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Abstract

We explore the off-policy value prediction problem in the reinforcement learning setting,
where one estimates the value function of the target policy using the sample trajectories ob-
tained from a behaviour policy. Applying importance sampling based methods are typically
a go-to approach for getting such estimates but tend to suffer high error in long-horizon
problems since it can only correct single-step discrepancies and fails to address steady-
state bias - skewed state visitation under the behavior policy. In this paper, we present
an algorithm for alleviating this bias in the off-policy value prediction using linear function
approximation by correcting the state visitation distribution discrepancies. We establish
rigorous theoretical guarantees, proving asymptotic convergence under Markov noise with
ergodicity and demonstrating that the spectral properties of the corrected update matrix
ensure stability. Most significantly, we derive an error decomposition showing that the total
estimation error is bounded by a constant multiple of the best achievable approximation
within the function class, where this constant transparently depends on distribution estima-
tion quality and feature design. Empirical evaluation across multiple benchmark domains
demonstrates that our method effectively mitigates steady-state bias and can be a viable
alternative to existing methods in scenarios where distributional shift is critical.

1 INTRODUCTION

In the Reinforcement Learning (RL) setting Sutton & Barto (2018); Bertsekas (2019); Meyn (2022), an agent
learns to interact with an environment to achieve a goal or maximize its cumulative reward by performing
specific actions and receiving feedback from the environment in the form of rewards. RL is a dynamic
and adaptive approach to learning, where the RL agent gains knowledge from this feedback and iteratively
modifies its behaviour to produce the intended result. The central proposition in reinforcement learning
is the ability to use incoming data about earlier decisions and their rewards to conclude how alternative
decision policies could perform and update their course of action. RL has been successfully applied in
various applications, such as game simulations Silver et al. (2018), robotics, autonomous driving Kiran et al.
(2021), medicine Yom-Tov et al. (2017); Tejedor et al. (2020) and communication systems Huang et al.
(2019). In game simulations, RL agents can learn to play at superhuman levels by exploring and exploiting
different strategies. In robotics, RL can be used to train robots to perform complex tasks, such as grasping
objects or navigating in unknown environments. In autonomous driving, RL can help autonomous vehicles
learn to make safe and efficient driving decisions. In communication systems, RL can be used to optimize
resource allocation, such as allocating bandwidth or power, to improve communication efficiency.

In this paper, we consider the policy evaluation problem in reinforcement learning, which refers to the task of
estimating the value function, which represents the expected cumulative reward from a given state following
a certain policy under linear function approximation. The policy evaluation problem has two variants: on-
policy and off-policy. In on-policy prediction, one tries to estimate the value function corresponding to
a given target policy using the sample trajectories generated using that target policy itself. However, in
the off-policy variant, one intends to learn the value function using a sample trajectory generated using a
behavior policy that may be different from the target policy. The behavior policy is the policy followed during
data collection, and the target policy is the policy for which the value function is being estimated. This
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allows for more flexibility, as the agent can learn from data collected by exploring different policies, which
can be more efficient in terms of data collection and exploration. Off-policy methods are commonly used in
scenarios where the agent needs to learn from existing data or when multiple policies are used for exploration
and exploitation. Off-policy learning has significant practical implications in large-scale settings as multiple
value functions can be learned from a single stream of sample trajectory in a model-free fashion, leading
to parallel and optimal learning. Off-policy estimation methods often rely on importance sampling (IS)
Rubinstein (1981); Glynn & Iglehart (1989) because it is an unbiased estimator. The fundamental concept
behind IS Tokdar & Kass (2010) is to correct the samples obtained from a sample trajectory generated by
a behaviour policy to align with the likelihood of that trajectory occurring under the targeted policy. The
importance sampling approach integrated with many on-policy variants such as gradient temporal difference
Sutton et al. (2009); Yu (2017), temporal difference with correction Sutton et al. (2009); Yu (2017), and
temporal different with eligibility traces Precup et al. (2001) to obtain the off-policy solution. However, an
important drawback of this technique is its susceptibility to imprecision because of the high variance induced
by the importance weights Mandel et al. (2014) and the the discrepancies associated with state appearance
probabilities Tsitsiklis & Van Roy (1997). In tabular temporal difference (TD) learning, state-value estimates
converge pointwise to the unique solution of the Bellman equation under ergodicity and coverage conditions,
where steady-state distributions of the target or bahaviour policies (depending on on/off variant) influence
only convergence rates through state-visitation frequencies without altering asymptotic values. Conversely,
under linear function approximation, the solution is characterized by a ν-weighted projection, where ν is
either the steady-state distribution of the target policy (on-policy) or of the behaviour policy (off-policy).
This introduces inherent asymptotic bias as minimization of Bellman error is computed under ν rather than
approximating value function directly.

In this paper, we analyze the deviation of the on-policy solution from the off-policy solution due to the
steady-state bias which arises due to the discrepancy in the steady-state distribution induced by the target
and behaviour policies under linear function approximation. When one observes the marginal distribu-
tions from the target policy and behaviour policy after a sufficiently long time (mixing time), the marginal
distributions settle down to the steady state which is unique to the corresponding Markov chain. When
estimating state values in which the distribution of states visited during the episode is different from the
distribution of states visited in steady-state under the target policy, steady state bias occurs. This can even-
tuate when the setting only considers a subset of the possible states or actions, or when it does not sample
states or actions uniformly. As a result, the average return may not accurately reflect the true expected
return, which can lead to sub-optimal behaviour. Off-policy bias correction is a fundamental challenge in
reinforcement learning, particularly in settings that utilize experience replay or batch data from previously
executed policies Precup et al. (2001); Sutton et al. (2016). The systematic bias introduced into the value
function estimation due to the discrepancy between the behavior policy’s stationary distribution and the
target policy’s state visitation distribution persists even with unbiased importance sampling corrections as
it stems from long-horizon distributional mismatch rather than single-step policy differences Chandak et al.
(2021). This steady-state bias becomes particularly problematic in long-horizon tasks where distributional
mismatch accumulates over time Jiang & Li (2016); Tang et al. (2020). Recent approaches have addressed
this by estimating stationary distribution corrections through marginalized importance sampling Liu et al.
(2018; 2019), dual function approximation Zhang et al. (2020), or direct optimization of distribution match-
ing objectives Nachum et al. (2019); Yang et al. (2020). Frameworks like Universal Off-Policy Evaluation
Chandak et al. (2021) further improve estimation by enforcing consistency between learned value functions
and off-policy estimators. These methods often formulate the correction as a minimax optimization problem
over density ratios or leverage temporal difference learning with generalized advantage estimation Schulman
et al. (2015). The convergence and stability of such methods are closely tied to the "deadly triad" of func-
tion approximation, off-policy training, and bootstrapping, which can lead to divergence without careful
regularization or correction mechanisms Voloshin et al. (2019); Wang et al. (2017); Yu (2017).

In this paper, we fundamentally analyze off-policy temporal difference learning under linear function approx-
imation by tackling the critical problem of steady-state distribution mismatch. We rigorously demonstrate
that long-horizon bias stems not only from policy differences but from the divergence in how states are visited
under target versus behavior policies. Our analysis reveals how this distributional shift magnifies approxima-
tion errors through the deadly triad of bootstrapping, function approximation, and off-policy sampling. To
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address this, we introduce a dual correction mechanism—blending standard per-step action reweighting with
novel parametric estimation of stationary distribution discrepancies—and prove its asymptotic convergence
under Markov noise with ergodicity. We further establish that the corrected value estimates stabilize when
the rebalanced Bellman operator exhibits spectral negativity. Most significantly, we derive an error decompo-
sition showing that the total value estimation error is bounded by a constant multiple of the best achievable
approximation, where this constant transparently depends on the accuracy of distribution estimation, the
conditioning of feature representations, and the degree of policy misalignment.

Our work distinguishes itself from prior distribution correction methods by providing a targeted solution
to the persistent problem of steady-state bias in off-policy TD learning. While frameworks like DualDICE
Nachum et al. (2019) and GradientDICE Zhang et al. (2020) address general distribution ratio estimation
through complex dual optimization, our approach offers a direct, computationally efficient correction that
integrates seamlessly with standard TD updates. Unlike policy optimization methods such as CQL Kumar
et al. (2020) or OptiDICE Lee et al. (2021) which focus on policy improvement, we specifically address
value prediction accuracy under distributional shift. While Liu et al. (2018) addressed the "curse of horizon"
through marginalized importance sampling, our approach uniquely identifies and corrects for the persistent
steady-state bias that remains even after one-step importance sampling is applied, offering a complementary
perspective on the distributional mismatch problem in off-policy evaluation. Also Emphatic TD Sutton et al.
(2016); Yu (2015), employs recursive emphasis weighting to implicitly approximate distribution correction
preventing the deadly triad (function approximation + bootstrapping + off-policy learning) from causing
divergence using emphasis weights to prioritize updates for states that are important to the target policy. Our
focused approach—correcting steady-state bias through explicit distribution modeling rather than general
optimization frameworks—provides both theoretical clarity and practical advantages for the fundamental
problem of off-policy value prediction.

2 BACKGROUND

The reinforcement learning setting is an optimal sequential decision-making paradigm under uncertainty
characterized as Markov Decision Process (MDP) Puterman (2014); Bertsekas (2019); Meyn (2022), which
is a controlled, time-homogeneous, stochastic process that is defined by the 4-tuple (S, A, P, R), where S is
the state space and A is the action space. In this paper, we consider a finite state and action spaces with
S = {s1, s2, ..., sn}. Here P : S × A × S → [0, 1] is the probability transition function, where P (s, a, s′) =
P(st+1 = s′|st = s, at = a, st−1 = ·, at−1 = ·, . . . ) = P(st+1 = s′|st = s, at = a) is the probability that the
next state is s′ conditioned on the fact that the current state is s and current action is a. Additionally, the
reward function R : S × A × S → R assigns a numerical reward to each transition. P and R define the
dynamics of the stochastic system. At each instant, an action is chosen according to a stationary stochastic
policy π : S ×A→ [0, 1], where π(·|s) is a probability mass function over the action space A conditioned on
the state s ∈ S.

In this paper, we consider the prediction problem in reinforcement learning which is defined as follows: For
a given target policy π and discount factor γ ∈ [0, 1) (that represents the agent’s preference for immediate
rewards versus future rewards), the goal is to evaluate the value function Vπ ∈ Rn associated with the target
policy which is defined as the expected long-run γ-discounted cost:

Vπ(s) = E
τ∼π

[
R(τ)|s0 = s

]
, s ∈ S, (1)

where R(τ) =
∑∞

t=0 γtR(st, at, st+1), with st represents the state at instant t, the at ∼ π(·|st) represents the
action chosen at time t and st+1 ∼ P (st, at, ·) represents the next state. Note that the above definition is
well-defined as γ ∈ [0, 1) and by appealing to the bounded convergence theorem.

The value function in vector form is expressed as Vπ = [Vπ(s1), Vπ(s2), . . . , Vπ(sn)]⊤ ∈ Rn. The value
function Vπ satisfies the Bellman equation: Vπ = TπVπ, where Tπ : Rn → Rn is Bellman opera-
tor with TπU = R̄π + γPπU . Here, Pπ ∈ Rn×n with [Pπ]ss′ =

∑
a∈A π(a|s)P (s, a, s′) and R̄π(s) =∑

s′∈S

∑
a∈A π(a|s)P (s, a, s′)R(s, a, s′) is the one-step average reward. From the Bellman equation, one

can directly compute Vπ = (I−γPπ)−1R̄π whose computational complexity is O(n3). In the RL setting, the
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model parameter P and R are unknown and one seeks to learn the value function Vπ under the generative
model setting, where a realization of the stochastic process in the form of an infinitely long sample trajectory
s0, a0, r1, s1, a1, r2, s2, . . . is available, with s0 ∼ d, at ∼ π(·|st), st+1 ∼ P (st, at, ·) and rt+1 = R(st, at, st+1).

Temporal difference (TD) learning Sutton & Barto (2018) is the classical approach for the prediction problem,
where the value function Vt ∈ Rn is iteratively updated in the direction of the temporal difference rt+1 +
γVt(st+1)−Vt(st). However, when the state space is large, this method suffers from the curse of dimensionality
Tsitsiklis & Van Roy (1997); Sutton & Barto (2018). To overcome this, one effective strategy is to represent
the value function in a lower-dimensional subspace, thus reducing computational and storage demands. Here
one approximates Vπ using linear function approximation by projecting it into the subspace {Φx | x ∈ Rk} ⊂
Rn, where k ≪ n Tsitsiklis & Van Roy (1997). The feature matrix Φ contains basis functions that capture
the critical characteristics of the state space. This projection not only renders the learning process more
tractable but also preserves the essential dynamics of the original high-dimensional problem.

Φ =

−− ϕ(s1)⊤ −−
...

−− ϕ(sn)⊤ −−


n×k

, (2)

where, ϕ(s) = [ϕ1(s), ϕ2(s), . . . ϕk(s)]⊤ ∈ Rk is called the feature vector associated with state s ∈ S and ϕi :
S → R are feature/basis functions. The most commonly used parameterized basis functions include Radial
Basis Functions (RBFs), polynomials, and Fourier basis functions. Radial Basis Functions are typically
expressed in a Gaussian form: ϕi(s) = exp(−(2σ2

i )−1||s− µi||2) depends solely on the distance between the
state and the centre µi, relative to the feature width, σi, with parameter size of the order Θ(k).

In this paper, we consider the off-policy variant of the prediction problem Precup et al. (2001); Sutton &
Barto (2018), where one seeks to estimate Vπ, using a sample trajectory, where action at every instant is
generated using a behaviour policy πb that may be different from the target policy π. This implies that for
the given infinitely long sample trajectory τb = s0, a0, r1, s1, a1, r2, s2, a2, . . . , we have s0 ∼ P0 (P0 initial
distribution), at ∼ πb(·|st), st+1 ∼ P (st, at, ·) and rt+1 = R(st, at, st+1).
Assumption 1 (Ergodic Behavior Policy). The Markov chain {st}t≥0 induced by the behavior policy πb

satisfies:

(i) Irreducibility: ∀ s, s′ ∈ S, ∃ t ∈ N such that P t
πb

(s, s′) > 0.

(ii) Aperiodicity: The greatest common divisor of { t ≥ 1 : P t
πb

(s, s) > 0 } is 1 for every s ∈ S.

Consequently, the chain admits a unique stationary distribution νb with νb(s) > 0 ∀ s ∈ S and ν⊤
b Pπb

= ν⊤
b .

Assumption 2 (Feature Independence). The feature matrix Φ ∈ Rn×k satisfies rank(Φ) = k, implying

σmin
(
Φ⊤Φ

)
> 0, ker(Φ) = {0}, Φ⊤Φ ≻ 0,

where σmin denotes the minimum singular value and ≻ 0 denotes positive definiteness.
Assumption 3 (Coverage). The behavior policy πb dominates π in the Radon–Nikodym sense:

∀ (s, a) ∈ S ×A, π(a | s) > 0 =⇒ πb(a | s) > 0.

Equivalently, the importance ratio ρt = π(at | st)
πb(at | st)

is almost surely bounded: supt ρt <∞.

In off-policy linear function approximation, one projects the value function Vπ onto the column space of Φ
Tsitsiklis & Van Roy (1997):

w∗ = arg min
w∈Rk

∥Vπ − Φw∥2
νb

, (3)

where the weighted norm is defined as ∥w∥2
ν =

∑k
i=1 νiw

2
i . Here, νb is the unique steady-state distribution of

the behavior policy’s Markov chain (i.e., νb(s) = limt→∞ P(st = s) and ν⊤
b Pπb

= ν⊤
b ). Since {Φw | w ∈ Rk} is
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closed and convex, a unique w∗ exists (Φ has full column rank), yielding the approximation Vπ(s) ≈ ϕ(s)⊤w∗

for all s. This optimization is solved by the off-policy TD update Precup et al. (2001; 2000):

wt+1 = wt + αtρt

(
rt+1 + γϕ(st+1)⊤wt − ϕ(st)⊤wt

)
ϕ(st),

with the importance sampling ratio ρt = π(at|st)
πb(at|st) , which corrects for the policy mismatch in the behavior

data. The limit point wTD
off of off-policy TD learning with linear function approximation is characterized by

the fixed-point equationYu (2012)

Φ⊤Ξνb
(I − γPπ)ΦwTD

off = Φ⊤Ξνb
Rπ, (4)

which represents a projection of the Bellman equation onto the feature space weighted by the behavior policy’s
stationary distribution. This solution constitutes the best approximation within the function class that
satisfies the Bellman residual minimization under the behavior policy’s steady-state distributional mismatch,
rather than the target policy’s natural state visitation pattern.

Figure 1: Illustration of steady-state bias in off-policy prediction: The mismatch between behavior policy’s steady-
state distribution νb and target policy’s distribution causes persistent prediction error, even after one-step importance
sampling correction

To establish further theoretical guarantees for the off-policy TD method with linear function approximation,
we first analyze key properties of the value function operator under the behavior policy’s stationary distri-
bution. The following lemma quantifies fundamental operator norm bounds that govern the propagation of
approximation errors through the Bellman operator.
Lemma 1. Let νb be a strictly positive probability distribution over states, Pπ a Markov transition matrix
induced by policy π, and γ ∈ [0, 1) a discount factor. Then the νb-weighted operator norms satisfy:

∥Pπ∥νb
≤
√

κb and ∥I − γPπ∥νb
≤ 1 + γ

√
κb (5)

where ∥A∥νb
= supx̸=0

∥Ax∥νb

∥x∥νb
and ∥x∥2

νb
=
∑

s νb(s)x(s)2, with and the distribution mismatch coefficient

κb = max
s′∈S

∑
s νb(s)Pπ(s′ | s)

νb(s′) .
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Proof. Let µb(s′) =
∑

s νb(s)Pπ(s′ | s). Then,

∥Pπx∥2
νb

=
∑

s

νb(s)
(∑

s′

Pπ(s′ | s)x(s′)
)2

≤
∑

s

νb(s)
∑

s′

Pπ(s′ | s)x(s′)2 (Jensen’s inequality)

=
∑

s′

x(s′)2
∑

s

νb(s)Pπ(s′ | s)

=
∑

s′

x(s′)2µb(s′)

=
∑

s′

νb(s′)x(s′)2 µb(s′)
νb(s′) ≤ κb

∑
s′

νb(s′)x(s′)2 = κb∥x∥2
νb

, where κb = max
s′

µb(s′)
νb(s′) .

Thus we have the operator norm bound:

∥Pπ∥νb
= sup

x̸=0

∥Pπx∥νb

∥x∥νb

≤
√

κb

For the composite operator:

∥(I − γPπ)x∥νb
≤ ∥Ix∥νb︸ ︷︷ ︸

≤∥x∥νb

+γ ∥Pπx∥νb︸ ︷︷ ︸
≤√

κb∥x∥νb

≤ (1 + γ
√

κb)∥x∥νb

⇒ ∥I − γPπ∥νb
≤ 1 + γ

√
κb. (6)

Central to the above result is the distribution mismatch coefficient κb, which captures the maximum density
ratio between the next-state distribution induced by the target policy and the stationary distribution of the
behavior policy. We now characterize the asymptotic approximation error of the off-policy TD solution under
linear function approximation. The following theorem establishes a bound on the error ∥ΦwTD

off − Vπ∥νb
of

the TD fixed point solution relative to the fundamental approximation limit ∥Φw∗ − Vπ∥νb
.

Theorem 1 (Error Bound for Off-policy TD). Under Assumptions 1-3 and negative definiteness of Λo =
Φ⊤Ξνb

(I − γPπ)Φ, the solution wTD
off satisfies:

∥∥ΦwTD
off − Vπ

∥∥
νb
≤

(
σ2

max(Φ)(maxs νb(s))3/2(1 + γ
√

κb)
λmin(−Λo)

√
mins νb(s)

+ 1
)∥∥Φw∗ − Vπ

∥∥
νb

where σ2
max(Φ) = λmax(Φ⊤Φ) and Ξνb

= diag(νb).

Proof. From equation 4,

Φ⊤Ξνb

(
I − γPπ

)
Φ wTD

off = Φ⊤Ξνb
Rπ. (7)

The true value function Vπ satisfies the Bellman equation:

Vπ = Rπ + γPπVπ (8)

We wish to bound
∥∥ΦwTD

off − Vπ

∥∥
νb

. Let w∗ be the best linear approximator under νb:

w∗ = arg min
w

∥Φw− Vπ∥νb

so that Φw∗ = Πνb
Vπ, the projection of Vπ onto the column space of Φ under the νb-weighted norm. The

error decomposes as
ΦwTD

off − Vπ =
(
ΦwTD

off − Φw∗) +
(
Φw∗ − Vπ

)
.
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Hence ∥∥ΦwTD
off − Vπ

∥∥
νb
≤
∥∥ΦwTD

off − Φw∗∥∥
νb

+
∥∥Φw∗ − Vπ

∥∥
νb

.

Define the approximation error εapprox =
∥∥Φw∗− Vπ

∥∥
νb

. We focus on the first term above. Note that both
ΦwTD

off and Φw∗ lie in the column space of Φ. The vector Φwoff
TD satisfies

Φ⊤Ξνb

(
I − γPπ

)
Φwoff

TD = Φ⊤Ξνb
Rπ, (9)

whereas the projection Φw∗ satisfies
Φ⊤Ξνb

(
Φw∗ − Vπ

)
= 0.

Also, by multiplying the Bellman equation (8) by Φ⊤Ξνb
yields

Φ⊤Ξνb
Vπ = Φ⊤Ξνb

Rπ + γ Φ⊤Ξνb
PπVπ

⇒ Φ⊤Ξνb
(I − γPπ)Vπ = Φ⊤Ξνb

Rπ. (10)

Combining (9) and (10), we get

Φ⊤Ξνb
(I − γPπ) Φ wTD

off = Φ⊤Ξνb
(I − γPπ) Vπ

⇒ Φ⊤Ξνb
(I − γPπ)(Φ wTD

off − Vπ) = 0
⇒ Φ⊤Ξνb

(I − γPπ) e = 0, (11)

where e = Φ wTD
off − Vπ. Further,

e =
(
ΦwTD

off − Φw∗) +
(
Φw∗ − Vπ

)
= Φ

(
wTD

off −w∗) + εapprox, (12)

where εapprox = Φw∗ − Vπ. Substituting above,

Φ⊤Ξνb
(I − γPπ)

[
Φ
(
wTD

off −w∗) + εapprox

]
= 0

⇒ Φ⊤Ξνb
(I − γPπ) Φ

(
wTD

off −w∗) + Φ⊤Ξνb
(I − γPπ) εapprox = 0

⇒ Φ⊤Ξνb
(I − γPπ) Φ

(
wTD

off −w∗) = −Φ⊤Ξνb
(I − γPπ) εapprox

⇒ Λo

(
wTD

off −w∗) = Φ⊤Ξνb
(I − γPπ) εapprox. (13)

Now, ∥∥Φ⊤Ξνb
(I − γPπ)εapprox

∥∥ ≤ ∥Φ⊤∥ ∥Ξνb
∥
∥∥(I − γPπ)εapprox

∥∥, (14)

where ∥ · ∥ is the spectral norm. But, ∥Ξνb
∥ = maxs νb(s), and∥∥(I − γPπ)εapprox

∥∥2 =
∑

s

[
(I − γPπ)εapprox

]
(s)2

≤
∑

s

1
mins νb(s) νb(s)

[
(I − γPπ)εapprox

]
(s)2

= 1
mins νb(s)

∥∥(I − γPπ)εapprox
∥∥2

νb
. (15)

Hence, ∥∥(I − γPπ)εapprox
∥∥ ≤ 1 + γ

√
κb√

mins νb(s)
∥εapprox∥νb

,

and therefore ∥∥Φ⊤Ξνb
(I − γPπ)εapprox

∥∥ ≤ ∥Φ⊤∥ maxs νb(s)√
mins νb(s)

(
1 + γ

√
κb

)
∥εapprox∥νb

. (16)
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Note that
∥∥Φ⊤

∥∥ =
∥∥Φ
∥∥, and the spectral norm of Φ is the large singular value. Let σmax(Φ) =

∥∥Φ
∥∥. Also

note that, since Λo is negative definite, we have∥∥Λ−1
o

∥∥ ≤ 1
λmin(−Λo) , (17)

where λmin(−Λo) is the smallest eigenvalue of −Λo. Combining equation 13, (14), (16) and (17), we get

∥∥wTD
off −w∗∥∥ ≤ σmax(Φ)

λmin(−Λo)

max
s

νb(s)√
min

s
νb(s)

(
1 + γ

√
κb

) ∥∥εapprox
∥∥

νb
. (18)

Hence, for the projected error in the νb-norm,∥∥Φ
(
wTD

off − w∗)∥∥
νb
≤
∥∥Φ
∥∥

νb

∥∥woff
TD − w∗∥∥. (19)

∥Φ∥νb
is the operator norm of Φ from the Euclidean space to the νb-normed space. Specifically:

∥Φw∥2
νb

= w⊤Φ⊤Ξνb
Φw ≤ λmax(Φ⊤Ξνb

Φ)∥w∥2

⇒ ∥Φ∥νb
≤
√

λmax(Φ⊤Ξνb
Φ). (20)

Note that Φ⊤Ξνb
Φ is a k × k matrix, and its largest eigenvalue is at most maxs νb(s) · λmax(Φ⊤Φ), because

Ξνb
≤ maxs νb(s)I. And λmax(Φ⊤Φ) = σ2

max(Φ). Hence,

∥Φ(wTD
off −w∗)∥νb

≤ σmax(Φ)
√

max
s

νb(s) · ∥wTD
off −w∗∥ (21)

Hence from (12), (18) and (21), we get

∥ΦwTD
off − Vπ∥νb

≤ ∥Φ(wTD
off −w∗)∥νb

+ ∥ϵapprox∥νb
≤
(σ2

max(Φ)(max
s

νb(s)) 3
2
(
1 + γ

√
κb

)
λmin(−Λo)

√
min

s
νb(s)

+ 1
)∥∥εapprox

∥∥
νb

The above theorem bound reveals three critical bottlenecks in off-policy TD convergence: First, the
σ2

max(Φ)(maxs vb(s))3/2 term exposes the sensitivity to feature scaling and distribution skew, showing that
even optimal representations suffer when vb is non-uniform or features are poorly conditioned. Second, the
(1+γ

√
κb) factor quantifies how policy divergence (κb ≫ 1) amplifies approximation error through temporal

credit assignment - a manifestation of the deadly triad where bootstrapping, function approximation, and
off-policy sampling interact destructively. Third, the dependence on λmin(−Λo)−1 formalizes the hardness
of Bellman inversion under distribution shift, as Λo becomes ill-conditioned when the behavior policy’s tran-
sitions poorly align with the target dynamics. This provides the first closed-form characterization of deadly
triad interactions in off-policy TD convergence. The bound exclusively characterizes the fundamental ap-
proximation error of the asymptotic off-policy TD solution, isolating it from transient algorithmic effects.
When π = πb (κb = 1), the bound simplifies to the on-policy case, but the exponential scaling γ

√
κb explains

the severe degradation under policy mismatch.
Theorem 2. Under Assumptions 1, 2, and 3, if κγ2 < 1 then Λo is negative definite.

Proof. For any w ̸= 0, let u = Φw. By Assumption 2, u ̸= 0. Consider the quadratic form:

w⊤Λow = w⊤Φ⊤Ξνb
(γPπ − I)Φw

= u⊤Ξνb
(γPπ − I)u

= γ u⊤Ξνb
Pπu︸ ︷︷ ︸

Q1

−u⊤Ξνb
u︸ ︷︷ ︸

Q2

(22)

8
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Now Q2 = u⊤Ξνb
u =

∑
s νb(s)u(s)2 = ∥u∥2

νb
> 0. Since νb > 0 (ergodicity) and u ̸= 0, we have

Q1 = u⊤Ξνb
Pπu =

∑
s

νb(s)u(s)(Pπu)(s)

=
∑

s

νb(s)u(s)
(∑

s′

Pπ(s′|s)u(s′)
)

≤ ∥u∥νb
· ∥Pπu∥νb

(Cauchy-Schwarz inequality) (23)

Further, by Lemma 1, we have

∥Pπu∥2
νb

= κb∥u∥2
νb

(24)

Therefore, from (23) and (24) :

Q1 ≤ |Q1| ≤ ∥u∥νb
· ∥Pπu∥νb

≤
√

κ∥u∥2
νb

Substitute into (22) to obtain

w⊤Λow ≤ γ
√

κb∥u∥2
νb
− ∥u∥2

νb
= (γ√κb − 1) ∥u∥2

νb
(25)

Since ∥u∥2
νb

> 0 and γ
√

κb − 1 < 0 iff κb < 1
γ2 we have:

w⊤Λow ≤ (γ√κb − 1) ∥u∥2
νb

< 0 when κbγ2 < 1

Equality holds only if w = 0, proving Λo is negative definite.

Corollary 1. When π = πb, Λo is negative definite for any γ < 1.

Proof. When π = πb, we have κb = 1. Then:

w⊤Aw ≤ (γ − 1)∥v∥2
νb

< 0 ∀w ̸= 0

Theorem 2 establishes a fundamental condition for convergence in off-policy temporal difference learning:
when the product of the policy alignment constant κb and the squared discount factor γ2 is less than one,
the critical matrix governing the TD update dynamics becomes negative definite. This condition, κbγ2 < 1,
provides profound theoretical insight into the feasibility of off-policy learning. The policy alignment constant
κb quantifies the maximum discrepancy between the next-state distribution under the target policy and
the behavior policy’s stationary distribution (νb). When κb is large, it indicates significant distributional
mismatch—certain states are visited much more frequently under the target policy than would be expected
from the behavior policy’s steady-state distribution. The theorem reveals that such mismatches become
increasingly problematic as the discount factor γ approaches 1, explaining why long-horizon tasks with high
γ values are particularly challenging for off-policy methods. Notably, when policies are identical (π =
πb), we have κb = 1, and the condition simplifies to γ < 1, which always holds for standard MDPs.
However, as policy dissimilarity increases (κb > 1), the allowable discount factor must decrease to maintain
convergence guarantees. This theoretical boundary precisely characterizes the “deadly triad” interaction
between function approximation, bootstrapping, and off-policy learning, and directly motivates the steady-
state bias correction.

3 Our Algorithm

Here, we propose a double correction approach to address the discrepancy introduced by the steady-state
distribution of the behavior policy in the solution of the off-policy TD algorithm by effectively reducing the
policy alignment constant through distributional reweighting, while simultaneously incorporating per-step
policy mismatch correction ρt. To achieve this, we employ the importance sampling method to the existing

9
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off-policy TD method with one-step lookahehad, where the importance sampling ratio q(s)/hθ∗,λ∗(s) is tied
to the existing TD recursion. Here q(·) is the target probability distribution to which the solutions are guided,
and hθ∗,λ∗ = λ∗

1gθ∗
1

+ · · ·+ λ∗
ℓ gθ∗

ℓ
is a surrogate probability mixture distribution chosen from a parametrized

family of distributions {gθ|θ ∈ Θ} which best approximates the steady-state distribution of the Markov chain
induced by the behaviour policy with respect to the Kullback-Leibler divergence (moment projection).

[
θ∗

λ∗

]
= arg min

θi∈Θ,
λi∈[0,1]

DKL(νb∥λ1gθ1 + · · ·+ λℓgθℓ
), subject to

ℓ∑
i=1

λi = 1, (26)

where DKL(f∥g) = Ef

[
log f(X)

g(X)

]
.

One theoretically well-founded choice is the Natural Exponential Family (NEF). The NEF is a class of prob-
ability distributions which provides a unified framework for probability distributions through its canonical
form that encompasses many commonly used distributions such as Gaussian, Poisson, and Bernoulli distri-
butions, among others. The NEF has several desirable properties, including a closed-form expression with
convex log-partition function, which simplifies the computation of the importance sampling ratio and allows
for efficient parameter updates during the learning process. A parameterized family {gθ|θ ⊆ Rb} is called
a natural exponential family if gθ(x) = exp (θT Γ(x)−K(θ)), where Γ : Rb → Rb and K : Rb → R are
continuous functions with Θ = {θ ∈ Rb| |K(θ)| < ∞}. Note that K(θ) is strictly convex in the interior of
Θ and ∇K(θ) = Egθ

[Γ(X)]. Also,∇2
θK(θ) = Covgθ

[Γ(X)] ≻ 0. These ensure the Fisher information matrix
I(θ) = ∇2

θK(θ) is non-degenerate, guaranteeing well-posed maximum likelihood estimation. While all the
NEF member distributions provide analytical tractability through their exponential structure, we employ
Gaussian mixture models in our experiments for their superior approximation capabilities. The following
theorem formalizes this approximation and guarantees that, with a sufficient number of components, the
KL-divergence between the true steady-state distribution and its Gaussian mixture approximation can be
made arbitrarily small.
Theorem 3. Let νb be a discrete steady-state distribution supported on points {s1, . . . , sn} ⊂ Rp. Then, for
any ϵ > 0, there exists an ℓ-component Gaussian mixture model with ℓ ≥ 1 s.t. the KL divergence between
νb and it satisfies:

DKL
(
νb ∥ λ1gθ1 + · · ·+ λℓgθℓ

)
≤ O(η) + O( ϵ

η2 ) + O

(
1

η2ℓ

)
,

with gθ(·) ≥ η, ∀θ.

Proof. Approximate νb by a continuous density:

f(x) =
n∑

i=1
νb(si)N (x; si, σ2Ip), (27)

where N (x; si, σ2Ip) is a Gaussian kernel centered at si. As σ → 0, f(x) converges pointwise to νb, ensuring
the L1-error between f and νb becomes arbitrarily small. Restrict f(x) to a compact domain X ⊂ Rd

containing all si and define the normalized density: fX(x) = f(x)∫
X

f(y)dy
. Since

∫
X

f(y)dy → 1 as σ → 0,

fX(x) remains a valid approximation of νb on X. Now ensure fX(x) ≥ η by defining:

f̃X(x) = max(fX(x), η), f̃X(x)← f̃X(x)∫
X

f̃X(y)dy
. (28)

This guarantees f̃X(x) ≥ η/Z, where Z is the normalization constant. For small η, Z ≈ 1 + η(vol(X)− 1),
keeping the adjustment controlled. Then one can show that

DKL
(
νb ∥ f̃X

)
≤ O (η) + O (σ) . (29)

10
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Figure 2: Illustration of the true steady-state distribution νb (top–left) and its Gaussian-mixture surrogates with
(ℓ, σ) ∈ {(9, 0.7), (25, 0.4), (49, 0.2)}. As the number of components grows and the kernels narrow, the mixture
becomes visually indistinguishable from νb.

Figure 3: KL–divergence DKL
(
νb ∥ hθ,λ

)
versus component count ℓ for four bandwidths σ ∈ {1.0, 0.7, 0.4, 0.2}. Each

curve decays monotonically, illustrating the O
(
ℓ−1σ−2) rate predicted by Theorem 3.

Now by Lemma 4.1 of Zeevi & Meir (1997), for any ϵ > 0, there exists ℓ ≥ 1 such that the mixture model
approximates f̃X with:

DKL
(
νb ∥ λ1gθ1 + · · ·+ λℓgθℓ

)
≤ DKL

(
νb ∥ f̃X

)
+

DKL
(
f̃X ∥ λ1gθ1 + · · ·+ λℓgθℓ

)
≤ O(η) + ϵ

η2 + O

(
1

η2ℓ

)
.

Theorem 3 guarantees that the steady-state distribution νb can be approximated with bounded error using
a finite-component Gaussian mixtures, validating the parametric approach in our algorithm. Crucially, the
bound O(η) + O(ε/η2) + O(1/(η2ℓ)) reveals that increasing the number of components ℓ or reducing the
kernel bandwidth σ (Figs. 2, 3) tightens the approximation. This theoretical foundation ensures that the KL
minimization yields a reliable surrogate h(·; θ∗, λ∗), which enables accurate calculation of the importance
sampling ratio ζt = q(st)/h(st; θ̂t, λ̂t) for distributional correction.

11
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To derive a tractable optimization procedure for the mixture model parameters, we reformulate the KL-
divergence minimization problem equation 26 as follows (∆(ℓ) is the ℓ-dimensional probability simplex):

θ∗ = arg min
θ̄∈Θℓ,λ∈∆ℓ

DKL(νb||h(·; θ̄, λ̄), where θ̄ = [θ1, . . . , θℓ]⊤ and λ̄ = [λ1, . . . , λℓ]⊤

= arg min
θ̄∈Θℓ,λ∈∆ℓ

∫ ∞

−∞
νb(s) log νb(s)

h(s; θ̄, λ̄)
ds

= arg min
θ̄∈Θℓ,λ∈∆ℓ

∫ ∞

−∞
νb(s) log νb(s)ds− νb(s) log h(s; θ̄, λ̄)ds

= arg max
θ̄∈Θℓ,λ∈∆ℓ

∫ ∞

−∞
νb(s) log h(s; θ̄, λ̄)ds︸ ︷︷ ︸

F (θ̄,λ̄)

(30)

Thus minimizing the KL divergence is equivalent to maximizing the expected log-likelihood of the surro-
gate distribution h under the steady-state distribution νb. Let F (θ̄, λ̄) = Eνb

[log h(s; θ̄, λ̄)]. By bounded
convergence theorem, we have, ∇F (θ̄, λ) = Eνb

[∇ log h(s; θ̄, λ̄)] and thus the gradient ∇F (θ̄, λ̄) equals the
expectation of the score function ∇ log h

(
s; θ̄, λ̄

)
under νb. The resulting objective is amenable to stochas-

tic gradient ascent, enabling efficient parameter updates during learning. Hence, we employ incremental,
projected, stochastic gradient ascent procedure augmented with Polyak-Ruppert averaging Polyak (1990);
Ruppert (1988) to solve the optimization problem given in Equation (30), where we consider the noisy
gradient ∇ log h(·; θ̄, λ̄) in place of the true gradient ∇F (θ̄, λ̄).[

θ̄t+1
λt+1

]
= ΠΘℓ×∆ℓ

([
θ̄t

λt

]
+ αt∇ log h(st+1; θ̄, λ̄)

)
[

θ̂t+1
λ̂t+1

]
=
[

θ̂t

λ̂t

]
+ 1

t + 1

([
θ̄t+1
λ̄t+1

]
−

[
θ̂t

λ̂t

])
, (31)

where ΠΘℓ×∆ℓ is the projection operator which projects θ̄t on to the constraint set Θℓ and λt on to the
probability simplex ∆ℓ. This ensures iterates [θ̄t, λ̄t]⊤ stay feasible. In the interior of Θℓ×∆ℓ, it acts as the
identity, and near the boundary, it projects orthogonally onto the boundary. Here αt ∈ (0, 1) is the step-size
parameter, fixed apriori. The application of Polyak-Ruppert (PR) averaging is to enhance the robustness
and stability of the iterative algorithm.
Remark 1. By leveraging the properties of the NEF, one can obtain a closed form expression for
∇ log h(·; θ̄, λ̄) as follows:

∂

∂θj

∇ log h(s; θ̄, λ̄) =
(Γ(x)−∇K(θj))gθj (s)

h(s; θ̄, λ̄)
∂

∂λj

log h(s; θ̄, λ̄) =
gθj

(s)
h(s; θ̄, λ̄)

In our algorithm, we use a multi-timescale stochastic approximation framework. The stochastic gradient
ascent for tracking the steady-state distribution and the TD recursion for the off-policy solution are updated
on a faster timescale, while the PR averaging step is updated on a slower one. Specifically, the step-sizes
for the gradient ascent and TD recursion are orders of magnitude larger than the PR-averaging step. This
means that while the faster updates capture rapid changes, the slower, smaller step-size of the averaging step
smooths out the fluctuations, stabilizing the learning process and reducing noise. This timescale relationship
is formally defined as follows:

αt ∈ (0, 1),
∑
t≥0

αt =∞,
∑
t≥0

α2
t <∞, αt = Ω( 1

t + 1) (32)

12
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Further, we modify the TD recursion to correct the steady-state bias by incorporating the steady-state
distribution correction factor (ζt) as follows:

xt+1 = xt + βtρtζt

(
rt+1 + γϕ⊤

t+1xt − ϕ⊤
t xt

)
︸ ︷︷ ︸

δt: TD error

ϕt, where ϕt = ϕ(st), ρt = π(at|st)
πb(at|st)

and ζt = q(st)
h(st; θ̂t, λ̂t)

.

(33)

Intuitively, ρt reweights the TD error δt by how likely the chosen action is under the target vs. behavior
policy, while ζt reweights by how likely the state st is under the behavior’s steady-state distribution w.r.t. the
desired distribution q. By introducing the correction factor ζt, we re-weight updates to emphasize states in
accordance with a predefined target distribution q. In the ideal case, we set q(s) = νπ(s) (the target policy’s
true stationary distribution), but even if νπ is unknown, we can choose q(s) to be a reasonable proxy. It is
a predefined, domain-specific distribution, carefully handcrafted to suit the problem context. For instance,
in risk-aware or safety-constrained applications, q may emphasize certain critical regions of the state space,
while in healthcare, it could overweight underrepresented patient conditions to ensure equitable learning.
This correction adjusts state visitation frequencies, ensuring that states infrequently visited by the behavior
policy receive appropriate weight during learning. The pseudocode of our approach is given in Algorithm 1.

Algorithm 1: Off-policy TD with linear function approximation and distributional correction
1 Function Off-TD-SSBC(π, πb)
2 for each transition (st, at, rt+1, st+1) do
3 Calibrate parameters as follows:[

θ̄t+1
λt+1

]
= ΠΘℓ×∆ℓ

([
θ̄t

λt

]
+ αt∇ log h(st+1; θ̄t, λ̄t)

)
[

θ̂t+1
λ̂t+1

]
=
[

θ̂t

λ̂t

]
+ 1

t + 1

([
θ̄t+1
λt+1

]
−

[
θ̂t

λ̂t

])
xt+1 = xt + βtρtζt

(
rt+1 + γϕ⊤

t+1xt − ϕ⊤
t xt

)
ϕt,

where ρt = π(at|st)
πb(at|st)

and ζt = q(st)
h(st; θ̂t, λ̂t)

Assumption 4. Geometric mixing (spectral gap). There exist constants M > 0 and ρ ∈ (0, 1) such
that

∥∥P t(s,·)− νb

∥∥
TV ≤ M ρ t,∀ s ∈ S, t ≥ 0.

Assumption 5. Parameter Space Regularity. The parameter space Θ is compact with smooth boundary.
Assumption 6. Uniformly bounded score function. There is a constant G < ∞ such that∥∥∇log h(s; θ̄, λ̄)

∥∥ ≤ G,∀ θ̄ ∈ Θℓ,∀λ̄ ∈ ∆ℓ, ∀s ∈ S.

Remark 2. For the mixture NEF model h(s; θ̄, λ̄) =
∑ℓ

j=1 λjgθj (s), we note that the parameters v = (θ̄, λ̄)
lie in a compact set (because Θ is compact and λ̄ lies in the simplex, which is also compact). Then, for
each s, h(s; v) is a continuous function of v (as a finite sum of products of continuous functions) and hence
attains a minimum and maximum over the compact parameter space. Again, because gθj

(s) > 0 and λj ≥ 0
with

∑
λj = 1, we have hv(s) ≥ minj gθj

(s) ≥ η > 0 and hv(s) ≤ maxj gθj
(s) ≤ M . Moreover, the same

bounds hold uniformly in s because there are finitely many states. Thus, for the mixture model, we also have:

0 < η ≤ h(s; v) ≤M <∞, ∀ v ∈ Θℓ ×∆ℓ, ∀ s ∈ S.

This then leads to the boundedness of the score function as previously explained.

To establish the convergence properties of Algorithm 1, we analyze the stochastic updates of the dis-
tribution parameters θ̄t and λ̄t. Let υt = [θ̄t, λt]⊤, h(·; υt) = h(·; θ̄t, λ̄t), U = Θℓ × ∆ℓ and Ft =

13
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σ(θk, λk, θ̂k, λ̂k, sk, ak, xk, 0 ≤ k ≤ t) be the natural filtration generated by all variables up to time t. Then
the update recursion of [θ̄t, λ̄t]⊤ can be decomposed into a deterministic drift, a martingale noise, and a bias
as follows:

υt+1 = ΠU (υt + αt∇ log h(st+1; υt))
= ΠU

(
υt + αt

(
∇F (υt) + Mυ

t+1 + bυ
t

))
,

where Mυ
t+1 = ∇ log h(st+1; υt)− E [∇ log h(st+1; υt)|Ft] , and bυ

t = E [∇ log h(st+1; υt)|Ft]−∇F (υt).
(34)

First we establish a fundamental result on the bias term which shows that the bias term is geometrically
decaying and therefore summable.

Lemma 2. Let Assumptions 4 and 6 hold. Then ∥bυ
t ∥ ≤ GM ρ t, ∀t ≥ 0 and

∞∑
t=0

αt ∥bυ
t ∥ <∞.

Proof.
bυ

t =
∑
s′∈S

(
Pπb

(s, s′)− νb(s′)
)
∇log hvt

(s′).

Using the triangle inequality and the uniform bound G,

∥bυ
t ∥ ≤

∑
s′

|Pπb
(s, s′)− νb(s′)|

∥∥∇log hvt
(s′)
∥∥

≤ G
∑

s′

|Pπb
(s, s′)− νb(s′)|

= G ∥Pπb
(s, ·)− νb∥1

= 2G ∥Pπb
(s, ·)− νb∥T V

≤ 2GMρt.

Further, the weighted series
∑

t αt∥bυ
t ∥ ≤

∑
t αtρ

t <∞, since the step–size schedule αt → 0.

The following theorem establishes that the sequence {[θ̄t, λ̄t]⊤} converges to Karush-Kuhn-Tucker (KKT)
points—first-order optimality conditions where the gradient aligns with the normal cone of Θℓ ×∆ℓ. This
guarantees the learned mixture distribution h(·; θ̄, λ̄) converges to a stationary point of the KL-divergence
minimization problem.
Theorem 4 (Convergence of Distribution Approximation). Let the step-size {αt} satisfy Equation (32).
Let Assumptions 4-6 hold. Then the sequence {[θ̄, λ̄]⊤} converges almost surely to the set of KKT points:

{υ = [θ̄, λ̄]⊤ ∈ Θℓ ×∆ℓ : −∇F (υ) ∈ NU (υ)},

where NU (υ) denotes the normal cone to Thetaℓ ×∆ℓ at υ, defined as:

NU (υ) =
{

d ∈ Rdim(Θℓ)+ℓ : ⟨d, u− υ⟩ ≤ 0, ∀u ∈ U
}

.

Proof. Let gt = ∇F (υt) + Mυ
t+1 + bυ

t . Then,

υt+1 = ΠU

(
υt + αtgt

)
,

= υt + αtΓU (gt) + ΠU

(
υt + αtgt

)
− υt − αtΓU (gt)

= υt + αt

(
ΓU (gt) +

ΠU

(
υt + αtgt

)
− υt

αt
− ΓU (gt)

)
= υt + αt (ΓU (gt) + o(αt)) . (35)
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The last equality follows since

lim
ε→0

ΠU

(
υt + εgt

)
− υt

ε
= ΠTU (υt)(gt)︸ ︷︷ ︸

ΓU (gt)

, (36)

where
TU (υ) =

{
u ∈ Rdim(Θℓ)+ℓ : υ + τu ∈ U for some τ > 0

}
.

In the interior of U , TU (υt) = Rd
(
unconstrained

)
. and near the boundary of U , TU (υt) =

{
u ∈

Rdim(Θℓ)+ℓ
∣∣ u points into U

}
. Thus, ΓU (gt) is the directional derivative of the projection operator ΠU

at point υt in the direction gt, which is equivalent to the projection of gt onto the tangent cone of U at υt

Rockafellar (2015). Intuitively, it captures the "feasible component" of gt that aligns with the constraints of
U .
For the noise Mυ

t+1, E
[
Mυ

t+1 | Ft

]
= 0 (by definition). Further, using the triangle inequality,

∥Mυ
t+1∥ =

∥∥∇log h(st+1; υt)− E[∇log h(st+1; υt) | Ft]
∥∥

≤ G + G = 2G a.s.

Squaring and taking conditional expectation yields E[∥Mυ
t+1∥2 | Ft] ≤ (2G)2 = 4G2. Thus {Mυ

t } is a
square-integrable martingale-difference sequence. Now, consider St =

∑t−1
k=0 αkMυ

k+1. Note that∑
t≥0

E
[
∥St+1 − St∥2|Ft

]
=
∑
t≥0

α2
tE
[
∥Mυ

t+1∥2|Ft

]
< 4G2

∑
t≥0

α2
t <∞. (37)

By martingale convergence theorem, it follows that St converges, i.e.,
∑∞

t=0 αtMυ
t+1 <∞ a.s.

Now rearranging (35), we get

υt+1 = υt + αt

(
ΓU (∇F (υt)) + ΓU (gt)− ΓU (∇F (υt))︸ ︷︷ ︸

ξt

+o(αt)
)

(38)

Using the non-expansive property of ΓU , we have

∥ξt∥ = ∥ΓU (gt)− ΓU (∇F (υt))∥
≤ ∥gt −∇F (υt)∥ = ∥Mυ

t+1 + bυ
t ∥

≤ ∥Mυ
t+1∥+ ∥bυ

t ∥. (39)

Hence, ∑
t

αt∥ξt∥ ≤
∑

t

αt∥Mυ
t+1∥+

∑
t

αt∥bυ
t ∥ <∞ a.s. (40)

Therefore by Borkar (2008), it follows that {υt} asymptoticaly tracks the ODE

υ̇ = ΓU (∇F (υ)). (41)

However, because F is smooth and the constraint set U is convex, the above differential equation is well-
defined and corresponds to the projected gradient ascent. By the theory of stochastic approximation (see
Borkar (2008)), the sequence {υt} converges to a (possibly sample path dependent) internally chain transitive
invariant set of the above ODE. Since F is C1,

d

dt
F
(
υ(t)

)
=
〈
∇F

(
υ(t)

)
, υ̇(t)

〉
=
〈
∇F (υ), ΓU

[
∇F (υ)

]〉
.
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Apply Moreau’s decomposition to obtain ∇F (υ) = ΠTU (υ) [∇F (υ)] + ΠNU (υ) [∇F (υ)] and
⟨ΠTU (υ) [∇F (υ)] , ΠNU (υ) [∇F (υ)]⟩ = 0. Then,〈

∇F (υ), ΓU (∇F (υ))
〉

=
〈
ΠTU (υ) [∇F (υ)] + ΠNU (υ) [∇F (υ)] , ΓU (∇F (υ))

〉
= ⟨ΓU (∇F (υ)), ΓU (∇F (υ))⟩

=
∥∥ΓU (∇F (υ))

∥∥2 ≥ 0. (42)

Hence
d

dt
F
(
υ(t)

)
=
∥∥ΓU

[
∇F

(
υ(t)

)]∥∥2 ≥ 0 (43)

with equality iff ΓU [∇F (υ(t))] = 0. Therefore, the invariant set of the above ODE is the stationary
(equilibrium) set: {

υ ∈ U : ΓU

[
∇F (υ)

]
= 0
}

=
{

υ ∈ U : −∇F (υ) ∈ NU (υ)
}

,

which are the Karush-Kuhn-Tucker (KKT) points. The last equality follows again by Moreau’s decomposition
of ∇F (υ).

Having established the almost sure convergence of the distribution parameters {υt} to υ∗ in Theorem 4, we
now analyze the temporal difference learning dynamics given by equation 33. Prior to this, observe that the
unilateral timescale separation between the faster distribution estimation updates (υt = [θ̄t, λ̄t]⊤) and slower
Polyak-Ruppert averaging (υ̂t = [θ̂t, λ̂t]⊤) ensures that υ̂t → υ∗ asymptotically. This justifies replacing
the time-varying ζt = q(st)/h(st; υ̂t) in the TD update equation 33 with its steady-state counterpart ζ∗

t =
q(st)/h(st; υ∗). The substitution decouples the distribution approximation error from the value estimation
error, permitting the simplified TD recursion (See Chapter 6 of Borkar (2008)). Hence, we rewrite xt update
as follows (we let gt = ρt ζ∗

t

(
rt+1 + γϕ⊤

t+1x− ϕ⊤
t x
)
ϕt and h∗(·) = h(·; υ∗)):

xt+1 = xt + βtρtζ
∗
t

(
rt+1 + γϕ⊤

t+1xt − ϕ⊤
t xt

)
ϕt, where ρt = π(at|st)

πb(at|st)
and ζ∗

t = q(st)
h∗(st)

= xt + βt

(
bx

t + G(xt) + Mx
t+1
)

, where G(x) = E[gt] = E
[

ρt ζ∗
t

(
rt+1 + γϕ⊤

t+1x− ϕ⊤
t x
)
ϕt

]
(44)

= Es

[ q(s)
h⋆(s)Ea

[
ρt

(
rt+1 + γϕ⊤

t+1x− ϕ⊤
t x
)
ϕt

∣∣ s
]]

= Es

[ q(s)
h⋆(s)

(
Rπ(s) + γ (PπΦx)(s)− (Φx)(s)

)
ϕ(s)

]
= Φ⊤Ξνb

Ξ−1
h⋆ Ξq

(
Rπ + (γ Pπ − I)Φx

)
= Φ⊤Ξνb

Ξ−1
h⋆ Ξq (γ Pπ − I)Φ︸ ︷︷ ︸

Λc

x + Φ⊤Ξνb
Ξ−1

h⋆ ΞqRπ︸ ︷︷ ︸
ξ

. (45)

Also,

Mx
t+1 = gt − E

[
gt | Ft

]
, and bx

t = E
[
gt | Ft

]
− h
(
xt

)
. (46)

Further, note that since we have finite state and action spaces |rt| ≤ R∞, ∥ϕ(s)∥ ≤ Φ∞, and 0 ≤ ρt ≤ ρ∞,
0 < ζt ≤ ζ∞.

We first bound the TD error:

|δt| =
∣∣rt+1 + γϕ⊤

t+1xt − ϕ⊤
t xt

∣∣
≤ |rt+1|+ γ|ϕ⊤

t+1xt|+ |ϕ⊤
t xt|

≤ R∞ + γΦ∞∥xt∥+ Φ∞∥xt∥ = R∞ + (1 + γ)Φ∞∥xt∥
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Then the update term gt satisfies:

∥gt∥ = |ρtζtδt| · ∥ϕt∥ ≤ ρ∞ζ∞ (R∞ + (1 + γ)Φ∞∥xt∥) · Φ∞ ≤ C1 + C2∥xt∥,

where C1 = ρ∞ζ∞R∞Φ∞, and C2 = ρ∞ζ∞(1 + γ)Φ2
∞. Now,

∥Mx
t ∥ = ∥gt − E[gt | Ft]∥
≤ ∥gt∥+ ∥E[gt | Ft]∥ ≤ 2 sup ∥gt∥

≤ 2(C1 + C2∥xt∥) ≤ C̃1(1 + ∥xt∥).

Further, using ∥a− b∥2 ≤ 2∥a∥2 + 2∥b∥2,

E
[
∥Mx

t+1∥2 | Ft

]
= E

[∥∥gt − E[gt | Ft]
∥∥2 | Ft

]
≤ 2E

[
∥gt∥2 | Ft

]
+ 2

∥∥E[gt | Ft]
∥∥2

≤ 4E
[
∥gt∥2 | Ft

]
≤ 4
(
C1 + C2∥xt∥

)2

≤ 8C2
1 + 8C2

2∥xt∥2. (47)

Now we write bx
t = E[gt | Ft]−G(xt) = E[gt|st, xt]− Eνb

[gt].

Thus, ∥bx
t ∥ = ∥E[gt|st, xt]− Eνb

[gt]∥

≤
∑
s∈S

|Pπb
(st, s)− νb(s)| · ∥E[gt | st, xt]∥

≤ sup
s
∥E[gt | s, xt]∥ · ∥Pπb

(st, ·)− νb∥1

= 2 sup
s
∥E[gt | s, xt]∥ · ∥Pπb

(st, ·)− νb∥T V

≤ 2Mρt(C1 + C2∥xt∥) ≤ C̃2ρt(1 + ∥xt∥) (48)

To establish convergence of the sequence {xt}, we must first ensure the iterates remain stochastically
bounded. While classical stochastic approximation theory Borkar (2008) often assumes almost sure bound-
edness, we prove the following weaker but sufficient condition for our setting.
Lemma 3. The iterates xt satisfies supt E

[
∥xt∥2] <∞.

Proof. Note G satisfes the drift inequality

x⊤G(x) ≤ −c∥x∥2 + d, ∀x ∈ Rk, (49)

where c = 1
2 λmin(−Λc) and d = ∥ξ∥2/(2λmin(−Λc))).

Using E[Mx
t+1 | Ft] = 0 and expanding the square,

E[Vt+1 | Ft] = ∥xt∥2 + 2αtx⊤
t

(
G(xt) + bx

t

)
+ α2

t

(
∥G(xt) + bx

t ∥2 + E[∥Mx
t+1∥2 | Ft]

)
.

Apply equation 48, equation 47, equation 49, and Young’s inequality 2x⊤
t bx

t ≤ c∥xt∥2 + c−1∥bx
t ∥2, and the

bound ∥G(xt)∥2 ≤ 2∥Λc∥2∥xt∥2 + 2∥ξ∥2, to obtain

E[Vt+1] ≤
(

1− (2c− c)αt + L2 α2
t

)
E[Vt] + 2d αt + L0 α2

t +
(

c−1αt + 2α2
t

)
8M2ρ2t

(
C2

2 E[Vt] + C2
1

)
, (50)

where L2 = 4∥Λc∥2 + 8C2
2 , L0 = 4∥ξ∥2 + 8C2

1 .

Equivalently, by collecting the coefficients of E[Vt] and the constants, we may write

E[Vt+1] ≤
(

1− cβt + L2β2
t + 8M2C2

2 (c−1βt + 2β2
t )ρ2t︸ ︷︷ ︸

=Gt

)
E[Vt] + 2d βt + L0 β2

t + 8M2C2
1 (c−1βt + 2β2

t )ρ2t︸ ︷︷ ︸
=et

.

(51)
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Since ρ2t → 0 geometrically and βt → 0, the perturbation terms Gt, et vanish; for all large t one can ensure
Gt ≤ c

2 βt, leading to the canonical stochastic approximation form

E[Vt+1] ≤
(
1− c

2 βt

)
E[Vt] + 2d βt + c′β2

t . (52)

Now using induction, we will show that supt E[Vt] < ∞. For t = 0, E[V0] = E[∥x0∥2] is finite since x0 is
initialized with finite variance (base case). Now assume E[Vt] ≤ K for some constant K and all t ≤ T , where

K = max
(
E[∥x0∥2], 4d

c
+ 2

c
sup
t≥0

c′βt

)
.

Then,

E[VT +1] ≤
(

1− c

2βT

)
K + 2dβT + c′β2

T

≤ K + βT

(
− c

2K + 2d
)

+ c′β2
T . (53)

Since K ≥ 4d

c
+ 2

c
sup
t≥0

c′βt, we have:

− c

2K + 2d ≤ − c

2

(
4d

c
+ 2

c
sup
t≥0

c′βt

)
+ 2d

= −c′ sup
t≥0

βt ≤ −c′βT < 0.

Thus from equation 53:

E[VT +1] ≤ K − c′α2
T + c′α2

T ≤ K.

By induction, E[Vt] ≤ K for all but a finite number of t.

To establish the convergence of xt, we must show that the bias and noise terms are manageable. Specifically,
the next lemma establishes that the series formed by the weighted bias and martingale noise terms converge
almost surely.
Lemma 4. For the martingale noise Mx

t and the bias bx
t , we have

P

(∑
t

βtMx
t+1 <∞,

∑
t

βtb
x
t <∞

)
= 1.

Proof. From equation 47, we have

E[∥Mx
t+1∥2 | Ft] ≤ 8C2

1 + 8C2
2∥xt∥2

⇒ E[∥Mx
t+1∥2] ≤ 8C2

1 + 8C2
2E[∥xt∥2]. (54)

Hence, Mx
t+1 is square-integrable. Now, by the convergence theorem for square-integrable martingale (for

vector-valued martingales), it is enough to show that∑
t

E[∥βtMx
k+1∥2 | Ft] <∞ a.s.

Thus it is enough to show that

E

[∑
t

E[∥βtMx
t+1∥2 | Ft]

]
<∞.
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Therefore, by monotone convergence theorem, we get

E

[∑
t

E[∥βtMx
t+1∥2 | Ft]

]
=
∑

t

E
[
E[∥βtMx

t+1∥2 | Ft]
]

≤
∑

t

β2
t

(
8C2

1 + 8C2
2E[∥xt∥2]

)
≤
∑

t

β2
t

(
8C2

1 + 8C2
2 sup

t
E[∥xt∥2]

)
<∞.

The last inequality follows from Lemma 3 and
∑

t β2
t <∞. This implies that P

(∑
t βtMx

t+1 <∞
)

= 1.
Now for bx

t , it follows from equation 48,

E

[∑
t

βt∥bx
t ∥

]
=
∑

t

βtE[bx
t ]

≤
∑

t

2Mβtρ
t(C1 + C2E[∥xt∥])

≤
∑

t

2Mβtρ
t(C1 + C2

√
E[∥xt∥2])

≤
∑

t

2Mβtρ
t(C1 + C2 sup

t

√
E[∥xt∥2]) <∞.

The last inequality follows again from Lemma 3, βt → 0 and ρ ∈ (0, 1). Hence, P
(∑

t βtb
x
t+1 <∞

)
= 1.

Having established the stochastic boundedness of the iterates xt and the almost sure summability of the
martingale noise

∑
t αtMx

t+1 and bias terms
∑

t αtb
x
t , we now prove almost sure convergence of the sequence

{xt}.
Theorem 5 (Convergence of the TD Iterates). Assume that the matrix Λc = Φ⊤Ξνb

Ξ−1
h∗ Ξq(γPπ − I)Φ is

Hurwitz (all eigenvalues have strictly negative real parts) and diagonalizable. Then the sequence {xt}
converges almost surely to the unique solution x∗ = xc

TD satisfying:

Φ⊤Ξνb
Ξ−1

h∗ Ξq(I − γPπ)Φx∗ = Φ⊤Ξνb
Ξ−1

h∗ ΞqR̄π

Proof. Rearranging equation 44 of xt as follows:

xt+1 − x∗ = (xt − x∗) + βtΛc(xt − x∗) + αt(Λcx∗ + ξ) + βt(bx
t + Mx

t+1).

But note that Λcx∗ + ξ = 0 by definition of x∗. So:

xt+1 − x∗ = (xt − x∗) + βtΛc(xt − x∗) + βt(bx
t + Mx

t+1).

Let et = xt − x∗. Then:

et+1 = (I + βtΛc)et + βtηt, where ηt = bx
t + Mx

t+1.

We know that
∑

t βt∥ηt∥ < ∞ a.s. by Lemma 4 (since both bx
t and Mx

t+1 are summable in absolute value
a.s.). Now, because Λc is negative definite, the matrix I + βtΛc has eigenvalues in (0, 1) for small βt. After
unraveling the above recursion, we obtain

et+1 =
(

t∏
k=0

(I + βkΛc)
)

y0 +
t∑

k=0
βkηk

 t∏
j=k+1

(I + βjΛc)

 .
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Let

Q(t, k) =
t−1∏
j=k

(I + βjΛc) for t > k, Q(k, k) = I. (55)

Then,

et+1 = Q(t + 1, 0)e0 +
t∑

k=0
βkQ(t + 1, k + 1)ηk. (56)

Now, since Λc is negative definite, let λmin > 0 be such that the real parts of the eigenvalues of Λc are less
than or equal to −λmin. Then, there exists a constant C > 0 and β > 0 such that:

∥Q(t, k)∥ ≤ C exp

−β

t−1∑
j=k

αj

 . (57)

Since Λc is diagonalizable, let Λc = PDP −1 where D = diag(λ1, . . . , λd) is diagonal. Then:

Q(t, k) =
t−1∏
j=k

(I + βjΛc) = P

t−1∏
j=k

(I + βjD)

P −1

= P

t−1∏
j=k

Dj

P −1

where Dj = I + βjD = diag(1 + αjλ1, . . . , 1 + βjλd). The norm satisfies:

∥Q(t, k)∥ ≤ ∥P∥ · ∥P −1∥ ·

∥∥∥∥∥∥
t−1∏
j=k

Dj

∥∥∥∥∥∥ (58)

The diagonal matrix norm is given by:∥∥∥∥∥∥
t−1∏
j=k

Dj

∥∥∥∥∥∥ = max
1≤i≤d

∣∣∣∣∣∣
t−1∏
j=k

(1 + βjλi)

∣∣∣∣∣∣
Now we establish a uniform bound for each eigenvalue product

∏t−1
j=k(1 + βjλi). For any ϵ > 0, there exists

β0 > 0 such that for 0 ≤ βj ≤ β0:
|1 + βjλi| ≤ eβj Re(λi)+ϵβj (59)

This follows from the logarithm expansion:

log(1 + βjλi) = βjλi −
(βjλi)2

2 + · · ·

= βj Re(λi) + iβj Im(λi) + O(β2
j )

so the real part is αj Re(λi) + O(α2
j ). For sufficiently small αj , we have:

Re (log(1 + βjλi)) ≤ βj Re(λi) + ϵβj

Thus |1 + βjλi| = eRe(log(1+βjλi)) ≤ eβj Re(λi)+ϵβj .

Set ϵ = λmin/2 > 0 where λmin = mini |Re(λi)|. Since Re(λi) ≤ −λmin:

|1 + βjλi| ≤ eβj Re(λi)+βjλmin/2 ≤ e−βjλmin+βjλmin/2 = e−βjλmin/2
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when βj ≤ β0. Since βj → 0, there exists K0 ∈ N such that βj ≤ β0 for all j ≥ K0.
Case 1: k ≥ K0
For all j ≥ k ≥ K0, we have βj ≤ β0, so:∣∣∣∣∣∣

t−1∏
j=k

(1 + βjλi)

∣∣∣∣∣∣ ≤ exp

−λmin

2

t−1∑
j=k

βj


Case 2: k < K0
Split the product at K0:

t−1∏
j=k

(1 + βjλi) =

K0−1∏
j=k

(1 + βjλi)


︸ ︷︷ ︸

(∗)

·

 t−1∏
j=K0

(1 + βjλi)


︸ ︷︷ ︸

(∗∗)

Term (∗) is a finite product (since K0 is fixed). Using |1 + βjλi| ≤ 1 + |λi|βj :

|(∗)| ≤
K0−1∏
j=k

(1 + |λi|βj) ≤ exp

|λi|
K0−1∑
j=k

βj

 ≤ Ci(k)

where Ci(k) = exp
(
|λi|

∑K0−1
j=0 βj

)
is bounded (as βj > 0 and fixed K0). Term (∗∗) is bounded by Case 1:

|(∗∗)| ≤ exp

−λmin

2

t−1∑
j=K0

βj


≤ exp

−λmin

2

t−1∑
j=k

βj

 · exp

λmin

2

K0−1∑
j=k

βj


Combining both terms:∣∣∣∣∣∣

t−1∏
j=k

(1 + βjλi)

∣∣∣∣∣∣ ≤ Ci(k) exp

λmin

2

K0−1∑
j=k

βj

 exp

−λmin

2

t−1∑
j=k

βj


= C ′′

i (k) exp

−λmin

2

t−1∑
j=k

βj


where C ′′

i (k) = Ci(k) exp
(

λmin
2
∑K0−1

j=k βj

)
.

Since k < K0 and there are only finitely many such k, define:

C ′ = max

 max
1≤i≤d

0≤k<K0

C ′′
i (k), 1

 <∞

For k ≥ K0, we have C ′′
i (k) = 1. Thus for all i, k, and t > k:∣∣∣∣∣∣

t−1∏
j=k

(1 + βjλi)

∣∣∣∣∣∣ ≤ C ′ exp

−λmin

2

t−1∑
j=k

βj


Therefore: ∥∥∥∥∥∥

t−1∏
j=k

Dj

∥∥∥∥∥∥ = max
i

∣∣∣∣∣∣
t−1∏
j=k

(1 + βjλi)

∣∣∣∣∣∣ ≤ C ′ exp

−λmin

2

t−1∑
j=k

βj


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Substituting into equation 58:

∥Q(t, k)∥ ≤ ∥P∥ · ∥P −1∥ · C ′ exp

−λmin

2

t−1∑
j=k

βj


Set C = ∥P∥ · ∥P −1∥ · C ′ and β̄ = λmin/2 to obtain:

∥Q(t, k)∥ ≤ C exp

−β

t−1∑
j=k

βj


for all t > k ≥ 0, with C, β > 0 independent of t and k.
Therefore from equation 56,

∥et+1∥ ≤ C exp

−β

t∑
j=0

βj

 ∥e0∥+
t∑

k=0
βk∥Q(t + 1, k + 1)∥∥ηk∥. (60)

The first term goes to zero as t→∞ because
∑t

j=0 βj →∞. For the second term, note:

t∑
k=0

βk∥Q(t + 1, k + 1)∥∥ηk∥ ≤ C

t∑
k=0

βk exp

−β̄

t∑
j=k+1

βj

 ∥ηk∥. (61)

By the summability of βk∥ηk∥ and the exponential decay, this term goes to zero. Indeed, for any fixed k, the
term goes to zero as t→∞. Moreover, the tail of the series

∑
k βk∥ηk∥ is small. Therefore, by the Toeplitz

lemma or direct estimation, the entire sum goes to zero.

Thus, et → 0 a.s., i.e., xt → x∗ a.s.

A natural question is whether our correction mechanism can guarantee that the residual bias stays pro-
portional to the unavoidable approximation error. The next theorem answers this affirmatively, showing
that the corrected TD fixed point is never worse than a constant-factor multiple of the best value function
representable by the chosen features.

First, we define the total error as:

e = ΦxT D
c − Vπ

= Φ(xT D
c − w∗) + (Φw∗ − Vπ) = Φu + δ, (62)

where

- w∗ = arg minw ∥Φw − V π∥q is the best approximation under q-norm

- u = xT D
c − w∗ is the difference between the TD solution and the best approximation

- δ = Φw∗ − V π is the approximation error
Lemma 5 (Orthogonality Condition for TD Fixed Point). The TD fixed point satisfies the orthogonality
condition:

Φ⊤Ξνb
Ξ−1

h∗ Ξq(I − γPπ)e = 0 (63)

Proof. The TD fixed point satisfies:

Φ⊤Ξνb
Ξ−1

h∗ Ξq(I − γPπ)ΦxT D
c = Φ⊤Ξνb

Ξ−1
h∗ ΞqRπ (64)

Substituting the Rπ = (I − γPπ)Vπ (from Bellman equation) into the TD fixed point equation:

Φ⊤Ξνb
Ξ−1

h∗ Ξq(I − γPπ)ΦxT D
c = Φ⊤Ξνb

Ξ−1
h∗ Ξq(I − γPπ)Vπ
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Rearranging all terms to one side:

Φ⊤Ξνb
Ξ−1

h∗ Ξq(I − γPπ)(ΦxT D
c − Vπ) = 0

⇒ Φ⊤Ξνb
Ξ−1

h∗ Ξq(I − γP π)e = 0 (65)

To rigorously validate the effectiveness of our distributional correction mechanism, we bound the approxi-
mation error relative to the fundamental limit imposed by the expressivity of the features and the target
state weighting. The following result provides a worst-case guarantee that our method does not amplify
unavoidable approximation errors and quantifies how design choices (e.g., the target distribution q, feature
selection, and mixture model complexity) influence performance.
Theorem 6 (Error Bound for Off-Policy TD with Steady-State Bias Correction). Under Assumptions 1-5,
the error of the off-policy TD solution with steady-state bias correction satisfies:

∥ΦxT D
c − V π∥νb

≤ C ·min
w
∥Φw − V π∥q

where:

C =
(
∥P∥ · ∥P −1∥
|α(Λc)|

)
·
√

max
s

νb(s) ·K ·
√

max
s

q(s)σmax(Φ)2 · (1 + γ
√

κq) +

√
max

s

νb(s)
q(s)

with κq = max
s′

∑
s q(s)Pπ(s′|s)

q(s′) , and α(Λc) = max
i

Re(λi(Λc)) < 0 being the spectral abscissa of Λc.

Proof. By applying triangle inequality on equation 62,

∥e∥νb
≤ ∥Φu∥νb

+ ∥δ∥νb
(66)

From Lemma 5, we have
⟨Φ⊤Ξνb

Ξ−1
h∗ Ξq(I − γPπ), e⟩ = 0 (67)

Substituting e = Φu + δ:

Φ⊤Ξνb
Ξ−1

h∗ Ξq(γPπ − I)Φu = −Φ⊤Ξνb
Ξ−1

h∗ Ξq(γPπ − I)δ
⇒ Λcu = −bδ,

where bδ = Φ⊤Ξνb
Ξ−1

h∗ Ξq(γPπ − I)δ.
Since Λc is Hurwitz and diagonalizable (by Assumption 4), Λc is invertible and can be written as Λ = PDP −1,
where D = diag(λ1, . . . , λk) with Re(λi) < 0 for all i. Therefore,

u = −Λ−1
c bδ = −PD−1P −1bδ (68)

No we bound ∥u∥. Take norms:

∥u∥ ≤ ∥Λ−1
c ∥ · ∥bδ∥ ≤ ∥P∥ · ∥P −1∥ · ∥D−1∥ · ∥bδ∥ (69)

Since D is diagonal with entries λi:

∥D−1∥ = max
i

∣∣∣∣ 1
λi

∣∣∣∣ = 1
mini |λi|

Let α(Λc) = max
i

Re(λi) < 0. For any eigenvalue λi = ai + bii, we have |λi| =
√

a2
i + b2

i ≥ |ai| = |Re(λi)|.
Therefore,

∥D−1∥ ≤ 1
|α(Λc)| (70)

23



Under review as submission to TMLR

So,

∥u∥ ≤
(
∥P∥ · ∥P −1∥
|α(Λc)|

)
· ∥bδ∥ (71)

Now we bound ∥bδ∥ = ∥Φ⊤Ξνb
Ξ−1

h∗ Ξq(γP π − I)δ∥. Using the q-weighted inner product and Cauchy-Schwarz
inequality:

|v⊤bδ| = |⟨(νb/h∗)Φv, (γPπ − I)δ⟩q|
≤ ∥(νb/h∗)Φv∥q · ∥(γPπ − I)δ∥q (72)

First, bound ∥(νb/h∗)Φv∥q:

∥(νb/h∗)Φv∥2
q =

∑
s

q(s)
(

νb(s)
h∗(s)

)2
(Φv(s))2

≤ max
s

(
νb(s)
h∗(s)

)2
·max

s
q(s) · ∥Φv∥2

≤ K2 ·max
s

q(s) · σmax(Φ)2 · ∥v∥2

Therefore,
∥(νb/h∗)Φv∥q ≤ K ·

√
max

s
q(s) · σmax(Φ) · ∥v∥ (73)

Next, we bound ∥(γPπ − I)δ∥q. Let µ(s′) =
∑

s q(s)Pπ(s′|s), which is the next-state distribution under
policy π when starting from distribution q. Similar to Lemma 1, one can obtain the following:

∥P πf∥2
q =

∑
s

q(s)(Pπf(s))2

≤
∑

s

q(s)
∑

s′

Pπ(s′|s)f(s′)2

≤
(

max
s′

µ(s′)
q(s′)

)
︸ ︷︷ ︸

κq

·∥f∥2
q

Then, ∥Pπ∥q ≤
√

κq. Therefore,

∥(γPπ − I)δ∥q ≤ γ∥Pπδ∥q + ∥δ∥q

≤ γ
√

κq · ∥δ∥q + ∥δ∥q

= (1 + γ
√

κq) · ∥δ∥q

Combining these results:

∥bδ∥ ≤ K ·
√

max
s

q(s) · σmax(Φ) · (1 + γ
√

κq) · ∥δ∥q (74)

Now, we bound the approximation error under νb:

∥δ∥2
νb

=
∑

s

νb(s)δ(s)2

≤
(

max
s

νb(s)
q(s)

)
·
∑

s

q(s)δ(s)2

=
(

max
s

νb(s)
q(s)

)
· ∥δ∥2

q

Therefore,

∥δ∥νb
≤

√
max

s

νb(s)
q(s) · ∥δ∥q (75)
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Finally, we combine all components:

∥e∥νb
≤ ∥Φu∥νb

+ ∥δ∥νb

≤
(
∥P∥ · ∥P −1∥

α(Λc)

)
·
√

max
s

νb(s) ·K ·
√

max
s

q(s) · σmax(Φ)2 · (1 + γ
√

κq) · ∥δ∥q +

√
max

s

νb(s)
q(s) · ∥δ∥q

Since ∥δ∥q = minw ∥Φw − Vπ∥q, we obtain,

∥ΦxT D
c − Vπ∥νb

≤ C ·min
w
∥Φw − V π∥q, (76)

where

C =
(
∥P∥ · ∥P −1∥

α(Λc)

)
·
√

max
s

νb(s) ·K ·
√

max
s

q(s)σmax(Φ)2 · (1 + γ
√

κq) +

√
max

s

νb(s)
q(s) .

The above theorem addresses demonstrates that the error of our corrected solution is proportional to the min-
imal approximation error under the target distribution q, scaled by factors capturing policy misalignment,
feature conditioning, and steady-state estimation accuracy. This establishes that our algorithm achieves
near-optimal performance within the constraints of the representation, while explicitly quantifying the cost
of distribution shift correction. The bound further elucidates the trade-offs between policy similarity, distri-
bution estimation quality, and feature design. This bound provides several important theoretical insights:
1. Fundamental Error Relationship: The error in the TD solution is proportional to the best possible ap-
proximation error, establishing that the algorithm achieves the best possible performance within the function
approximation class.
2. Steady-State Estimation Quality: The term K = maxs

νb(s)
h(s) quantifies the impact of steady-state distri-

bution estimation error. When K ≈ 1 (accurate estimation), the bound tightens, validating the steady-state
bias correction approach.
3. Policy Alignment: The term (1 + γ

√
κq) with κq = maxs′

µ(s′)
q(s′) measures policy dissimilarity. Smaller κ

(more similar policies) leads to tighter bounds, explaining why off-policy learning becomes challenging with
dissimilar policies.
4. Feature Representation: The term σmax(Φ)2 shows that well-conditioned feature representations (smaller
σmax) lead to better error bounds.
5. Distributional Factors: The terms

√
maxs νb(s),

√
maxs q(s), and

√
maxs

νb(s)
q(s) capture how state distri-

bution properties affect performance.
Theorem 7 (Hurwitz Condition). Λc = Φ⊤Ξνb

Ξ−1
h∗ Ξq(γP π − I)Φ is Hurwitz (all eigenvalues have strictly

negative real parts) if and only if Kqκqγ2 < 1, where κq = maxs′
µq(s′)
q(s′) with µq(s′) =

∑
s q(s)Pπ(s′|s) and

Kq = maxs
Ξνb

(s)Ξ−1
h∗ (s)

q(s) .

Proof. Consider the quadratic form w⊤Λcw for any w ̸= 0:

w⊤Λcw = w⊤Φ⊤Ξνb
Ξ−1

h∗ Ξq(γPπ − I)Φw

Let u = Φw. By Assumption 2, u ̸= 0 since rank(Φ) = k. Then:

w⊤Λcw = u⊤Ξνb
Ξ−1

h∗ Ξq(γPπ − I)u = γu⊤Ξνb
Ξ−1

h∗ ΞqPπu− u⊤Ξνb
Ξ−1

h∗ Ξqu

Let Q1 = γu⊤Ξνb
Ξ−1

h∗ ΞqPπu and Q2 = u⊤Ξνb
Ξ−1

h∗ Ξqu. First, observe that Q2 > 0 since Ξνb
, Ξ−1

h∗ , Ξq are all
positive definite diagonal matrices (by Assumption 1 and the fact that h∗ is a valid distribution estimate).

For Q1, apply the Cauchy-Schwarz inequality:

|Q1| ≤ γ∥u∥Ξνb
Ξ−1

h∗ Ξq
· ∥Pπu∥Ξνb

Ξ−1
h∗ Ξq

, where ∥x∥Ξνb
Ξ−1

h∗ Ξq
=
√

x⊤Ξνb
Ξ−1

h∗ Ξqx.
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Now, we need to bound ∥Pπu∥2
Ξνb

Ξ−1
h∗ Ξq

:

∥Pπu∥2
Ξνb

Ξ−1
h∗ Ξq

= u⊤(Pπ)⊤Ξνb
Ξ−1

h∗ ΞqPπu

=
∑

s

∑
s′

∑
s′′

u(s)P π(s′|s)Ξνb
(s)Ξ−1

h∗ (s)Ξq(s)Pπ(s′′|s′)u(s′′)

=
∑

s′

Ξq(s′)u(s′)
(∑

s

Ξνb
(s)Ξ−1

h∗ (s)
Ξq(s′) P π(s′|s)u(s)

)

Note that Kq = maxs
Ξνb

(s)Ξ−1
h∗ (s)

q(s) , is bounded since νb and h∗ are positive distributions on a finite state
space. Then:

∥Pπu∥2
Ξνb

Ξ−1
h∗ Ξq

≤ Kq

∑
s′

q(s′)u(s′)
(∑

s

Pπ(s′|s)u(s)
)

≤ Kq

∑
s′

q(s′)u(s′)
√∑

s

Pπ(s′|s)u(s)2 (by Jensen’s inequality)

≤ Kq

√∑
s′

q(s′)u(s′)2 ·
√∑

s′

q(s′)
∑

s

Pπ(s′|s)u(s)2

= Kq∥u∥q ·
√∑

s

u(s)2
∑

s′

q(s′)Pπ(s′|s)

= Kq∥u∥q ·
√∑

s

u(s)2µq(s)

≤ Kq
√

κq∥u∥2
q where κq = max

s′

µq(s′)
q(s′)

Thus, ∥Pπu∥Ξνb
Ξ−1

h∗ Ξq
≤
√

Kqκq∥u∥q. Now, since ∥u∥Ξνb
Ξ−1

h∗ Ξq
≥
√

K−1
q ∥u∥q, we have:

|Q1| ≤ γ
√

Kqκq∥u∥2
Ξνb

Ξ−1
h∗ Ξq

Therefore:
w⊤Λcw ≤ (γ

√
Kqκq − 1)∥u∥2

Ξνb
Ξ−1

h∗ Ξq

When Kqκqγ2 < 1, we have γ
√

Kqκq < 1, and thus w⊤Λcw < 0 for all w ̸= 0.

This proves that Λc is negative definite, and therefore all its eigenvalues have strictly negative real parts
(Hurwitz).

In Algorithm 1, the mixture weights λ̄t must satisfy probability simplex constraints (λi ≥ 0,
∑ℓ

i=1 λi = 1)
after each gradient update. To enforce this, we employ an efficient projection method that provides an optimal
O(ℓ log ℓ) Euclidean projection onto the simplex ∆ℓ Wang & Carreira-Perpinán (2013). The algorithm sorts
components, determines an optimal threshold, and redistributes mass—yielding the closest valid point in ∆ℓ

while preserving sparsity patterns when possible. For this purpose, we aim to solve the following optimization
problem:

min
λ

1
2∥λ− v∥2, subject to

ℓ∑
i=1

λi = 1, λi ≥ 0. (77)

Using a Lagrange multiplier τ for the equality constraint
∑ℓ

i=1 λi = 1, we define the Lagrangian:

L(λ, τ) = 1
2

ℓ∑
i=1

(λi − vi)2 − τ

(
ℓ∑

i=1
λi − 1

)
. (78)
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Now solving for λi by taking the derivative w.r.t. λi:

∂L
∂λi

= λi − vi − τ = 0⇒ λi = vi + τ. (79)

Now to enforce the simplex constraint, we sum over all i:

ℓ∑
i=1

λi =
ℓ∑

i=1
(vi + τ) = 1⇒ τ = 1−

∑ℓ
i=1 vi

ℓ
. (80)

Thus, the projection without considering the non-negativity constraint is: λi = vi + 1−
∑ℓ

i=1
vi

ℓ . If any λi < 0,
we modify the solution by clipping negative values to zero and redistributing the remaining weight. This is
efficiently handled by sorting v in descending order and determining a threshold τ such that the projected
vector remains non-negative.

Algorithm 2: Euclidean projection onto ∆ℓ

1 Function Π∆ℓ(λ ∈ Rℓ)
2 Sort λ into η: η1 ≥ η2 ≥ · · · ≥ ηℓ

3 τ = max{1 ≤ j ≤ ℓ : ηj + 1
j

(
1−

∑j
i=1 ηi

)
> 0}

4 y = 1
τ (1−

∑τ
i=1 ηi)

5 return λ̂ = max{λi + y, 0}, i ∈ {1, 2, . . . , ℓ}

4 EXPERIMENTS & RESULTS

This section presents a comprehensive empirical evaluation of the proposed Steady-State Bias Correction
(SSBC) algorithm across diverse benchmark domains. The experiments are designed to validate the method’s
effectiveness in mitigating steady-state distribution mismatch in off-policy TD learning with linear func-
tion approximation. We assess performance using Root Mean Square Error (RMSE) of value predictions:
RMSE = ∥Vπ − Φx∥2 against true value functions. All results are averaged over 10 independent runs to
ensure statistical robustness. Key aspects evaluated include:

• Generalization across domains: Discrete (Synthetic MDP, Circle Chain, Gridworld Cliff Walk-
ing, Taxi) and continuous (Mountain Car, CartPole, Acrobot) state spaces

• Hyperparameter sensitivity: Impact of step-sizes (αt, βt) on convergence

• Trajectory robustness: Performance under varying episodic path structures

• Distributional fidelity: Accuracy of Gaussian mixture approximations for stationary distributions

• Discount factor sensitivity: Impact of discount factor γ on prediction error.

The discount factor is fixed at γ = 0.1 universally. All environments are modified to ensure ergodicity (e.g.,
respawning agents in terminal states) for well-defined steady-state distributions.

4.1 Discrete Domain

4.1.1 Synthetic Random MDP

The environment contains a random Markov chain where the target and behavioral policies are stochastic
in nature, and the probability of taking an action a for a given state s is random. The probability transition
function and the rewards given to each (state, action, next-state) set are also random. The action and next

27



Under review as submission to TMLR

state are taken with respect to a random beta distribution. The initial state s0 is randomly chosen for each
trajectory. The number of states is n = 100, and actions m = 6. Here we consider the mixture width to be
ℓ = 7. For on-policy iterations, ρt will always equal 1. As seen in Figure 4, our algorithm performs better
than both the base off-policy algorithm and the on-policy estimate.

Figure 4: Synthetic Experiment: Base v/s optimized error (lower is better)

4.1.2 Circle Chain

Next, we tested a structured n-state circular chain. States 1 through n are arranged in a ring. The behavior
policy πb moves clockwise with probability ρ (and counter-clockwise 1 − ρ), while the target policy π does
the opposite (moves counter-clockwise with probability ρ). We chose n = 50 and ρ = 0.8, so the two
policies induce markedly different stationary distributions (each tends to concentrate states in the direction
it prefers). We used a mixture of ℓ = 9 Gaussian components for hθ,λ. As the agent learns, πb spends more
time on one half of the ring and π on the other, creating a clear steady-state bias in the baseline off-policy
TD. Figure 5 plots the value estimation error as a function of training episodes (each episode long enough to
approach steady-state). Our algorithm achieves significantly lower error than the baseline, nearly matching
the on-policy curve, especially as the horizon grows which validates that our approach corrects the skew in
visitation.

Figure 5: Circle chain: Base vs optimized error (lower is better)
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4.1.3 Gridworld Cliff Walking

We evaluated on the classic Cliff Walking task (a 4× 12 gridworld) Sutton & Barto (2018) from the OpenAI
gym environment. The agent starts at the bottom-left and must reach the bottom-right goal, receiving −1
reward per step, except for the goal cell which yields a reward of +10 and a large penalty −100 if it steps
off the cliff. We modified the task to an ongoing (non-terminating) version by respawning the agent at,
start upon reaching the goal, so that a steady-state distribution exists. The target and behavior policies are
randomly generated with different preferences (to induce distribution shift in how they navigate around the
cliff). We used ℓ = 10 mixture components for hθ,λ. Figure 6 shows the error of value predictions during
training. The baseline off-policy TD is biased due to the behavior policy exploring the cliff area differently
than the target. Our method again substantially reduces the error and remains more stable, confirming the
benefit of steady-state correction in a practical gridworld with uneven state relevance.

Figure 6: Cliff Walking Experiment: Base vs optimized error (lower is better)

4.1.4 Taxi Domain

Taxi is a 2-D grid world that mimics the movement of a taxi along the grid lines. The taxi can move in four
directions, i.e., NORTH, EAST, SOUTH, and WEST, and is also equipped to pick up or drop off passengers.
This makes the number of possible actions m = 6. The agent receives a reward of +20 points for successful
pick-up or drop-off, and a penalty of −1 for every move. In the original taxi environment, the simulation
would terminate once the passenger was picked up and dropped off at the correct location. The environment
has a total of 500 states, and the agent can take 6 possible actions as mentioned above. The number of
Gaussians considered is ℓ = 10.

From Figure 7, both the base off-policy algorithm and our approach achieve nearly identical results. This
arises because the Taxi environment’s state space exhibits an almost uniform steady-state distribution, thus
incurring minimal bias. Consequently, the correction factor h

θ̂∗ ,̂λ∗ is essentially the same across states,
leaving little room for improvement over the baseline. Nevertheless, our algorithm shows slightly better
stability.

4.2 Continuous Domain

4.2.1 Mountain Car

The Mountain Car problem Moore (1990) is a classic 2D control task in which an underpowered car must
build momentum by oscillating between hills to ascend a steep slope. Its continuous state space is defined
by two variables: position and velocity, which we discretize into 1200 states. At each state, the agent can
select one of three actions—drive left, drive right, or coast. A negative reward is incurred every time
step until the goal is reached; initially, the agent has no direct information about the goal position until it
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Figure 7: Taxi Domain: Base vs optimized error (lower is better)

succeeds once. We set the mixture component count to ℓ = 15, and randomly choose both the target and
behavior policies. As shown in Figure 8, our method achieves lower error than both the baseline off-policy
approach and the on-policy counterpart

Figure 8: Mountain Car: Base vs optimized error (lower is better)

4.2.2 CartPole

The CartPole, or the inverted pendulum, is a simple RL experiment in which move a cart back and forth
along a frictionless wire so that a pole pivoting on the cart balances upright. The possible actions include
pushing the cart either to the left or right. The continuous state space defined by Cart position, velocity, pole
angle and angular velocity is discretized into 1200 states. The mixture count of the Gaussians considered
for the approximation of the SSD is ℓ = 15. Target and behavior policies are randomly generated. The
trajectories, rewards, and probability transitions are taken from the Gym environment Barto et al. (1983).
As seen in Figure 9, our algorithm performs better than both the base off-policy algorithm and the on-policy
estimate.

4.2.3 Acrobot

The Acrobot system consists of two limbs connected at a central joint which can rotate and move and the
base fixed. The goal is to apply torques on the actuated joint to swing the free end of the linear chain
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Figure 9: CartPole Experiment: Base vs optimized error (lower is better)

above a given height while starting from the initial state of hanging downwards. The continuous state space
environment provides information about the rotational joint angles and angular velocity of the limbs and
is discretized into 4096 states. θ1 is the angle of the first joint, where an angle of 0 indicates the first link
is pointing directly downwards. θ2 is relative to the angle of the first link. An angle of 0 corresponds to
having the same angle between the two links. Here we consider the mixture width to be ℓ = 100. Target
and behavior policies are randomly generated, each having a different distribution. As seen in Figure 10,
our algorithm performs better than both the base off-policy algorithm and the on-policy estimate. We also
provide here the likeliness between the behaviour policy steady-state probability distribution νb and the
estimated surrogate distribution h

θ̂∗ ,̂λ∗ . The results are provided in Figure 11.

Figure 10: Acrobot Experiment: Base vs optimized error (lower is better)

4.3 Hyper-parameter Sensitivity

We empirically examine how the two timescale parameters—the fast TD step–size αt and the slow impor-
tance–ratio step–size βt—influence the accuracy and stability of our SSBC–TD algorithm. All experiments
are conducted on the classic control task MountainCar from the Gymnasium suite. Our hyperparameter grid
search reveals a critical interplay between the fast TD step-size (αt) and the slow ratio step-size (βt). The
heat map (Figure 12) illustrates that the best-performing configurations cluster around higher αt values,
particularly when paired with smaller βt values. The combination of αt = 0.2 and βt = 0.005 achieves the
lowest final RMSE, indicating an effective balance between rapid updates to the steady-state distribution
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Figure 11: True steady-state distribution vs Estimated one

Figure 12: Hyperparameter sensitivity of SSBC-TD on MountainCar: Final RMSE as a function of the fast TD
step-size (αt) and slow ratio step-size (βt). Darker shades indicate lower error. The minimum RMSE (marked) occurs
at αt = 0.2 and βt = 0.005, revealing that aggressive TD updates paired with conservative ratio estimation optimally
balance convergence and stability.

approximation and gradual correction of the steady-state distribution mismatch. This result underscores the
importance of carefully tuning these timescales to mitigate the “deadly triad” interaction between function
approximation, bootstrapping, and off-policy learning. The curve plot (Figure 13) further validates this
observation by showing how different αt settings converge over episodes. Notably, the curve for αt = 0.2
exhibits the fastest decline in RMSE, stabilizing at the lowest error level compared to other configurations.
Polyak averaging plays a crucial role in smoothing out fluctuations during training, as evidenced by the
reduced variance in the RMSE curves across episodes. By incorporating Polyak averaging, our approach
effectively mitigates the noise introduced by stochastic updates, leading to more stable and accurate value
predictions.
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Figure 13: Convergence of SSBC-TD on MountainCar using the best βt for each αt (from Fig. 12 ). The αt = 0.2
curve (βt = 0.005) achieves fastest error reduction and lowest asymptotic RMSE (≈ 70), demonstrating Polyak
averaging’s role in stabilizing high-step-size regimes. Smaller αt (e.g., 0.02) exhibit slower convergence due to delayed
implicit averaging.

Figure 14: Trajectories under uniform-random behavior policy.

Figure 15: Comparison of the approximation of the true behavior policy’s stationary distribution using the Gaussian
mixtures across various trajectories

4.4 Trajectory Robustness

We evaluate trajectory-length sensitivity on a 5× 5 Grid–world with absorbing terminals at (0, 0) and (4, 4).
Each episode starts in the cell (0, 4) and evolves for 60 time-steps under a uniform–random behaviour policy;
upon reaching a terminal the agent is reset to the start cell and the trajectory continues. We generated five
such trajectories (Fig. 14, Run 0–4), using distinct random seeds to expose path-level variability. We then
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Figure 16: SSBC-TD demonstrates trajectory-agnostic stability, efficiently correcting steady-state bias regardless
of path stochasticity

Figure 17: RMSE as a function of discount factor γ for plain off-policy TD(0) and steady-state bias–corrected TD
(SSBC-TD) on a discrete Taxi control task. SSBC-TD consistently achieves lower RMSE, with the gap widening as
γ increases.

applied a constant-stepsize SSBC-TD agent with βt = 0.05. The micro-trajectories illustrate how an ergodic
uniform policy can still visit states in markedly different orders at short horizons. Run 1 drifts almost
exclusively downwards, Run 2 performs horizontal sweeps along the top row before descending, whereas
Run 3 forms an almost symmetric lattice tour. Runs 0 and 4 highlight the “reset effect”: a diagonal sprint
to the lower left corner followed by immediate reinitialisation injects additional exploratory diversity that
would otherwise take longer to accumulate. These early visitation biases explain the modest run-to-run
spread observed in the residual histograms: SSBC-TD first adapts to whichever subset of states it samples
most frequently. Over the long run updates, however, the random policy’s mixing property smooths out
those disparities: each run ultimately visits every state with frequency close to the stationary distribution,
and the TD iterates converge to a common, tight error band (uniform-RMSE ≈ 4.5± 0.1).

4.5 γ Sensitivity

Here we study the relationship between the discount factor γ and the error in off-policy value prediction.
The experiment considers a Taxi discrete control task. The state and action spaces are discrete. Both
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Figure 18: Ablation on the choice of stationary-distribution target q for SSBC-TD in a Taxi control task. Four
variants are considered: oracle q = νπ (true target policy distribution), uniform over states, behavior visitation
distribution νb, and a deliberately mis-specified distribution. Closer alignment of q to νπ yields consistently lower
RMSE, with the advantage widening as γ → 1.

TD(0) and SSBC-TD are trained off-policy using the same fixed behavior–target policy pair and identical
feature representations, with final RMSE computed against Monte Carlo estimates under the target policy.
The results are illustrated in Figure 17. As γ increases, the longer effective horizon exacerbates distribution
mismatch and steady-state bias in plain TD(0), leading to a steady rise in RMSE and greater variability across
runs. SSBC-TD, by applying ζ-weights that approximate the stationary distribution correction, mitigates
this bias and maintains a lower error profile across γ values. The widening advantage of SSBC-TD for γ → 1
aligns with the theoretical predictions: the stability condition κbγ2 < 1 for plain TD becomes harder to
satisfy at high γ, whereas SSBC-TD effectively reduces the mismatch constant, relaxing the condition to
Kqκqγ2 < 1, thereby extending the range of stable and accurate operation.

4.6 q Sensitivity

We study here the sensitivity of SSBC-TD to the choice of q, the stationary-distribution target used in its
correction term. The discrete control task used here is a Taxi environment. We consider a discrete control
task with fixed target and behavior policies, identical feature representation, and the same step-size schedules
across all runs. The SSBC-TD algorithm is applied with four different choices of the stationary-distribution
target q in its correction term ζt. The oracle choice uses the exact stationary distribution νπ of the target
policy; uniform assigns equal probability to all states; behavior uses the empirical stationary distribution
νb from the behavior policy; and mis-specified uses a biased distribution that incorrectly overweights rarely
visited states and underweights important ones. The RMSE vs γ curves show a clear ordering: the oracle
q achieves the lowest error across all γ, with the margin over other choices growing as γ increases. This
matches the theoretical prediction that the stability condition improves from κbγ2 < 1 to Kqκqγ2 < 1, where
Kqκq is minimized when q = νπ. Uniform q performs moderately well for smaller γ but suffers at large γ
due to equal weighting of states that are rarely relevant to the target policy. Using νb offers only limited
improvement, since it does not correct the long-horizon mismatch. The mis-specified q provides the smallest
benefit and, for high γ, behaves similarly to plain TD, illustrating that poor q choices can erase the gains
of the correction. This underscores the importance of accurate or well-chosen q for leveraging SSBC-TD’s
stability advantage in long-horizon settings.
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5 CONCLUSION & FUTURE WORK

In this paper, we consider the off-policy value prediction in reinforcement learning, specifically in the context
of linear function approximation. The proposed algorithm aims to minimize the steady-state bias in the
off-policy value prediction, where the bias arises due to the differences in the sampling distribution of states
and actions between the target policy and the behavior policy. Our work opens up several avenues for
future research. First, integrating steady-state bias correction with deep value function approximators is
a promising direction to tackle large-scale problems. Second, the idea of distribution correction might be
extended to control settings: for example, off-policy actor-critic algorithms could use a similar mechanism to
reweight the critic updates, or one could correct state occupancy in off-policy policy gradient methods. Third,
an interesting theoretical question is how steady-state bias correction interacts with function approximation
error and whether it can alleviate the deadly triad (function approximation, off-policy, and bootstrapping).
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