a batch to use during training, y and b are passed to a DAE that outputs ỹ, or a114

de-noised y value. Assuming the DAE accurately reconstructs x, the loss L(ỹ, y) represents the115

expected error between y and x. Given a batch {yi}ni=1, we identify the subset of samples with116

values of L(ỹ, y) below the R(t)th percentile (where R(t) is an increasing function of iteration t).117

These ‘low-noise’ samples, yj∀j ∈ J , are then augmented with additional noise mj ∼ M and,118

along with corresponding b vectors, are input to the DAE, which outputs a reconstruction of yj :119

ŷj . We then backpropagate using the squared error between ŷj and yj . In this way, the DAE is120

trained on the samples estimated to have the least noise while utilizing the noisy signal as input121

without the susceptibility to learning the identity function that comes with standard auto-encoder122

training. Co-teaching is utilized in that two DAEs are used at each step (DAE1 and DAE2), and123

during training, the samples identified as low-loss by DAE1 are augmented and passed to DAE2124

for backpropagation, and vice-versa. This adds the benefit of ensembling and curtails sensitivity to125

outliers or incorrectly selected samples. We note that the auxiliary signal b is input to the model126

during both the sample selection and backpropagation steps. This allows our approach to function127

even when the variable of interest y is too noisy or low-dimension to be de-noised alone.128

3



Under review as a conference paper at ICLR 2023

129

Denoising Autoencoder. In our setup, additional noise (m) is added to y to produce z, a ‘doubly’130

noisy measurement of x. z and b are input to a network (henceforth denoted DAE) that outputs131

ŷ = DAE(z,b), and the network is trained to reconstruct y: loss is measured between y and ŷ.132

As shown by Xu et al. (2020), when the expectation and variance of the noise distribution N are133

negligible compared to those of the signal, the model parameters that minimize the loss between ŷ134

and y are very close to the optimal parameters of a model trained on clean data. Thus, provided the135

signal to noise level is high enough, we can pass y to DAE and expect a reduction in noise, with an136

output much closer to x, at inference time.137

Co-teaching DAEs. We do not expect the noise to be weak in general, but we do assume that138

some of the samples will be lower noise than others. We identify and train using these samples139

via an adapted co-teaching approach (Han et al., 2018). We utilize two DAEs, and for each, we140

backpropagate using only the samples for which the denoised y values from the other DAE are near141

the original y values. If the denoised y values approach x, we are then selecting samples for which142

the estimated noise n is lowest.143

Claim. When using co-teaching to train two DAEs (DAE1 and DAE2) in parallel, ỹ1 =144

DAE1(y,b) and ỹ2 = DAE2(y,b) approach x.145

Justification. Based on the main result ofXu et al. (2020), these values approximately equal x when146

a DAE is trained on a dataset where the expectation and variance of the signal are much greater than147

those of the noise. We have assumed that such a sub-sample exists in our dataset, and we hypothesize148

that co-teaching will select such a sub-sample. Note that because the noise n is independent of both149

y and b, any signal learned by DAE1 must be of the form DAE1(y,b) = g(x) + q, for some150

function g, where q is independent of all variables. The DAE might begin to learn a biased function151

of x; for example, if the noise distribution N is not mean-zero, a DAE might learn the function152

g′(x) = x + N̄ . We curtail this behavior by initializing the DAEs to output the identity function153

(y). Because the model is near the identity function g(x) = y early in training, if it began to learn154

a biased function such as g′, it would begin to output values g′(x) ≈ g′(y) = y + N̄ . These values155

would be further from the identity than if the model learned a non-biased function of x, which would156

in turn guide the model away from learning g′. By similar logic, the model would be encouraged to157

learn a non-biased function of x, the simplest of which is g(x) = x. This is only a conjecture, but158

in practice, we have found that this approach works well even when there is fairly substantial bias159

in the noise. We note that although the two DAEs are initialized to output the identity, their weights160

are otherwise random so they are not likely to converge to the same minima. We further prevent161

convergence by utilizing the co-teaching+ variant (see below).162

Sample selection. We select the samples with the lowest estimated noise to backpropagate with.163

If ỹ1 and ỹ2 approach each network’s estimated value of x, then DAE1’s estimate of n, the noise164

between x and y, is approximately y − ỹ1 (and similar for DAE2). For loss function L, we use165

L(ỹ1, y) and L(ỹ2, y) to select samples. Given a batch {yi}ni=1, at iteration t, we identify the166

subset of samples with values of L(ỹ1i , yi) below the R(t)th percentile as J1 = {j : L(yj , ỹ
1
j ) <167

PR(t)(L({yj}, {ỹ1j }))}, and similarly define J2 for DAE2. As in Han et al. (2018), we begin by168

training on the full sample. Over the course of training, as the DAEs are expected to become more169

accurate, we gradually reduce the sample. This prevents the memorization of noisy samples that can170

occur later in training. Hyper-parameter τ ∈ (0, 1) represents the maximum proportion of samples171

removed and Ek represents the iteration at which we stop increasing the proportion of samples172

removed. A linear decrease in sample size as a function of iteration t is implemented by using the173

lowest-loss R(t) = (1−Maximum( t
EK

τ, τ)) · 100% of samples for backpropagation.174

Training. Each DAE is trained on the samples for which the other network estimates that the noise175

is lowest: samples selected by DAE1 (yj∀j ∈ J1) are augmented with additional noise mj ∼ M176

to generate zj values. zj , along with corresponding b vectors, are input to DAE2, which outputs177

a reconstruction of yj : ŷ2j . We then backpropagate using the squared error between ŷ2j and yj .178

Similarly, we only use samples yj∀j ∈ J2, augmented with mj ∼ M , to backpropagate DAE1.179

By selecting samples based on L(ỹ, y) rather than based on L(ŷ, y), we are able to select a sample180

independent of secondary noise value m. Selecting samples dependent on m would be confounding181

because samples might then be selected based on how low the value of m is at the current iteration,182

rather than the value of n, which is hidden. Back-propagation is performed on an input that does not183

4



Under review as a conference paper at ICLR 2023

include clean y values, so the model is not likely to learn the identity function. Sample selection is184

always performed by the other DAE, so compared to boosting or other one-network approaches, our185

method is less sensitive to error propagation from wrongly selected samples early in training.186

Co-teaching+. We utilize co-teaching plus (Yu et al. (2019)), where samples for which the models187

disagree are selected for backpropagation. As a result, each model learns from the samples for188

which the other model’s estimates were better. This also prevents the models from learning from189

the samples that they agree upon, which prevents convergence, maintaining unique strengths in190

each model. We remove the σ% of samples for which the models’ outputs are closest (hereσ is a191

hyperparameter). This step is performed prior to the sample selection step: the σ% of samples for192

which the distance between ŷ1 and ŷ2 are lowest are removed, and then the remaining samples for193

which L(ỹ1, y) is lowest are used for the backpropagation of DAE2 and vice versa.194

5 REAL-WORLD PROBLEM SETUP: BLOOD GLUCOSE MANAGEMENT195

To explore the benefit of our proposed approach, we consider a real-world problem setup based196

on blood glucose management that inspired the setting described in Section 3. Nearly two million197

people in the US have type I diabetes and require insulin to maintain healthy glucose levels due to198

a pancreatic deficiency in insulin production. Because of this, they must deliver boluses of insulin199

through an injection or an insulin pump prior to eating to counteract the rise in blood sugar that re-200

sults from the ingestion of meals. Bolus amounts are calculated based on patient-reported estimates201

of carbohydrates. Carbohydrates and bolus insulin generally cause blood glucose values to increase202

or decrease after a delay of 30 minutes to an hour. In our setup, carbohydrates correspond to x203

values, glucose levels are b.204

Blood glucose forecasting and control have been extensively studied in the past (Silvia Oviedo,205

2016; Fox et al., 2020). Accurate models for blood glucose dynamics are critical to the devel-206

opment of algorithms for managing blood glucose in individuals with diabetes both in terms of207

patient-selected treatment options and automated solutions. Work in this field is popular largely be-208

cause the ubiquity of devices for measuring blood glucose and administering insulin make obtaining209

fairly clean measurements for those values straightforward. However, carbohydrates consumed are210

patient-reported and as a result are often inaccurate. This in turn leads to inaccurate doses of insulin211

and poor blood glucose management. Besides misestimation, there are other sources of inconsis-212

tency between recorded carbohydrate values and their effects on blood glucose. Variability in meal213

types is generally poorly captured, which is problematic because the effect of carbs on blood glucose214

can be moderated by how quickly a meal was consumed, or the amount of protein, fat and other nu-215

trients eaten. Additionally, the timing of a meal may not be recorded accurately. These factors alone216

make utilizing carbohydrate information difficult, even when carbs are accurately recorded. In an217

unsupervised setting, denoising approaches could learn representations of carbohydrate values that218

incorporate these other sources of variability. These representations could be more relevant to blood219

glucose management than the exact number of grams consumed. This could improve performance220

of forecast and control algorithms.221

6 EXPERIMENTAL SETUP222

We implement our approach in the context of learning to correct noisy patient-reported carbohydrate223

measurements. We compare performance to several baselines across real and simulated datasets.224

6.1 DATASETS225

We utilize two T1D-based datasets. The simulated dataset provides access to ground truth to which226

we can directly compare our method’s denoised outputs. The real dataset provides a more challeng-227

ing setting for quantifying the efficacy of our approach, but corresponds to real-world scenarios.228

Both datasets are publicly available and have been previously explored in the context of forecasting229

and control (Man et al., 2014; Xie, 2018; Marling & Bunescu, 2018; 2020). Both datasets consist230

of blood glucose, bolus (fast-acting) insulin, basal (slow-acting) insulin, and carbohydrate values.231

All variables were scaled to be between zero and one. For both datasets, time-series trajectories for232

each patient were split into windows of 2 hour length (T = 24 5-minute time points). We ignore233

5



Under review as a conference paper at ICLR 2023

windows where a carbohydrate occurs in anywhere but the first position, using only windows with234

no carbohydrates or carbohydrates at the beginning of the window during training. This means we235

also ignore windows with more than one carbohydrate present. In a real-world setting these values236

could be updated recursively, but we simplify our setting here.237

Simulated. Our primary analyses are performed on data generated with a commonly-used T1D238

simulator. We use the UVA-Padova simulator (Man et al., 2014) via a publicly available implemen-239

tation (Xie, 2018). For ten simulated individuals (the “adult” patients modeled in the simulator), we240

generated approximately 150 days worth of data each, in 30 day roll-outs of the simulator. Days241

where a patient either had more than 25 timepoints of glucose at the minimum value of 40, or more242

than 35 timepoints over 450 were thrown out for being non-realistic. The meal schedule used to243

generate simulated data was based on the Harrison-Benedict equation (Harris & Benedict, 1919) as244

implemented in (Fox et al., 2020). In our simulation, for all datasets generated, we used the default245

basal-bolus controller from the existing implementation of the simulator to administer insulin, but246

we delayed five sixths (randomly selected) of the bolus administrations up to 3.5 hours, with delay247

time randomly sampled from a uniform distribution. The delay allows for disentanglement between248

carbohydrate and bolus effects. The carbohydrate values serve as x values, while the CGM values249

output by the simulator serve as b values. Noise was added to carbs during data generation.250

We use noise proportional to the true carb value, as studies on the accuracy of carbe counting re-251

port errors relative to the total carbs consumed (Brazeau et al., 2012). Also based on Brazeau et al.252

(2012), we use a noise distribution with a negative bias, as the carbs were found to be more-often253

under-reported than not. We therefore set y = (1+N (−.25, .5))x. We then cap y below and above254

at 1 and 200 to keep values realistic. We consider additional noise distributions as sensitivity anal-255

yses. Bolus values were calculated based on the noisy carbohydrate values. Additionally, 20% of256

carbohydrates are not reported, to make the dataset more realistic, as missingness is commonplace.257

Real. This dataset includes both the OHIOT1DM 2018 and 2020 datasets, developed for the258

Knowledge Discovery in Healthcare Data Blood Glucose Level Predication Challenge (Marling &259

Bunescu, 2018; 2020). The data pertain to 12 individuals, each with approximately 10,000 5-minute260

samples for training and 2,500 for testing. 12% of glucose values are missing, but we do not include261

windows with missing glucose values. We do not include windows with more than one carbohydrate262

measurement in our analysis. We sum carbohydrates to the first timepoint if they are less than 15263

minutes apart to maximize the amount of usable data. We include only individuals with at least 100264

training carbohydrate measurements, as fewer than this are not sufficient for learning a model.265

6.2 BASELINES AND UPPER BOUND266

For all non-coteaching methods, we train two DAEs in parallel and report results on their averaged267

output for a fair comparison. We also note that all models receive the same auxiliary variables (blood268

glucose/ insulin) as input in an identical fashion.269

• CAE: An upper performance bound. This model is an autoencoder trained with clean data, which270

we would expect to perform better than any method without access to clean data.271

• NAC: Our first baseline. A DAE that treats the noisy data as clean which has been shown to272

perform well in low noise settings (Xu et al., 2020).273

• NR2N: Our second baseline is noisier2noise (Moran et al., 2019), which uses the known noise274

distribution to recover the clean signal. NR2N trains similarly to NAC, but at evaluation time a275

transform is used to recover the clean values (briefly, if the distribution of N is known and we set276

M = N , the model should learn to recover half of the noise so the value used at evaluation is 2ŷ−z).277

• SUP: Our motivating setting can be re-framed as a supervised learning problem: predict y (or x)278

values using b values as input. Depending on the noise distribution, it is possible that a model trained279

on noisy y values could learn to predict the correct x, using similar logic to that found in Lehtinen280

et al. (2018). We therefore use this supervised setting as a naive baseline. We simply input b to the281

same network used in the DAE setting and calculate loss as (ŷ − y)2 during training, but here the282

model has no information regarding y or z. As in the DAE setting, at test time we evaluate (ỹ−x)2.283

• SUPCT: We apply co-teaching to the supervised setting (SUP), to ensure that performance gains284

observed are due to the combination of DAEs and co-teaching, and not co-teaching alone. Here, the285

model is tuned and trained identically to N+2N, except the model does not receive y or z values.286

6



Under review as a conference paper at ICLR 2023

6.3 IMPLEMENTATION & TRAINING DETAILS287

Each DAE is implemented as a 2-layer bidirectional LSTM with 100 hidden units. The final hidden288

state is passed to a FC layer with a single output. The output of the model is added to the input289

value corresponding to y, so that the network is tasked with learning the error term rather than a290

complete reconstruction. This initializes the network’s output to be the identity (provided the output291

is initially low magnitude), which is useful for addressing biased data. Because we only aim to292

correct a single carbohydrate (y) value but use a time-based model, we set one dimension of the293

model input to be y for all timepoints. Blood glucose values b, bolus and basal insulin are input294

to the model as time-series. We also carry over bolus insulin values (which occur sparsely) to the295

end of the input window, to increase their impact on gradient calculations. We threshold the output296

of each DAE at 0, because carbohydrates (our x and y) values cannot be negative. For each co-297

teaching method and NR2N, we tune on a single subject’s validation data (adult#001) and use the298

found parameters for all further analyses. Tuning is described in Appendix A. At evaluation we299

report the result of the average correction learned by both networks when y values are given as input300

(i.e., where ỹi = DAEi(y,b), we report L(x, (ỹ1 + ỹ2)/2)).301

We split each dataset into training, validation and test sets used for evaluation purposes. For the302

simulated dataset, we use 80 days for training, 20 for validation, and 50 for testing. For the real303

dataset, we split the training data into 80% train and 20% validation. The held-out test data were304

used for evaluation only. We implement and train our models in Pytorch 1.9.1 with CUDA version305

10.2, using Ubuntu 16.04.7, a GeForce RTX 2080, an Adam optimizer (Kingma & Ba, 2014), and a306

batch size of 500. We use a learning rate of 0.01 and a weight decay of 10−7. We train for at least307

500 iterations, and then until validation performance does not improve for 50 iterations, selecting308

the model for which validation performance was best. For both datasets, we train and test a model on309

each individual and report across-individual averages. Such individual-specific models/evaluations310

are common in blood glucose control and forecasting (Silvia Oviedo, 2016), since dynamics vary311

greatly across individuals and individual-specific training data are typically available312

We perform co-teaching on samples containing non-zero y values only. However, when training all313

models (including baselines) we also pass zero-valued y samples (and their corresponding b values)314

through both DAEs and take loss equal to ŷ2 for these samples. We do this because there are many315

more samples with zero-valued carbohydrates than there are with positive values, and this allows316

the models to learn from this larger corpus. We report results on only positive-valued ys, because317

denoising is only applied to such values.318

For sample selection during co-teaching, we use mean squared percentage error (100%·((ŷ−y)/y)2)319

to avoid eliminating all high-valued y samples, as they are likely to have higher noise values. As a320

noise function during training, we use z = (1 +N (0, .5))Bern(.5)y, i.e. we add random noise to321

half of the samples so that the model can learn to utilize noisy z information, and zero-out the other322

half so that the model has to learn to distinguish zero from non-zero y values based on b alone.323

6.4 EVALUATION324

Simulated Data Metrics. When clean carbohydrate values are available, we use MSE between the325

cleaned carbs and true carbohydrate values as our metric to report the remaining noise (mean((x−326

ỹ)2), where ỹ = (ỹ1 + ỹ2)/2). The lower this value, the more noise has been removed. Although327

we assume that these data are not available at training time, we use them for evaluation. Since it can328

be difficult to interpret the meaning of a difference in MSE, we also consider a clinically motivated329

evaluation metric: time in range. Time in range is a measure of blood glucose management and330

varies with the accuracy of the carbohydrate measurements. The more accurate the carbohydrate331

estimates the more time an individual will spend ‘in range.’ Here, we run a simulation of the subject332

of interest with the default basal-bolus controller using bolus values calculated from the updated333

carbohydrate values, and report the proportion of time in the simulation that each individual spent334

with blood glucose values between 70 and 180, or the euglycemic/healthy range. This metric serves335

to indicate the real-world impact each approach might have. For both metrics, 95% confidence336

intervals are calculated for each subject using 1,000 bootstrap re-samples, and the average 2.5 and337

97.5 percentiles across subjects are reported.338

Sensitivity analyses. To evaluate our model under different noise assumptions, we repeat our analy-339

sis with multiple noise generation methods (x → y), without altering hyperparameters or our y → z340

7



Under review as a conference paper at ICLR 2023

noise function. We use various Gaussian and uniform distributions reported in Appendix B, which341

include zero and negative mean multiplicative and additive noise functions. We do not aim at a com-342

prehensive evaluation of all possible noise types, but rather we aim to include various distributions343

that are likely similar to those that might arise in our motivating domain.344

Real Data analysis. Without access to clean carbohydrate values at test time for the real dataset345

(unlike the simulated dataset), we evaluate the performance of our denoising approach based on346

a proxy. We take advantage of the fact that poorly estimated carbohydrates result in inaccurate347

bolus calculations, which result in poor blood glucose management. We expect that inaccurate348

carbohydrates estimates (large [x − y] values) result in the poor blood glucose management. For a349

model that has come close to estimating x correctly, we would observe a correlation between [ỹ−y]350

values and blood glucose control in the time period following a meal. We assess this with Correction-351

Risk-Correlation, henceforth referred to as CRC, defined as the Spearman correlation between the352

squared carbohydrate correction value ((ỹ − y)2) and the average Magni Risk (Magni et al., 2007)353

of blood glucose in the second hour following the carbohydrate. We use the Spearman correlation to354

account for non-linearities in the risk and correction value distributions. Magni risk is a measure of355

how far from a safe value blood glucose is; higher risk values correspond to blood glucose values that356

are either dangerously high or dangerously low. We use the second hour following the carbohydrate357

because the effects of the carbohydrate consumption and insulin bolus have not fully taken effect in358

the first hour. We calculate this correlation across all carbohydrates observed in all individuals. For359

validation purposes, we also calculate this metric for the simulated dataset.360

7 RESULTS AND DISCUSSION361

Through our experiments, we aim to answer the following questions. 1) Does our approach mean-362

ingfully reduce error across a variety of simulated individuals, compared to existing approaches? 2)363

Is our model robust to different domain-appropriate noise distributions? 3) Does our model show364

strong performance in real data, indicating accurate denoising?365

Table 1: Our approach outperforms the baselines with respect to all of the evaluation metrics and
across both SIM and REAL datasets, falling only 2% short of the upperbound w.r.t. the clinical
measurement of ‘Time in Range.’ 95% CIs are calculated from 1,000 bootstrap re-samples.

Model Remaining Carb MSE (g2,SIM) % Time in Range (SIM) SIM CRC (r,p) REAL CRC (r,p)

N/A-clean carb 0.00 (0.00, 0.00) 73.18 (72.49,73.88) N/A N/A
N/A-noisy carb 72.26 (54.16, 92.58) 65.43 (64.70,66.16) N/A N/A
CAE 6.96 (5.03, 9.18) 72.44 (71.76,73.11) 0.32, 4e-31 N/A

SUP 58.37 (45.11, 73.31) 64.59 (63.89,65.30) 0.04, 0.14 0.19, 3e-3
SUPCT 100.50 (84.12,118.40) 60.22 (59.43,60.94) 3e-3, 0.91 0.03, 0.61
NAC 36.40 (27.02, 46.95) 68.22 (67.53,68.93) 0.11, 1e-4 0.13, 0.05
NR2N 33.44 (26.59, 43.23) 68.79 (68.09,69.51) 0.11, 1e-4 0.13, 0.05
N+2N (Ours) 17.91 (12.61, 24.98) 71.24 (70.54,71.90) 0.19, 3e-11 0.22, 9e-4

Error Reduction for simulated data. Co-taught denoising autoencoders, N+2N, outperform base-366

lines in terms of noise reduction (MSE) (Table 1). N+2N reduces MSE to 18g2, but fall short of367

the value achieved by the clean-data DAE (7g2), as expected. CAE does not achieve perfect MSE,368

probably due to insufficient training data or to a small amount of noise in the CGM signal. Our369

approach’s reduction in noise is meaningful since it leads to significantly better time in range. Most370

methods offer an improvement in % time in range when used in a basal bolus controller, with base-371

lines increasing over the noisy value from 65% to 69%, and N+2N further improving performance372

to 71%, recovering 6% time in range out of a total of 8% lost when using noisy versus clean values.373

SUPCT performs worse than any other method including SUP, likely because without the noisy car-374

bohydrate measurement as input, co-teaching cannot learn the relationship between b and y as easily,375

and therefore does not identify the less corrupted samples during training. This results in essentially376

random sub-sample selection, hampering performance as less training data becomes available. SUP377

does not suffer from this problem because it utilizes the entire dataset for all iterations.378

Alternate noise assumptions. N+2N outperforms all baselines across the majority of noise dis-379

tributions (Figure 2). For zero-mean uniform multiplicative noise, NAC outperforms the proposed380

8



Under review as a conference paper at ICLR 2023

Figure 2: Performance on datasets with multiplicative (×) vs. additive (+), Normal (N ) vs. Uniform
(U ), and zero (0) vs. negative mean (−) noise functions. N+2N generally outperforms baselines.

approach. We hypothesize that NAC performs well in this setting because the expected value of the381

noise is zero and the variance is lower than in other settings (it is 33%, which is approximately 30g,382

compared to 75% in the multiplicative normal setting, or 40g and 60g in the additive noise settings,383

see Appendix B), which is the setting for which NAC has been shown to perform best. Of note, this384

analysis was carried out without additional tuning, demonstrating the resilience of our approach to385

varying noise assumptions. Across biased noised distributions, our proposed approach consistently386

outperforms all baselines. This resilience is likely due to our approach’s identity-initialized sample387

selection and a lack of dependence on matching M and N noise distributions.388

Experiments on Real Data. For the real dataset, N+2N outperforms all baselines with respect389

to CRC. For simulated data, we see that, without exception, models with lower remaining MSE390

after denoising have a higher or equal CRC. This indicates that our metric serves as a reasonable391

proxy for remaining error when true values are unavailable. Plots showing the components used to392

calculate CRC (magnitude of carbohydrate correction versus Magni risk an hour after the meal) can393

be found in Appendix C. Interestingly, the SUP baseline performs fairly well for this task on the real394

dataset. We hypothesize that this may be because carbohydrate measurements are so unreliable for395

this dataset that learning to predict them from scratch (without access to noisy values at test time) is396

sufficient. Four out of twelve individuals in the real dataset had too few carbohydrate measurements397

to be included in our analysis, indicating that more work would need to be done for our algorithm to398

be applicable to a broader population.399

8 CONCLUSIONS400

We propose a new approach to denoising, ‘Noise+2Noise’, that does not assume access to clean401

samples and applies to time-series data. Our approach leverages an auxiliary time-series that is re-402

lated to the target signal to help identify target samples with less noise. Our approach is the first to403

adapt co-teaching to de-noising. In the context of carbohydrate recovery for blood glucose manage-404

ment, compared to existing approaches, ‘Noise+2Noise’ leads to better signal reconstruction that is405

both statistically significant and clinically significant. While promising, our approach is not without406

limitations. Our primary analyses are on simulated data where ground truth labels are available, but407

in real datasets common evaluation metrics (e.g., MSE) do not apply and we must rely on proxies. As408

presented, our approach is designed for retrospective carbohydrate correction; more work is neces-409

sary to investigate its applicability to closer-to-real-time correction. While our approach shows clear410

significance for the individuals available, evaluation on a much larger population would be necessary411

prior to widespread adoption. Finally, while we have empirically shown that co-teaching appears to412

select a low-noise sample, we have not proven any statistical guarantees. Despite these limitations,413

we have demonstrated that is is feasible to correct a noisy variable without access to clean samples,414

expanding the utility of ideas the image analysis and noisy label learning to time-series reconstruc-415

tion. Applied to domains in which datastreams are composed of both individual-reported data and416

data measured from relioable sensors (e.g., mHealth), or datastreams composed of series with dis-417

parate noise levels (e.g., external vs internal temperature, multiple audio recordings), our approach418

could aid in improving the reliability of uncertain time-series data.419

9



Under review as a conference paper at ICLR 2023

REFERENCES420

Joshua Batson and Loic Royer. Noise2self: Blind denoising by self-supervision. ICML, 2019.421

Anne-Sophie Brazeau, H Mircescu, Katherine Desjardins, C Leroux, I Strychar, J.M. Ekoé, and422

R Rabasa-Lhoret. Carbohydrate couting accuracy and blood glucose variability in adults with423

type 1 diabetes. Diabetes research and clinical practice, 99, 2012.424

Ian Fox, Joyce Lee, Rodia Pop-Busui, and Jenna Wiens. Deep reinforcement learning for closed-425

loop blood glucose control. Proceedings of Machine Learning Research, 2020.426

Lovedeep Gondara. Medical image denoising using convolutional denoising autoencoders. IEEE427

16th International Conference on Data Mining Workshops, 2016.428

Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor Tsang, and Masashi429

Sugiyama. Co-teaching: Robust training of deep neural networks with extremely noisy labels.430

NeurIPS, 2018.431

James Arthur Harris and Francis Gano Benedict. A biometric study of basal metabolism in man.432

Carnegie institution of Washington, 1919.433

Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, and Li Fei-Fei. Mentornet: Learning data-434

driven curriculum for very deep neural networks on corrupted labels. ICML, 2018.435

Kwanyoung Kim and Jong Chul Ye. Noise2score: Tweedie’s approach to self-supervised image436

denoising without clean images. NeurIPS, 2021.437

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International438

Conference for Learning Representations, 2014.439

Alexander Krull, Tim-Oliver Buchholz, and Florian Jug. Noise2void - learning denoising from440

single noisy images. CVPR, 2018.441

Samuli Laine, Tero Karras, Jaakko Lehtinen, and Timo Aila. High-quality self-supervised deep442

image denoising. NeurIPS, 2019.443

Kimin Lee, Sukmin Yun, Kibok Lee, Honglak Lee, Bo Li, and Jinwoo Shin. Robust inference via444

generative classifiers for handling noisy labels. ICML, 2019.445

Jaakko Lehtinen, Jacob Munkberg, Jon Hasselgren, Samuli Laine, Tero Karras, Miika Aittala, and446

Timo Aila. Noise2noise: Learning image restoration without clean data. ICML, 2018.447

You Lin, Juanhui Wang, and Mingjian Cui. Reconstruction of power system measurements based448

on enhanced denoising autoencoder. IEEE General Meeting Power Energy Society, 2019.449

Lalo Magni, Davide M. Raimondo, Luca Bossi, Chiara Dalla Man, Giuseppe De Nicolao, Boris450

Kovatchev, and Claudio Cobelli. Model predictive control of type 1 diabetes: An in silico trial.451

Journal of diabetes science and technology, 1, 2007.452

Chiara Dalla Man, Francesco Micheletto, Dayu Lv, Marc Breton Boris Kovatchev, and Claudio453

Cobelli. The uva/padova type 1 diabetes simulator. J Diabetes Sci Technol., 8, 2014.454

Ciny Marling and Razvan C. Bunescu. The OhioT1DM dataset for blood glucose level prediction.455

International Workshop on Knowledge Discovery in Healthcare Data-KHD@IJCA, 2018.456

Ciny Marling and Razvan C. Bunescu. The OhioT1DM dataset for blood glucose level prediction:457

Update 2020. International Workshop on Knowledge Discovery in Healthcare Data-KHD@IJCA,458

2020.459

Baharan Mirzasoleiman, Kaidi Cao, and Jure Leskovec. Coresets for robust training of deep neural460

networks against noisy labels. NeurIPS, 2020.461

Nick Moran, Dan Schmidt, Yu Zhong, and Patrick Coady. Noisier2noise: Learning to denoise from462

unpaired noisy data. CVPR, 2019.463

10



Under review as a conference paper at ICLR 2023

Zhongzheng Ren, Raymond Yeh, and Alexander Schwing. Not all unlabeled data are equal: Learn-464

ing to weight data in semi-supervised learning. NeurIPS, 2020.465

Pablo Romeu, Francisco Zamora-Martı́nez, Paloma Botella-Rocamora, and Juan Pardo. Stacked466

denoising auto-encoders for short-term time series forecasting. Artificial Neural Networks, 2015.467

Remei Calm Joaquim Armengol Silvia Oviedo, Josep Vehı́. A review of personalized blood glucose468

prediction strategies for t1dm patients. Int J Numer Method Biomed Eng, 2016.469

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and470

composing robust features with denoising autoencoders. ICML, 2008.471

Pengxiang Wu, Songzhu Zheng, Mayank Goswami, Dimitris Metaxas, and Cho Chen. A topological472

filter for learning with label noise. NeurIPS, 2020.473

Jinyu Xie. Simglucose v0.2.1 [online]. avaible: https://github.com/jxx123/simglucose. Accessed474

on: Jan-20-2020, 2018.475

Yaochen Xie, Zhengyang Wang, and Shuiwang Ji. Noise2same: Optimizing a self-supervised bound476

for image denoising. NeurIPS, 2020.477

Peng Xiong, Hongrui Wang, Ming Liu, Suiping Zhou, Zengguang Hou, and Xiuling Liu. Ecg signal478

enhancement based on improved denoising auto-encoder. Engineering Applications of Artificial479

Intelligence, 52, 2016.480

Jun Xu, Yuan Huang, Ming-Ming Cheng, Li Liu, Fan Zhu, Zhou Xu, and Ling Shao. Noisy-as-clean:481

Learning self-supervised denoising from the corrupted image. TIP, 2020.482

Xingrui Yu, Bo Han, Jiangchao Yao, Gang Niu, Ivor W. Tsang, and Masashi Sugiyama. How does483

disagreement help generalization against label corruption? ICML, 2019.484

Jianye Zhang and Peng Yin. Multivariate time series missing data imputation using recurrent de-485

noising autoencoder. IEEE International Conference on Bioinformatics and Biomedicine (BIBM),486

2019.487

Zhong Zheng, Zijun Zhang, Long Wang, and XiongLuo. Denoising temporal convolutional recurrent488

autoencoders for time series classification. Information Sciences, 2022.489

11



Under review as a conference paper at ICLR 2023

9 APPENDICES (SUPPLEMENTAL)490

A TUNING DETAILS491

For each model, tuning was performed on simulated adult#001 using validation performance.492

No additional tuning was performed for other individuals or noise functions. For Nois-493

ier2Noise, we selected α, the parameter that controls the relative noise distributions, from494

[0.1,0.3,0.5,0.7,0.9,1.0,1.25,1.5,1.75,2], ultimately selecting α = 1. Because we do not assume495

access to the exact noise we would not expect this method to perform spectacularly, but note that it496

often outperforms other baselines.497

For co-teaching methods, we performed a simple grid search over the values of Ek=[250,500]498

(where 500 is the minimum number of training iterations), τ=[0.333,0.5,0.667], and σ =499

[0.1,0.3,0.5,0.7]. For N+2N, we selected Ek = 250, τ = 0.333, and σ = 0.1. For the super-500

vised setting co-teaching (SUPCT), we set selected Tk = 500, τ = 0.5 and σ = 0.3.501

B ALTERNATE NOISE FUNCTIONS502

We consider noise functions that might arise in carbohydrate counting. None are highly dissimilar503

from our main analysis noise function: we aim here at feasibility, rather than a comprehensive survey504

on a broad selection of loss functions, which our method would likely be unable to address without505

further tuning or modification. Here, U(a, b) denotes a uniform distribution with values between a506

and b. Carbohydrate values range between 0 and 200. After adding noise, y values are capped above507

and below by 1 and 200. Alternate noise functions include:508

1. Zero-mean multiplicative Gaussian: y = (1 +N (0, .75))x509

2. Negative-mean multiplicative Gaussian (primary noise function): y = (1+N (−.25, .5))x510

3. Zero-mean additive Gaussian: y = x+N (0, 40)511

4. Negative-mean additive Gaussian: y = x+N (−30, 50)512

5. Zero-mean multiplicative Uniform: y = U(.5, 1.5)x513

6. Negative-mean multiplicative Uniform: y = U(0, 1.6)x514

7. Zero-mean additive Uniform: y = x+ U(−60, 60)515

8. Negative-mean additive Uniform: y = x+ U(−60, 40)516

12



Under review as a conference paper at ICLR 2023

Figure 3: Risk following the carbohydrate vs. magnitude of carbohydrate correction learned for all
models and both datasets. Besides the clean autoencoder, N+2N performs best.

C CRC PLOTS517

With N+2N, we see a higher correlation between the magnitude of carbohydrate correction and risk518

following the meal compared to baselines for both real and simulated data (Figure 3).519

13


	Introduction
	Related Work
	Problem Setup
	Methods
	Real-world Problem Setup: Blood Glucose Management
	Experimental Setup
	Datasets
	Baselines and Upper Bound
	Implementation & Training Details
	Evaluation

	Results and Discussion
	Conclusions
	Appendices (supplemental)
	Tuning details
	Alternate noise functions
	CRC Plots

