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Abstract

We explore the off-policy value prediction problem in the reinforcement learning setting,
where one estimates the value function of the target policy using the sample trajectories
obtained from a behaviour policy. Importance sampling is a standard tool for correcting
action-level mismatch between behaviour and target policies. However, it only addresses
single-step discrepancies. It cannot correct steady-state bias, which arises from long-horizon
differences in how the behaviour policy visits states. In this paper, we propose an off-policy
value-prediction algorithm under linear function approximation that explicitly corrects dis-
crepancies in state visitation distributions. We provide rigorous theoretical guarantees for
the resulting estimator. In particular, we prove asymptotic convergence under Markov
noise and show that the corrected update matrix has favourable spectral properties that
ensure stability. We also derive an error decomposition showing that the estimation error is
bounded by a constant multiple of the best achievable approximation in the function class.
This constant depends transparently on the quality of the distribution estimate and the
choice of features. Empirical evaluation across multiple benchmark domains demonstrates
that our method effectively mitigates steady-state bias and can be a robust alternative to
existing methods in scenarios where distributional shift is critical.

1 Introduction

In the reinforcement learning (RL) setting (Sutton & Barto, 2018; Bertsekas, 2019; Meyn, 2022), an agent
learns to interact with an environment to achieve a goal or maximize its cumulative reward by performing
specific actions and receiving feedback from the environment in the form of rewards. The agent sequentially
refines its behaviour using the data generated by its interactions, making RL a dynamic and adaptive
learning framework. The central proposition in reinforcement learning is the ability to use observed data
about earlier decisions and their rewards to conclude how alternative decision policies could perform and
update their course of action. RL has been applied widely, including in game simulations (Silver et al., 2018),
robotics, autonomous driving (Kiran et al., 2021), medicine (Yom-Tov et al., 2017; Tejedor et al., 2020) and
communication systems (Huang et al., 2019). In these domains, agents learn strategies by exploring and
refining their decisions over time. For example, RL agents in game environments achieve superhuman
performance by analyzing large volumes of gameplay trajectories. Robotic systems use RL data to acquire
complex motor skills such as grasping or navigation. Autonomous vehicles learn safe and efficient driving
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patterns by analyzing logged driving data, while communication systems optimize bandwidth allocation by
reasoning over previously observed traffic and channel conditions.

In this paper, we consider the policy evaluation problem in reinforcement learning, which refers to the
task of estimating the value function, which represents the expected cumulative reward from a given state
following a certain policy. The policy evaluation problem has two variants: on-policy and off-policy. In
on-policy prediction, one tries to estimate the value function corresponding to a given target policy using
the sample trajectories generated using that target policy itself. However, in the off-policy variant (Baird
et al., 1995; Precup et al., 2000; Yu, 2012), one intends to learn the value function using a sample trajectory
generated using a behaviour policy that may be different from the target policy. The behaviour policy is
the policy followed during data collection, and the target policy is the policy for which the value function is
being estimated. In many real-world settings, an agent cannot freely interact with the environment to collect
trajectories under the policy of interest and must instead rely on logged trajectories generated by a behaviour
policy. Although this mismatch may introduce statistical challenges, it also provides an important advantage:
off-policy data reuse enables substantially greater flexibility. An agent can learn from trajectories produced
by many different behaviour policies, allowing it to exploit existing datasets without additional interaction
cost. This is particularly valuable when online exploration is expensive or unsafe—for example, autonomous
driving systems that learn from human driving logs, clinical decision-support models trained on retrospective
treatment pathways, or communication networks that leverage historical traffic traces. Off-policy learning
also enables multiple value functions to be estimated in parallel from the same data stream, supporting
scalable, model-free evaluation in large systems. Consequently, the distribution induced by the behaviour
policy becomes the central object shaping the learning process. Off-policy estimation methods often rely on
importance sampling (IS) (Rubinstein, 1981; Glynn & Iglehart, 1989) because it is an unbiased estimator.
The fundamental concept behind IS (Tokdar & Kass, 2010) is to correct the samples obtained from a sample
trajectory generated by a behaviour policy to align with the likelihood of that trajectory occurring under
the targeted policy. The importance sampling approach integrated with many on-policy variants, such as
gradient temporal difference (Sutton et al., 2009; Yu, 2017), temporal difference with correction (Sutton
et al., 2009; Yu, 2017), and temporal difference with eligibility traces (Precup et al., 2001) to obtain the
off-policy solution. However, an important drawback of this technique is its susceptibility to imprecision
because of the high variance induced by the importance weights (Mandel et al., 2014) and the discrepancies
associated with state appearance probabilities (Tsitsiklis & Van Roy, 1997).

In this paper, we analyze the deviation of the on-policy solution from the off-policy solution due to the
steady-state bias which arises due to the discrepancy in the steady-state distribution induced by the target
and behaviour policies. When one observes the marginal distributions from the target policy and behaviour
policy after a sufficiently long time (mixing time), the marginal distributions settle down to the steady-state
which is unique to the corresponding Markov chain. Steady-state bias arises whenever the state visitation
distribution in the behaviour data differs from the target policy’s steady-state distribution. This occurs when
the trajectory provides only partial state coverage or, even when every state appears infinitely often, visits
states in proportions that differ from those induced by the target policy. As a result, the average return may
not accurately reflect the true expected return, which can lead to sub-optimal behaviour. Off-policy bias
correction is a fundamental challenge in reinforcement learning, particularly in settings that utilize experi-
ence replay or batch data from previously executed policies (Precup et al., 2001; Sutton et al., 2016). The
systematic bias introduced into the value function estimation due to the discrepancy between the behaviour
policy’s stationary distribution and the target policy’s state visitation distribution persists even with un-
biased importance sampling corrections, as it stems from long-horizon distributional mismatch rather than
single-step policy differences (Chandak et al., 2021). This steady-state bias becomes particularly problem-
atic in long-horizon tasks where distributional mismatch accumulates over time (Jiang & Li, 2016; Tang
et al., 2020). Several recent approaches have addressed this by estimating stationary distribution corrections
through marginalized importance sampling (Liu et al., 2018; 2019), dual function approximation (Zhang
et al., 2020), or direct optimization of distribution matching objectives (Nachum et al., 2019; Yang et al.,
2020). Frameworks like Universal Off-Policy Evaluation (Chandak et al., 2021) further improve estimation
by enforcing consistency between learned value functions and off-policy estimators. These methods often
formulate the correction as a minimax optimization problem over density ratios or leverage policy gradient
with generalized advantage estimation (Schulman et al., 2015). The convergence and stability of such meth-
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ods are closely tied to the "deadly triad" of function approximation, off-policy training, and bootstrapping,
which can lead to divergence without careful regularization or correction mechanisms (Voloshin et al., 2019;
Wang et al., 2017; Yu, 2017).

In this paper, we fundamentally analyze off-policy temporal difference learning by tackling the critical prob-
lem of steady-state distribution mismatch. We rigorously demonstrate that long-horizon bias stems not only
from policy differences but also from the divergence in how states are visited under target versus behaviour
policies. Our analysis shows how such a distributional shift amplifies approximation error through the deadly
triad of bootstrapping, function approximation, and off-policy sampling. To address this issue, we introduce
a dual correction mechanism. It combines standard per-step action reweighting with novel parametric esti-
mation of stationary distribution discrepancies. We further show that the resulting update converges under
ergodic Markov noise. We also establish that the corrected value estimates stabilize when the rebalanced
Bellman operator exhibits spectral negativity. Most significantly, we derive an error decomposition showing
that the total estimation error is bounded by a constant multiple of the best achievable approximation. This
constant depends on the accuracy of the distribution estimate, the conditioning of the feature matrix, and
the degree of policy misalignment.

Our work distinguishes itself from prior distribution correction methods by providing a targeted solution
to the persistent problem of steady-state bias in off-policy TD learning. While frameworks like DualDICE
(Nachum et al., 2019) and GradientDICE (Zhang et al., 2020) address general distribution ratio estima-
tion through complex dual optimization, our approach offers a direct, computationally efficient correction
that integrates seamlessly with standard TD updates. Unlike policy optimization methods such as CQL
(Kumar et al., 2020) or OptiDICE (Lee et al., 2021) which focus on policy improvement, we specifically
address value prediction accuracy under distributional shift. While (Liu et al., 2018) addressed the "curse
of horizon" through marginalized importance sampling, our approach uniquely identifies and corrects for
the persistent steady-state bias that remains even after one-step importance sampling is applied, offering a
complementary perspective on the distributional mismatch problem in off-policy evaluation. Also Emphatic
TD (Sutton et al., 2016; Yu, 2015), employs recursive emphasis weighting to implicitly approximate distribu-
tion correction, preventing the deadly triad (function approximation + bootstrapping + off-policy learning)
from causing divergence using emphasis weights to prioritize updates for states that are important to the
target policy. Relatedly, (Hallak & Mannor, 2017) tackles distribution-mismatch bias by learning the sta-
tionary density ratio between the behaviour and target policies, but requires solving an inherently unstable
fixed-point ratio-estimation problem. Our focused approach—correcting steady-state bias through explicit
distribution modeling rather than general optimization frameworks—provides both theoretical clarity and
practical advantages for the fundamental problem of off-policy value prediction.

2 Background

The reinforcement learning setting is an optimal sequential decision-making paradigm under uncertainty
characterized as Markov Decision Process (MDP) (Puterman, 2014; Bertsekas, 2019; Meyn, 2022), which
is a controlled, time-homogeneous, stochastic process that is defined by the 4-tuple (S, A, P, R), where S is
the state space and A is the action space. In this paper, we consider a finite state and action spaces with
S = {s1, s2, ..., sn}. Here P : S × A × S → [0, 1] is the probability transition function, where P (s, a, s′) =
P(st+1 = s′|st = s, at = a, st−1 = ·, at−1 = ·, . . . ) = P(st+1 = s′|st = s, at = a) is the probability that the
next state is s′ conditioned on the fact that the current state is s and the current action is a. Additionally,
the reward function R : S × A × S → R assigns a numerical reward to each transition. P and R define the
dynamics of the stochastic system. At each instant, an action is chosen according to a stationary stochastic
policy π : S × A → [0, 1], where π(·|s) is a probability mass function over the action space A conditioned on
the state s ∈ S.

In this paper, we consider the prediction problem in reinforcement learning, which is defined as follows: For
a given target policy π and discount factor γ ∈ [0, 1) (that represents the agent’s preference for immediate
rewards versus future rewards), the goal is to evaluate the value function Vπ ∈ Rn associated with the target
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policy which is defined as the expected long-run γ-discounted cost:

Vπ(s) = E
τ∼π

[
R(τ)|s0 = s

]
, s ∈ S, (1)

where R(τ) =
∑∞

t=0 γtR(st, at, st+1), with st represents the state at instant t, at ∼ π(·|st) represents the
action chosen at time t and st+1 ∼ P (st, at, ·) represents the next state. Note that the above definition is
well-defined as γ ∈ [0, 1) and by appealing to the bounded convergence theorem.

The value function in vector form is expressed as Vπ = [Vπ(s1), Vπ(s2), . . . , Vπ(sn)]⊤ ∈ Rn. The value
function Vπ satisfies the Bellman equation: Vπ = TπVπ, where Tπ : Rn → Rn is the Bellman oper-
ator with TπU = Rπ + γPπU . Here, Pπ ∈ Rn×n with [Pπ]ss′ =

∑
a∈A π(a|s)P (s, a, s′) and Rπ(s) =∑

s′∈S

∑
a∈A π(a|s)P (s, a, s′)R(s, a, s′) is the one-step average reward. From the Bellman equation, one can

directly compute Vπ = (I −γPπ)−1Rπ whose computational complexity is dominated by the matrix inversion
(O(nc), c ≲ 2.374). In the RL setting, the model parameters P and R are unknown, and one seeks to learn
the value function Vπ under the generative model setting, where a realization of the stochastic process in the
form of an infinitely long sample trajectory s0, a0, r1, s1, a1, r2, s2, . . . is available, with s0 ∼ P0 (P0 initial
distribution), at ∼ π(·|st), st+1 ∼ P (st, at, ·) and rt+1 = R(st, at, st+1).

Temporal difference (TD) learning (Sutton & Barto, 2018) is the classical approach for the prediction prob-
lem, where the value function Vt ∈ Rn is iteratively updated in the direction of the temporal difference
rt+1 + γVt(st+1) − Vt(st). However, when the state space is large, this method suffers from the curse of
dimensionality (Tsitsiklis & Van Roy, 1997; Sutton & Barto, 2018). To overcome this, one effective strategy
is to represent the value function in a lower-dimensional subspace, thus reducing computational and storage
demands. Here one approximates Vπ using linear function approximation by projecting it into the subspace
{Φx | x ∈ Rk} ⊂ Rn, where k ≪ n (Tsitsiklis & Van Roy, 1997). The feature matrix Φ contains basis
functions that capture the critical characteristics of the state space. This projection not only renders the
learning process more tractable but also preserves the essential dynamics of the original high-dimensional
problem.

Φ =

− − ϕ(s1)⊤ − −
...

− − ϕ(sn)⊤ − −


n×k

, (2)

where, ϕ(s) = [ϕ1(s), ϕ2(s), . . . ϕk(s)]⊤ ∈ Rk is called the feature vector associated with the state s ∈ S and
ϕi : S → R are feature/basis functions. The most commonly used parameterized basis functions include
radial basis functions (RBFs), polynomials, and Fourier basis functions. Radial basis functions are typically
expressed in a Gaussian form: ϕi(s) = exp(−(2σ2

i )−1||s − µi||2), depends solely on the distance between the
state and the centre µi, relative to the feature width, σi, with a parameter size of the order Θ(k).

In this paper, we consider the off-policy variant of the prediction problem (Precup et al., 2001; Sutton &
Barto, 2018), where one seeks to estimate Vπ, using a sample trajectory, where action at every instant is
generated using a behaviour policy πb that may be different from the target policy π. This implies that for
the given infinitely long sample trajectory τb = s0, a0, r1, s1, a1, r2, s2, a2, . . . , we have s0 ∼ P0, at ∼ πb(·|st),
st+1 ∼ P (st, at, ·) and rt+1 = R(st, at, st+1).
Assumption 1 (Ergodic Behaviour Policy). The Markov chain {st}t≥0 induced by the behaviour policy πb

satisfies:

(i) Irreducibility: ∀ s, s′ ∈ S, ∃ t ∈ N such that P t
πb

(s, s′) > 0.

(ii) Aperiodicity: The greatest common divisor of { t ≥ 1 : P t
πb

(s, s) > 0 } is 1 for every s ∈ S.

Consequently, the chain admits a unique stationary distribution νb with νb(s) > 0 ∀ s ∈ S and ν⊤
b Pπb

= ν⊤
b .

Assumption 2 (Feature Independence). The feature matrix Φ ∈ Rn×k satisfies rank(Φ) = k, implying

σmin
(
Φ⊤Φ

)
> 0, ker(Φ) = {0}, Φ⊤Φ ≻ 0,

where σmin denotes the minimum singular value and ≻ 0 denotes positive definiteness.
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Assumption 3 (Coverage). The behaviour policy πb dominates π in the Radon–Nikodym sense:

∀ (s, a) ∈ S × A, π(a | s) > 0 =⇒ πb(a | s) > 0.

Equivalently, the importance ratio ρt = π(at | st)
πb(at | st)

is almost surely bounded: supt ρt < ∞.

In off-policy linear function approximation, one projects the value function Vπ onto the column space of Φ
(Tsitsiklis & Van Roy, 1997):

w∗ = arg min
w∈Rk

∥Vπ − Φw∥2
νb

, (3)

where the weighted norm is defined as ∥w∥2
ν =

∑k
i=1 νiw

2
i . Here, νb is the unique steady-state distribution

of the behaviour policy’s Markov chain (i.e., νb(s) = limt→∞ P(st = s) and ν⊤
b Pπb

= ν⊤
b ). Since {Φw |

w ∈ Rk} is closed and convex, a unique w∗ exists (Φ has full column rank), yielding the approximation
Vπ(s) ≈ ϕ(s)⊤w∗ for all s. This optimization is solved by the off-policy TD update (Precup et al., 2001;
2000):

wt+1 = wt + αtρt

(
rt+1 + γϕ(st+1)⊤wt − ϕ(st)⊤wt

)
ϕ(st),

with the importance sampling ratio ρt = π(at|st)
πb(at|st) , which corrects for the policy mismatch in the behaviour

data. The limit point wTD
off of off-policy TD learning with linear function approximation is characterized by

the fixed-point equation(Yu, 2012)

Φ⊤Ξνb
(I − γPπ)ΦwTD

off = Φ⊤Ξνb
Rπ, (4)

which represents a projection of the Bellman equation onto the feature space weighted by the behaviour
policy’s stationary distribution. This solution constitutes the best approximation within the function class
that satisfies the Bellman residual minimization under the behaviour policy’s steady-state distributional
mismatch, rather than the target policy’s natural state visitation pattern.

Figure 1: Illustration of steady-state bias in off-policy prediction: The mismatch between behaviour policy’s steady-
state distribution νb and that of target policy causes persistent prediction error, even after one-step importance
sampling correction
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To establish further theoretical guarantees for the off-policy TD method with linear function approximation,
we first analyze key properties of the value function operator under the behaviour policy’s stationary distri-
bution. The following lemma quantifies fundamental operator norm bounds that govern the propagation of
approximation errors through the Bellman operator.
Lemma 1. Let νb be a strictly positive probability distribution over states, Pπ a Markov transition matrix
induced by policy π, and γ ∈ [0, 1) a discount factor. Then the νb-weighted operator norms satisfy:

∥Pπ∥νb
≤

√
κb and ∥I − γPπ∥νb

≤ 1 + γ
√

κb (5)

where ∥A∥νb
= supx̸=0

∥Ax∥νb

∥x∥νb
and ∥x∥2

νb
=
∑

s νb(s)x(s)2, with and the distribution mismatch coefficient

κb = max
s′∈S

∑
s νb(s)Pπ(s′ | s)

νb(s′) .

Proof. Let µb(s′) =
∑

s νb(s)Pπ(s′ | s). Then,

∥Pπx∥2
νb

=
∑

s

νb(s)
(∑

s′

Pπ(s′ | s)x(s′)
)2

≤
∑

s

νb(s)
∑

s′

Pπ(s′ | s)x(s′)2 (Jensen’s inequality)

=
∑

s′

x(s′)2
∑

s

νb(s)Pπ(s′ | s)

=
∑

s′

x(s′)2µb(s′) =
∑

s′

νb(s′)x(s′)2 µb(s′)
νb(s′)

≤ κb

∑
s′

νb(s′)x(s′)2 = κb∥x∥2
νb

, where κb = max
s′

µb(s′)
νb(s′) .

Thus we have the following operator norm bound:

∥Pπ∥νb
= sup

x̸=0

∥Pπx∥νb

∥x∥νb

≤
√

κb

Now for the composite operator, we get

∥(I − γPπ)x∥νb
≤ ∥Ix∥νb︸ ︷︷ ︸

≤∥x∥νb

+γ ∥Pπx∥νb︸ ︷︷ ︸
≤√

κb∥x∥νb

≤ (1 + γ
√

κb)∥x∥νb

⇒ ∥I − γPπ∥νb
≤ 1 + γ

√
κb.

Central to the above result is the distribution mismatch coefficient κb, which captures the maximum density
ratio between the next-state distribution induced by the target policy and the stationary distribution of
the behaviour policy. We now characterize the asymptotic approximation error of the off-policy TD solution
under linear function approximation. The following theorem establishes a bound on the error ∥ΦwTD

off −Vπ∥νb

of the TD fixed-point solution relative to the fundamental approximation limit ∥Φw∗ − Vπ∥νb
.

Theorem 1 (Error Bound for Off-policy TD). Under Assumptions 1-3 and negative definiteness of Λo =
Φ⊤Ξνb

(I − γPπ)Φ, the solution wTD
off satisfies:

∥∥ΦwTD
off − Vπ

∥∥
νb

≤

(
σ2

max(Φ)(maxs νb(s))3/2(1 + γ
√

κb)
λmin(−Λo)

√
mins νb(s)

+ 1
)∥∥Φw∗ − Vπ

∥∥
νb

where σ2
max(Φ) = λmax(Φ⊤Φ) and Ξνb

= diag(νb).
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Proof. From (4), we have

Φ⊤Ξνb

(
I − γPπ

)
Φ wTD

off = Φ⊤Ξνb
Rπ. (6)

Also, the true value function Vπ satisfies the following Bellman equation:

Vπ = Rπ + γPπVπ (7)

Now we bound
∥∥ΦwTD

off − Vπ

∥∥
νb

. Let w∗ be the best linear approximator under νb. Then,

w∗ = arg min
w

∥Φw − Vπ∥νb

so that Φw∗ = Πνb
Vπ, the projection of Vπ onto the column space of Φ under the νb-weighted norm. The

error decomposes as follows:

ΦwTD
off − Vπ =

(
ΦwTD

off − Φw∗) +
(
Φw∗ − Vπ

)
. (8)

Hence, ∥∥ΦwTD
off − Vπ

∥∥
νb

≤
∥∥ΦwTD

off − Φw∗∥∥
νb

+
∥∥Φw∗ − Vπ

∥∥
νb

. (9)

We define the approximation error εapprox = Φw∗ − Vπ. To prove the claim of the theorem, we bound the
term

∥∥ΦwTD
off − Φw∗

∥∥
νb

in terms of
∥∥εapprox

∥∥
νb

. Note that both ΦwTD
off and Φw∗ lie in the column space of

Φ. The vector Φwoff
TD satisfies

Φ⊤Ξνb

(
I − γPπ

)
Φwoff

TD = Φ⊤Ξνb
Rπ, (10)

whereas the projection Φw∗ satisfies
Φ⊤Ξνb

(
Φw∗ − Vπ

)
= 0.

Also, by multiplying the Bellman equation (7) by Φ⊤Ξνb
, we obtain

Φ⊤Ξνb
Vπ = Φ⊤Ξνb

Rπ + γ Φ⊤Ξνb
PπVπ

⇒ Φ⊤Ξνb
(I − γPπ)Vπ = Φ⊤Ξνb

Rπ. (11)

Combining (10) and (11), we get

Φ⊤Ξνb
(I − γPπ) Φ wTD

off = Φ⊤Ξνb
(I − γPπ) Vπ

⇒ Φ⊤Ξνb
(I − γPπ)(Φ wTD

off − Vπ) = 0
⇒ Φ⊤Ξνb

(I − γPπ) e = 0, (12)

where e = Φ wTD
off − Vπ. Further, from (8), we have e = Φ

(
wTD

off − w∗) + εapprox. Substituting this above,
we obtain

Φ⊤Ξνb
(I − γPπ)

[
Φ
(
wTD

off − w∗) + εapprox

]
= 0

⇒ Φ⊤Ξνb
(I − γPπ) Φ

(
wTD

off − w∗) + Φ⊤Ξνb
(I − γPπ) εapprox = 0

⇒ Φ⊤Ξνb
(I − γPπ) Φ

(
wTD

off − w∗) = − Φ⊤Ξνb
(I − γPπ) εapprox

⇒ Λo

(
wTD

off − w∗) = Φ⊤Ξνb
(I − γPπ) εapprox. (13)

Now, ∥∥Φ⊤Ξνb
(I − γPπ)εapprox

∥∥ ≤ ∥Φ⊤∥ ∥Ξνb
∥
∥∥(I − γPπ)εapprox

∥∥, (14)
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where ∥ · ∥ is the spectral norm. But, ∥Ξνb
∥ = maxs νb(s), and∥∥(I − γPπ)εapprox

∥∥2 =
∑

s

[
(I − γPπ)εapprox

]
(s)2

≤
∑

s

1
mins νb(s) νb(s)

[
(I − γPπ)εapprox

]
(s)2

= 1
mins νb(s)

∥∥(I − γPπ)εapprox
∥∥2

νb
. (15)

Hence, ∥∥(I − γPπ)εapprox
∥∥ ≤

1 + γ
√

κb√
mins νb(s)

∥εapprox∥νb
,

and therefore ∥∥Φ⊤Ξνb
(I − γPπ)εapprox

∥∥ ≤ ∥Φ⊤∥ maxs νb(s)√
mins νb(s)

(
1 + γ

√
κb

)
∥εapprox∥νb

. (16)

Note that
∥∥Φ⊤

∥∥ =
∥∥Φ
∥∥, and the spectral norm of Φ is the large singular value. Let σmax(Φ) =

∥∥Φ
∥∥. Also

note that, since Λo is negative definite, we have∥∥Λ−1
o

∥∥ ≤ 1
λmin(−Λo) , (17)

where λmin(−Λo) is the smallest eigenvalue of −Λo. Combining (13), (14), (16) and (17), we get

∥∥wTD
off − w∗∥∥ ≤ σmax(Φ)

λmin(−Λo)

max
s

νb(s)√
min

s
νb(s)

(
1 + γ

√
κb

) ∥∥εapprox
∥∥

νb
. (18)

For the projected error in the νb-norm, we have∥∥Φ
(
wTD

off − w∗)∥∥
νb

≤
∥∥Φ
∥∥

νb

∥∥woff
TD − w∗∥∥, (19)

where ∥Φ∥νb
is the operator norm of Φ from the Euclidean space to the νb-normed space. Specifically,

∥Φw∥2
νb

= w⊤Φ⊤Ξνb
Φw ≤ λmax(Φ⊤Ξνb

Φ)∥w∥2

⇒ ∥Φ∥νb
≤
√

λmax(Φ⊤Ξνb
Φ). (20)

Note that Φ⊤Ξνb
Φ is a k × k matrix, and its largest eigenvalue is at most maxs νb(s) · λmax(Φ⊤Φ), because

Ξνb
≤ maxs νb(s)I. And λmax(Φ⊤Φ) = σ2

max(Φ). Hence,

∥Φ(wTD
off − w∗)∥νb

≤ σmax(Φ)
√

max
s

νb(s) · ∥wTD
off − w∗∥ (21)

Hence from (9), (18) and (21), we get

∥ΦwTD
off − Vπ∥νb

≤ ∥Φ(wTD
off − w∗)∥νb

+ ∥ϵapprox∥νb
≤
(σ2

max(Φ)(max
s

νb(s)) 3
2
(
1 + γ

√
κb

)
λmin(−Λo)

√
min

s
νb(s)

+ 1
)∥∥εapprox

∥∥
νb

.

The above theorem bound reveals three critical components that affect the off-policy TD convergence: First,
the σ2

max(Φ)(maxs νb(s))3/2 term exposes the sensitivity to feature scaling and distribution skew, which shows
that even optimal representations suffer when νb is non-uniform or features are poorly conditioned. Second,
the (1 + γ

√
κb) factor quantifies how policy divergence (κb ≫ 1) amplifies approximation error through

8
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temporal credit assignment - a manifestation of the deadly triad where bootstrapping, function approxima-
tion, and off-policy sampling interact destructively. Third, the dependence on λmin(−Λo)−1 formalizes the
hardness of Bellman inversion under distribution shift, as Λo becomes ill-conditioned when the behaviour
policy’s transitions poorly align with the target dynamics. This provides a closed-form characterization of
deadly triad interactions in off-policy TD convergence. The bound exclusively characterizes the fundamental
approximation error of the asymptotic off-policy TD solution, isolating it from transient algorithmic effects.
When π = πb (κb = 1), the bound simplifies to the on-policy case, but the exponential scaling γ

√
κb explains

the severe degradation under policy mismatch.
Theorem 2. Under Assumptions 1, 2, and 3, if κbγ2 < 1 then Λo is negative definite.

Proof. For any w ̸= 0, let u = Φw. By Assumption 2, u ̸= 0. Consider the quadratic form:

w⊤Λow = w⊤Φ⊤Ξνb
(γPπ − I)Φw

= u⊤Ξνb
(γPπ − I)u

= γ u⊤Ξνb
Pπu︸ ︷︷ ︸

Q1

− u⊤Ξνb
u︸ ︷︷ ︸

Q2

(22)

Now Q2 = u⊤Ξνb
u =

∑
s νb(s)u(s)2 = ∥u∥2

νb
> 0. Since νb > 0 (ergodicity) and u ̸= 0, we have

Q1 = u⊤Ξνb
Pπu =

∑
s

νb(s)u(s)(Pπu)(s)

=
∑

s

νb(s)u(s)
(∑

s′

Pπ(s′|s)u(s′)
)

≤ ∥u∥νb
· ∥Pπu∥νb

(by Cauchy-Schwarz inequality) (23)

Further, by Lemma 1, we have

∥Pπu∥2
νb

= κb∥u∥2
νb

(24)

Therefore, from (23) and (24), we have

Q1 ≤ |Q1| ≤ ∥u∥νb
· ∥Pπu∥νb

≤
√

κ∥u∥2
νb

Substitute into (22) to obtain

w⊤Λow ≤ γ
√

κb∥u∥2
νb

− ∥u∥2
νb

= (γ
√

κb − 1) ∥u∥2
νb

(25)

Since ∥u∥2
νb

> 0 and γ
√

κb − 1 < 0 iff κb < 1
γ2 we have:

w⊤Λow ≤ (γ
√

κb − 1) ∥u∥2
νb

< 0 when κbγ2 < 1

Equality holds only if w = 0, proving Λo is negative definite.

Corollary 1. When π = πb, Λo is negative definite for any γ < 1.

Proof. When π = πb, we have κb = 1. Then:

w⊤Aw ≤ (γ − 1)∥v∥2
νb

< 0 ∀w ̸= 0

Theorem 2 establishes a fundamental condition for convergence in off-policy temporal difference learning:
when the product of the policy alignment constant κb and the squared discount factor γ2 is less than one,
the critical matrix governing the TD update dynamics becomes negative definite. This condition, κbγ2 < 1,
provides profound theoretical insight into the feasibility of off-policy learning. The policy alignment constant

9
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κb quantifies the maximum discrepancy between the next-state distribution under the target policy and the
behaviour policy’s stationary distribution (νb). When κb is large, it indicates significant distributional
mismatch; certain states are visited much more frequently under the target policy than would be expected
from the behaviour policy’s steady-state distribution. The theorem reveals that such mismatches become
increasingly problematic as the discount factor γ approaches 1, explaining why long-horizon tasks with high
γ values are particularly challenging for off-policy methods. Notably, when policies are identical (π =
πb), we have κb = 1, and the condition simplifies to γ < 1, which always holds for standard MDPs.
However, as policy dissimilarity increases (κb > 1), the allowable discount factor must decrease to maintain
convergence guarantees. This theoretical boundary precisely characterizes the “deadly triad” interaction
between function approximation, bootstrapping, and off-policy learning, and directly motivates the steady-
state bias correction.

3 Our Algorithm

Here, we propose a double correction approach to address the discrepancy introduced by the steady-state
distribution of the behaviour policy in the solution of the off-policy TD algorithm by effectively reducing
the policy alignment constant through distributional reweighting, while simultaneously incorporating per-
step policy mismatch correction ρt. To achieve this, we employ the importance sampling method to the
existing off-policy TD method with one-step lookahead, where a separate state-distribution reweighting factor
q(s)/h(s; θ∗, λ∗) is tied to the existing off-policy TD recursion. Here q(·) is the design probability distribution
to which the solutions are guided, and h(·; θ∗, λ∗) = λ∗

1gθ∗
1
(·)+· · ·+λ∗

ℓ gθ∗
ℓ
(·) is a surrogate probability mixture

distribution chosen from a parametrized family of distributions {gθ : Rp → R|θ ∈ Θ,
∫

g(x)dx = 1, g ≥ 0}
which best approximates the steady-state distribution of the Markov chain induced by the behaviour policy
with respect to the Kullback-Leibler divergence (moment projection).[

θ∗

λ∗

]
= arg min

θi∈Θ,
λi∈[0,1]

DKL(νb∥λ1gθ1 + · · · + λℓgθℓ
), subject to

ℓ∑
i=1

λi = 1, (26)

where DKL(f∥g) = Ef

[
log f(x)

g(x)

]
.

To model the component distributions gθ efficiently, we employ a flexible and analytically tractable paramet-
ric family. One theoretically well-founded choice is the Natural Exponential Family (NEF) (Brown, 1986).
The NEF is a class of probability distributions which provides a unified framework for probability distri-
butions through its canonical form that encompasses many commonly used distributions such as Gaussian,
Poisson, and Bernoulli distributions, among others. The NEF has several desirable properties, including a
closed-form expression with a convex log-partition function, which simplifies the computation of the impor-
tance sampling ratio and allows for efficient parameter updates during the learning process. A parameterized
family {gθ|θ ⊆ Rb} is called a natural exponential family if gθ(x) = exp (θT Γ(x) − K(θ)), where Γ : Rp → Rb

and K : Rb → R are continuous functions with Θ = {θ ∈ Rb| |K(θ)| < ∞}. Note that K(θ) is strictly convex
in the interior of Θ and ∇K(θ) = Egθ

[Γ(x)]. Also,∇2
θK(θ) = Covgθ

[Γ(x)] ≻ 0. These ensure the Fisher infor-
mation matrix I(θ) = ∇2

θK(θ) is non-degenerate, guaranteeing well-posed maximum likelihood estimation.
While all the NEF member distributions provide analytical tractability through their exponential structure,
we employ Gaussian mixture models in our experiments for their superior approximation capabilities. We
formalize this approximation and aim to guarantee that, with a sufficient number of components, the KL-
divergence between the true steady-state distribution and its Gaussian mixture approximation can be made
arbitrarily small. A subtlety arises because the behaviour policy’s stationary distribution νb is discrete and
therefore lacks a density, making the KL divergence ill-defined. To address this, we mollify νb by convolving
it with a Gaussian kernel, yielding a smooth surrogate. We first define the following:

For the stationary distribution of the behaviour policy νb, which is supported on finitely many states
{s1, . . . , sn} ⊂ Rp and the smoothing parameter σ > 0, we define the mollified density as follows:

pσ(x) = (νb ∗ N (0, σ2Ip))(x) =
n∑

i=1
νb(si) N (x; si, σ2Ip),

10
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For each σ > 0, pσ is a valid probability density, being a finite convex combination of Gaussian kernels and
is absolutely continuous on Rp. Further, for a compact region X and clipping level η > 0, we define the
clipped proxy

fη(x) = pσ(x)1Xc(x) + max{pσ(x), η} 1X(x), (27)

where clipping is applied only on X and the density remains unchanged on Xc. The normalizing constant is

Zη =
∫
Rp

fη(x) dx, p̃σ,X,η(x) = fη(x)
Zη

.

Consider a Gaussian-mixture model hθ,λ(x) =
∑ℓ

j=1 λjgθj
(x) with λ ∈ ∆ℓ the probability simplex of mixture

weights, and each component gθj has a non-degenerate covariance matrix.
Theorem 3 (Gaussian-mixture approximation of the steady-state distribution). For any ε > 0, there exist
σ > 0, 0 < η < 1, and ℓ ∈ N such that for some parameters (θ∗, λ∗)

DKL
(
pσ ∥ hθ∗,λ∗

)
≤ (O(η) + O(σ)) log(1/η) + O

(
ε

η2

)
+ O

(
1

η2ℓ

)
,

and the functions p̃σ,X,η and hθ∗,λ∗ satisfy η ≤ p̃σ,X,η(x), hθ∗,λ∗(x) ≤ M on X for some finite M .

The proof proceeds through three stages—mollification, restriction and clipping, and mixture approxima-
tion—followed by a change-of-measure decomposition. We develop the proof through the individual results
below.
Remark 1. For any bounded continuous test function f , we have∫

f(x)pσ(x) dx =
∑

i

νb(si)E[f(si + zσ)], zσ ∼ N (0, σ2Ip).

Since zσ → 0 in probability, E[f(si + zσ)] → f(si) by the dominated convergence theorem, implying that pσ

converges weakly to νb as σ ↓ 0. This step establishes a continuous surrogate distribution for νb, ensuring
the KL divergence is well-defined.

For the state space S and given R > 0, we define the compact region

XR =
n⋃

i=1
{ x : ∥x − si∥ ≤ R }, and the tail mass as τ(R, σ) =

∫
Xc

R

pσ(x) dx. (28)

Lemma 2. For every δ ∈ (0, 1) and fixed σ > 0, there exists R ≡ R(σ, δ) such that τ(R, σ) ≤ δ. Moreover,
for mixtures of Gaussians as considered here, one can choose R so that

τ(R, σ) ≤ C n exp
(

− R2

2σ2

)
,

for a constant C = C(p) depending only on the dimension.

Proof. Using the union bound and the Gaussian tail inequality, for each i we have∫
∥x−si∥>R

N (x; si, σ2Ip) dx ≤ C(p) exp
(

− R2

2σ2

)
,

where C(p) is a dimension-dependent constant. By summing over i = 1, . . . , n and weighting by νb(si) ≤ 1,
we get

τ(R, σ) ≤ C(p) n exp
(

− R2

2σ2

)
.

Hence, for any δ > 0, it suffices to choose

R ≥ σ

√
2 log

(
Cn
δ

)
to ensure τ(R, σ) ≤ δ.

11
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Henceforth, we fix a compact set X = XR with tail mass τ = τ(R, σ) as small as required. We do not define
a zero-outside renormalized density. Such a truncation would make the KL divergence infinite. Instead, we
clip the density from below everywhere and then renormalize, which maintains strict positivity on Rp while
preserving the total mass. Note that by construction, p̃σ,X,η is a strictly positive density. Further, on X we
have fη(x) = max{pσ(x), η} ≥ pσ(x)1X(x), and on Xc we leave the density unchanged, i.e., fη(x) = pσ(x).
Thus

Zη =
∫

X

fη(x) dx +
∫

Xc

fη(x) dx ∈
[ ∫

X

pσ(x) dx,

∫
X

(pσ(x) + η) dx
]

= [ 1, 1 + η|X| ]. (29)

The lower bound uses fη ≥ pσ, and the upper bound uses fη ≤ pσ + η on X together with fη = pσ on Xc.
Lemma 3 (L1 perturbation). There exist universal constants c1, c2 > 0 such that

∥ pσ − p̃σ,X,η ∥1 ≤ c1τ + c2η|X|.

Proof. By definition,

∥pσ − p̃σ,X,η∥1 =
∫
Rp

|pσ − p̃σ,X,η| =
∫

X

|pσ − p̃σ,X,η| +
∫

Xc

|pσ − p̃σ,X,η|.

We now bound the integrals explicitly for each region. For all x ∈ Xc we have fη(x) = pσ(x) and therefore

p̃σ,X,η(x) = pσ(x)
Zη

.

Hence ∫
Xc

|pσ − p̃σ,X,η| =
∫

Xc

pσ(x)
∣∣∣1 − 1

Zη

∣∣∣dx =
∣∣∣1 − 1

Zη

∣∣∣ ∫
Xc

pσ(x) dx =
∣∣∣1 − 1

Zη

∣∣∣ τ. (30)

From (29), we have Zη ∈ [1, 1 + η|X|], so∣∣∣1 − 1
Zη

∣∣∣ = |Zη − 1|
Zη

≤ |Zη − 1| ≤ η|X|.

Thus ∫
Xc

|pσ − p̃σ,X,η| ≤ τ η|X|. (31)

Now for X, we split X into A and B, where A = X ∩ {pσ ≥ η}, and B = X ∩ {pσ < η}.

For x ∈ A, fη(x) = pσ(x), so p̃σ,X,η(x) = pσ(x)/Zη. Hence

|pσ − p̃σ,X,η| = pσ(x)
∣∣∣1 − 1

Zη

∣∣∣ ≤ pσ(x) η|X|.

Integrating over A gives ∫
A

|pσ − p̃σ,X,η| ≤ η|X|
∫

A

pσ(x) dx ≤ η|X|.

For x ∈ B, pσ(x) < η and fη(x) = η, so
p̃σ,X,η(x) = η

Zη
.

Thus
|pσ(x) − p̃σ,X,η(x)| ≤ pσ(x) + η

Zη
≤ η + η = 2η,

using Zη ≥ 1. Hence ∫
B

|pσ − p̃σ,X,η| ≤ 2η|X|.

12
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Finally, by combining the integral bounds on A and B, we get∫
X

|pσ − p̃σ,X,η| ≤ η|X| + 2η|X| = 3η|X|. (32)

Combining the bounds from Xc ((31)) and X ((32)), we obtain

∥pσ − p̃σ,X,η∥1 ≤ τ η|X| + 3η|X| ≤ c1τ + c2η|X|,

for suitable absolute constants c1, c2.

Lemma 4 (KL perturbation). There exist constants C1, C2 > 0 (depending on the dimension and the
mixture envelope on X) such that

DKL
(
pσ ∥ p̃σ,X,η

)
≤ C1η + C2τη.

Proof. By definition, we have

DKL
(
pσ ∥ p̃σ,X,η

)
=
∫

pσ log pσ −
∫

pσ log p̃σ,X,η.

We split the domain into three parts: (i) X ∩ {pσ ≥ η}; (ii) X ∩ {pσ < η}; (iii) Xc and explicitly develop
bounds for

∫
pσ log p̃σ,X,η for each region as follows:

(i) Region X ∩ {pσ ≥ η}. Here fη = pσ, so p̃σ,X,η = pσ/Zη, and∫
X∩{pσ≥η}

pσ log
( pσ

pσ/Zη

)
=
∫

X∩{pσ≥η}
pσ log Zη ≤ log

(
1 + η|X|

)
≤ cη,

for some constant c > 0.

(ii) Region X ∩ {pσ < η}. Here p̃σ,X,η = η/Zη, so,∫
pσ<η

pσ log
( pσ

η/Zη

)
=
∫

pσ<η

pσ log
(pσ

η

)
+ log Zη

∫
pσ<η

pσ ≤ c′η.

for some constant c′ > 0. This follows since on {pσ < η}, pσ log(pσ/η) ≤ 0.

(iii) Region Xc. Here p̃σ,X,η = pσ/Zη, and,∫
Xc

pσ log
( pσ

pσ/Zη

)
=
∫

Xc

pσ log Zη ≤ c′′τη, for some constant c′′ > 0. (33)

Now collecting the bounds from (i)–(iii) and absorbing constants yields

DKL
(
pσ ∥ p̃σ,X,η

)
≤ C1η + C2τη.

Proof of Theorem 3: By Lemma 4.1 of (Zeevi & Meir, 1997), for any ε > 0 there exists an ℓ-component
Gaussian mixture hθ∗,λ∗ such that

DKL
(
p̃σ,X,η ∥ hθ∗,λ∗

)
≤ O

(
ε

η2

)
+ O

( 1
η2ℓ

)
, (34)

and, on the compact set X, the mixture satisfies uniform bounds η ≤ p̃σ,X,η(x), hθ∗,λ∗(x) ≤ M, x ∈ X,
for some finite M > 0. Now

DKL(pσ∥h) = DKL(pσ∥f) + DKL(f∥h) + (Epσ
− Ef )

[
log f

h

]
, with f = p̃σ,X,η, and h = hθ∗,λ∗ . (35)

13
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By Lemma 4, we have, for constants C1, C2 > 0, τ = τ(R, σ) < 1, and η < 1,

DKL(pσ∥p̃σ,X,η) ≤ C1η + C2ητ ≤ C1η + C2(η + τ) log(1/η) (Using AM-GM inequality)
= (O(η) + O(σ)) log(1/η). (36)

The last equality follows since τ = O(σ) by Lemma 2. Now for the last term in (35), we have,

(Epσ
− Ef )

[
log f

h

]
=
∫ (

pσ(x) − f(x)
)

log f(x)
h(x) dx,

⇒
∣∣∣(Epσ

− Ef )
[
log f

h

] ∣∣∣ ≤ ∥pσ − f∥1 sup
x

∣∣∣ log f(x)
h(x)

∣∣∣.
On X, we have η/Zη ≤ f(x), h(x) ≤ M for Zη ∈ [1, 1 + η|X|], so

sup
x∈X

∣∣∣ log f(x)
h(x)

∣∣∣ ≤ log
(MZη

η

)
= O

(
log(1/η)

)
,

and outside X the contribution can be absorbed into the constants since the tail mass τ is O(σ). Lemma 3
implies

∥pσ − f∥1 ≤ c1τ + c2η|X| = O(σ) + O(η),

so, ∣∣∣(Epσ
− Ef )

[
log f

h

] ∣∣∣ ≤
(
O(η) + O(σ)

)
log
(
1/η
)
, (37)

Finally, combining the three bounds (34), (36) and (37) in (35), we obtain

DKL(pσ∥hθ∗,λ∗) ≤ (O(η) + O(σ)) log(1/η) + O

(
ε

η2

)
+ O

( 1
η2ℓ

)
, (38)

which is the bound claimed in Theorem 3.

Theorem 3 shows that the mollified stationary distribution ν
(σ)
b = νb ∗ N (0, σ2I) admits a finite–mixture

Gaussian approximation with controlled KL error given by,

DKL
(
ν

(σ)
b ∥ h(·; θ∗, λ∗)

)
≤ O(η + σ) log(1/η) + O(ε/η2) + O(1/(η2ℓ)),

where η is the clipping level and ℓ is the number of mixture components. The first term captures the error
introduced by mollification and clipping. Since (η + σ) log(1/η) → 0 as η, σ → 0, this contribution can be
made arbitrarily small by choosing η and σ sufficiently small. For any fixed η > 0, the remaining terms
decrease monotonically as ℓ increases and the approximation error ε is reduced (e.g., by refining the mixture
class), and the empirical curves in Figures. 2a and 2b illustrate this decay. This guarantees that h(·; θ∗, λ∗)
converges to ν

(σ)
b in KL, and hence in total variation by Pinsker’s inequality. The resulting mixture h(·; θ∗, λ∗)

therefore provides a numerically stable surrogate for νb and is required for the distribution-correction step
of our algorithm.

We therefore compute the optimal surrogate by directly minimizing the KL divergence to the mollified target
ν

(σ)
b . Specifically, the mixture parameters are obtained by solving the optimization problem:

(θ∗, λ∗) = arg min
θ̄∈Θℓ, λ̄∈∆ℓ

DKL
(
ν

(σ)
b ∥ h(·; θ̄, λ̄)

)
= arg max

θ̄,λ̄
Ex∼ν

(σ)
b

[log h(x; θ̄, λ̄)].

The equivalence to maximizing the expected log-likelihood of the mixture under the mollified law follows
from the definition of KL divergence. The objective is differentiable and also well-posed because ν

(σ)
b is

absolutely continuous with respect to the Gaussian mixture model, ensuring the KL divergence is finite and
the optimization landscape is regular. The convolution structure further allows us to rewrite the expectation
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(a) True steady-state distribution νb (top–left)
and its Gaussian-mixture surrogates for (ℓ, σ) ∈
{(9, 0.7), (25, 0.4), (49, 0.2)}. As ℓ increases and σ de-
creases, the mixture becomes close to νb.

(b) KL–divergence DKL
(

νb ∥ hθ̄,λ̄

)
versus component count ℓ for

σ ∈ {1.0, 0.7, 0.4, 0.2}. Curves decay monotonically, corroborating
the ℓ and σ dependence in Theorem 3.

Figure 2: (a) Gaussian-mixture surrogates approaching the mollified stationary distribution; (b) KL decay with
increasing component count.

in terms of samples from the original Markov chain. If we draw st ∼ νb and εt ∼ N (0, σ2I) independently
and let xt = st + εt, then xt ∼ ν

(σ)
b and Ex∼ν

(σ)
b

[log h(x; θ̄, λ)] = Est∼νb, εt

[
log h(st + εt; θ̄, λ)

]
, producing

unbiased stochastic gradients. Now let

F (θ̄, λ̄) = E
ν

(σ)
b

[log h(x; θ̄, λ̄)]. (39)

Then, the dominated convergence theorem yields ∇F (θ̄, λ̄) = E
ν

(σ)
b

[∇ log h(x; θ̄, λ̄)], so the gradient coincides
with the expected score of the mixture.

We now leverage the above results to maintain a running estimate of the approximation of νb through
online maximum likelihood estimation, where the parameters (θ̄, λ̄) are updated via incremental projected
stochastic-gradient ascent with Polyak–Ruppert averaging (Polyak, 1990; Ruppert, 1988). At iteration t, the
noisy gradient ∇ log h(·; θ̄t, λ̄t) replaces ∇F (θ̄t, λ̄t). The mixture parameters evolve on a possibly different
step-size sequence (αt) than the TD parameters (βt), allowing flexible calibration of the density model
relative to the corrected value estimator. This two-timescale structure couples the density estimation with
the off-policy correction step and supports convergence of the overall algorithm.

[
θ̄t+1

λ̄t+1

]
= ΠΘℓ×∆ℓ

([
θ̄t

λ̄t

]
+ αt ∇θ̄,λ log h

(
s̃t+1; θ̄t, λ̄t

))
[

θ̂t+1

λ̂t+1

]
=
[

θ̂t

λ̂t

]
+ 1

t + 1

([
θ̄t+1

λ̄t+1

]
−

[
θ̂t

λ̂t

])
,

(40)

where s̃t+1 = st+1 + εt+1, the state sequence (st)t≥0 is generated by the behaviour policy as a Markov chain
on S, and εt+1 ∼ N (0, σ2I) is an i.i.d. Gaussian perturbation independent of st. Under standard ergodicity
assumptions, the chain admits a unique stationary distribution νb, and the empirical law of st converges to νb;
in the mean-field and ODE analysis we therefore interpret the expectation of the update in (40) with respect
to the mollified stationary law ν

(σ)
b . Further, ΠΘℓ×∆ℓ is the projection operator, which projects θ̄t onto the

constraint set Θℓ and λ̄t onto the probability simplex ∆ℓ. This ensures iterates [θ̄t, λ̄t]⊤ stay feasible. In the
interior of Θℓ ×∆ℓ, it acts as the identity, and near the boundary, it projects orthogonally onto the boundary.
Here αt ∈ (0, 1) is the step-size parameter, fixed apriori. Polyak-Ruppert averaging is employed to enhance
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stability by maintaining running averages θ̂t, λ̂t of the stochastic iterates. This averaging scheme reduces
the effects of noise in gradient estimates and provides more robust parameter estimates for the distribution
correction step.
Remark 2. By leveraging the properties of the NEF, one can obtain a closed form expression for
∇ log h(·; θ̄, λ̄) as follows:

∂

∂θj

∇ log h(s; θ̄, λ̄) =
(Γ(x) − ∇K(θj))gθj (s)

h(s; θ̄, λ̄)
∂

∂λj

log h(s; θ̄, λ̄) =
gθj

(s)
h(s; θ̄, λ̄)

In our algorithm, we use a multi-timescale stochastic approximation framework. The stochastic gradient
ascent for tracking the steady-state distribution and the TD recursion for the off-policy solution are updated
on a faster timescale, while the PR averaging step is updated on a slower one. Specifically, the step-sizes
for the gradient ascent (αt) and TD recursion (βt) are orders of magnitude larger than the PR-averaging
step. This means that while the faster updates capture rapid changes, the slower, smaller step-size of
the averaging step smooths out the fluctuations, stabilizing the learning process and reducing noise. This
timescale relationship is formally defined as follows:

αt, βt ∈ (0, 1),
∑
t≥0

αt =
∑
t≥0

βt = ∞,
∑
t≥0

(α2
t + β2

t ) < ∞, αt, βt = Ω( 1
t + 1). (41)

Further, we modify the TD recursion to correct the steady-state bias by incorporating the steady-state
distribution correction factor (ζt) as follows:

xt+1 = xt + βtρtζt

(
rt+1 + γϕ⊤

t+1xt − ϕ⊤
t xt

)
︸ ︷︷ ︸

δt: TD error

ϕt, where ϕt = ϕ(st), ρt = π(at|st)
πb(at|st)

and ζt = q(st)
h(st; θ̂t, λ̂t)

.

(42)

Intuitively, ρt reweights the TD error δt by how likely the chosen action is under the target vs. behaviour
policy, while ζt reweights by how likely the state st is under the behaviour’s steady-state distribution,
w.r.t. the desired design distribution q. By introducing the correction factor ζt, we re-weight updates to
emphasize states in accordance with a predefined design distribution q. In the ideal case, we set q(s) = νπ(s)
(the target policy’s true stationary distribution), but even if νπ is unknown, we can choose q(s) to be
a reasonable proxy. It is a predefined, domain-specific distribution or heuristic approximation, carefully
handcrafted to suit the problem context. For instance, in risk-aware or safety-constrained applications, q may
emphasize certain critical regions of the state space, while in healthcare, it could overweight underrepresented
patient conditions to ensure equitable learning. This correction adjusts state visitation frequencies, ensuring
that states infrequently visited by the behaviour policy receive appropriate weight during learning. The
pseudocode of our approach is given in Algorithm 1.
Assumption 4. Geometric mixing (spectral gap). There exist constants M > 0 and ρ ∈ (0, 1) such
that

∥∥P t(s,·) − νb

∥∥
TV ≤ M ρ t, ∀ s ∈ S, t ≥ 0.

Assumption 5. Parameter Space Regularity. The parameter space Θ is compact with smooth boundary.
Assumption 6. Uniformly bounded score function. There is a constant G < ∞ such that∥∥∇log h(s; θ̄, λ̄)

∥∥ ≤ G, ∀ θ̄ ∈ Θℓ, ∀λ̄ ∈ ∆ℓ, ∀s ∈ S.

Remark 3. For the mixture NEF model h(s; θ̄, λ̄) =
∑ℓ

j=1 λjgθj (s), we note that the parameters v = (θ̄, λ̄)
lie in a compact set (because Θ is compact and λ̄ lies in the simplex, which is also compact). Then, for
each s, h(s; v) is a continuous function of v (as a finite sum of products of continuous functions) and hence
attains a minimum and maximum over the compact parameter space. Again, because gθj

(s) > 0 and λj ≥ 0
with

∑
λj = 1, we have hv(s) ≥ minj gθj

(s) ≥ η > 0 and hv(s) ≤ maxj gθj
(s) ≤ M . Moreover, the same

bounds hold uniformly in s because there are finitely many states. Thus, for the mixture model, we also have:

0 < η ≤ h(s; v) ≤ M < ∞, ∀ v ∈ Θℓ × ∆ℓ, ∀ s ∈ S.
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Algorithm 1: Off-policy TD with linear function approximation and distributional correction
Function Off-TD-SSBC(π, πb)

for each transition (st, at, rt+1, st+1) do
Calibrate parameters as follows:[
θ̄t+1
λ̄t+1

]
= ΠΘℓ×∆ℓ

([
θ̄t

λ̄t

]
+ αt∇ log h(s̃t+1; θ̄t, λ̄t)

)
, where s̃t+1 = st+1 + εt+1, and εt+1 ∼ N (0, σ2I)[

θ̂t+1
λ̂t+1

]
=
[

θ̂t

λ̂t

]
+ 1

t + 1

([
θ̄t+1
λ̄t+1

]
−

[
θ̂t

λ̂t

])
xt+1 = xt + βtρtζt

(
rt+1 + γϕ⊤

t+1xt − ϕ⊤
t xt

)
ϕt,

where ρt = π(at|st)
πb(at|st)

and ζt = q(st)
h(st; θ̂t, λ̂t)

This then leads to the boundedness of the score function as previously explained.

To establish the convergence properties of Algorithm 1, we analyze the stochastic updates of the dis-
tribution parameters θ̄t and λ̄t. Let υt = [θ̄t, λt]⊤, h(·; υt) = h(·; θ̄t, λ̄t), U = Θℓ × ∆ℓ and Ft =
σ(θk, λk, θ̂k, λ̂k, sk, ak, xk, εk, 0 ≤ k ≤ t) be the natural filtration generated by all variables up to time t.
Then the update recursion of [θ̄t, λ̄t]⊤ can be decomposed into a deterministic drift, a martingale noise, and
a bias as follows:

υt+1 = ΠU (υt + αt∇ log h(s̃t+1; υt))
= ΠU

(
υt + αt

(
∇F (υt) + Mυ

t+1 + bυ
t

))
,

where Mυ
t+1 = ∇ log h(s̃t+1; υt) − E [∇ log h(s̃t+1; υt)|Ft] , and bυ

t = E [∇ log h(s̃t+1; υt)|Ft] − ∇F (υt).
(43)

First we establish a fundamental result on the bias term which shows that the bias term is geometrically
decaying and therefore summable.
Lemma 5. Let Assumptions 4 and 6 hold. Then the bias term bυ

t satisfies ∥bυ
t ∥ ≤ GM ρ t, ∀t ≥ 0 and

∞∑
t=0

αt ∥bυ
t ∥ < ∞.

Proof. By conditioning first on st+1 and then on the Gaussian perturbation, we get

E[∇ log h(s̃t+1; υt) | Ft] =
∑
s′∈S

Pπb
(st+1 = s′) gυt(s′), (44)

where we define the mollified score gυ(s′) = Eε∼N (0,σ2I)[∇υ log h(s′ + ε; υ)] . Under Assumption 6, the (un-
perturbed) score is uniformly bounded, ∥∇υ log h(x; υ)∥ ≤ G for all x, and hence ∥gυ(s′)∥ ≤ G for all s′ ∈ S
and all υ. The gradient of the mollified objective F (υt) is

∇F (υt) = Es∼νb, ε∼N (0,σ2I)
[

log h(s + ε; υ)
]
, =

∑
s′∈S

νb(s′) gυt
(s′). (45)

Subtracting (45) from (44) and let µt(s) = Pπb
(st = s), we get,

bυ
t =

∑
s′∈S

(
µt(s′) − νb(s′)

)
gυt(s′). (46)

Using the earlier uniform bound ∥gυt
(s′)∥ ≤ G and the identity ∥µt − νb∥1 = 2∥µt − νb∥TV, we obtain

∥bυ
t ∥ ≤ G∥µt − νb∥1 = 2G ∥µt − νb∥TV.
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From Assumption 4 (geometric mixing of the behaviour chain), we obtain

∥bυ
t ∥ ≤ 2GMρt, where M > 0 and 0 < ρ < 1.

Further,
∞∑

t=0
αt∥bυ

t ∥ ≤ 2GM

∞∑
t=0

αtρ
t.

Since the step-sizes satisfy αt → 0,
∑

t αt = ∞, and
∑

t α2
t < ∞ (from (41)), the weighted geometric series∑

t αtρ
t converges. Thus

∑
t αt∥bυ

t ∥ < ∞.

The following theorem establishes that the sequence {[θ̄t, λ̄t]⊤} converges to Karush-Kuhn-Tucker (KKT)
points—first-order optimality conditions where the gradient aligns with the normal cone of Θℓ × ∆ℓ. This
guarantees the learned mixture distribution h(·; θ̄, λ̄) converges to a stationary point of the KL-divergence
minimization problem.
Theorem 4 (Convergence of Distribution Approximation). Let the step-size {αt} satisfy (41). Let Assump-
tions 4-6 hold. Then the sequence {[θ̄, λ̄]⊤} converges almost surely to the set of KKT points:

{υ = [θ̄, λ̄]⊤ ∈ Θℓ × ∆ℓ : −∇F (υ) ∈ NU (υ)},

where NU (υ) denotes the normal cone to Thetaℓ × ∆ℓ at υ, defined as:

NU (υ) =
{

d ∈ Rdim(Θℓ)+ℓ : ⟨d, u − υ⟩ ≤ 0, ∀u ∈ U
}

.

Proof. Let gt = ∇F (υt) + Mυ
t+1 + bυ

t . Then,

υt+1 = ΠU

(
υt + αtgt

)
,

= υt + αtΓU (gt) + ΠU

(
υt + αtgt

)
− υt − αtΓU (gt)

= υt + αt

(
ΓU (gt) +

ΠU

(
υt + αtgt

)
− υt

αt
− ΓU (gt)

)
= υt + αt (ΓU (gt) + o(αt)) . (47)

The last equality follows since

lim
ε→0

ΠU

(
υt + εgt

)
− υt

ε
= ΠTU (υt)(gt)︸ ︷︷ ︸

ΓU (gt)

, (48)

where
TU (υ) =

{
u ∈ Rdim(Θℓ)+ℓ : υ + τu ∈ U for some τ > 0

}
.

In the interior of U , TU (υt) = Rdim(Θℓ)+ℓ
(
unconstrained

)
and near the boundary of U , TU (υt) =

{
u ∈

Rdim(Θℓ)+ℓ
∣∣ u points into U

}
. Thus, ΓU (gt) is the directional derivative of the projection operator ΠU at

point υt in the direction gt, which is equivalent to the projection of gt onto the tangent cone of U at υt

(Rockafellar, 2015). Intuitively, it captures the "feasible component" of gt that aligns with the constraints of
U .

For the noise Mυ
t+1, E

[
Mυ

t+1 | Ft

]
= 0 (by definition). Further, using the triangle inequality,

∥Mυ
t+1∥ =

∥∥∇log h(s̃t+1; υt) − E[∇log h(s̃t+1; υt) | Ft]
∥∥

≤ G + G = 2G a.s.
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By squaring and taking conditional expectation, we get E[∥Mυ
t+1∥2 | Ft] ≤ (2G)2 = 4G2. Thus {Mυ

t } is a
square-integrable martingale-difference sequence. Now, consider St =

∑t−1
k=0 αkMυ

k+1. Note that∑
t≥0

E
[
∥St+1 − St∥2|Ft

]
=
∑
t≥0

α2
tE
[
∥Mυ

t+1∥2|Ft

]
< 4G2

∑
t≥0

α2
t < ∞. (49)

By martingale convergence theorem, it follows that St converges, i.e.,
∑∞

t=0 αtMυ
t+1 < ∞ a.s.

Now rearranging (47), we get

υt+1 = υt + αt

(
ΓU (∇F (υt)) + ΓU (gt) − ΓU (∇F (υt))︸ ︷︷ ︸

ξt

+o(αt)
)

(50)

Using the non-expansive property of ΓU , we have

∥ξt∥ = ∥ΓU (gt) − ΓU (∇F (υt))∥
≤ ∥gt − ∇F (υt)∥ = ∥Mυ

t+1 + bυ
t ∥

≤ ∥Mυ
t+1∥ + ∥bυ

t ∥. (51)

Hence, ∑
t

αt∥ξt∥ ≤
∑

t

αt∥Mυ
t+1∥ +

∑
t

αt∥bυ
t ∥ < ∞ a.s. (52)

Therefore by (Borkar, 2008), it follows that {υt} asymptotically tracks the ODE

υ̇ = ΓU (∇F (υ)). (53)

However, because F is smooth and the constraint set U is convex, the above differential equation is well-
defined and corresponds to the projected gradient ascent. By the theory of stochastic approximation (see
(Borkar, 2008)), the sequence {υt} converges to a (possibly sample path dependent) internally chain transitive
invariant set of the above ODE. Since F is C1,

d

dt
F
(
υ(t)

)
=
〈
∇F

(
υ(t)

)
, υ̇(t)

〉
=
〈
∇F (υ), ΓU

[
∇F (υ)

]〉
.

Apply Moreau’s decomposition to obtain ∇F (υ) = ΠTU (υ) [∇F (υ)] + ΠNU (υ) [∇F (υ)] and
⟨ΠTU (υ) [∇F (υ)] , ΠNU (υ) [∇F (υ)]⟩ = 0. Then,〈

∇F (υ), ΓU (∇F (υ))
〉

=
〈
ΠTU (υ) [∇F (υ)] + ΠNU (υ) [∇F (υ)] , ΓU (∇F (υ))

〉
= ⟨ΓU (∇F (υ)), ΓU (∇F (υ))⟩

=
∥∥ΓU (∇F (υ))

∥∥2 ≥ 0. (54)

Hence
d

dt
F
(
υ(t)

)
=
∥∥ΓU

[
∇F

(
υ(t)

)]∥∥2 ≥ 0 (55)

with equality iff ΓU [∇F (υ(t))] = 0. Therefore, the invariant set of the above ODE is the stationary
(equilibrium) set: {

υ ∈ U : ΓU

[
∇F (υ)

]
= 0
}

=
{

υ ∈ U : −∇F (υ) ∈ NU (υ)
}

,

which are the Karush-Kuhn-Tucker (KKT) points. The last equality follows again by Moreau’s decomposition
of ∇F (υ).

Having established the almost sure convergence of the distribution parameters {υt} to υ∗ in Theorem 4,
we now analyze the temporal difference learning dynamics given by (42). Prior to this, observe that the
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unilateral timescale separation between the faster distribution estimation updates (υt = [θ̄t, λ̄t]⊤) and slower
Polyak-Ruppert averaging (υ̂t = [θ̂t, λ̂t]⊤) ensures that υ̂t → υ∗ asymptotically. This justifies replacing the
time-varying ζt = q(st)/h(st; υ̂t) in the TD update (42) with its steady-state counterpart ζ∗

t = q(st)/h(st; υ∗).
The substitution decouples the distribution approximation error from the value estimation error, permitting
the simplified TD recursion (See Chapter 6 of (Borkar, 2008)). We need the following assumption on the
design distribution q:
Assumption 7. The design distribution q is strictly positive over all states: q(s) > 0 for all s ∈ S.

Now, we rewrite xt update as follows (we let gx
t = ρt ζ∗

t

(
rt+1 + γϕ⊤

t+1x − ϕ⊤
t x
)
ϕt and h∗(·) = h(·; υ∗)):

xt+1 = xt + βtρtζ
∗
t

(
rt+1 + γϕ⊤

t+1xt − ϕ⊤
t xt

)
ϕt, where ρt = π(at|st)

πb(at|st)
and ζ∗

t = q(st)
h∗(st)

= xt + βt

(
bx

t + G(xt) + Mx
t+1
)

. (56)

Here,

G(x) = E[gx
t ] = E

[
ρt ζ∗

t

(
rt+1 + γϕ⊤

t+1x − ϕ⊤
t x
)
ϕt

]
= Es

[ q(s)
h⋆(s)Ea

[
ρt

(
rt+1 + γϕ⊤

t+1x − ϕ⊤
t x
)
ϕt

∣∣ s
]]

= Es

[ q(s)
h⋆(s)

(
Rπ(s) + γ (PπΦx)(s) − (Φx)(s)

)
ϕ(s)

]
= Φ⊤Ξνb

Ξ−1
h⋆ Ξq

(
Rπ + (γ Pπ − I)Φx

)
= Φ⊤Ξνb

Ξ−1
h⋆ Ξq (γ Pπ − I)Φ︸ ︷︷ ︸

Λc

x + Φ⊤Ξνb
Ξ−1

h⋆ ΞqRπ︸ ︷︷ ︸
ξ

. (57)

Also,

Mx
t+1 = gt − E

[
gt | Ft

]
, and bx

t = E
[
gt | Ft

]
− h
(
xt

)
, where gt = ρt ζ∗

t

(
rt+1 + γϕ⊤

t+1xt − ϕ⊤
t xt

)
ϕt. (58)

Further, note that since we have finite state and action spaces |rt| ≤ R∞, ∥ϕ(s)∥ ≤ Φ∞, and 0 ≤ ρt ≤ ρ∞,
0 < ζt ≤ ζ∞.

We first bound the TD error as follows:

|δt| =
∣∣rt+1 + γϕ⊤

t+1xt − ϕ⊤
t xt

∣∣
≤ |rt+1| + γ|ϕ⊤

t+1xt| + |ϕ⊤
t xt|

≤ R∞ + γΦ∞∥xt∥ + Φ∞∥xt∥ = R∞ + (1 + γ)Φ∞∥xt∥

Then the update term gt satisfies

∥gt∥ = |ρtζtδt| · ∥ϕt∥ ≤ ρ∞ζ∞ (R∞ + (1 + γ)Φ∞∥xt∥) · Φ∞ ≤ C1 + C2∥xt∥,

where C1 = ρ∞ζ∞R∞Φ∞, and C2 = ρ∞ζ∞(1 + γ)Φ2
∞. Now,

∥Mx
t ∥ = ∥gt − E[gt | Ft]∥

≤ ∥gt∥ + ∥E[gt | Ft]∥ ≤ 2 sup ∥gt∥

≤ 2(C1 + C2∥xt∥) ≤ C̃1(1 + ∥xt∥).

Further, using ∥a − b∥2 ≤ 2∥a∥2 + 2∥b∥2, we get,

E
[
∥Mx

t+1∥2 | Ft

]
= E

[∥∥gt − E[gt | Ft]
∥∥2 | Ft

]
≤ 2E

[
∥gt∥2 | Ft

]
+ 2

∥∥E[gt | Ft]
∥∥2

≤ 4E
[
∥gt∥2 | Ft

]
≤ 4
(
C1 + C2∥xt∥

)2

≤ 8C2
1 + 8C2

2 ∥xt∥2. (59)
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Now we write bx
t = E[gt | Ft] − G(xt) = E[gt|st, xt] − Eνb

[gt].

Thus, ∥bx
t ∥ = ∥E[gt|st, xt] − Eνb

[gt]∥

≤
∑
s∈S

|Pπb
(st, s) − νb(s)| · ∥E[gt | st, xt]∥

≤ sup
s

∥E[gt | s, xt]∥ · ∥Pπb
(st, ·) − νb∥1

= 2 sup
s

∥E[gt | s, xt]∥ · ∥Pπb
(st, ·) − νb∥T V

≤ 2Mρt(C1 + C2∥xt∥) ≤ C̃2ρt(1 + ∥xt∥). (60)

To establish convergence of the sequence {xt}, we must first ensure the iterates remain stochastically
bounded. While classical stochastic approximation theory (Borkar, 2008) often assumes almost sure bound-
edness, we prove the following weaker but sufficient condition for our setting.
Lemma 6. The iterates xt satisfies supt E

[
∥xt∥2] < ∞.

Proof. Note G satisfes the drift inequality

x⊤G(x) ≤ −c∥x∥2 + d, ∀x ∈ Rk, (61)

where c = 1
2 λmin(−Λc) and d = ∥ξ∥2/(2λmin(−Λc))).

Using E[Mx
t+1 | Ft] = 0 and expanding the square,

E[Vt+1 | Ft] = ∥xt∥2 + 2αtx⊤
t

(
G(xt) + bx

t

)
+ α2

t

(
∥G(xt) + bx

t ∥2 + E[∥Mx
t+1∥2 | Ft]

)
.

Apply (60), (59), (61), and Young’s inequality 2x⊤
t bx

t ≤ c∥xt∥2 + c−1∥bx
t ∥2, and the bound ∥G(xt)∥2 ≤

2∥Λc∥2∥xt∥2 + 2∥ξ∥2, to obtain

E[Vt+1] ≤
(

1 − (2c − c)αt + L2 α2
t

)
E[Vt] + 2d αt + L0 α2

t +
(

c−1αt + 2α2
t

)
8M2ρ2t

(
C2

2 E[Vt] + C2
1

)
, (62)

where L2 = 4∥Λc∥2 + 8C2
2 , L0 = 4∥ξ∥2 + 8C2

1 .

Further, by rearranging, we get,

E[Vt+1] ≤
(

1 − cβt + L2β2
t + 8M2C2

2 (c−1βt + 2β2
t )ρ2t︸ ︷︷ ︸

=Gt

)
E[Vt] + 2d βt + L0 β2

t + 8M2C2
1 (c−1βt + 2β2

t )ρ2t︸ ︷︷ ︸
=et

.

(63)

Since ρ2t → 0 geometrically and βt → 0, the perturbation terms Gt, et vanish; for all large t one can ensure
Gt ≤ c

2 βt, leading to the following stochastic approximation form

E[Vt+1] ≤
(
1 − c

2 βt

)
E[Vt] + 2d βt + c′β2

t . (64)

Now using mathematical induction, we will show that supt E[Vt] < ∞. For t = 0, E[V0] = E[∥x0∥2] is finite
since x0 is initialized with finite variance (base case). Now assume E[Vt] ≤ K for some constant K and all
t ≤ T , where

K = max
(
E[∥x0∥2], 4d

c
+ 2

c
sup
t≥0

c′βt

)
.

Then,

E[VT +1] ≤
(

1 − c

2βT

)
K + 2dβT + c′β2

T

≤ K + βT

(
− c

2K + 2d
)

+ c′β2
T . (65)
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Since K ≥ 4d

c
+ 2

c
sup
t≥0

c′βt, we have

− c

2K + 2d ≤ − c

2

(
4d

c
+ 2

c
sup
t≥0

c′βt

)
+ 2d

= −c′ sup
t≥0

βt ≤ −c′βT < 0.

Thus from (65), we get
E[VT +1] ≤ K − c′α2

T + c′α2
T ≤ K.

By induction, E[Vt] ≤ K for all but a finite number of t.

To establish the convergence of xt, we must show that the bias and noise terms are manageable. Specifically,
the next lemma establishes that the series formed by the weighted bias and martingale noise terms converge
almost surely.
Lemma 7. For the martingale noise Mx

t and the bias bx
t , we have

P

(∑
t

βtMx
t+1 < ∞,

∑
t

βtb
x
t < ∞

)
= 1.

Proof. From (59) and using tower property, we have
E[∥Mx

t+1∥2 | Ft] ≤ 8C2
1 + 8C2

2 ∥xt∥2

⇒ E[∥Mx
t+1∥2] ≤ 8C2

1 + 8C2
2E[∥xt∥2]. (66)

Hence, Mx
t+1 is square-integrable. Now, by the convergence theorem for square-integrable martingale (for

vector-valued martingales), it is enough to show that∑
t

E[∥βtMx
k+1∥2 | Ft] < ∞ a.s.

Thus it is enough to show that

E

[∑
t

E[∥βtMx
t+1∥2 | Ft]

]
< ∞.

Therefore, by monotone convergence theorem, we get

E

[∑
t

E[∥βtMx
t+1∥2 | Ft]

]
=
∑

t

E
[
E[∥βtMx

t+1∥2 | Ft]
]

≤
∑

t

β2
t

(
8C2

1 + 8C2
2E[∥xt∥2]

)
≤
∑

t

β2
t

(
8C2

1 + 8C2
2 sup

t
E[∥xt∥2]

)
< ∞.

The last inequality follows from Lemma 6 and
∑

t β2
t < ∞. This implies that P

(∑
t βtMx

t+1 < ∞
)

= 1.
Now for bx

t , it follows from (60),

E

[∑
t

βt∥bx
t ∥

]
=
∑

t

βtE[bx
t ]

≤
∑

t

2Mβtρ
t(C1 + C2E[∥xt∥])

≤
∑

t

2Mβtρ
t(C1 + C2

√
E[∥xt∥2])

≤
∑

t

2Mβtρ
t(C1 + C2 sup

t

√
E[∥xt∥2]) < ∞.
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The last inequality follows again from Lemma 6, βt → 0 and ρ ∈ (0, 1). Hence, P
(∑

t βtb
x
t+1 < ∞

)
= 1.

Having established the stochastic boundedness of the iterates xt and the almost sure summability of the
martingale noise

∑
t αtMx

t+1 and bias terms
∑

t αtb
x
t , we now prove almost sure convergence of the sequence

{xt}.
Theorem 5 (Convergence of the TD Iterates). Let Assumptions 1-7 hold. Also, assume that the matrix Λc =
Φ⊤Ξνb

Ξ−1
h∗ Ξq(γPπ − I)Φ is Hurwitz (all eigenvalues have strictly negative real parts) and diagonalizable.

Then the sequence {xt} converges almost surely to the unique solution x∗ = xc
TD satisfying:

Φ⊤Ξνb
Ξ−1

h∗ Ξq(I − γPπ)Φx∗ = Φ⊤Ξνb
Ξ−1

h∗ ΞqRπ

Proof. Rearranging recursion (56) of xt as follows:

xt+1 − x∗ = (xt − x∗) + βtΛc(xt − x∗) + αt(Λcx∗ + ξ) + βt(bx
t + Mx

t+1).

But note that Λcx∗ + ξ = 0 by definition of x∗. So,

xt+1 − x∗ = (xt − x∗) + βtΛc(xt − x∗) + βt(bx
t + Mx

t+1).

Let et = xt − x∗. Then,

et+1 = (I + βtΛc)et + βtηt, where ηt = bx
t + Mx

t+1.

We know that
∑

t βt∥ηt∥ < ∞ a.s. by Lemma 7 (since both bx
t and Mx

t+1 are summable in absolute value
a.s.). Now, because Λc is negative definite, the matrix I + βtΛc has eigenvalues in (0, 1) for small βt. After
unraveling the above recursion, we obtain

et+1 =
(

t∏
k=0

(I + βkΛc)
)

y0 +
t∑

k=0
βkηk

 t∏
j=k+1

(I + βjΛc)

 .

Let

Q(t, k) =
t−1∏
j=k

(I + βjΛc) for t > k, Q(k, k) = I. (67)

Then,

et+1 = Q(t + 1, 0)e0 +
t∑

k=0
βkQ(t + 1, k + 1)ηk. (68)

Now, since Λc is negative definite, let λmin > 0 be such that the real parts of the eigenvalues of Λc are less
than or equal to −λmin. Then, there exists a constant C > 0 and β > 0 such that,

∥Q(t, k)∥ ≤ C exp

−β

t−1∑
j=k

αj

 . (69)

Since Λc is diagonalizable, let Λc = PDP −1 where D = diag(λ1, . . . , λd) is diagonal. Then,

Q(t, k) =
t−1∏
j=k

(I + βjΛc) = P

t−1∏
j=k

(I + βjD)

P −1

= P

t−1∏
j=k

Dj

P −1
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where Dj = I + βjD = diag(1 + αjλ1, . . . , 1 + βjλd). The norm satisfies the following:

∥Q(t, k)∥ ≤ ∥P∥ · ∥P −1∥ ·

∥∥∥∥∥∥
t−1∏
j=k

Dj

∥∥∥∥∥∥ (70)

The diagonal matrix norm is given by:∥∥∥∥∥∥
t−1∏
j=k

Dj

∥∥∥∥∥∥ = max
1≤i≤d

∣∣∣∣∣∣
t−1∏
j=k

(1 + βjλi)

∣∣∣∣∣∣
Now we establish a uniform bound for each eigenvalue product

∏t−1
j=k(1 + βjλi). For any ϵ > 0, there exists

β0 > 0 such that for 0 ≤ βj ≤ β0:
|1 + βjλi| ≤ eβj Re(λi)+ϵβj (71)

This follows from the logarithm expansion:

log(1 + βjλi) = βjλi − (βjλi)2

2 + · · ·

= βj Re(λi) + iβj Im(λi) + O(β2
j )

so the real part is αj Re(λi) + O(α2
j ). For sufficiently small αj , we have:

Re (log(1 + βjλi)) ≤ βj Re(λi) + ϵβj

Thus |1 + βjλi| = eRe(log(1+βjλi)) ≤ eβj Re(λi)+ϵβj .

Set ϵ = λmin/2 > 0 where λmin = mini | Re(λi)|. Since Re(λi) ≤ −λmin:

|1 + βjλi| ≤ eβj Re(λi)+βjλmin/2 ≤ e−βjλmin+βjλmin/2 = e−βjλmin/2

when βj ≤ β0. Since βj → 0, there exists K0 ∈ N such that βj ≤ β0 for all j ≥ K0.
Case 1: k ≥ K0
For all j ≥ k ≥ K0, we have βj ≤ β0, so:∣∣∣∣∣∣

t−1∏
j=k

(1 + βjλi)

∣∣∣∣∣∣ ≤ exp

−λmin

2

t−1∑
j=k

βj


Case 2: k < K0
Split the product at K0:

t−1∏
j=k

(1 + βjλi) =

K0−1∏
j=k

(1 + βjλi)


︸ ︷︷ ︸

(∗)

·

 t−1∏
j=K0

(1 + βjλi)


︸ ︷︷ ︸

(∗∗)

Term (∗) is a finite product (since K0 is fixed). Using |1 + βjλi| ≤ 1 + |λi|βj :

|(∗)| ≤
K0−1∏
j=k

(1 + |λi|βj) ≤ exp

|λi|
K0−1∑
j=k

βj

 ≤ Ci(k)

where Ci(k) = exp
(

|λi|
∑K0−1

j=0 βj

)
is bounded (as βj > 0 and fixed K0). Term (∗∗) is bounded by Case 1:

|(∗∗)| ≤ exp

−λmin

2

t−1∑
j=K0

βj


≤ exp

−λmin

2

t−1∑
j=k

βj

 · exp

λmin

2

K0−1∑
j=k

βj


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Combining both terms:∣∣∣∣∣∣
t−1∏
j=k

(1 + βjλi)

∣∣∣∣∣∣ ≤ Ci(k) exp

λmin

2

K0−1∑
j=k

βj

 exp

−λmin

2

t−1∑
j=k

βj


= C ′′

i (k) exp

−λmin

2

t−1∑
j=k

βj


where C ′′

i (k) = Ci(k) exp
(

λmin
2
∑K0−1

j=k βj

)
.

Since k < K0 and there are only finitely many such k, we define the following

C ′ = max

 max
1≤i≤d

0≤k<K0

C ′′
i (k), 1

 < ∞

For k ≥ K0, we have C ′′
i (k) = 1. Thus, for all i, k, and t > k:∣∣∣∣∣∣

t−1∏
j=k

(1 + βjλi)

∣∣∣∣∣∣ ≤ C ′ exp

−λmin

2

t−1∑
j=k

βj


Therefore, ∥∥∥∥∥∥

t−1∏
j=k

Dj

∥∥∥∥∥∥ = max
i

∣∣∣∣∣∣
t−1∏
j=k

(1 + βjλi)

∣∣∣∣∣∣ ≤ C ′ exp

−λmin

2

t−1∑
j=k

βj


Substituting into (70),

∥Q(t, k)∥ ≤ ∥P∥ · ∥P −1∥ · C ′ exp

−λmin

2

t−1∑
j=k

βj


Set C = ∥P∥ · ∥P −1∥ · C ′ and β̄ = λmin/2 to obtain:

∥Q(t, k)∥ ≤ C exp

−β

t−1∑
j=k

βj


for all t > k ≥ 0, with C, β > 0 independent of t and k.
Therefore from (68),

∥et+1∥ ≤ C exp

−β

t∑
j=0

βj

 ∥e0∥ +
t∑

k=0
βk∥Q(t + 1, k + 1)∥∥ηk∥. (72)

The first term goes to zero as t → ∞ because
∑t

j=0 βj → ∞. For the second term, note that

t∑
k=0

βk∥Q(t + 1, k + 1)∥∥ηk∥ ≤ C

t∑
k=0

βk exp

−β̄

t∑
j=k+1

βj

 ∥ηk∥. (73)

By the summability of βk∥ηk∥ and the exponential decay, this term goes to zero. Indeed, for any fixed k, the
term goes to zero as t → ∞. Moreover, the tail of the series

∑
k βk∥ηk∥ is small. Therefore, by the Toeplitz

lemma or direct estimation, the entire sum goes to zero.

Thus, et → 0 a.s., i.e., xt → x∗ a.s.
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A natural question is whether our correction mechanism can guarantee that the residual bias stays pro-
portional to the unavoidable approximation error. The next theorem answers this affirmatively, showing
that the corrected TD fixed point is never worse than a constant-factor multiple of the best value function
representable by the chosen features.

First, we define the total error as:

e = ΦxT D
c − Vπ

= Φ(xT D
c − w∗) + (Φw∗ − Vπ) = Φu + δ, (74)

where

- w∗ = arg minw ∥Φw − Vπ∥q is the best approximation under q-norm

- u = xT D
c − w∗ is the difference between the TD solution and the best approximation

- δ = Φw∗ − Vπ is the approximation error
Lemma 8 (Orthogonality Condition for TD Fixed Point). The TD fixed point satisfies the orthogonality
condition:

Φ⊤Ξνb
Ξ−1

h∗ Ξq(I − γPπ)e = 0 (75)

Proof. The TD fixed point satisfies:

Φ⊤Ξνb
Ξ−1

h∗ Ξq(I − γPπ)ΦxT D
c = Φ⊤Ξνb

Ξ−1
h∗ ΞqRπ

Substituting the Rπ = (I − γPπ)Vπ (from Bellman equation) into the TD fixed point equation:

Φ⊤Ξνb
Ξ−1

h∗ Ξq(I − γPπ)ΦxT D
c = Φ⊤Ξνb

Ξ−1
h∗ Ξq(I − γPπ)Vπ

Rearranging all terms to one side:

Φ⊤Ξνb
Ξ−1

h∗ Ξq(I − γPπ)(ΦxT D
c − Vπ) = 0 ⇒ Φ⊤Ξνb

Ξ−1
h∗ Ξq(I − γPπ)e = 0.

To rigorously validate the effectiveness of our distributional correction mechanism, we bound the approxi-
mation error relative to the fundamental limit imposed by the expressivity of the features and the target
state weighting. The following result provides a worst-case guarantee that our method does not amplify
unavoidable approximation errors and quantifies how design choices (e.g., the target distribution q, feature
selection, and mixture model complexity) influence performance.
Theorem 6 (Error Bound for Off-Policy TD with Steady-State Bias Correction). Let Λc be Hurwitz and
diagonalizable and Assumptions 1-7 hold. Then, the error of the off-policy TD solution with steady-state bias
correction satisfies:

∥ΦxT D
c − Vπ∥νb

≤ C · min
w

∥Φw − Vπ∥q

where:

C =
(

∥P∥ · ∥P −1∥
|α(Λc)|

)
·
√

max
s

νb(s) · K ·
√

max
s

q(s)σmax(Φ)2 · (1 + γ
√

κq) +

√
max

s

νb(s)
q(s)

with κq = max
s′

∑
s q(s)Pπ(s′|s)

q(s′) , and α(Λc) = max
i

Re(λi(Λc)) < 0 being the spectral abscissa of Λc.
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Proof. By applying triangle inequality on (74), we get

∥e∥νb
≤ ∥Φu∥νb

+ ∥δ∥νb
(76)

From Lemma 8, we have
⟨Φ⊤Ξνb

Ξ−1
h∗ Ξq(I − γPπ), e⟩ = 0 (77)

Substituting e = Φu + δ:

Φ⊤Ξνb
Ξ−1

h∗ Ξq(γPπ − I)Φu = −Φ⊤Ξνb
Ξ−1

h∗ Ξq(γPπ − I)δ
⇒ Λcu = −bδ,

where bδ = Φ⊤Ξνb
Ξ−1

h∗ Ξq(γPπ − I)δ.
Since Λc is Hurwitz and diagonalizable, Λc is invertible and can be written as Λ = PDP −1, where D =
diag(λ1, . . . , λk) with Re(λi) < 0 for all i. Therefore,

u = −Λ−1
c bδ = −PD−1P −1bδ (78)

By taking norms on either side, we get

∥u∥ ≤ ∥Λ−1
c ∥ · ∥bδ∥ ≤ ∥P∥ · ∥P −1∥ · ∥D−1∥ · ∥bδ∥ (79)

Since D is diagonal with entries λi:

∥D−1∥ = max
i

∣∣∣∣ 1
λi

∣∣∣∣ = 1
mini |λi|

Let α(Λc) = max
i

Re(λi) < 0. For any eigenvalue λi = ai + bii, we have |λi| =
√

a2
i + b2

i ≥ |ai| = |Re(λi)|.
Therefore,

∥D−1∥ ≤ 1
|α(Λc)| (80)

So, from (79), we get

∥u∥ ≤
(

∥P∥ · ∥P −1∥
|α(Λc)|

)
· ∥bδ∥ (81)

Now we bound ∥bδ∥ = ∥Φ⊤Ξνb
Ξ−1

h∗ Ξq(γPπ − I)δ∥. Using the q-weighted inner product and Cauchy-Schwarz
inequality:

|v⊤bδ| = |⟨(νb/h∗)Φv, (γPπ − I)δ⟩q|
≤ ∥(νb/h∗)Φv∥q · ∥(γPπ − I)δ∥q (82)

We first, bound ∥(νb/h∗)Φv∥q:

∥(νb/h∗)Φv∥2
q =

∑
s

q(s)
(

νb(s)
h∗(s)

)2
(Φv(s))2

≤ max
s

(
νb(s)
h∗(s)

)2
· max

s
q(s) · ∥Φv∥2

≤ K2 · max
s

q(s) · σmax(Φ)2 · ∥v∥2

Therefore,
∥(νb/h∗)Φv∥q ≤ K ·

√
max

s
q(s) · σmax(Φ) · ∥v∥ (83)

Next, we bound ∥(γPπ − I)δ∥q. Let µ(s′) =
∑

s q(s)Pπ(s′|s), which is the next-state distribution under
policy π when starting from distribution q. Similar to Lemma 1, one can obtain the following:

∥Pπf∥2
q =

∑
s

q(s)(Pπf(s))2 ≤
∑

s

q(s)
∑

s′

Pπ(s′|s)f(s′)2 ≤
(

max
s′

µ(s′)
q(s′)

)
︸ ︷︷ ︸

κq

·∥f∥2
q
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Then, ∥Pπ∥q ≤ √
κq. Therefore,

∥(γPπ − I)δ∥q ≤ γ∥Pπδ∥q + ∥δ∥q ≤ γ
√

κq · ∥δ∥q + ∥δ∥q = (1 + γ
√

κq) · ∥δ∥q

Combining these results:

∥bδ∥ ≤ K ·
√

max
s

q(s) · σmax(Φ) · (1 + γ
√

κq) · ∥δ∥q (84)

Now, we bound the approximation error under νb:

∥δ∥2
νb

=
∑

s

νb(s)δ(s)2 ≤
(

max
s

νb(s)
q(s)

)
·
∑

s

q(s)δ(s)2 =
(

max
s

νb(s)
q(s)

)
· ∥δ∥2

q

Therefore,

∥δ∥νb
≤

√
max

s

νb(s)
q(s) · ∥δ∥q (85)

Finally, we combine all components in (74):

∥e∥νb
≤ ∥Φu∥νb

+ ∥δ∥νb

≤
(

∥P∥ · ∥P −1∥
α(Λc)

)
·
√

max
s

νb(s) · K ·
√

max
s

q(s) · σmax(Φ)2 · (1 + γ
√

κq) · ∥δ∥q +

√
max

s

νb(s)
q(s) · ∥δ∥q

Since ∥δ∥q = minw ∥Φw − Vπ∥q, and by the definition (74) of e we obtain the claim:

∥ΦxT D
c − Vπ∥νb

≤ C · min
w

∥Φw − Vπ∥q, (86)

where

C =
(

∥P∥ · ∥P −1∥
α(Λc)

)
·
√

max
s

νb(s) · K ·
√

max
s

q(s)σmax(Φ)2 · (1 + γ
√

κq) +

√
max

s

νb(s)
q(s) .

The above theorem demonstrates that the error of our corrected solution is proportional to the minimal
approximation error under the target distribution q, scaled by factors capturing policy misalignment, feature
conditioning, and steady-state estimation accuracy. This establishes that our algorithm achieves near-optimal
performance within the constraints of the representation, while explicitly quantifying the cost of distribution
shift correction. The bound further elucidates the trade-offs between policy similarity, distribution estima-
tion quality, and feature design. This bound further provides several relevant insights, which are in order:

1. Fundamental Error Relationship: The error in the TD solution is proportional to the best possible ap-
proximation error, establishing that the algorithm achieves the best possible performance within the function
approximation class.
2. Steady-State Estimation Quality: The term K = maxs

νb(s)
h(s) quantifies the impact of steady-state distri-

bution estimation error. When K ≈ 1 (accurate estimation), the bound tightens, validating the steady-state
bias correction approach.
3. Policy Alignment: The term (1 + γ

√
κq) with κq = maxs′

µ(s′)
q(s′) measures policy dissimilarity. Smaller κ

(more similar policies) leads to tighter bounds, explaining why off-policy learning becomes challenging with
dissimilar policies.
4. Feature Representation: The term σmax(Φ)2 shows that well-conditioned feature representations (smaller
σmax) lead to better error bounds.
5. Distributional Factors: The terms

√
maxs νb(s),

√
maxs q(s), and

√
maxs

νb(s)
q(s) capture how state distri-

bution properties affect performance.
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While Theorem 3 provides an error bound under the behaviour policy’s stationary distribution νb, in many
practical scenarios we are ultimately interested in the prediction accuracy under the design distribution
q. The following corollary establishes that our steady-state bias correction method also provides strong
guarantees in the design distribution norm.
Corollary 2 (Error Bound in q-Norm). Under the same assumptions as Theorem 3, the error of the corrected
off-policy TD solution under the design distribution satisfies:

∥∥ΦxTD
c − Vπ

∥∥
q

≤ Cq · min
w

∥Φw − Vπ∥q , where Cq =

√
max
s∈S

q(s)
νb(s) · C,

and C is the constant from Theorem 3.

Proof. Since the state space S is finite and νb(s) > 0 for all s ∈ S (by Assumption 1), maxs∈S
q(s)
νb(s) is finite.

Hence,

∥ΦxTD
c − Vπ∥2

q =
∑
s∈S

q(s)(ΦxTD
c − Vπ)(s)2

=
∑
s∈S

νb(s)
(

q(s)
νb(s)

)
(ΦxTD

c − Vπ)(s)2

≤
∑
s∈S

νb(s) · max
s∈S

q(s)
νb(s) · (ΦxTD

c − Vπ)(s)2

= max
s∈S

q(s)
νb(s)∥ΦxTD

c − Vπ∥2
νb

.

Taking square roots and applying Theorem 3, we get,

∥ΦxTD
c − Vπ∥q ≤

√
max
s∈S

q(s)
νb(s)∥ΦxTD

c − Vπ∥νb
≤

√
max
s∈S

q(s)
νb(s) · C · min

w
∥Φw − Vπ∥q .

Remark 4. The constant Cq reveals an important trade-off: while our correction mechanism aims to align
the solution with the target distribution q, the final error bound depends on the maximum density ratio
between q and νb. This highlights the fundamental importance of coverage: if the behaviour policy rarely
visits states that are important under q (i.e., νb(s) ≪ q(s) for some s), then R becomes large and the bound
degrades. This aligns with intuition and provides theoretical justification for the empirical observation that
good behaviour policies should have adequate coverage of the target distribution’s support.
Remark 5. When q = νπ (the ideal case where we know the target policy’s stationary distribution), Corol-
lary 2 provides a bound on the error relative to the true evaluation metric of interest. The constant Cq then
depends on the distribution mismatch coefficient maxs

νπ(s)
νb(s) , which quantifies how well the behaviour policy

covers the target policy’s state visitation pattern.

To complete the convergence analysis, we now provide a sufficient condition for the matrix Λc to be Hurwitz,
which ensures the asymptotic stability of the algorithm.
Theorem 7 (Hurwitz Condition). Λc = Φ⊤Ξνb

Ξ−1
h∗ Ξq(γPπ − I)Φ is Hurwitz (all eigenvalues have strictly

negative real parts) if and only if Kqκqγ2 < 1, where κq = maxs′
µq(s′)
q(s′) with µq(s′) =

∑
s q(s)Pπ(s′|s) and

Kq = maxs
Ξνb

(s)Ξ−1
h∗ (s)

q(s) .

Proof. Consider the quadratic form w⊤Λcw for any w ̸= 0:

w⊤Λcw = w⊤Φ⊤Ξνb
Ξ−1

h∗ Ξq(γPπ − I)Φw
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Let u = Φw. By Assumption 2, u ̸= 0 since rank(Φ) = k. Then:

w⊤Λcw = u⊤Ξνb
Ξ−1

h∗ Ξq(γPπ − I)u = γu⊤Ξνb
Ξ−1

h∗ ΞqPπu − u⊤Ξνb
Ξ−1

h∗ Ξqu

Let Q1 = γu⊤Ξνb
Ξ−1

h∗ ΞqPπu and Q2 = u⊤Ξνb
Ξ−1

h∗ Ξqu. First, observe that Q2 > 0 since Ξνb
, Ξ−1

h∗ , Ξq are all
positive definite diagonal matrices (by Assumption 1 and the fact that h∗ is a valid distribution estimate).

For Q1, apply the Cauchy-Schwarz inequality:

|Q1| ≤ γ∥u∥Ξνb
Ξ−1

h∗ Ξq
· ∥Pπu∥Ξνb

Ξ−1
h∗ Ξq

, where ∥x∥Ξνb
Ξ−1

h∗ Ξq
=
√

x⊤Ξνb
Ξ−1

h∗ Ξqx.

Now, we need to bound ∥Pπu∥2
Ξνb

Ξ−1
h∗ Ξq

:

∥Pπu∥2
Ξνb

Ξ−1
h∗ Ξq

= u⊤(Pπ)⊤Ξνb
Ξ−1

h∗ ΞqPπu

=
∑

s

∑
s′

∑
s′′

u(s)Pπ(s′|s)Ξνb
(s)Ξ−1

h∗ (s)Ξq(s)Pπ(s′′|s′)u(s′′)

=
∑

s′

Ξq(s′)u(s′)
(∑

s

Ξνb
(s)Ξ−1

h∗ (s)
Ξq(s′) Pπ(s′|s)u(s)

)

Note that Kq = maxs
Ξνb

(s)Ξ−1
h∗ (s)

q(s) , is bounded since νb and h∗ are positive distributions on a finite state
space. Then,

∥Pπu∥2
Ξνb

Ξ−1
h∗ Ξq

≤ Kq

∑
s′

q(s′)u(s′)
(∑

s

Pπ(s′|s)u(s)
)

≤ Kq

∑
s′

q(s′)u(s′)
√∑

s

Pπ(s′|s)u(s)2 (by Jensen’s inequality)

≤ Kq

√∑
s′

q(s′)u(s′)2 ·
√∑

s′

q(s′)
∑

s

Pπ(s′|s)u(s)2

= Kq∥u∥q ·
√∑

s

u(s)2
∑

s′

q(s′)Pπ(s′|s)

= Kq∥u∥q ·
√∑

s

u(s)2µq(s)

≤ Kq
√

κq∥u∥2
q where κq = max

s′

µq(s′)
q(s′)

Thus, ∥Pπu∥Ξνb
Ξ−1

h∗ Ξq
≤
√

Kqκq∥u∥q. Now, since ∥u∥Ξνb
Ξ−1

h∗ Ξq
≥
√

K−1
q ∥u∥q, we have,

|Q1| ≤ γ
√

Kqκq∥u∥2
Ξνb

Ξ−1
h∗ Ξq

Therefore:
w⊤Λcw ≤ (γ

√
Kqκq − 1)∥u∥2

Ξνb
Ξ−1

h∗ Ξq

When Kqκqγ2 < 1, we have γ
√

Kqκq < 1, and thus w⊤Λcw < 0 for all w ̸= 0.

This proves that Λc is negative definite, and therefore all its eigenvalues have strictly negative real parts
(Hurwitz).
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In Algorithm 1, the mixture weights λ̄t must satisfy probability simplex constraints (λi ≥ 0,
∑ℓ

i=1 λi = 1)
after each gradient update. To enforce this, we employ an efficient projection method that provides an optimal
O(ℓ log ℓ) Euclidean projection onto the simplex ∆ℓ (Wang & Carreira-Perpinán, 2013). The method sorts
the components of λ̄, determines an optimal threshold, and redistributes mass, providing the closest valid
point in the simplex ∆ℓ while preserving sparsity patterns when possible which attributes to its O(ℓ log ℓ)
complexity. Specifically, it seeks the solution to the following optimization problem:

min
λ

1
2∥λ − v∥2, subject to

ℓ∑
i=1

λi = 1, λi ≥ 0.

Using a Lagrange multiplier τ for the equality constraint
∑ℓ

i=1 λi = 1, we define the Lagrangian:

L(λ, τ) = 1
2

ℓ∑
i=1

(λi − vi)2 − τ

(
ℓ∑

i=1
λi − 1

)
.

Now solving for λi by taking the derivative w.r.t. λi:

∂L
∂λi

= λi − vi − τ = 0 ⇒ λi = vi + τ.

Now to enforce the simplex constraint, we sum over all i:

ℓ∑
i=1

λi =
ℓ∑

i=1
(vi + τ) = 1 ⇒ τ =

1 −
∑ℓ

i=1 vi

ℓ
.

Thus, the projection without considering the non-negativity constraint is: λi = vi + 1−
∑ℓ

i=1
vi

ℓ . If any λi < 0,
we modify the solution by clipping negative values to zero and redistributing the remaining weight. This is
efficiently handled by sorting v in descending order and determining a threshold τ such that the projected
vector remains non-negative.

Algorithm 2: Euclidean projection onto ∆ℓ

Function Π∆ℓ(λ ∈ Rℓ)
Sort λ into η: η1 ≥ η2 ≥ · · · ≥ ηℓ

τ = max{1 ≤ j ≤ ℓ : ηj + 1
j

(
1 −

∑j
i=1 ηi

)
> 0}

y = 1
τ (1 −

∑τ
i=1 ηi)

return λ̂ = max{λi + y, 0}, i ∈ {1, 2, . . . , ℓ}

4 Experiments & Results

Here, we present a comprehensive empirical evaluation of the proposed Steady-State Bias Correction (SSBC-
TD) algorithm across diverse benchmark domains. The experiments are designed to validate the method’s
effectiveness in mitigating steady-state distribution mismatch in off-policy TD learning with linear func-
tion approximation. We assess performance using Root Mean Square Error (RMSE) of value predictions:
RMSE = ∥Vπ − Φx∥2 against true value functions. All results are averaged over 10 independent runs to
ensure statistical robustness. Key aspects evaluated include:

- Generalization across domains: Discrete (Circle Chain (Prediction + Control), Gridworld Cliff
Walking, Taxi) and continuous (Mountain Car, CartPole, Acrobot) state spaces

- Hyperparameter sensitivity: Impact of step-sizes (αt, βt) on convergence
- Trajectory robustness: Performance under varying episodic path structures
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- Distributional fidelity: Accuracy of Gaussian mixture approximations for stationary distributions

- Discount factor and design distribution sensitivity: Impact of discount factor γ and design
distribution q on prediction error.

All environments are modified to ensure ergodicity (e.g., respawning agents in terminal states) for well-defined
steady-state distributions.

4.1 Discrete Domain

4.1.1 Circle Chain

We consider a ring-structured Markov chain with n = 100 discrete states S = {0, 1, . . . , n − 1} and circular
distance d(i, j) = min{|i − j|, n − |i − j|}. Each chain is defined by a transition kernel that moves Left
or Right between neighbouring states while preserving irreducibility and aperiodicity. To ensure that the
stationary distribution of each chain is non-uniform yet unique, we construct the transition probabilities to
satisfy detailed balance with respect to a desired wrapped-Gaussian distribution ν on the ring:

ν(i) Pi,i+1 = ν(i + 1) Pi+1,i, i ∈ S.

This is implemented by choosing

Pi,i+1 = 1
2 min

{
1, ν(i+1)

ν(i)

}
, Pi,i−1 = 1

2 min
{

1, ν(i−1)
ν(i)

}
, Pi,i = 1 − Pi,i+1 − Pi,i−1,

yielding an irreducible, reversible, and uniquely stationary Markov chain with ν as its stationary law. This
Metropolis–Hastings construction ensures that the induced steady-state remains non-trivial even after full
mixing. The target stationary distribution is fixed as a wrapped Gaussian centred at 0:

νπ(i) ∝ exp
[

− d(i,0)2

2σ2

]
,

while the behaviour chain’s stationary distribution is its spatially shifted counterpart

ν
(ρ)
b (i) ∝ exp

[
− d(i,c(ρ))2

2σ2

]
, c(ρ) = (1 − ρ) n/2, ρ ∈ [0, 1].

As ρ decreases from 1 to 0, the mode of ν
(ρ)
b moves antipodally across the ring, generating controllable

distributional mismatch between behaviour and target steady-states. The auxiliary design distribution q
is uniform, approximating the steady-state of a fully mixing kernel and representing an uninformative bias
baseline. This choice reinstates the equal-weight treatment of states. The behaviour steady-state distribution
ν

(ρ)
b is approximated by a Gaussian-mixture surrogate h

θ̂⋆ ,̂λ⋆ with ℓ = 10 wrapped components.

Figure 3a shows that SSBC-TD consistently attains lower RMSE than baseline off-policy TD yet remains
above the on-policy limit, confirming effective bias mitigation without instability. Figure 3b highlights the
structural discrepancy between the uniform design q and the localized target steady-state νπ, a principal
source of off-policy bias. Finally, Figure 3c demonstrates how the behavioural distribution ν

(ρ)
b moves from

orthogonal to aligned as ρ increases, with the fitted mixture surrogate accurately tracking this progression.
Together, these results verify that SSBC-TD maintains asymptotic consistency and achieves a favourable
bias–variance trade-off as the steady-state overlap between behaviour and target policies improves.

4.2 Control: Policy Optimization under Steady-State Bias Correction

We extend the steady-state bias correction framework from off-policy prediction to control on the Circle-
Chain MDP. As before, the environment comprises n = 100 cyclically connected states and two actions
A = {Left, Right}. Rewards follow a Gaussian centered at s = 0:

r(s) = exp[−d(s, 0)2/(2σ2
r)], σr = 5, (87)
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(a) RMSE evolution across horizons; SSBC-TD interpolates
between on- and off-policy TD.

(b) Uniform design distribution q(s) versus non-uniform tar-
get steady-state νπ .

(c) Evolution of ν
(ρ)
b

and its mixture surrogate across ρ∈{0, 0.33, 0.66, 1}; the surrogate
accurately tracks the shifting behavioural distribution.

Figure 3: Circle Chain experiments. (a) SSBC-TD achieves intermediate RMSE between on- and off-policy
TD, mitigating steady-state bias while maintaining stability. (b) The uniform weighting q differs from νπ, motivating
reweighted updates. (c) As ρ increases, ν

(ρ)
b progressively aligns with νπ, and the mixture surrogate (ℓ = 10) closely

follows this transition, illustrating smooth bias reduction as overlap grows.

with discount factor γ = 0.9. The behaviour policy induces a stationary distribution νb concentrated near
the antipodal region of the reward peak (s≈50), creating a strong distributional mismatch with the optimal
policy’s stationary measure νπ. The auxiliary design distribution is uniform, q(s) = 1/n, representing an
uninformative baseline.

Rationale for a uniform q: In classical dynamic programming (value or policy iteration with a known
model), Bellman backups are pointwise, and the contraction is measured in the ∥ · ∥∞ norm, giving equal
weight to all states. In contrast, trajectory-based off-policy TD with function approximation minimizes
a projected Bellman error under the behaviour steady-state geometry: Φ⊤Ξνb

(Φx − Tπ(Φx)) = 0, which
overweights frequently visited states and underweights others, inducing a steady-state bias. Replacing Ξνb

by Ξq through multiplicative weights ζ(s)∝q(s)/h(s) yields the fixed point of ΠqTπ. Choosing a uniform q
restores the state-agnostic weighting of classical value or policy iteration, where all states contribute equally
to the Bellman residual. This aligns off-policy TD with the unbiased model-based ideal, removing systematic
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skew from νb while maintaining numerical stability. Practically, a uniform q serves as a robust surrogate
for the (unknown) target steady-state distribution νπ, bridging trajectory-based and classical value-iteration
perspectives.

Algorithmic procedure: Policy iteration alternates between value estimation (via naive off-policy TD or
SSBC-TD) and greedy improvement using

Qk(s, a) = r(s, a) + γ
∑

s′

P (s, a, s′) ϕ(s′)⊤xk, (88)

where xk denotes the value-parameter estimate from the preceding evaluation phase and ϕ(s) are the RBF
features. The next policy is updated as

πk+1(a | s) = 1
{

a = arg max
a′

Qk(s, a′)
}

, (89)

with deterministic tie-breaking. Each evaluation phase performs 2000 TD updates with the same feature
representation (20 RBFs) and step-size schedule; results are averaged across 50 independent random seeds.

Figure 4a shows the discounted return across policy iterations. SSBC-TD attains faster and higher returns
than naive off-policy TD, with narrower variability bands. This confirms that re-projecting the Bellman
operator in L2(q) suppresses the instability caused by the skewed visitation frequencies of νb. Figure 4b
reports the RMSE between the estimated and true values v∗. The bias-corrected variant converges more
rapidly and achieves a lower steady-state error, verifying that geometric alignment with q mitigates the
accumulation of long-horizon bias. Figure 4c visualizes the learned action probabilities P (Right | s). The
SSBC-TD policy exhibits a sharp, symmetric decision boundary that efficiently drives trajectories toward
the reward centre, whereas the naive policy remains blurred and asymmetric, reflecting persistent influence
from νb.

Across all metrics, SSBC-TD obtains superior control behaviour—higher asymptotic returns, reduced RMSE,
and a sharper optimal policy—while maintaining stability comparable to on-policy TD. By explicitly
reweighting the evaluation step toward a uniform q, the algorithm neutralizes steady-state bias from the
behaviour chain and ensures that the policy-improvement operator follows the true Bellman gradient under
the intended state weighting. Empirically, these findings confirm that steady-state correction not only re-
stores consistency in value prediction but also enables bias-free off-policy control with markedly improved
sample efficiency.

4.2.1 Gridworld Cliff Walking

In the Gridworld Cliff Walking domain, the agent operates on a discrete 10 × 10 grid (|S| = 100) where the
objective is to reach the goal while avoiding the cliff region. We set γ = 0.9 and employ a behaviour policy
biased toward the left side of the grid, producing a left-skewed steady-state distribution νb. The target policy
π prefers the safer right-side cells, inducing a right-skewed steady-state νπ. The correction distribution q is
uniform across states, providing a flat reference for bias correction. The surrogate h

θ̂∗ ,̂λ∗ approximates νb

using a mixture of ℓ = 5 Gaussian components over discrete state indices.

Figure 5a demonstrates that SSBC-TD reduces the steady-state bias substantially compared with the base-
line off-policy TD method, approaching the accuracy of on-policy learning while maintaining stability across
iterations. The results confirm that steady-state correction yields lower asymptotic error and improved
smoothness of convergence. Figures 5b–5c illustrate the underlying distributional mismatch and its correc-
tion. The uniform q(s) does not capture the asymmetry present in νπ, which leads to biased value estimation
in standard off-policy TD. By contrast, the surrogate h

θ̂∗ ,̂λ∗ sufficiently approximates νb, ensuring acceptable
reweighting of the temporal-difference updates and stabilizing the projected Bellman operator. The narrow
uncertainty band observed for the mixture indicates that the surrogate fit is consistent across multiple runs.
Overall, SSBC-TD achieves a balanced trade-off between bias reduction and variance control, validating its
robustness in environments with asymmetric occupancy distributions.
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(a) Discounted return (b) RMSE vs v∗

(c) Learned policy probabilities P (Right | s)

Figure 4: Circle Chain control results. (a) Discounted return per policy iteration. (b) RMSE between estimated
and true values. (c) Final policy distribution P (Right | s). SSBC-TD achieves higher asymptotic return, reduced
steady-state error, and a sharper optimal boundary compared to naive off-policy TD, demonstrating effective bias
correction and improved sample efficiency.

4.2.2 Taxi Domain

The Taxi environment consists of a finite tabular state space S with |S| = 500 states encoding the taxi loca-
tion, passenger position, and destination, and a discrete action set representing navigation and pickup/drop-
off actions. We consider an off-policy prediction task where the behaviour policy πb selects each action
uniformly at random in every state. Under this policy, the induced stationary distribution νb is empirically
close to uniform, and hence the steady-state bias that arises from evaluating the value function under νb

instead of the evaluation distribution is inherently small.

We evaluate our algorithm with a discount factor of γ = 0.2. The behaviour steady-state distribution νb

is approximated by a Gaussian mixture, where each component is a truncated Gaussian distribution over
the closed interval [0, 600]. We set ℓ = 10 mixture components. The design distribution q is chosen to be
uniform over all states, q(s) = 1/|S|, ensuring that all states receive equal weight in the RMSE metric. The
correction factor ζt then reweights TD updates so that their effective sampling distribution aligns with this
uniform target.

From Figure 6, both the base off-policy algorithm and our approach achieve nearly identical results. Because
the uniform behaviour policy induces an almost uniform stationary distribution across the 500 discrete states,
the mismatch between νb and the evaluation distribution is minimal in the Taxi domain. Consequently, the
uncorrected off-policy TD baseline already exhibits low bias, and all methods converge to similar asymptotic
RMSE values. Nevertheless, Figure 6a shows that SSBC-TD consistently tracks the on-policy TD curve while
maintaining slightly higher variance due to its correction factor ζt. The improvement over the plain off-policy
baseline indicates that even small distributional mismatches are effectively mitigated by the correction. The
on-policy and SSBC-TD curves nearly coincide, confirming that the state-distribution correction produces
on-policy–like behaviour in this domain. Figure 6b further illustrates that the learned surrogate h

θ̂∗ ,̂λ∗
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(a) Bias estimation (RMSE) vs. iteration across algorithms.
Shaded regions indicate one standard deviation.

(b) Uniform q(s) vs. target steady-state distribution νπ .
The target policy induces a right-skewed stationary occu-
pancy measure, while q remains flat.

(c) Behaviour steady-state νb vs. Gaussian-mixture sur-
rogate h(·; θ̂∗, λ̂∗) (ℓ = 5). The mixture captures the left-
skewed nature of νb with uncertainty.

Figure 5: Gridworld Cliff Walking. (a) SSBC-TD consistently bridges the gap between on- and off-policy
learning, achieving low bias and smooth convergence. (b–c) The mismatch between q(s), νπ, and νb illustrates how
steady-state bias arises and how the surrogate correction mitigates it.

closely approximates the true steady-state distribution νb. The red mixture mean envelope remains nearly
flat across the 500 discrete states, validating that the mixture model with ℓ = 10 components can faithfully
represent an almost uniform distribution. Together, these results show that SSBC-TD is stable and nearly
unbiased when the steady-state distribution is uniform, matching on-policy accuracy while requiring only
off-policy samples.

4.3 Continuous Domain

4.3.1 Mountain Car

The Mountain Car environment consists of a continuous two-dimensional state space s = (x, ẋ), representing
the car’s horizontal position and velocity, and a discrete action set {−1, 0, +1} corresponding to left, no, or
right acceleration. The goal is to reach the top of the right hill despite insufficient engine power for a direct
ascent, requiring the agent to build momentum by oscillating between the slopes. We evaluate our algorithm
with discount factor γ = 0.4, emphasizing short-horizon control stability. The behaviour policy πb selects
actions uniformly, while the target policy π prefers rightward thrust near the left slope and conservative
deceleration near the goal region. The behaviour steady-state distribution νb is approximated online using
a Gaussian-mixture density with ℓ = 15 components, and the design distribution q is taken to be flat over
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(a) RMSE vs Iteration (γ = 0.9) (b) Steady-state vs Mixture surrogate (|S| = 500, ℓ = 10)

Figure 6: (Left) RMSE as a function of trajectory transitions, comparing on-policy TD, the off-policy TD baseline,
and SSBC-TD. The on-policy and SSBC-TD curves nearly coincide, both lying below the uncorrected off-policy
baseline, indicating that the state-distribution correction achieves on-policy–like accuracy under a nearly uniform
steady-state. (Right) Approximation of the uniform steady-state distribution (black stems) by a Gaussian-mixture
surrogate h

θ̂∗ ,̂λ∗ with ℓ = 10 over 500 discrete states, confirming that the mixture surrogate accurately matches the
almost uniform νb.

the reachable region S0 = [−1.2, 0.6] × [−0.07, 0.07]. The correction factor ζt reweights updates toward this
uniform distribution, mitigating steady-state bias without amplifying variance excessively at small γ.

Figure 7 shows the RMSE versus iteration. Each curve denotes the mean over independent runs. The lower
discount factor accelerates the contraction of the projected Bellman operator, ensuring stable and monotonic
error decay throughout training. The SSBC-TD trajectory lies consistently between the on-policy and off-
policy curves, confirming that the state-distribution correction removes most of the steady-state bias while
maintaining stable learning dynamics. At a low discount factor (γ = 0.4), the value function depends primar-
ily on near-term rewards, making the learning process less sensitive to long-horizon distributional mismatch.
Consequently, all three methods converge smoothly, though off-policy TD remains slightly biased due to
evaluation under the behaviour distribution νb. The SSBC-TD correction reduces this bias by reweighting
updates toward the flat q, thereby aligning the projected Bellman fixed point more equally likely across all
the observed states. Since γ is small, the effective variance amplification caused by ζt is modest, yielding a
smooth error curve and stable asymptotic behaviour. Overall, the experiment demonstrates that SSBC-TD
remains consistent and robust even when the target horizon is short, achieving a good balance between bias
reduction and variance control.

4.3.2 CartPole

The Cartpole environment has a continuous four-dimensional state s = (x, ẋ, θ, θ̇) and a discrete two-action
set {−1, +1} corresponding to left or right force applied to the cart. We compare the algorithm under
the discount factor γ = 0.9. The behaviour policy πb selects each action uniformly at random, inducing a
broad steady-state distribution νb that explores a wide range of cart positions and pole angles. The target
policy π is a stabilizing controller that maintains the pole near the upright configuration, whose stationary
distribution νπ is concentrated around small |θ| and |θ̇|. We approximate νb using a Gaussian-mixture density
with ℓ = 15 mixture components, fitted online from the behaviour trajectory via incremental updates. The
design distribution q is taken to be flat over a bounded region S0 ⊂ S representing the empirically reachable
portion of the state space, defined as the axis-aligned bounding box enclosing the 1st–99th percentile of
states encountered under πb:

S0 = [smin − δ, smax + δ], q(s) ∝ 1{s ∈ S0},

with δ providing a small margin (5–10%) beyond observed extremes. For reproducibility under the standard
Gym Cartpole, the analytical bounds [−2.4, 2.4] × [−3.0, 3.0] × [−0.21, 0.21] × [−3.5, 3.5] were used as S0.
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Figure 7: Performance on the Mountain Car environment with discount factor γ = 0.4. The plot compares on-policy
TD, SSBC-TD (ours), and the off-policy TD (baseline) in terms of RMSE versus iteration. Curves represent mean
values across multiple runs, with shaded bands denoting empirical variability: narrow for on-policy TD and wider
for SSBC-TD and off-policy TD. All methods converge smoothly, and the SSBC-TD curve lies consistently between
on-policy and off-policy baselines, indicating effective steady-state bias correction.

This flat choice assigns equal weight to all reachable states, ensuring the RMSE metric is unbiased toward
any region of high occupancy in νb. The correction factor ζt reweights TD updates away from the behaviour
steady-state and toward this uniform design distribution, while the importance ratio ρt adjusts for action-
selection mismatch. Figure 8 shows the RMSE versus iteration, where each curve denotes the mean over
independent runs and shaded regions mark empirical variability. The performance hierarchy follows naturally
from the bias–variance interplay among the three estimators. On-policy TD remains unbiased since sampling
and evaluation distributions coincide. SSBC-TD introduces the correction factor ζt, which reduces steady-
state bias, but increases variance due to state-dependent reweighting. Consequently, it converges more slowly
than on-policy TD yet achieves a lower error floor than the uncompensated off-policy TD baseline, whose
updates project onto the behaviour distribution νb and thus converge to a biased fixed point. The advantage
of SSBC-TD is more pronounced due to larger γ, since long-horizon dependencies amplify steady-state bias
effects.

Figure 8: Performance on the Cartpole environment with discount factor γ = 0.9. The plot compares on-policy
TD, the proposed SSBC-TD, and the off-policy TD baseline in terms of RMSE versus iteration. Curves show mean
values across independent runs; shaded bands represent empirical variability. All three methods display non-monotone
transient dynamics, but ultimately settle into a stable ordering in which on-policy TD attains the lowest asymptotic
error, SSBC-TD converges to an intermediate level, and the off-policy TD baseline retains the highest residual RMSE,
consistent with partial correction of steady-state bias using the user-specified Gaussian q(s).
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4.3.3 Acrobot

The Acrobot environment consists of a two-link underactuated pendulum with continuous state s =
(θ1, θ2, θ̇1, θ̇2), where θ1 and θ2 denote the angles of the first and second links relative to the vertical downward
direction, and θ̇1, θ̇2 are their respective angular velocities. The action space is discrete, A = {−1, 0, +1},
corresponding to the application of negative, zero, or positive torque at the joint between the two links.
We consider a behaviour policy πb that selects each action uniformly at random, πb(a | s) = 1/3, thereby
inducing a broad steady-state distribution νb that covers both swing-down and transitional configurations.
The target policy π is a hand-crafted stochastic stabilizing controller defined by a linear feedback rule: a
continuous torque signal

u⋆(s) = −K⊤
θ

[
θ1 − θ⋆

1
θ2 − θ⋆

2

]
− K⊤

θ̇

[
θ̇1

θ̇2

]
,

where (θ⋆
1 , θ⋆

2) corresponds to the upright equilibrium. The resulting torque is discretized to the nearest
action in {−1, 0, +1}, executed with probability 1 − ε, and replaced by a random alternative action with
probability ε. This rule ensures persistent exploration while maintaining stabilizing behaviour around the
upright configuration. The induced Markov chain under π admits a unique stationary distribution νπ that
is sharply concentrated near the upright manifold. Here, q is chosen as a single Gaussian centered at the
upright configuration mq = (θ⋆

1 , θ⋆
2 , 0, 0) with small angular variance and moderate velocity variance. This

q is not required to equal νπ, but is intended to be qualitatively close, thereby biasing the iterates toward
states that are important under the target policy. Also, we consider the mixture width to be ℓ = 100.
Figure 9 reports the RMSE of value prediction versus iteration for on-policy TD, the off-policy TD baseline,
and the proposed SSBC-TD, averaged over multiple independent runs. During the transient phase, all
methods exhibit non-monotone fluctuations as both the density model h and the value parameters adapt
under noisy off-policy data. Eventually, a consistent ordering emerges: on-policy TD achieves the lowest
asymptotic RMSE, as it directly samples from the true stationary distribution νπ; SSBC-TD converges to an
intermediate error floor that lies strictly below the uncompensated off-policy baseline, demonstrating that the
Gaussian q is sufficiently close to νπ to mitigate steady-state bias; and the off-policy TD baseline retains the
highest residual error due to its dependence on νb without long-horizon correction. This behaviour aligns
with theoretical expectations: when q approximates but does not exactly match the target steady-state
distribution, the proposed correction reduces but cannot eliminate the asymptotic bias, thereby narrowing,
but not closing the gap to on-policy performance. We also provide here the likeliness between the behaviour
policy steady-state probability distribution νb and the estimated surrogate distribution h(·; θ̂∗, λ̂∗). The
results are provided in Figure 10.

4.4 Hyper-parameter Sensitivity

We empirically examine how the two timescale parameters, the TD step–size αt and the importance–ratio
step–size βt, influence the accuracy and stability of our SSBC–TD algorithm. All experiments are conducted
on the classic control task MountainCar from the Gymnasium suite. Our hyperparameter grid search reveals
a critical interplay between the TD step-size (αt) and the ratio step-size (βt). The heat map (Figure 11)
illustrates that the best-performing configurations cluster around higher αt values, particularly when paired
with smaller βt values. The combination of αt = 0.2 and βt = 0.005 achieves the lowest final RMSE,
indicating an effective balance between rapid updates to the steady-state distribution approximation and
gradual correction of the steady-state distribution mismatch. This result underscores the importance of
carefully tuning these timescales to mitigate the “deadly triad” interaction between function approximation,
bootstrapping, and off-policy learning. The curve plot (Figure 12) further validates this observation by
showing how different αt settings converge over episodes. Notably, the curve for αt = 0.2 exhibits the fastest
decline in RMSE, stabilizing at the lowest error level compared to other configurations. Polyak averaging
plays a crucial role in smoothing out fluctuations during training, as evidenced by the reduced variance in
the RMSE curves across episodes. By incorporating Polyak averaging, our approach effectively mitigates the
noise introduced by stochastic updates, leading to more stable and accurate value predictions.
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Figure 9: Performance on the Acrobot environment for discount factor γ = 0.8. The plot compares on-policy
TD, the proposed SSBC-TD, and the off-policy TD baseline in terms of the root-mean-squared error (RMSE) of
value prediction versus iteration. Each curve represents the mean across multiple independent runs. All methods
exhibit transient non-monotone phases early in training as the density model h(s; θ̂, λ̂) and the value parameters
co-evolve. As learning stabilizes, the on-policy TD achieves the lowest asymptotic error, SSBC-TD converges to an
intermediate error floor, and the uncompensated off-policy TD baseline attains the highest residual RMSE. This
hierarchy confirms that the state-distribution correction using the user-specified Gaussian q(s) effectively mitigates,
but does not completely remove the steady-state bias inherent in off-policy prediction.

Figure 10: Comparison between the true behaviour-policy steady-state distribution and its surrogate mixture
estimate. Left: Empirical steady-state probabilities of the behaviour policy (νb) computed over multiple long-
run trajectories. Right: Individual Gaussian components and their optimally weighted combination forming the
surrogate distribution h

θ̂∗ ,̂λ∗ . The close alignment between the mean surrogate and the empirical steady-state profile
demonstrates that the fitted mixture provides a close and stable approximation to the behaviour-policy stationary
distribution.

4.5 Trajectory Robustness

We evaluate trajectory-length sensitivity on a 5 × 5 Gridworld with absorbing terminals at (0, 0) and (4, 4).
Each episode starts in the cell (0, 4) and evolves for 60 time-steps under a uniform–random behaviour policy;
upon reaching a terminal, the agent is reset to the start cell and the trajectory continues. We generated five
such trajectories (Figure 13, Run 0–4), using independent random seeds to expose path-level variability.
We then applied a constant step-size SSBC-TD agent with βt = 0.05. The micro-trajectories illustrate
how an ergodic uniform policy can still visit states in markedly different orders at short horizons. Run 1
drifts almost exclusively downwards, Run 2 performs horizontal sweeps along the top row before descending,
whereas Run 3 forms an almost symmetric lattice tour. Runs 0 and 4 highlight the “reset effect”: a diagonal
sprint to the lower left corner followed by immediate reinitialization injects additional exploratory diversity
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Figure 11: Hyperparameter sensitivity of SSBC-TD on MountainCar: Final RMSE as a function of the TD step-size
(αt) and ratio step-size (βt). Darker shades indicate lower error. The minimum RMSE (marked) occurs at αt = 0.2
and βt = 0.005, revealing that aggressive TD updates paired with conservative ratio estimation optimally balance
convergence and stability.

Figure 12: Convergence of SSBC-TD on MountainCar using the best βt for each αt (from Figure 11 ). The αt = 0.2
curve (βt = 0.005) achieves the fastest error reduction and lowest asymptotic RMSE (≈ 70), demonstrating Polyak
averaging’s role in stabilizing high-step-size regimes. Smaller αt (e.g., 0.02) exhibit slower convergence due to delayed
implicit averaging.
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Figure 13: Trajectories under uniform-random behaviour policy.

Figure 14: Comparison of the approximation of the true behaviour policy’s stationary distribution using the Gaus-
sian mixtures across various trajectories

Figure 15: SSBC-TD demonstrates trajectory-agnostic stability, efficiently correcting steady-state bias regardless
of path stochasticity

that would otherwise take longer to accumulate. These early visitation biases explain the modest run-to-run
spread observed in the residual histograms: SSBC-TD first adapts to whichever subset of states it samples
most frequently. Over the long run updates, however, the random policy’s mixing property smooths out
those disparities: each run ultimately visits every state with frequency close to the stationary distribution,
and the TD iterates converge to a common, tight error band (uniform-RMSE ≈ 4.5 ± 0.1).

4.6 γ Sensitivity

Here we study the relationship between the discount factor γ and the error in off-policy value prediction.
The experiment considers a Taxi discrete control task. The state and action spaces are discrete. Both
TD(0) and SSBC-TD are trained off-policy using the same fixed behaviour–target policy pair and identical
feature representations, with final RMSE computed against Monte Carlo estimates under the target policy.
The results are illustrated in Figure 16. As γ increases, the longer effective horizon exacerbates distribution
mismatch and steady-state bias in plain TD(0), leading to a steady rise in RMSE and greater variability across
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Figure 16: RMSE as a function of discount factor γ for plain off-policy TD(0) and steady-state bias–corrected TD
(SSBC-TD) on a discrete Taxi control task. SSBC-TD consistently achieves lower RMSE, with the gap widening as
γ increases.

Figure 17: Ablation on the choice of stationary-distribution target q for SSBC-TD in a Taxi control task. Four
variants are considered: oracle q = νπ (true target policy distribution), uniform over states, behaviour visitation
distribution νb, and a deliberately misspecified distribution. Closer alignment of q to νπ yields consistently lower
RMSE, with the advantage widening as γ → 1.

runs. SSBC-TD, by applying ζ-weights that approximate the stationary distribution correction, mitigates
this bias and maintains a lower error profile across γ values. The widening advantage of SSBC-TD for γ → 1
aligns with the theoretical predictions: the stability condition κbγ2 < 1 for plain TD becomes harder to
satisfy at high γ, whereas SSBC-TD effectively reduces the mismatch constant, relaxing the condition to
Kqκqγ2 < 1, thereby extending the range of stable and accurate operation.
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4.7 q Sensitivity

We study here the sensitivity of SSBC-TD to the choice of q, the stationary-distribution target used in its
correction term. The discrete control task used here is a Taxi environment. We consider a discrete control task
with fixed target and behaviour policies, identical feature representation, and the same step-size schedules
across all runs. The SSBC-TD algorithm is applied with four different choices of the stationary-distribution
target q in its correction term ζt. The oracle choice uses the exact stationary distribution νπ of the target
policy; uniform assigns equal probability to all states; behaviour uses the empirical stationary distribution
νb from the behaviour policy; and mis-specified uses a biased distribution that incorrectly overweights rarely
visited states and underweights important ones. The RMSE vs γ curves show a clear ordering: the oracle
q achieves the lowest error across all γ, with the margin over other choices growing as γ increases. This
matches the theoretical prediction that the stability condition improves from κbγ2 < 1 to Kqκqγ2 < 1, where
Kqκq is minimized when q = νπ. Uniform q performs moderately well for smaller γ but suffers at large γ
due to equal weighting of states that are rarely relevant to the target policy. Using νb offers only limited
improvement, since it does not correct the long-horizon mismatch. The mis-specified q provides the smallest
benefit and, for high γ, behaves similarly to plain TD, illustrating that poor q choices can erase the gains
of the correction. This underscores the importance of accurate or well-chosen q for leveraging SSBC-TD’s
stability advantage in long-horizon settings.

5 Conclusion & Future Work

In this paper, we consider the off-policy value prediction in reinforcement learning, specifically in the context
of linear function approximation. The proposed algorithm aims to minimize the steady-state bias in the
off-policy value prediction, where the bias arises due to the differences in the sampling distribution of states
and actions between the target policy and the behaviour policy. Our work opens up several avenues for
future research. First, integrating steady-state bias correction with deep value function approximators is
a promising direction to tackle large-scale problems. Second, the idea of distribution correction might be
extended to control settings: for example, off-policy actor-critic algorithms could use a similar mechanism to
reweight the critic updates, or one could correct state occupancy in off-policy policy gradient methods. Third,
an interesting theoretical question is how steady-state bias correction interacts with function approximation
error and whether it can alleviate the deadly triad (function approximation, off-policy, and bootstrapping).
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