Published in Transactions on Machine Learning Research (01/2026)

Mitigating Steady-State Bias in Off-Policy TD Learning via
Distributional Correction

Emani Naga Sai Venkata Sowmya cs19b045@iittp.ac.in
Department of Computer Science and Engineering
Indian Institute of Technology Tirupati

Amit Kesari cs19b003Q@iittp.ac.in
Department of Computer Science and Engineering
Indian Institute of Technology Tirupati

Ajin George Joseph ajin@iittp.ac.in
Department of Computer Science and Engineering
Indian Institute of Technology Tirupati

Reviewed on OpenReview: |https: //openreview. net/ forum? id=QGLZAHgtowr

Abstract

We explore the off-policy value prediction problem in the reinforcement learning setting,
where one estimates the value function of the target policy using the sample trajectories
obtained from a behaviour policy. Importance sampling is a standard tool for correcting
action-level mismatch between behaviour and target policies. However, it only addresses
single-step discrepancies. It cannot correct steady-state bias, which arises from long-horizon
differences in how the behaviour policy visits states. In this paper, we propose an off-policy
value-prediction algorithm under linear function approximation that explicitly corrects dis-
crepancies in state visitation distributions. We provide rigorous theoretical guarantees for
the resulting estimator. In particular, we prove asymptotic convergence under Markov
noise and show that the corrected update matrix has favourable spectral properties that
ensure stability. We also derive an error decomposition showing that the estimation error is
bounded by a constant multiple of the best achievable approximation in the function class.
This constant depends transparently on the quality of the distribution estimate and the
choice of features. Empirical evaluation across multiple benchmark domains demonstrates
that our method effectively mitigates steady-state bias and can be a robust alternative to
existing methods in scenarios where distributional shift is critical.

1 Introduction

In the reinforcement learning (RL) setting (Sutton & Barto, [2018} Bertsekas), 2019} Meyn, [2022), an agent
learns to interact with an environment to achieve a goal or maximize its cumulative reward by performing
specific actions and receiving feedback from the environment in the form of rewards. The agent sequentially
refines its behaviour using the data generated by its interactions, making RL a dynamic and adaptive
learning framework. The central proposition in reinforcement learning is the ability to use observed data
about earlier decisions and their rewards to conclude how alternative decision policies could perform and
update their course of action. RL has been applied widely, including in game simulations (Silver et al., [2018)),
robotics, autonomous driving (Kiran et al., |2021)), medicine (Yom-Tov et all |[2017; Tejedor et al., 2020) and
communication systems (Huang et all 2019). In these domains, agents learn strategies by exploring and
refining their decisions over time. For example, RL agents in game environments achieve superhuman
performance by analyzing large volumes of gameplay trajectories. Robotic systems use RL data to acquire
complex motor skills such as grasping or navigation. Autonomous vehicles learn safe and efficient driving
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patterns by analyzing logged driving data, while communication systems optimize bandwidth allocation by
reasoning over previously observed traffic and channel conditions.

In this paper, we consider the policy evaluation problem in reinforcement learning, which refers to the
task of estimating the value function, which represents the expected cumulative reward from a given state
following a certain policy. The policy evaluation problem has two variants: on-policy and off-policy. In
on-policy prediction, one tries to estimate the value function corresponding to a given target policy using
the sample trajectories generated using that target policy itself. However, in the off-policy variant (Baird
et al., [1995; Precup et al., 2000; |Yu, [2012), one intends to learn the value function using a sample trajectory
generated using a behaviour policy that may be different from the target policy. The behaviour policy is
the policy followed during data collection, and the target policy is the policy for which the value function is
being estimated. In many real-world settings, an agent cannot freely interact with the environment to collect
trajectories under the policy of interest and must instead rely on logged trajectories generated by a behaviour
policy. Although this mismatch may introduce statistical challenges, it also provides an important advantage:
off-policy data reuse enables substantially greater flexibility. An agent can learn from trajectories produced
by many different behaviour policies, allowing it to exploit existing datasets without additional interaction
cost. This is particularly valuable when online exploration is expensive or unsafe—for example, autonomous
driving systems that learn from human driving logs, clinical decision-support models trained on retrospective
treatment pathways, or communication networks that leverage historical traffic traces. Off-policy learning
also enables multiple value functions to be estimated in parallel from the same data stream, supporting
scalable, model-free evaluation in large systems. Consequently, the distribution induced by the behaviour
policy becomes the central object shaping the learning process. Off-policy estimation methods often rely on
importance sampling (IS) (Rubinstein) (1981} |Glynn & Iglehart), |1989) because it is an unbiased estimator.
The fundamental concept behind IS (Tokdar & Kass, 2010) is to correct the samples obtained from a sample
trajectory generated by a behaviour policy to align with the likelihood of that trajectory occurring under
the targeted policy. The importance sampling approach integrated with many on-policy variants, such as
gradient temporal difference (Sutton et al., |2009; [Yu, [2017)), temporal difference with correction (Sutton
et al., [2009; 'Yu, 2017, and temporal difference with eligibility traces (Precup et all |2001)) to obtain the
off-policy solution. However, an important drawback of this technique is its susceptibility to imprecision
because of the high variance induced by the importance weights (Mandel et al., 2014) and the discrepancies
associated with state appearance probabilities (Tsitsiklis & Van Roy, (1997)).

In this paper, we analyze the deviation of the on-policy solution from the off-policy solution due to the
steady-state bias which arises due to the discrepancy in the steady-state distribution induced by the target
and behaviour policies. When one observes the marginal distributions from the target policy and behaviour
policy after a sufficiently long time (mixing time), the marginal distributions settle down to the steady-state
which is unique to the corresponding Markov chain. Steady-state bias arises whenever the state visitation
distribution in the behaviour data differs from the target policy’s steady-state distribution. This occurs when
the trajectory provides only partial state coverage or, even when every state appears infinitely often, visits
states in proportions that differ from those induced by the target policy. As a result, the average return may
not accurately reflect the true expected return, which can lead to sub-optimal behaviour. Off-policy bias
correction is a fundamental challenge in reinforcement learning, particularly in settings that utilize experi-
ence replay or batch data from previously executed policies (Precup et all |2001; |Sutton et al., 2016]). The
systematic bias introduced into the value function estimation due to the discrepancy between the behaviour
policy’s stationary distribution and the target policy’s state visitation distribution persists even with un-
biased importance sampling corrections, as it stems from long-horizon distributional mismatch rather than
single-step policy differences (Chandak et al., [2021)). This steady-state bias becomes particularly problem-
atic in long-horizon tasks where distributional mismatch accumulates over time (Jiang & Li, 2016} Tang
et al.,2020)). Several recent approaches have addressed this by estimating stationary distribution corrections
through marginalized importance sampling (Liu et al., |2018; 2019)), dual function approximation (Zhang
et al., 2020)), or direct optimization of distribution matching objectives (Nachum et al., |2019; [Yang et al.
2020). Frameworks like Universal Off-Policy Evaluation (Chandak et al., |2021)) further improve estimation
by enforcing consistency between learned value functions and off-policy estimators. These methods often
formulate the correction as a minimax optimization problem over density ratios or leverage policy gradient
with generalized advantage estimation (Schulman et al., 2015). The convergence and stability of such meth-
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ods are closely tied to the "deadly triad" of function approximation, off-policy training, and bootstrapping,
which can lead to divergence without careful regularization or correction mechanisms (Voloshin et al., [2019;
Wang et al., 2017, [Yu, [2017)).

In this paper, we fundamentally analyze off-policy temporal difference learning by tackling the critical prob-
lem of steady-state distribution mismatch. We rigorously demonstrate that long-horizon bias stems not only
from policy differences but also from the divergence in how states are visited under target versus behaviour
policies. Our analysis shows how such a distributional shift amplifies approximation error through the deadly
triad of bootstrapping, function approximation, and off-policy sampling. To address this issue, we introduce
a dual correction mechanism. It combines standard per-step action reweighting with novel parametric esti-
mation of stationary distribution discrepancies. We further show that the resulting update converges under
ergodic Markov noise. We also establish that the corrected value estimates stabilize when the rebalanced
Bellman operator exhibits spectral negativity. Most significantly, we derive an error decomposition showing
that the total estimation error is bounded by a constant multiple of the best achievable approximation. This
constant depends on the accuracy of the distribution estimate, the conditioning of the feature matrix, and
the degree of policy misalignment.

Our work distinguishes itself from prior distribution correction methods by providing a targeted solution
to the persistent problem of steady-state bias in off-policy TD learning. While frameworks like DualDICE
(Nachum et al., 2019)) and GradientDICE (Zhang et al., 2020) address general distribution ratio estima-
tion through complex dual optimization, our approach offers a direct, computationally efficient correction
that integrates seamlessly with standard TD updates. Unlike policy optimization methods such as CQL
(Kumar et all [2020) or OptiDICE (Lee et al., [2021)) which focus on policy improvement, we specifically
address value prediction accuracy under distributional shift. While (Liu et al., 2018]) addressed the "curse
of horizon" through marginalized importance sampling, our approach uniquely identifies and corrects for
the persistent steady-state bias that remains even after one-step importance sampling is applied, offering a
complementary perspective on the distributional mismatch problem in off-policy evaluation. Also Emphatic
TD (Sutton et al., [2016} |[Yu, [2015]), employs recursive emphasis weighting to implicitly approximate distribu-
tion correction, preventing the deadly triad (function approximation + bootstrapping + off-policy learning)
from causing divergence using emphasis weights to prioritize updates for states that are important to the
target policy. Relatedly, (Hallak & Mannor, 2017)) tackles distribution-mismatch bias by learning the sta-
tionary density ratio between the behaviour and target policies, but requires solving an inherently unstable
fixed-point ratio-estimation problem. Our focused approach—correcting steady-state bias through explicit
distribution modeling rather than general optimization frameworks—provides both theoretical clarity and
practical advantages for the fundamental problem of off-policy value prediction.

2 Background

The reinforcement learning setting is an optimal sequential decision-making paradigm under uncertainty
characterized as Markov Decision Process (MDP) (Puterman) (2014} Bertsekas, 2019; Meynl 2022), which
is a controlled, time-homogeneous, stochastic process that is defined by the 4-tuple (S, A, P, R), where S is
the state space and A is the action space. In this paper, we consider a finite state and action spaces with
S = {s!,s% ...,s"}. Here P:S x A xS — [0,1] is the probability transition function, where P(s,a,s’) =
P(siy1 = §'|sy = s,a = a,84-1 = -,a;-1 = -,...) = P(s411 = §'|s; = s,a; = a) is the probability that the
next state is s’ conditioned on the fact that the current state is s and the current action is a. Additionally,
the reward function R : S X A x S — R assigns a numerical reward to each transition. P and R define the
dynamics of the stochastic system. At each instant, an action is chosen according to a stationary stochastic
policy w: S x A — [0, 1], where 7(+|s) is a probability mass function over the action space A conditioned on
the state s € S.

In this paper, we consider the prediction problem in reinforcement learning, which is defined as follows: For
a given target policy m and discount factor v € [0,1) (that represents the agent’s preference for immediate
rewards versus future rewards), the goal is to evaluate the value function V; € R™ associated with the target



Published in Transactions on Machine Learning Research (01/2026)

policy which is defined as the expected long-run 7-discounted cost:

Va(s) = E [R(7)lso = s],5 € 5, (1)
T~

where R(7) = Y72 7' R(st, as,8¢+1), with s; represents the state at instant ¢, a, ~ (-|s;) represents the
action chosen at time ¢ and s;11 ~ P(s¢,ay, ) represents the next state. Note that the above definition is
well-defined as v € [0,1) and by appealing to the bounded convergence theorem.

The value function in vector form is expressed as Vi = [Vi(s!),Vi(s?),...,Vr(s™)]T € R™. The value
function V. satisfies the Bellman equation: V, = T,V,, where T : R™ — R™ is the Bellman oper-
ator with T,U = R; + yP,U. Here, P, € R"™" with [Pr]se = > ,c47(als)P(s,a,s") and R.(s) =
Y ees PacaT(als)P(s,a,s")R(s,a,s) is the one-step average reward. From the Bellman equation, one can
directly compute Vi = (I —vP;) 'R, whose computational complexity is dominated by the matrix inversion
(O(n), ¢ < 2.374). In the RL setting, the model parameters P and R are unknown, and one seeks to learn
the value function V; under the generative model setting, where a realization of the stochastic process in the
form of an infinitely long sample trajectory sg,ag,r1,s1,a1,r2,89,... is available, with sg ~ Py (P, initial
distribution), a; ~ m(-|s¢), S¢+1 ~ P(s¢,a, ) and riy1 = R(S¢, ap, Spq1)-

Temporal difference (TD) learning (Sutton & Barto, 2018) is the classical approach for the prediction prob-
lem, where the value function V; € R™ is iteratively updated in the direction of the temporal difference
riv1 + YVi(ser1) — Vi(sy). However, when the state space is large, this method suffers from the curse of
dimensionality (Tsitsiklis & Van Royl, |1997; |Sutton & Bartol [2018)). To overcome this, one effective strategy
is to represent the value function in a lower-dimensional subspace, thus reducing computational and storage
demands. Here one approximates V. using linear function approximation by projecting it into the subspace
{®x | » € R¥} C R", where k < n (Tsitsiklis & Van Royl 1997). The feature matrix ® contains basis
functions that capture the critical characteristics of the state space. This projection not only renders the
learning process more tractable but also preserves the essential dynamics of the original high-dimensional

problem.
o) - -

P = : (2)

SRR

where, ¢(s) = [¢1(5), P2(5), ... ¢r(s)]T € RF is called the feature vector associated with the state s € S and
¢; : S — R are feature/basis functions. The most commonly used parameterized basis functions include
radial basis functions (RBFs), polynomials, and Fourier basis functions. Radial basis functions are typically
expressed in a Gaussian form: ¢;(s) = exp(—(202)~!||s — u;||?), depends solely on the distance between the
state and the centre p;, relative to the feature width, o;, with a parameter size of the order ©(k).

In this paper, we consider the off-policy variant of the prediction problem (Precup et al., [2001; [Sutton &
Barto, 2018), where one seeks to estimate V., using a sample trajectory, where action at every instant is
generated using a behaviour policy m, that may be different from the target policy 7. This implies that for
the given infinitely long sample trajectory 7, = sg,ao,r1,81,a1,r2,S2,as, ..., we have sg ~ Py, a; ~ mp(-|st),
St41 ~ P(st,as,-) and rip1 = R(Sy, a4, Se41).

Assumption 1 (Ergodic Behaviour Policy). The Markov chain {s;};>o induced by the behaviour policy m,
satisfies:

(i) Irreducibility: Vs,s' € S, 3t € N such that P}, (s,s") > 0.
(i) Aperiodicity: The greatest common divisor of {t > 1: P} (s,s) >0} is 1 for every s € S.

Consequently, the chain admits a unique stationary distribution v, with vy(s) > 0Vs € S and VbTP,Tb = l/l;r.
Assumption 2 (Feature Independence). The feature matriz ® € R™** satisfies rank(®) = k, implying
Omin(®T®) >0,  ker(®) = {0}, Td >0,

where omin denotes the minimum singular value and = 0 denotes positive definiteness.
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Assumption 3 (Coverage). The behaviour policy m, dominates 7 in the Radon—Nikodym sense:
V(s,a) € Sx A, w(al]s) >0 = m(a]s)>0.

m(as | st)

Equivalently, the importance ratio p = ————=
my(as | st)

is almost surely bounded: sup, p; < co.

In off-policy linear function approximation, one projects the value function V. onto the column space of ®
(Tsitsiklis & Van Roy, [1997)):

w* = argmin ||V, — <I>w||,2,b7 (3)
weRk

where the weighted norm is defined as ||wl||2 = Zle viw2. Here, v, is the unique steady-state distribution

of the behaviour policy’s Markov chain (i.e., () = lim;_,0o P(s; = ) and v Pr, = /). Since {dw |

w € R¥} is closed and convex, a unique w* exists (® has full column rank), yielding the approximation

V() =~ ¢(s) "w* for all s. This optimization is solved by the off-policy TD update (Precup et al., 2001}

2000):

Wip1l = Wi + gy (I‘t+1 + ’Y¢(St+1)TWt - ¢(St)TWt>¢(St)a

T(ag]se)
m(aglse)’

data. The limit point w;rf]fD of off-policy TD learning with linear function approximation is characterized by

the fixed-point equation 2012))

o'z, (I —yP)0ouwlP =02, R,, (4)

with the importance sampling ratio p; =

which corrects for the policy mismatch in the behaviour

which represents a projection of the Bellman equation onto the feature space weighted by the behaviour
policy’s stationary distribution. This solution constitutes the best approximation within the function class
that satisfies the Bellman residual minimization under the behaviour policy’s steady-state distributional
mismatch, rather than the target policy’s natural state visitation pattern.

Vﬂ- _ ——»steady state bias

{®w|w € R*}

argmin ||[V; — w|,, argmin ||V, — dw|,,

On-policy projection Off-policy projection

Figure 1: Illustration of steady-state bias in off-policy prediction: The mismatch between behaviour policy’s steady-
state distribution v, and that of target policy causes persistent prediction error, even after one-step importance
sampling correction
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To establish further theoretical guarantees for the off-policy TD method with linear function approximation,
we first analyze key properties of the value function operator under the behaviour policy’s stationary distri-
bution. The following lemma quantifies fundamental operator norm bounds that govern the propagation of
approximation errors through the Bellman operator.

Lemma 1. Let vy be a strictly positive probability distribution over states, P, a Markov transition matriz
induced by policy 7, and v € [0,1) a discount factor. Then the vy-weighted operator norms satisfy:

1Prllo, < kb and |1 —vPrlly, <14 v/kp (5)

where [|All,, = supy_o % and ||x[|Z, = >, vu(s)x(s)?, with and the distribution mismatch coefficient

R [
b ves vp(s') '

Proof. Let py(s') = >, v(s)Pr(s" | ). Then,

| P[5, =Z <ZP (s" ] s)x ))2

< Zyb ZP s'| s)x(s")? (Jensen’s inequality)
= Zx s Zyb (s)Pr(s" ] 8)

=D x(s) (s = Y wls)x(s')? /zj:((j’/))

ry

< Ky Z vy (s)x(s')? = kp|x||7,, where ry = max

Thus we have the following operator norm bound:

[Pl

< VK
(1|2,

HPTrHVb =Sup —F—
x#0

Now for the composite operator, we get

I =7 Pr)%l, < %[y +7 | Pexlly, < (1+5vE) [0,
—— ——
<lxll, SVEplIxll,

= I = 7Prll, <14 7v/Fe.

O

Central to the above result is the distribution mismatch coefficient kp, which captures the maximum density
ratio between the next-state distribution induced by the target policy and the stationary distribution of
the behaviour policy. We now characterize the asymptotic approximation error of the off-policy TD solution
under linear function approximation. The following theorem establishes a bound on the error ||®w P —V, |,
of the TD fixed-point solution relative to the fundamental approximation limit ||®w* — V||,,.

Theorem 1 (Error Bound for Off—policy TD). Under Assumptions and negative definiteness of A, =
OT=,, (I —vP,)®, the solution wiP satisfies:

o2 (®)(max, v 3/2(1
[owiP — v, <,m4 ) (max, vy(s)*/2(1 + 7y/mp)

)‘mm( A ) mlIlS l/b( ) + 1) H‘I’W _V H

where 02, (®) = Aoz (®T®) and =, = diag(vy).

max
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Proof. From , we have
=, (I —vPr)Pwif =25, R, (6)
Also, the true value function V. satisfies the following Bellman equation:
Ve=Rx+vP:V; (7)
Now we bound ||®wlP — VWHVb. Let w* be the best linear approximator under v,. Then,

w* = argmin ||Pw — V||,
w

so that ®w* = II,, Vi, the projection of V onto the column space of ® under the v,-weighted norm. The
error decomposes as follows:

dwop — Ve = (Pwig — dw™) + (dw* — V). (8)

Hence,
[owor = Val,, < [[owog — dw|, + [|@w" = V||, . 9)
We define the approximation error €,pprox = ®wW* — V. To prove the claim of the theorem, we bound the

term [|@wiP — ®w*|| in terms of ||capprox|,, - Note that both ®wi and ®w* lie in the column space of

®. The vector dwsll satisfies
OTE, (I —yP)ouwil, = @', R,, (10)
whereas the projection ®w™* satisfies
d'E,, (Pw" —V;) = 0.
Also, by multiplying the Bellman equation by ®'Z,,, we obtain
®'Z,V, = ®'E,R, +y®'E, PV,
=®'Z,(I-vP)Vy = ®'Z,,R,. (11)
Combining and (11]), we get
=, (I-yP)owip = "5, (I —vP:)Vx
= @2, (I —yP)(dwlP - V) =0
=®'Z, (I -9P)e = 0, (12)

where e = ®wIP — V.. Further, from , we have e = ® (WP — W*) + €approx. Substituting this above,
we obtain

®TE,, (I —~P;) [@(WOT&? —w) + sappmx} =0

= 0'Z, (I —vPr) @(wif —w*) + ®'Z,,(I —vPr) Capprox = 0

=0, (I —vP:) @(wap —W*) = —@"Z,, (I — vPr) €approx

= Ao(wog —w*) = @'Z,,(I —vPr) Capprox- (13)

Now,

H(I)TEVb(I - ’YPﬂ)sapprOXH < H(I)T” ||EVb|| H(I - ’Yprr)fapprox

E (14)
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where || - || is the spectral norm. But, ||Z,, | = max, v(s), and

1 =3 Pr)eappnee* = 31 =P (5

S

< Zé vp(s) [(I - ’YPw)EapprOX} (3)2

. ming v(s)
1
= m ||(I - "YPﬂ—)aapproxHib. (15)

Hence,

IN

14
||(I - ’YPW)EapproxH ﬂ ‘

|5approx llos s

ming v4(s)
and therefore
10720 (7 = 1P)ewppron]] < 1871 2220D (14 o /5 e wppronlin: (16)
ming v($)
Note that H@TH = H<I> , and the spectral norm of ® is the large singular value. Let opax(®) = H<I>H Also

note that, since A, is negative definite, we have
N s
)\min(_Ao)
where Apin(—A,) is the smallest eigenvalue of —A,. Combining , , and , we get

. max vp(s)
max(q)) S ’ (1 + ’Y\/;b) H&approxHyb' (18)

min(—Ao) \/M

For the projected error in the v,-norm, we have

|AS (17)

[wip - w| < 5

*

@ (wor — w")

b, < M2l ofn - o] (19)

where ||®[|,, is the operator norm of ® from the Euclidean space to the vp-normed space. Specifically,

[@wll, = W OTE,, 0w < Auax(®7Z,, @) w]?

= [|®[ly, < \/ Amax(®TE,, ). (20)

Note that ® "=, ® is a k x k matrix, and its largest eigenvalue is at most max, 4(5) - Apax(® " @), because
Z,, < maxgvp(s)]. And Apax (@7 ®) = 02, (). Hence,

max

12 (wo” = W)l < Tmax(®) /maxvy(s) - [wii — w| (21)

Hence from (9), and (21)), we get

02 (@) (max 14 (s)) % (14 yy/Ap)

Amin(—Ao), /min v (s)

1owgr — Vallu, < 12(wog” — W) llu, + ll€approxly, < ( + 1) |[€approx| .-

O

The above theorem bound reveals three critical components that affect the off-policy TD convergence: First,
the 02, (®)(max, v(s))3/? term exposes the sensitivity to feature scaling and distribution skew, which shows
that even optimal representations suffer when v, is non-uniform or features are poorly conditioned. Second,

the (1 + v/Kp) factor quantifies how policy divergence (k; > 1) amplifies approximation error through
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temporal credit assignment - a manifestation of the deadly triad where bootstrapping, function approxima-
tion, and off-policy sampling interact destructively. Third, the dependence on Apin(—A,)~! formalizes the
hardness of Bellman inversion under distribution shift, as A, becomes ill-conditioned when the behaviour
policy’s transitions poorly align with the target dynamics. This provides a closed-form characterization of
deadly triad interactions in off-policy TD convergence. The bound exclusively characterizes the fundamental
approximation error of the asymptotic off-policy TD solution, isolating it from transient algorithmic effects.
When 7 = m, (ks = 1), the bound simplifies to the on-policy case, but the exponential scaling v,/ry, explains
the severe degradation under policy mismatch.

Theorem 2. Under Assumptz'ons @ and@ if kpy? < 1 then A, is negative definite.
Proof. For any w # 0, let u = ®w. By Assumption [2) u # 0. Consider the quadratic form:

w! Aw = WTQDTE% (vPr — I)PwW

=u'Z,(vP; — Iu

=yu'Z,P,u—u'Z,u (22)
——— N——
Q1 Q2

Now Q2 =u'E,,u= Y v(s)u(s)? = |Jul|Z, > 0. Since v, > 0 (ergodicity) and u # 0, we have
Ql - uTEV},Pﬂ"u = Z Vb(s)ll(S)(Pﬂ—u)(S)
= w(s)u(s)( > Pe(s|s)u(s"))

< ||lully, - l|Prully, (by Cauchy-Schwarz inequality) (23)
Further, by Lemma [T} we have
[Prull?, = rollull?, (24)
Therefore, from and , we have
Q1 <1Qu < llully, - 1Prully, < Vallull?,
Substitute into to obtain
wAow < y/rolull?, — ull?, = (vv/ko — 1) Jull?, (25)
Since [lul[Z, >0 and vy/kp —1 <0 iff K < 7% we have:
w' Aow < (y/Fp — 1) Hu||zb <0 when 2 <1
Equality holds only if w = 0, proving A, is negative definite. O
Corollary 1. When m = my,, A, is negative definite for any v < 1.
Proof. When 7 = m,, we have k, = 1. Then:
w!Aw < (y—1)|v|2, <0 Yw#0

O

Theorem [2] establishes a fundamental condition for convergence in off-policy temporal difference learning;:
when the product of the policy alignment constant ; and the squared discount factor ¥? is less than one,
the critical matrix governing the TD update dynamics becomes negative definite. This condition, k2 < 1,
provides profound theoretical insight into the feasibility of off-policy learning. The policy alignment constant
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Kp quantifies the maximum discrepancy between the next-state distribution under the target policy and the
behaviour policy’s stationary distribution (v). When k; is large, it indicates significant distributional
mismatch; certain states are visited much more frequently under the target policy than would be expected
from the behaviour policy’s steady-state distribution. The theorem reveals that such mismatches become
increasingly problematic as the discount factor v approaches 1, explaining why long-horizon tasks with high
~ values are particularly challenging for off-policy methods. Notably, when policies are identical (m =
m), we have k, = 1, and the condition simplifies to v < 1, which always holds for standard MDPs.
However, as policy dissimilarity increases (k; > 1), the allowable discount factor must decrease to maintain
convergence guarantees. This theoretical boundary precisely characterizes the “deadly triad” interaction
between function approximation, bootstrapping, and off-policy learning, and directly motivates the steady-
state bias correction.

3  Our Algorithm

Here, we propose a double correction approach to address the discrepancy introduced by the steady-state
distribution of the behaviour policy in the solution of the off-policy TD algorithm by effectively reducing
the policy alignment constant through distributional reweighting, while simultaneously incorporating per-
step policy mismatch correction p;. To achieve this, we employ the importance sampling method to the
existing off-policy TD method with one-step lookahead, where a separate state-distribution reweighting factor
q(s)/h(s; 0%, \*) is tied to the existing off-policy TD recursion. Here ¢(+) is the design probability distribution
to which the solutions are guided, and h(-; 6%, A*) = Ajgos (-)+- - -+ A/ go; (-) is a surrogate probability mixture
distribution chosen from a parametrized family of distributions {gs : R? — R|0 € O, [ g(z)dz = 1,9 > 0}
which best approximates the steady-state distribution of the Markov chain induced by the behaviour policy
with respect to the Kullback-Leibler divergence (moment projection).

‘
0* . .
[)\*] = arg min Dyr. (vp]| A 199, + -+ - + Aego, ), subject to Z A =1, (26)
0;€0, i=1
Xi€[0,1]

where Dxi.(f|lg) = Ey [log %} .

To model the component distributions gy efficiently, we employ a flexible and analytically tractable paramet-
ric family. One theoretically well-founded choice is the Natural Exponential Family (NEF) (Brown, |1986).
The NEF is a class of probability distributions which provides a unified framework for probability distri-
butions through its canonical form that encompasses many commonly used distributions such as Gaussian,
Poisson, and Bernoulli distributions, among others. The NEF has several desirable properties, including a
closed-form expression with a convex log-partition function, which simplifies the computation of the impor-
tance sampling ratio and allows for efficient parameter updates during the learning process. A parameterized
family {gg|0 C R} is called a natural exponential family if gg(z) = exp (§7T(z) — K (0)), where T' : R? — R?
and K : R® — R are continuous functions with © = {6 € R?| |K(6)| < co}. Note that K (6) is strictly convex
in the interior of © and VK () = Eg, [['(x)]. Also,VZK (0) = Cov,, [['(x)] > 0. These ensure the Fisher infor-
mation matrix I(f) = V2K (6) is non-degenerate, guaranteeing well-posed maximum likelihood estimation.
While all the NEF member distributions provide analytical tractability through their exponential structure,
we employ Gaussian mixture models in our experiments for their superior approximation capabilities. We
formalize this approximation and aim to guarantee that, with a sufficient number of components, the KL-
divergence between the true steady-state distribution and its Gaussian mixture approximation can be made
arbitrarily small. A subtlety arises because the behaviour policy’s stationary distribution v, is discrete and
therefore lacks a density, making the KL divergence ill-defined. To address this, we mollify v, by convolving
it with a Gaussian kernel, yielding a smooth surrogate. We first define the following:

For the stationary distribution of the behaviour policy vy, which is supported on finitely many states
{s!,...,s"} C R? and the smoothing parameter o > 0, we define the mollified density as follows:

n

Po(@) = (1 * N(0,0°L,)) (@) = 3 1h(s) N (a3 s', 0° ),

i=1

10
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For each o > 0, p, is a valid probability density, being a finite convex combination of Gaussian kernels and
is absolutely continuous on RP. Further, for a compact region X and clipping level n > 0, we define the
clipped proxy

fo(@) = po(2)1xe(z) + max{p,(z),n}1x(z), (27)
where clipping is applied only on X and the density remains unchanged on X°¢. The normalizing constant is
_ fn(@
z, = [ f@de By = 22
RP n

Consider a Gaussian-mixture model hg »(z) = Z?:l Ajgo, (z) with A € A® the probability simplex of mixture
weights, and each component gy, has a non-degenerate covariance matrix.

Theorem 3 (Gaussian-mixture approximation of the steady-state distribution). For any e > 0, there exist
o>0,0<n<1, and £ € N such that for some parameters (6*, \*)

Dict(pe || ho- o) < (0(n) + O(0)) log(1/m) + O ) + O 37 ).
and the functions pe x,n, and he« x= satisfy 1 < Po,x n(x), hox x« () < M on X for some finite M.

The proof proceeds through three stages—mollification, restriction and clipping, and mixture approxima-
tion—followed by a change-of-measure decomposition. We develop the proof through the individual results
below.

Remark 1. For any bounded continuous test function f, we have
/f(x)p(,(x) dx = Z (s E[f(s" + 20 )], 7, ~ N(0,0%1,).

Since z, — 0 in probability, E[f(s' + z,)] — f(s°) by the dominated convergence theorem, implying that py
converges weakly to vy, as o | 0. This step establishes a continuous surrogate distribution for vy, ensuring
the KL divergence is well-defined.

For the state space S and given R > 0, we define the compact region

Xg = U{:E : ||z — s'| < R}, and the tail mass as 7(R, o) = / po(z) da. (28)

i=1 Xk

Lemma 2. For every § € (0,1) and fized o > 0, there exists R = R(0,0) such that T(R,0) < §. Moreover,
for miztures of Gaussians as considered here, one can choose R so that

7(R,0) < Cn exp( — %),
for a constant C' = C(p) depending only on the dimension.

Proof. Using the union bound and the Gaussian tail inequality, for each ¢ we have

/ N(z;s',0%1,)dz < C(p) exp( - %)’
I

z—s'||>R

where C(p) is a dimension-dependent constant. By summing over i = 1,...,n and weighting by v;(s*) < 1,
we get
r(R,0) < Clp)n exp( - £5).

Hence, for any § > 0, it suffices to choose

to ensure 7(R,0) < 4. O

11
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Henceforth, we fix a compact set X = Xp with tail mass 7 = 7(R, ) as small as required. We do not define
a zero-outside renormalized density. Such a truncation would make the KL divergence infinite. Instead, we
clip the density from below everywhere and then renormalize, which maintains strict positivity on R? while
preserving the total mass. Note that by construction, p,,x,, is a strictly positive density. Further, on X we
have f,(z) = max{p,(z),n} > po(x)1x(x), and on X° we leave the density unchanged, i.e., f,(z) = po(x).
Thus

Z, = /Xf,](x)dx—i— chn(a:)dx € [/Xpo(a:)dx, /X(pg(a:)—&—n)dx] = [1, 1+n|X]]. (29)

The lower bound uses f, > p,, and the upper bound uses f, < p, + 1 on X together with f, = p, on X¢.

Lemma 3 (L1 perturbation). There exist universal constants c1,ca > 0 such that
[ Po — Poxnlli < et + conl X|.

Proof. By definition,

+/Im—@x%
XC

||p(T _ﬁa,X,nHl = / |p<7 _pa,X,n‘ = / |pa _ﬁa,X,n
Rp X

We now bound the integrals explicitly for each region. For all # € X we have f,(z) = p,(z) and therefore

_ Po ()
po,X,n(x) == Z»q .
Hence
[ b= paxal = [ pe@|t= o fae=|1= 2| [ pato)de=|1- (30)
Do — Po,X,n| = PolT ——\lder=1]1— — po(x)de =1 — =—|T.
c i xe Zy Zyl Jxe Zy
From (29), we have Z, € [1,1+ n|X]], so
1 |2, —1
1——’:"7< Z, —1| < n|X|.
L A i R (R B
Thus
[ o= paxal < Tl (31)

Now for X, we split X into A and B, where A = X N{p, > n}, and B =X N{p, < n}.
For z € A, fy(z) = po(x), 80 Po,x,n(x) = po(x)/Zy. Hence
- 1
[Pe = Po.xnl = Po(@)|1 = 5| < po(@)nIX]|
n
Integrating over A gives
/ |p0 _ﬁO',X77]| S 77|X|/ pa(z) dz S 77|X|
A A
For z € B, ps(z) < n and f,(z) =17, so
~ n
pU,X,’r](x) - Z
Thus n
lpo () _]307X,77<x)| < po () + 7 <n+mn=2n,
n

using Z, > 1. Hence
/ |p<7 _ﬁU,X177| S 277|X|
B

12
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Finally, by combining the integral bounds on A and B, we get
[ 1o = Bl < nlX] + 201 = 391]. (3)
X
Combining the bounds from X¢ ((31)) and X ((32])), we obtain
1Po = Poxpllt < 70l X|+3n|X| < a1 + ean X,

for suitable absolute constants cq, ca. O

Lemma 4 (KL perturbation). There exist constants C1,Co > 0 (depending on the dimension and the
mizture envelope on X ) such that

Dxu(po || Po,x.n) < Cin+ Corn.
Proof. By definition, we have
DKL(po HﬁU,X,n) = /po IngU - /po IOgﬁU,X,n-

We split the domain into three parts: (i) X N{p, > n}; (ii) X N {ps < n}; (iii) X° and explicitly develop
bounds for [ p, log ps, x,, for each region as follows:

(1) Region X N {p, > n}. Here f,, = ps, S0 Do, x,n = Po/Zy, and

/ palog( ) = / polog Z, < log(1+n|X|) < on,
XN {po2>n} Po/Zn XN {po2n}

for some constant ¢ > 0.

(it) Region X N{p, < n}. Here py x ., =1/Zy, so,

/ pglog( Po ) = / p(,log(&) + logZ,,/ Py < .
Po<n n/Zy Po<n n

Po<n

for some constant ¢ > 0. This follows since on {p, < 1}, po log(ps/n) < 0.

(iii) Region X°. Here Py xn = po/Zy, and,

/ Do log( Po ) = / polog Z, < ", for some constant ¢’ > 0. (33)
c Po/Zn .

Now collecting the bounds from (i)—(iii) and absorbing constants yields
Dxi(po || Po,x,n) < Cin+ Corn.

O

Proof of Theorem By Lemma 4.1 of (Zeevi & Meir, |1997)), for any € > 0 there exists an ¢-component
Gaussian mixture hg- x~ such that

- € 1
DkL(Po,x,n | hov x+) < O<n2> + O(W)7 (34)

and, on the compact set X, the mixture satisfies uniform bounds 7 < Dy x (), he= x=(x) < M, z€ X,
for some finite M > 0. Now

DKL(pUHh) = DKL(pa”f) + DKL(th) + (]Epg — Ef) |:10g £:| s with f = ﬁc’yX»W7 and h = h0*7)\*. (35)

13
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By Lemma we have, for constants C1,Cs >0, 7 =7(R,0) < 1, and < 1,

Dxr(po|[Po,x,n) < Cin+ Cont < Cin+ Ca(n+ 7)log(1/n) (Using AM-GM inequality)

= (O(n) + O(a)) log(1/n). (36)
The last equality follows since 7 = O(c) by Lemma [2 Now for the last term in , we have,
_ fl- / _ f(z)
&, ~Ep) e 7| = [ (pole) — 1) 10w 1D

f
= |(®,, ) log L] | < llpe — £l sup 1o

On X, we have n/Z, < f(z),h(z) < M for Z, € [1,1+ n|X]|], so

f(x) ‘
h(x)
MZ,

. f(x) ‘ (
sup |lo 2l < lo
p ’ g h(z)| = g

) = O(log(1/m)),

and outside X the contribution can be absorbed into the constants since the tail mass 7 is O(o). Lemma
implies

Ips = fln < a7+ eanlX| = O(o) + O(n),

‘(]Epa —Ef)[log ﬂ ’ < (O(n) + O(0)) log(1/n), (37)

Finally, combining the three bounds , and in , we obtain

D (pellb 1) < (O(0) + 0o tost/m) + 0(5) + O3;), (38)

which is the bound claimed in Theorem [3 O

Theorem (3| shows that the mollified stationary distribution V,EU) = v, * N(0,02]) admits a finite-mixture
Gaussian approximation with controlled KL error given by,

Dii(v” | h(0%,3%)) < O(n+0)log(1/n) + O(e/n?) + O(1/(20)),

where 7 is the clipping level and ¢ is the number of mixture components. The first term captures the error
introduced by mollification and clipping. Since (1 + o)log(1/n) — 0 as n,0 — 0, this contribution can be
made arbitrarily small by choosing 1 and o sufficiently small. For any fixed n > 0, the remaining terms
decrease monotonically as £ increases and the approximation error ¢ is reduced (e.g., by refining the mixture
class), and the empirical curves in Figures. [2a] and [2b illustrate this decay. This guarantees that h(-; 6%, A*)
converges to VZSU) in KL, and hence in total variation by Pinsker’s inequality. The resulting mixture h(-; 8*, \*)
therefore provides a numerically stable surrogate for v, and is required for the distribution-correction step
of our algorithm.

We therefore compute the optimal surrogate by directly minimizing the KL divergence to the mollified target
I/lgg). Specifically, the mixture parameters are obtained by solving the optimization problem:

(0*,A") =arg  min  Dyp(” | A0, ) = arg maxE_

[log h(x; 0, \)].
0eO!, Ne AL 0,

o

The equivalence to maximizing the expected log-likelihood of the mixture under the mollified law follows
from the definition of KL divergence. The objective is differentiable and also well-posed because VZEU) is
absolutely continuous with respect to the Gaussian mixture model, ensuring the KL divergence is finite and

the optimization landscape is regular. The convolution structure further allows us to rewrite the expectation
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True steady-state distribution v, 0.035 Gaussian mixture /=9, 0=0.7
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(a) True steady-state distribution vy (top-left) (b) KL-divergence DKL(Vb I h ;\) versus component count £ for
and its Gaussian-mixture surrogates for (¢,0) € o € {1.0,0.7,0.4,0.2}. Curves decay monotonically, corroborating
{(9,0.7),(25,0.4), (49,0.2)}. As ¢ increases and o de- the ¢ and o dependence in Theorem 3.

creases, the mixture becomes close to v,.

Figure 2: (a) Gaussian-mixture surrogates approaching the mollified stationary distribution; (b) KL decay with
increasing component count.

in terms of samples from the original Markov chain. If we draw s; ~ v and &; ~ N(0,0%1) independently
and let x; = s; + &, then x; ~ VZEU) and E__ ) [log h(x;0,\)] = Es, v, e [log h(s: + €40, )\)], producing
b

unbiased stochastic gradients. Now let
F(0,)\) = E ) [logh(x; 0, ). (39)
b

Then, the dominated convergence theorem yields VF(0,\) = E [V log h(z; 0,\)], so the gradient coincides
b

with the expected score of the mixture.

We now leverage the above results to maintain a running estimate of the approximation of 14, through
online maximum likelihood estimation, where the parameters (é, 5\) are updated via incremental projected
stochastic-gradient ascent with Polyak—Ruppert averaging (Polyakl [1990; Ruppert], [1988). At iteration ¢, the
noisy gradient Vlogh(-; 0, \¢) replaces VF(6;, ;). The mixture parameters evolve on a possibly different
step-size sequence (ay) than the TD parameters (3;), allowing flexible calibration of the density model
relative to the corrected value estimator. This two-timescale structure couples the density estimation with
the off-policy correction step and supports convergence of the overall algorithm.

6 0 _
_t+1 H@efo + o Vg A lOg h(§t+1; 075, )\t)
Net1 A *

§t+l_§t+1 ét+l_§t
Xt+1 /):t t+1 )‘t+1 Xt 7

where §;41 = Si41 + €141, the state sequence (s;);>¢ is generated by the behaviour policy as a Markov chain
on S, and ;41 ~ N(0,02I) is an i.i.d. Gaussian perturbation independent of s;. Under standard ergodicity
assumptions, the chain admits a unique stationary distribution v, and the empirical law of s; converges to vy;
in the mean-field and ODE analysis we therefore interpret the expectation of the update in with respect
to the mollified stationary law VZEU)’ Further, Ilgey a¢ is the projection operator, which projects 0, onto the
constraint set © and \; onto the probability simplex A’. This ensures iterates [f;, \¢{] " stay feasible. In the
interior of ©f x A’ it acts as the identity, and near the boundary, it projects orthogonally onto the boundary.
Here a; € (0,1) is the step-size parameter, fixed apriori. Polyak-Ruppert averaging is employed to enhance

t

t
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stability by maintaining running averages @,Xt of the stochastic iterates. This averaging scheme reduces
the effects of noise in gradient estimates and provides more robust parameter estimates for the distribution
correction step.

Remark 2. By leveraging the properties of the NEF, one can obtain a closed form expression for
Vlogh(-;0,\) as follows:

) o (D(z) — VE(0;))g6,(s)
@ng h(s;0,A) = h(s;0, )

P FERON
a—/\jlogh(s,e,A) = h(s:0,)

In our algorithm, we use a multi-timescale stochastic approximation framework. The stochastic gradient
ascent for tracking the steady-state distribution and the TD recursion for the off-policy solution are updated
on a faster timescale, while the PR averaging step is updated on a slower one. Specifically, the step-sizes
for the gradient ascent (o) and TD recursion (5;) are orders of magnitude larger than the PR-averaging
step. This means that while the faster updates capture rapid changes, the slower, smaller step-size of
the averaging step smooths out the fluctuations, stabilizing the learning process and reducing noise. This
timescale relationship is formally defined as follows:

ataﬁte(oal)v Zat226t:<}ov Z(at2+ﬁt2)<ooa atvﬁt:Q(

t>0 t>0 t>0

1

m)~ (41)

Further, we modify the TD recursion to correct the steady-state bias by incorporating the steady-state
distribution correction factor ((;) as follows:

Q(St)

m(ag[s:)
h(St; 0y, )\t)

and =
o (a|sy) G

Xip1 = Xt + BipiGe (I't+1 + YDl xs — ¢tTXt> ¢¢, where ¢y = ¢(st), pr =

d¢+: TD error

(42)

Intuitively, p; reweights the TD error §; by how likely the chosen action is under the target vs. behaviour
policy, while (; reweights by how likely the state s; is under the behaviour’s steady-state distribution,
w.r.t. the desired design distribution ¢q. By introducing the correction factor (;, we re-weight updates to
emphasize states in accordance with a predefined design distribution ¢. In the ideal case, we set q(s) = vz (s)
(the target policy’s true stationary distribution), but even if v, is unknown, we can choose ¢(s) to be
a reasonable proxy. It is a predefined, domain-specific distribution or heuristic approximation, carefully
handcrafted to suit the problem context. For instance, in risk-aware or safety-constrained applications, ¢ may
emphasize certain critical regions of the state space, while in healthcare, it could overweight underrepresented
patient conditions to ensure equitable learning. This correction adjusts state visitation frequencies, ensuring
that states infrequently visited by the behaviour policy receive appropriate weight during learning. The
pseudocode of our approach is given in Algorithm

Assumption 4. Geometric miring (spectral gap). There exist constants M > 0 and p € (0,1) such
that ||Pt(s,~) — I/bHTV < Mpt,Vse S, t>0.

Assumption 5. Parameter Space Regularity. The parameter space © is compact with smooth boundary.
Assumption 6. Uniformly bounded score function. There is a constant G < oo such that
|[Viogh(s; 0,A)|| < G,V6 €O VAe AL, VseS.

Remark 3. For the mizture NEF model h(s; 6,\) = Z§:1 Ajge; (8), we note that the parameters v = 6, \)

lie in a compact set (because © is compact and X lies in the simplex, which is also compact). Then, for
each s, h(s;v) is a continuous function of v (as a finite sum of products of continuous functions) and hence
attains a minimum and mazimum over the compact parameter space. Again, because gg;(s) > 0 and \j > 0
with Y \j = 1, we have h,(s) > minj go,(s) > n > 0 and h,(s) < max; gy, (s) < M. Moreover, the same
bounds hold uniformly in s because there are finitely many states. Thus, for the mizture model, we also have:

0<n<h(s;v) <M < o0, Voe @ x Al VseS.
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Algorithm 1: Off-policy TD with linear function approximation and distributional correction

Function 0ff-TD-SSBC(m, m},)
for each transition (s;,a;,ri+1,8:+1) do
Calibrate parameters as follows:

|:§i-:_11| = H(‘“)ZXAZ ([ii:| + Oth IOg h(§t+1; §t7 >\t)> ,Where §t+1 = S¢4+1 + Et+1, and Et41 N(O,O'QI)

E’f“ = é\t + 1 Pt“] - @
>\t+1 )\t t+1 )\t+1 >\t
Xer1 = X¢ + BepeCGe (Tegr + 70 1%e — &) x¢) de,
Wherept:M dCt—%
7T-b(at|st) h(St; Gt, )\t)

This then leads to the boundedness of the score function as previously explained.

To establish the convergence properties of Algorithm we analyze the stochastic updates of the dis-
tribution parameters 6; and \;. Let vy = [0, A\, h(:;v:) = h( 0, X)), U = O x AY and F; =
a(@k,)\k,é\k,xk,sk,ak,xk,ek,o < k < t) be the natural filtration generated by all variables up to time ¢.
Then the update recursion of [ét, j\t]—r can be decomposed into a deterministic drift, a martingale noise, and
a bias as follows:

vep1 = Iy (v + @ Viog h(841; vy))
= HU ("Ut —+ Qi (VF(Ut) + Mf+1 + b?)) 5

where My, | = V1ogh(8i41; v¢) — E[V1ogh(Siy1; ve)|Fi],and by = E[Vlogh(8;11; vy)|Fy] — VE(vy).
(43)

First we establish a fundamental result on the bias term which shows that the bias term is geometrically
decaying and therefore summable.

Lemma 5. Let Assumptions and hold. Then the bias term bY satisfies |bY| < GM p',¥t > 0 and

o0
> a by < 0.
t=0

Proof. By conditioning first on s;41 and then on the Gaussian perturbation, we get
E[Vlogh(Sei1;ve) | Fi) = Y Pry(se01 = ') g0, (), (44)
s'eS

where we define the mollified score g, (s") = Econr(0,021) [V log h(s" 4 £;v)] . Under Assumption @ the (un-
perturbed) score is uniformly bounded, ||V, log h(z;v)|| < G for all z, and hence ||g,(s')|| < G for all s’ € S
and all v. The gradient of the mollified objective F'(v;) is

VEF () = Egn,, can.o2n[10g h(s +&50)],= > vi(5') gu, (5. (45)
s'esS

Subtracting from and let p(s) =Py, (st = ), we get,
by =D (1) = (5)) guu (5). (46)

s'eS
Using the earlier uniform bound ||g,, (s')|| < G and the identity ||u: — vsll1 = 2||e — vp||Tv, We obtain

107 1| < Gllpe — wpll1 = 2G (|t — vl Tv-
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From Assumption 4| (geometric mixing of the behaviour chain), we obtain
oV || < 2GMp*,  where M >0 and 0 < p < 1.

Further,
D ag|by | <2GM Y aup.
t=0 t=0

Since the step-sizes satisfy oy — 0, >, = 00, and ), af < oo (from ), the weighted geometric series
>, appt converges. Thus Y, ay[|by]| < oo. O

The following theorem establishes that the sequence {[;, \;]T} converges to Karush-Kuhn-Tucker (KKT)
points—first-order optimality conditions where the gradient aligns with the normal cone of ©¢ x Af. This
guarantees the learned mixture distribution h(+; 6, 5\) converges to a stationary point of the KL-divergence
minimization problem.

Theorem 4 (Convergence of Distribution Approximation). Let the step-size {ay} satisfy . Let Assump-
tions hold. Then the sequence {[0,\]"} converges almost surely to the set of KKT points:

{fv=10,\" €0 x A’: —VF(v) € Ny(v)},
where Ny (v) denotes the normal cone to Theta® x A* at v, defined as:

Ny (v) = {d e REMOITE . (44— ) <0, Yu e U} .

Proof. Let g, = VF(vy) + My, + by. Then,

Vi1 =y (v + ouge),
= v + Ly (g:) + Hy (Ut + Oétgt) — vy — L'y (ge)

Iy (ve + age) — v I'ulg )>
- t

= v + oy (FU(gt) +

0%
= v+ ar (Lu(ge) +o(ow)) . (47)

The last equality follows since

. My (ve+egt) — vt

lim ( ) = HTU(’Ut)(gt)’ (48)

e—0 3 N—————

Tu(ge)
where
Ty (v) = {u € RIMOI)+L : y + 7y € U for some 7 > 0}.

In the interior of U, Ty(v:) = Rdim(©)+¢ (unconstrained) and near the boundary of U, Ty(v;) = {u €

Rdim(©)+¢ | 1 points into U}. Thus, I'y(g:) is the directional derivative of the projection operator II;; at
point v; in the direction g;, which is equivalent to the projection of g; onto the tangent cone of U at vy
(Rockafellar] [2015). Intuitively, it captures the "feasible component" of g; that aligns with the constraints of
U.

For the noise My, q, IE[M;’H \ ft] = 0 (by definition). Further, using the triangle inequality,

(MY 4 ] |Viog h(8¢41; v¢) — E[VIog h(8¢415 ve) | Fol||

< G+G=2G a.s.
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By squaring and taking conditional expectation, we get E[|[MY, ||? | 7] < (2G)? = 4G?. Thus {M}} is a
square-integrable martingale-difference sequence. Now, consider S; = 22;10 agMy ;. Note that

S E (1S — SlPIF] =D ofB[IMy, [1P1F:] < 4G* ) af < oo (49)

t>0 t>0 t>0

By martingale convergence theorem, it follows that S; converges, i.e., > - g oMy, | <00 a.s.

Now rearranging , we get,

V41 = Ut + O (FU(VF(Ut)) =+ FU(gt) — FU(VF(Ut)) +O(Oét)) (50)
&t

Using the non-expansive property of I'yy, we have

1€l = [Tw(g:) = Tu(VE ()]
< lge = VF(ue)ll = M7y, + b7l
< Mgl + [1o7]]- (51)

Hence,
Yol <D0 alMp |+ allbyll < oo as. (52)
t t t

Therefore by (Borkar), 2008)), it follows that {v;} asymptotically tracks the ODE
v =Ty(VE©)). (53)

However, because F' is smooth and the constraint set U is convex, the above differential equation is well-
defined and corresponds to the projected gradient ascent. By the theory of stochastic approximation (see
(Borkar} [2008])), the sequence {v; } converges to a (possibly sample path dependent) internally chain transitive
invariant set of the above ODE. Since F is C*,

9 P(u(t) = (VF@W). o) = (TF), To[ V@),
Apply Moreau’s decomposition to obtain VF(v) = TIlp, ) [VF(W)] + Hy,e [VF(v)] and

(7, (v) [VF ()], vy 0y [VF(v)]) = 0. Then,
<VF(U), FU(VF(U))> = <HTU(U) [VF(v)] 4+ Ty, (v) [VF(v)] ,FU(VF(U))>
= (Lu(VF(v)), Ly (VF(v)))
= |Tu(VF@)|]* > o. (54)

Hence

%F(U(t)) — |To[VE(w@)]|]* = 0 (55)

with equality iff Ty[VF(v(¢))] = 0. Therefore, the invariant set of the above ODE is the stationary
(equilibrium) set:

{veU :Ty[VF(v)] =0} = {velU:-VF(v) € Ny(v)},

which are the Karush-Kuhn-Tucker (KKT) points. The last equality follows again by Moreau’s decomposition
of VF(v). O

Having established the almost sure convergence of the distribution parameters {v;} to v* in Theorem
we now analyze the temporal difference learning dynamics given by (42). Prior to this, observe that the
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unilateral timescale separation between the faster distribution estimation updates (v; = [f;, A¢]") and slower
Polyak-Ruppert averaging (0; = [ét, j\t]—'—) ensures that 0, — v* asymptotically. This justifies replacing the
time-varying (; = q(st)/h(s¢; 0t) in the TD update (42)) with its steady-state counterpart ¢ = q(st)/h(ss; v*).
The substitution decouples the distribution approximation error from the value estimation error, permitting
the simplified TD recursion (See Chapter 6 of (Borkar} [2008])). We need the following assumption on the
design distribution ¢:

Assumption 7. The design distribution q is strictly positive over all states: q(s) > 0 for all s € S.

Now, we rewrite x; update as follows (we let g¥ = p; ( (re41 + V91410 — ¢p )¢y and h*(-) = h(-;v%)):

at(s S
Xit1 = Xt + 5tPtCt* (rt+1 + 7¢Z+1Xt - ¢:Xt)¢t7 where p; = m and Ct* = 73*((;3)
= Xt -+ Bt (bf + G(Xt) -+ Mtx+1) . (56)
Here,
G(x) = Elgf] = E| py G; (ve1 + 10710 — 6] 7)1
q(s
= B[ AL Bl (v +10lae — d[2)o | o]
q(s
= B[ (Re(5) 47 (Pr)(s) ~ (82)(6) 005
=0, 5! Z (Re + (v Pr — I)2)
=05, 5 2 (P — NP2+ @5, 5, E4R, . (57)
AC 5
Also,

M{ = g: —E[g: | 7], and b = E[g; | F2] — h(x:), where g; = ps ¢ (Teg1 + 71X — ¢1Xe)dr. (58)

Further, note that since we have finite state and action spaces |r;| < Roo, |[|0(8)|| < Poo, and 0 < py < poo,
0< Ct S Coo

We first bound the TD error as follows:
|64 = ’I‘t—s—l + ’Y¢15T+1Xt - ¢tTXt|

< [rega] + 1oL xe] + [ x|
< Roo + 9P [|2t]] + oo [|Xt ]| = Roo 4 (1 4 7) Poo || 4|

Then the update term g; satisfies
llgell = 1peCede] - |9ell < pooCoc (Roo + (14 7)Pos[[2¢]]) - Poc < C1 + Cofx¢],
where C1 = pooCooRoo®Poo, and Co = pooCoo(1 + ) P2,. Now,

IME || = llge — Elge | 7]
< llgell + [Elge | Fi]ll < 2sup g
<2(C1 + Coflxe]l) < Cr(1+ fIxe])-
Further, using ||a — b||? < 2||al|? + 2[|b]|?, we get,

E[IMZ 12 | ] = E[|lg0 — Elge | F]||” | 7]

< QE[”gtHQ | ft] +2 HE[gt | ft”‘g
<AE[|g)? | Fi] < 4(Ch + Collxe]))?
< 8C? 4 8C2|x¢ % (59)
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Now we write bf = E[g; | Ft] — G(x¢) = E[g¢|st, x¢] — Eu, [91)-
Thus, [[67]] = [[E[ge[st, x:] — Ev, [g¢]]]

<N [P (se5) — v (5)] - [Elge | se, 4]
seS

< sup|[Elge | s,x4]|| - [|Pry (50, ) — o ]ln
= 2sup |[Elg: | s,%]|| - || Pr, (31, ) — mllv
< 2MpH(C1 + Callxel]) < Capt(1 + [Ixe))- (60)

To establish convergence of the sequence {x;}, we must first ensure the iterates remain stochastically
bounded. While classical stochastic approximation theory (Borkar) 2008]) often assumes almost sure bound-
edness, we prove the following weaker but sufficient condition for our setting.

Lemma 6. The iterates x; satisfies sup, E [||x;||?] < oc.

Proof. Note G satisfes the drift inequality

x'G(x) < —c|lx|* +4d, vx € R¥, (61)
where ¢ = 2 Amin(—Ac) and d = [|€]|2/(2Amin(—AL))).
Using E[MY,, | 73] = 0 and expanding the square,

ElVisr | Bl = Ixell? + 200, (G(xa) +0F) + (|G x0) + B |12 + ElIME |12 | Fi]).

Apply , , , and Young’s inequality 2x,b¥ < c[|x¢||> + ¢ 1||b¥[|?, and the bound [|G(x;)|* <
2[[Acl?llx¢]1* + 2[|¢][%, to obtain

E[Viy1] < (1 —(2¢—c)ay + Lo a?) E[V;] 4+ 2d oy + Lo a? + (c_lozt + 2a§) 8M2p2t<022 E[V4] + 012), (62)

where Ly = 4||A.||> +8C%, Lo = 4|¢||* + 8C%.

Further, by rearranging, we get,

ElVisa] < (1= o + LaBE + 8M3C (78 + 287)0 E[Vi] + 24 B, + Lo 57 + SMCE (™' B + 280)p™ .

=G4 =€t

(63)

Since p?* — 0 geometrically and 3; — 0, the perturbation terms Gy, e; vanish; for all large ¢ one can ensure
Gt < 554, leading to the following stochastic approximation form

E[Vip1] < (1—§6:) E[Vi] +2d 8, + ¢/ 57 (64)

Now using mathematical induction, we will show that sup, E[V;] < co. For t = 0, E[Vy] = E[||x0]|?] is finite
since x¢ is initialized with finite variance (base case). Now assume E[V;] < K for some constant K and all
t < T, where

d 2
K = max (E[HXOHQ}, — + = sup c’ﬁt) :
c C t>0
Then,

E[Vr] < (1 - gﬂT) K +2dBr + ¢/ 2

IN

K + Br (—%K+2d) + B2 (65)
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4d 2
Since K > — + = sup ¢ f;, we have
C C t>0

4d 2
fEK+2d§—E — + —supdB; | +2d
2 2 C C t>0

=—csupp < - pr < 0.
>0

Thus from , we get
E[Vry) < K — ok +da2 < K.
By induction, E[V;] < K for all but a finite number of ¢. O

To establish the convergence of x;, we must show that the bias and noise terms are manageable. Specifically,
the next lemma establishes that the series formed by the weighted bias and martingale noise terms converge
almost surely.

Lemma 7. For the martingale noise MY and the bias by, we have
P (Z BiMf,, <oo, > Bibf < oo) =1.
t ¢

Proof. From and using tower property, we have
E[IMZ, [* | Fi] < 8CF + 8C5 x|
= E[||MF,,[”] < 8CT + 8CIE[||x]|*]. (66)

Hence, MY, is square-integrable. Now, by the convergence theorem for square-integrable martingale (for
vector-valued martingales), it is enough to show that

ZE[H@ calP | Fl <o as.
t

Thus it is enough to show that
E

ZE[Hﬁthﬂ |2 | }—-t]‘| < o0.
t

Therefore, by monotone convergence theorem, we get
E [Z E[l|8M 1 | E]} =Y _E[E[AM; | | 7]
t t
<67 (8CT + 8CIE[Ixe|*])
t
<362 (st + sctswnllxil?]) < o.
" t

The last inequality follows from Lemma |§| and Y, 37 < co. This implies that P (Zt BMY,, < oo) =1.
Now for b7, it follows from ,

E lZﬂtllbeI] = Zﬂtmbﬂ
< Z 2M Bip* (C1 + C2E[||x4]])
< ZZMﬁtpt(C& + Ca/E[[[x4[1?])

t
< ZZMﬁtﬂt(Cﬁ +Co Sup Ef[[x¢[?]) < oc.
t
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The last inequality follows again from Lemma @ B¢ — 0 and p € (0,1). Hence, P (Zt B, < oo) =1 0O

Having established the stochastic boundedness of the iterates x; and the almost sure summability of the
martingale noise >, ;M7 | and bias terms ", oy b7, we now prove almost sure convergence of the sequence
{x:}-

Theorem 5 (Convergence of the TD Iterates). Let Assumptions[I{7 hold. Also, assume that the matriz A, =
@TEybE;}Eq(’yPﬁ — I® is Hurwitz (all eigenvalues have strictly negative real parts) and diagonalizable.
Then the sequence {x;} converges almost surely to the unique solution x* = x%p satisfying:

Te =-l1o Te ——1m
Q=5 B[ —yPr)Px" =® 5,5, E Ry

Proof. Rearranging recursion of x; as follows:
Xep1 — X = (% — X7) + Bele(xe — X)) + o (Aex™ + &) + Be(by + Miyy).
But note that A.x* + & = 0 by definition of x*. So,
X1 — X = (% — X7) 4 Bele(xe — x7) + B (b + M)
Let e; = x; — x*. Then,
err1 = (I + BeAc)er + By, where 1, = b + M7, ;.

We know that Y, B¢||n:|| < oo a.s. by Lemma [7| (since both by and MY, ; are summable in absolute value
a.s.). Now, because A. is negative definite, the matrix I + ;A has eigenvalues in (0, 1) for small ;. After
unraveling the above recursion, we obtain

t

t t
erp1 = <H(I+ ﬁk/\c)> vo+ > B | ] (T+8iA0)
k=0

k=0 = j=k+1
Let
t—1
Qt.k)=[[U +BiA) fort>k, Qkk)=1. (67)
j=k
Then,
t
err1=Q(t+1,0)e0 + Y BrQ(t + 1,k + L) (68)
k=0

Now, since A, is negative definite, let A\pin > 0 be such that the real parts of the eigenvalues of A, are less
than or equal to —Anin. Then, there exists a constant C' > 0 and 3 > 0 such that,

t—1
IQ(t k)| < Cexp [ =8> a; |- (69)
j=k

Since A, is diagonalizable, let A, = PDP~! where D = diag(\1,...,\q) is diagonal. Then,

t—1 t—1
Qt.k)=[[I+8A)=P | [[ad+5;D) | P!
i=k j=k

t—1
=pP|[]D;| P!
j=k
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where D; = I + ;D = diag(1 + ojA1,...,1+ B;Aq). The norm satisfies the following:

t—1
QK < IPI- 1P~ - | ]] Ds (70)
j=k
The diagonal matrix norm is given by:
t—1 t—1
1175 = o, [ TL L+ 8300
j=k == =k

Now we establish a uniform bound for each eigenvalue product H;;}c(l + B;A;). For any € > 0, there exists
Bo > 0 such that for 0 < 3; < Bo:

11+ B\ < ePi Re(Xi)+eB; (71)
This follows from the logarithm expansion:
log(1+ B;A:) = BjAi — +--
= B Re(\;) +if; Im(N;) + O(55)
so the real part is a;j Re(\;) + O(a3). For sufficiently small o, we have:

Re (log(1 4 BjAi)) < B Re(N\;) + €5,
Thus |1 + ﬂj)\1| — eRe(log(1+ﬁj)\i)) S eﬁj Re(ki)""eB]’_

(BiXi)?
2

Set € = Apin/2 > 0 where Apin = min; | Re()\;)|. Since Re(A\;) < —Amin:
114 Bi\i| < B Re(Ai)+B5 Amin /2 < e BiAmintBiAmin/2 — =B Amin/2
when §; < By. Since 3; — 0, there exists Ky € N such that 8; < 3y for all j > Kj.

Case 1: k> K,
For all j > k > Ky, we have 3; < fo, so:

t—1 N
H(l + BiAi)| Sexp | — r;m Zﬂj
j=k j=k
Case 2: k< Ky
Split the product at Kj:
t—1 Ko—1 t—1
[Ta+sx)={ [ a+sx) |- IT @+8M)
j=k =k Jj=Ko

(%) (%)
Term (x) is a finite product (since Ky is fixed). Using |1 + 5;A;| <1+ |X\|5;:

Ko—1 Ko—1
1< T a+ g <exp [ Il S 85 | < itk
j=k j=k

where C;(k) = exp (|)\i\ Zf:oo_l Bj) is bounded (as §; > 0 and fixed Kj). Term (*x) is bounded by Case 1:

Ao t—1
() S exp | =52 D 55

2
j=Ko

Ao t—1 Ao Ko—1
A IE
Jj=k j=k

24



Published in Transactions on Machine Learning Research (01/2026)

Combining both terms:

ot \o Kol o
H(l + ﬁj/\z) < Cz(k) exp r;m Z 6] exp | — r;un Zﬁ]
=k = =
ot
= CV (k) exp 5 ]Z]; B;

where C/'(k) = C;(k) exp (AT ZJK:OIJI Bj).
Since k < Ky and there are only finitely many such &, we define the following
C'=max{ max C/(k),13 <o

1<i<d
0<k< Ko

For k > K, we have C/'(k) = 1. Thus, for all ¢, k, and ¢t > k:

t—1 N
/ min
H(1+5j)\z’) < C'exp *?Zﬂj
j=k j=k
Therefore,
t—1 t—1 N
_ Y. ’ _ /\min )
HDj = max H(l +5;M)| < Clexp 5 Zﬁj
Jj=k j=k ji=k

Substituting into ,

_ )\min =
|Q I <P - 1P - Cexp | —22 3 5,
j=Fk

Set C' = ||P| - ||P~|| - C" and = Amin/2 to obtain:
t—1
|Qt. Rl < Cexp | =B 5
j=k

for all t > k£ > 0, with C, 8 > 0 independent of ¢ and k.
Therefore from ,

t t
leersll < Cexp | =8> By | lleoll + Y BellQ(t + 1,k + 1)|l[|ml-
=0 k=0

The first term goes to zero as t — oo because 22:0 B; — oo. For the second term, note that

t t t
Zﬂk“@(tJrlakJrl)HHﬂkH SCZﬂkeXP - Z Bi | M-
k=0 k=0

= = j=k+1

(72)

(73)

By the summability of Sk ||nk|| and the exponential decay, this term goes to zero. Indeed, for any fixed k, the
term goes to zero as t — oo. Moreover, the tail of the series Y, Si||nx| is small. Therefore, by the Toeplitz

lemma or direct estimation, the entire sum goes to zero.

Thus, e; — 0 a.s., i.e., Xy — X" a.s.
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A natural question is whether our correction mechanism can guarantee that the residual bias stays pro-
portional to the unavoidable approximation error. The next theorem answers this affirmatively, showing
that the corrected TD fixed point is never worse than a constant-factor multiple of the best value function
representable by the chosen features.

First, we define the total error as:

e=d®zIP v,
= O(zIP —w*) 4 (Pw* — V) = du + 4, (74)

where

- w* = argmin,, |Pw — V||, is the best approximation under g-norm

- u =P — w* is the difference between the TD solution and the best approximation

- § = dw* — V. is the approximation error

Lemma 8 (Orthogonality Condition for TD Fixed Point). The TD fized point satisfies the orthogonality
condition:

®'=, 2 2,(I —yPr)e =0 (75)

Proof. The TD fixed point satisfies:
=, 5 2 (I —yP)@xP =0T =, =15 R,
Substituting the R, = (I — vP;)V, (from Bellman equation) into the TD fixed point equation:
®'=, 5 2 (I —yP)®2lP =05, 5, E,(1 — P Vs
Rearranging all terms to one side:

=, =5 2, (I —yP)(®xfP V) =0 = @'E,E.'E,(I-~Pr)e=0.

To rigorously validate the effectiveness of our distributional correction mechanism, we bound the approxi-
mation error relative to the fundamental limit imposed by the expressivity of the features and the target
state weighting. The following result provides a worst-case guarantee that our method does not amplify
unavoidable approximation errors and quantifies how design choices (e.g., the target distribution ¢, feature
selection, and mixture model complexity) influence performance.

Theorem 6 (Error Bound for Off-Policy TD with Steady-State Bias Correction). Let A. be Hurwitz and
diagonalizable and Assumptions[I{7 hold. Then, the error of the off-policy TD solution with steady-state bias
correction satisfies:

[®2T2 — Va,, < € min |[@w — Va|,

where:

¢ = (LLIE) oy - s om0 (14 2+ e 20

with kq = max '—WSS, and a(A.) = max Re(\;(Ac)) < 0 being the spectral abscissa of A..
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Proof. By applying triangle inequality on , we get
lellv, < [[Pull, + (161, (76)

From Lemma [8] we have
(T2, E, 12, (I —vPy),e) =0 (77)

Substituting e = ®u + 9:
=, 5 2 (VP — )Ou=—®"Z,, 5, 5, (vPr — 1))
= Acu = —b(s,

where bs = ® 1=, =, 'E, (yP, — I)6.

Since A. is Hurwitz and diagonalizable, A. is invertible and can be written as A = PDP~!, where D =
diag(A1,. .., Ar) with Re();) < 0 for all 4. Therefore,

= —A_'bs = —PD P 'b; (78)
By taking norms on either side, we get
llull < IAZHE-Hlosll < IPI- 1P=H] - 1D - 1ol (79)
Since D is diagonal with entries A;:
1 1
D7l = =

Let a(A.) = maxRe(\;) < 0. For any eigenvalue \; = a; + b;i, we have |\;| = \/a? + b7 > |a;| = |[Re(\;)].

Therefore,

1
D7 < ] (80)
So, from (79), we get
p||- P!
ol = (LAY o 1)

Now we bound ||bs|| = ||® " Z,,Z;. Z4(vPr — I)d]|. Using the g-weighted inner product and Cauchy-Schwarz
inequality:

[0 bs] = [{(vs/h*) @, (vPr — 1)d)q]
< [[(wo/R*)@]lq - [[(vPr = 1)l (82)

We first, bound |[|(v/h*)®v||,:
o190l = 3t (29 oo

(
< max (”“(z ) -maxq(s) - ||

<K2 max g (8) * Omax(® 2o

I?
Therefore,
[(/h)Pu]lq < K - fmax q(s) - omax(®) - [[] (83)

Next, we bound ||(vPr — I)dllq- Let p(s’) = > q(s)Pr(s'|s), which is the next-state distribution under
policy m when starting from distribution ¢. Similar to Lemma [I| one can obtain the following:

1P fll5 =D als)(Pef())* <D als) Y Pals']s) f(5)° < (I%‘?LX Z((::'/D I3
s s’ \ ,

S

Kq
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Then, ||Pr|lq < \/kq. Therefore,
[(vPr = Ddllq < vl Prbllg + [16llg < v/Fg - I0llq + [I8llg = (1 +vy/Fq) - 16llq
Combining these results:
1b5] < K- /max q(s) - omax(®) - (14 7y/%q) - [10]l4 (84)

Now, we bound the approximation error under v:

912, = 32 (1305 < (max 0 ) 37 0693060 = (e 240 )

S

Therefore,
vp(8)
0ll,, < y/max —2= -0 85
81, < y/max 255 o, (85)

Finally, we combine all components in :

lellv, < | Pully, + (I3,

2]l - IIP 1||> frmax g(s) v (s)
< max ( (14+~k 6llq + - |6
< ( maxub maxq o Y ) || ||q mgx a(s) || ||q

Since [|0]|q = min,, ||Pw — Vz||4, and by the definition of e we obtain the claim:

12277 — Vally, < C - min[|®w — Vil (86)

where

C:<|P| 1P~ 1||) () K - s g(s)oma(®)° - (14 7y/Fg) 4 [ma qu((;)

O

The above theorem demonstrates that the error of our corrected solution is proportional to the minimal
approximation error under the target distribution ¢, scaled by factors capturing policy misalignment, feature
conditioning, and steady-state estimation accuracy. This establishes that our algorithm achieves near-optimal
performance within the constraints of the representation, while explicitly quantifying the cost of distribution
shift correction. The bound further elucidates the trade-offs between policy similarity, distribution estima-
tion quality, and feature design. This bound further provides several relevant insights, which are in order:

1. Fundamental Error Relationship: The error in the TD solution is proportional to the best possible ap-
proximation error, establishing that the algorithm achieves the best possible performance within the function
approximation class.

2. Steady-State Estimation Quality: The term K = max, l;f((j)) quantifies the impact of steady-state distri-

bution estimation error. When K = 1 (accurate estimation), the bound tightens, validating the steady-state
bias correction approach.

3. Policy Alignment: The term (1 + v,/k,) with x, = max, % measures policy dissimilarity. Smaller &
(more similar policies) leads to tighter bounds, explaining why off-policy learning becomes challenging with
dissimilar policies.

4. Feature Representation: The term opax(®)? shows that well-conditioned feature representations (smaller
Omax) lead to better error bounds.

5. Distributional Factors: The terms \/ max; V(s \/ max, g(s), and 4/maxg l;”(—(ss)) capture how state distri-

bution properties affect performance.
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While Theorem [3| provides an error bound under the behaviour policy’s stationary distribution 14, in many
practical scenarios we are ultimately interested in the prediction accuracy under the design distribution
q.- The following corollary establishes that our steady-state bias correction method also provides strong
guarantees in the design distribution norm.

Corollary 2 (Error Bound in ¢-Norm). Under the same assumptions as Theorem@ the error of the corrected
off-policy TD solution under the design distribution satisfies:

H@XED — VWH < Cy-min||®dw — V||, where C, = 4/ max ﬁ .
a w q s€S p(s)

and C is the constant from Theorem[3

Proof. Since the state space S is finite and v3(s) > 0 for all s € S (by Assumption , maxXgeg %(SS)) is finite.
Hence,

1@xP = Vallg = D als)(@x2P = Vi) (s)

seS

=S s (4 xi P = Vi)(s)?

< D)y P Ve
seSs

= max als) x P — b

se8 py(s) 2. Yl

Taking square roots and applying Theorem [3] we get,

|&xT° — V||, < 1/ max a(s) &% — Vi, < 4/ max a(s) O min || ®w — V||, .
g s€S vp(s) g s€S vp(s) w a

O

Remark 4. The constant Cy reveals an important trade-off: while our correction mechanism aims to align
the solution with the target distribution q, the final error bound depends on the maximum density ratio
between q and v,. This highlights the fundamental importance of coverage: if the behaviour policy rarely
visits states that are important under q (i.e., vp(s) < q(s) for some s), then R becomes large and the bound
degrades. This aligns with intuition and provides theoretical justification for the empirical observation that
good behaviour policies should have adequate coverage of the target distribution’s support.

Remark 5. When ¢ = v, (the ideal case where we know the target policy’s stationary distribution), Corol-
lary@prom’des a bound on the error relative to the true evaluation metric of interest. The constant Cy then
depends on the distribution mismatch coefficient maxg l;z((;), which quantifies how well the behaviour policy

covers the target policy’s state visitation pattern.

To complete the convergence analysis, we now provide a sufficient condition for the matrix A, to be Hurwitz,
which ensures the asymptotic stability of the algorithm.

Theorem 7 (Hurwitz Condition). A, = ®'Z,, 5,15, (P, — I)® is Hurwitz (all eigenvalues have strictly

negative real parts) if and only if Kyrkev? < 1, where rk, = maxy “q"((;;) with pg(s") =Y, q(s)Pr(s'|s) and

_ Eu, (95,0 ()
K, = max, 1)

Proof. Consider the quadratic form w ' A.w for any w # 0:

wAw=w &' E,5 5 (vPr — )dwW
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Let u = ®w. By Assumption [2] u # 0 since rank(®) = k. Then:

T To —— u'= =l
w Aw=u E,5,. _q('yP —I)u—'yu By Sps HqP u—u =,5,:Zu

Let Q1 =yu'E,,Z,'Z,Pru and Qo = u'Z,, =, ' E,u. First, observe that Q2 > 0 since Z,,, =}, Z, are all
positive definite diagonal matrices (by Assumption 1 and the fact that A* is a valid distribution estimate).

For @1, apply the Cauchy-Schwarz inequality:

Q1] <

v, Eha B “[|Prullz =-1z , where ||x||z -1 =

S S s Sq Sy Sy x Sq Sy S s Sq

Now, we need to bound ||Prul®2 _ ,_:
Sy By x Sg

IPeall2, - oo = (P) 2,505, Pru

=D 3" u(s)Pa(s']5)Z0, (5)Z, ()4 (5) Pr(s”]s u(s")

'—'—1
= 3= (Z Sn o )P<s’s>u<s>>

= =—1
Note that K, = max, %7 is bounded since v, and h* are positive distributions on a finite state
space. Then,

|| Prull2 =208, < K> q(su(s') <Z Pw(8'|8)u(8)>
< Ky ZQ(SI)U(SI)\/Z P.(s'|s)u(s)? (by Jensen’s inequality)
Zq(s’)u(s’)2 : ZQ(S’) ZPW(S/‘S)U 5)2

— K, lul, ¢Z u()? 3 g(s") P (/]5)

gllullg - Z u(s)?pg(s)

S

< K 2 h _ /‘LQ(SI)
< Ky\/Fqllul[;  where k, = max

[ro—1
Thus, || Px u||~ub:7*1:q v/ Kgkqllullg. Now, since Hu||~ =1z, Kg " ||ull4, we have,
Q1] < 7/ KorigllullZ, <

; Zq
Therefore:
w' AW < (7K kg — 1)||u||éub5;*15q

When K r,v? < 1, we have vy/Kyrq < 1, and thus w' A.w < 0 for all w # 0.

This proves that A. is negative definite, and therefore all its eigenvalues have strictly negative real parts
(Hurwitz). O
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In Algorithm [I} the mixture weights \; must satisfy probability simplex constraints (N >0, Zle Ai=1)
after each gradient update. To enforce this, we employ an efficient projection method that provides an optimal
O(£log¢) Euclidean projection onto the simplex Af (Wang & Carreira-Perpinan, 2013). The method sorts
the components of A, determines an optimal threshold, and redistributes mass, providing the closest valid
point in the simplex A’ while preserving sparsity patterns when possible which attributes to its O(¢log£)
complexity. Specifically, it seeks the solution to the following optimization problem:

¢
1 .
m;n§||)\ —v|?, subject to Zl)\i =1, X\ >0.
1=

Using a Lagrange multiplier 7 for the equality constraint Zle A; = 1, we define the Lagrangian:

1o :
,aAJ)QE:uimVT<§:M1>_

i=1 i=1
Now solving for A\; by taking the derivative w.r.t. A;:

oL

87&:)\1—?)2_7:0:})\121]7,"_7_

Now to enforce the simplex constraint, we sum over all i:

14 4

0
S A=Yt === L imt

-3

Thus, the projection without considering the non-negativity constraint is: \; = v; + %ﬁ If any \; < 0,
we modify the solution by clipping negative values to zero and redistributing the remaining weight. This is
efficiently handled by sorting v in descending order and determining a threshold 7 such that the projected
vector remains non-negative.

Algorithm 2: Euclidean projection onto A*

Function ITx. () € RY)
Sort Ainton: ny >mne > - >ny

T:max{lgjgéznj—&—%(1—2{21771')>O}

y=70-3_1m)
return A = max{\; +y,0}, i € {1,2,..., ¢}

4 Experiments & Results

Here, we present a comprehensive empirical evaluation of the proposed Steady-State Bias Correction (SSBC-
TD) algorithm across diverse benchmark domains. The experiments are designed to validate the method’s
effectiveness in mitigating steady-state distribution mismatch in off-policy TD learning with linear func-
tion approximation. We assess performance using Root Mean Square Error (RMSE) of value predictions:
RMSE = ||V; — ®x||2 against true value functions. All results are averaged over 10 independent runs to
ensure statistical robustness. Key aspects evaluated include:

- Generalization across domains: Discrete (Circle Chain (Prediction + Control), Gridworld Cliff
Walking, Taxi) and continuous (Mountain Car, CartPole, Acrobot) state spaces

- Hyperparameter sensitivity: Impact of step-sizes (ay, ;) on convergence

- Trajectory robustness: Performance under varying episodic path structures
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- Distributional fidelity: Accuracy of Gaussian mixture approximations for stationary distributions
- Discount factor and design distribution sensitivity: Impact of discount factor v and design

distribution ¢ on prediction error.

All environments are modified to ensure ergodicity (e.g., respawning agents in terminal states) for well-defined
steady-state distributions.

4.1 Discrete Domain

4.1.1 Circle Chain

We consider a ring-structured Markov chain with n = 100 discrete states S = {0,1,...,n — 1} and circular
distance d(i,j) = min{]i — j|, n — |i — j|}. Each chain is defined by a transition kernel that moves Left
or Right between neighbouring states while preserving irreducibility and aperiodicity. To ensure that the
stationary distribution of each chain is non-uniform yet unique, we construct the transition probabilities to
satisfy detailed balance with respect to a desired wrapped-Gaussian distribution v on the ring:

I/(Z) Pi,i+1 = Z/(Z + 1) H-‘rl,i? i€ S.

This is implemented by choosing

. i+1 . i—1
Py = %mm{l, VE,Z(J;) ) }7 P 1= %mln{la Vs,z(l-) ) }, Pi=1-PF 11— P,
yielding an irreducible, reversible, and uniquely stationary Markov chain with v as its stationary law. This
Metropolis—Hastings construction ensures that the induced steady-state remains non-trivial even after full
mixing. The target stationary distribution is fixed as a wrapped Gaussian centred at 0:

vy (1) o< exp [ - dg&%)g} ,

while the behaviour chain’s stationary distribution is its spatially shifted counterpart

. i,c 2
yP(0) ocexp| = ) (o) = (1= p)n/2, pe0,1].

As p decreases from 1 to 0, the mode of I/}Ep ) moves antipodally across the ring, generating controllable

distributional mismatch between behaviour and target steady-states. The auxiliary design distribution ¢
is uniform, approximating the steady-state of a fully mixing kernel and representing an uninformative bias
baseline. This choice reinstates the equal-weight treatment of states. The behaviour steady-state distribution
)
1%
b

is approximated by a Gaussian-mixture surrogate h/o\* " with ¢ = 10 wrapped components.

Figure [3a] shows that SSBC-TD consistently attains lower RMSE than baseline off-policy TD yet remains
above the on-policy limit, confirming effective bias mitigation without instability. Figure [3D] highlights the
structural discrepancy between the uniform design ¢ and the localized target steady-state v, a principal
source of off-policy bias. Finally, Figure [3¢| demonstrates how the behavioural distribution Z/lgp ) moves from
orthogonal to aligned as p increases, with the fitted mixture surrogate accurately tracking this progression.
Together, these results verify that SSBC-TD maintains asymptotic consistency and achieves a favourable
bias—variance trade-off as the steady-state overlap between behaviour and target policies improves.

4.2 Control: Policy Optimization under Steady-State Bias Correction

We extend the steady-state bias correction framework from off-policy prediction to control on the Circle-
Chain MDP. As before, the environment comprises n = 100 cyclically connected states and two actions
A = {Left, Right}. Rewards follow a Gaussian centered at s = 0:

r(s) = exp[—d(s,0)?/(202)], or =5, (87)
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Figure 3: Circle Chain experiments. (a) SSBC-TD achieves intermediate RMSE between on- and off-policy
TD, mitigating steady-state bias while maintaining stability. (b) The uniform weighting g differs from v, motivating
reweighted updates. (c) As p increases, Vlgp ) progressively aligns with v, and the mixture surrogate (¢ = 10) closely

follows this transition, illustrating smooth bias reduction as overlap grows.

with discount factor v = 0.9. The behaviour policy induces a stationary distribution v, concentrated near
the antipodal region of the reward peak (sa50), creating a strong distributional mismatch with the optimal
policy’s stationary measure v,. The auxiliary design distribution is uniform, ¢(s) = 1/n, representing an
uninformative baseline.

Rationale for a uniform ¢: In classical dynamic programming (value or policy iteration with a known
model), Bellman backups are pointwise, and the contraction is measured in the | - ||o norm, giving equal
weight to all states. In contrast, trajectory-based off-policy TD with function approximation minimizes
a projected Bellman error under the behaviour steady-state geometry: ®'Z,, (®x — Ty (®x)) = 0, which
overweights frequently visited states and underweights others, inducing a steady-state bias. Replacing Z,,
by Z, through multiplicative weights ((s) xq(s)/h(s) yields the fixed point of II,T;. Choosing a uniform ¢
restores the state-agnostic weighting of classical value or policy iteration, where all states contribute equally
to the Bellman residual. This aligns off-policy TD with the unbiased model-based ideal, removing systematic
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skew from v, while maintaining numerical stability. Practically, a uniform ¢ serves as a robust surrogate
for the (unknown) target steady-state distribution v, bridging trajectory-based and classical value-iteration
perspectives.

Algorithmic procedure: Policy iteration alternates between value estimation (via naive off-policy TD or
SSBC-TD) and greedy improvement using

Qk(s,a) = r(s,a) + 7 Z P(s,a,s") ¢(s') " wp, (88)

where ) denotes the value-parameter estimate from the preceding evaluation phase and ¢(s) are the RBF
features. The next policy is updated as

miii(a] s) = 1{a = argmax Qu(s. ')}, (89)

with deterministic tie-breaking. Each evaluation phase performs 2000 TD updates with the same feature
representation (20 RBFs) and step-size schedule; results are averaged across 50 independent random seeds.

Figure [da] shows the discounted return across policy iterations. SSBC-TD attains faster and higher returns
than naive off-policy TD, with narrower variability bands. This confirms that re-projecting the Bellman
operator in L2(q) suppresses the instability caused by the skewed visitation frequencies of v,. Figure
reports the RMSE between the estimated and true values v*. The bias-corrected variant converges more
rapidly and achieves a lower steady-state error, verifying that geometric alignment with ¢ mitigates the
accumulation of long-horizon bias. Figure |4c| visualizes the learned action probabilities P(Right | s). The
SSBC-TD policy exhibits a sharp, symmetric decision boundary that efficiently drives trajectories toward
the reward centre, whereas the naive policy remains blurred and asymmetric, reflecting persistent influence
from vp.

Across all metrics, SSBC-TD obtains superior control behaviour—higher asymptotic returns, reduced RMSE,
and a sharper optimal policy—while maintaining stability comparable to on-policy TD. By explicitly
reweighting the evaluation step toward a uniform ¢, the algorithm neutralizes steady-state bias from the
behaviour chain and ensures that the policy-improvement operator follows the true Bellman gradient under
the intended state weighting. Empirically, these findings confirm that steady-state correction not only re-
stores consistency in value prediction but also enables bias-free off-policy control with markedly improved
sample efficiency.

4.2.1 Gridworld CIiff Walking

In the Gridworld Cliff Walking domain, the agent operates on a discrete 10 x 10 grid (|.S| = 100) where the
objective is to reach the goal while avoiding the cliff region. We set v = 0.9 and employ a behaviour policy
biased toward the left side of the grid, producing a left-skewed steady-state distribution 4. The target policy
m prefers the safer right-side cells, inducing a right-skewed steady-state v,,. The correction distribution ¢ is
uniform across states, providing a flat reference for bias correction. The surrogate hﬁ* v approximates v,
using a mixture of £ = 5 Gaussian components over discrete state indices.

Figure [5a] demonstrates that SSBC-TD reduces the steady-state bias substantially compared with the base-
line off-policy TD method, approaching the accuracy of on-policy learning while maintaining stability across
iterations. The results confirm that steady-state correction yields lower asymptotic error and improved
smoothness of convergence. Figures illustrate the underlying distributional mismatch and its correc-
tion. The uniform ¢(s) does not capture the asymmetry present in v, which leads to biased value estimation
in standard off-policy TD. By contrast, the surrogate hg* N sufficiently approximates 14, ensuring acceptable
reweighting of the temporal-difference updates and stabﬂizing the projected Bellman operator. The narrow
uncertainty band observed for the mixture indicates that the surrogate fit is consistent across multiple runs.
Overall, SSBC-TD achieves a balanced trade-off between bias reduction and variance control, validating its
robustness in environments with asymmetric occupancy distributions.
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Figure 4: Circle Chain control results. (a) Discounted return per policy iteration. (b) RMSE between estimated
and true values. (c) Final policy distribution P(Right | s). SSBC-TD achieves higher asymptotic return, reduced
steady-state error, and a sharper optimal boundary compared to naive off-policy TD, demonstrating effective bias
correction and improved sample efficiency.

4.2.2 Taxi Domain

The Taxi environment consists of a finite tabular state space S with |S| = 500 states encoding the taxi loca-
tion, passenger position, and destination, and a discrete action set representing navigation and pickup/drop-
off actions. We consider an off-policy prediction task where the behaviour policy m, selects each action
uniformly at random in every state. Under this policy, the induced stationary distribution v, is empirically
close to uniform, and hence the steady-state bias that arises from evaluating the value function under v,
instead of the evaluation distribution is inherently small.

We evaluate our algorithm with a discount factor of v = 0.2. The behaviour steady-state distribution v,
is approximated by a Gaussian mixture, where each component is a truncated Gaussian distribution over
the closed interval [0,600]. We set £ = 10 mixture components. The design distribution ¢ is chosen to be
uniform over all states, ¢(s) = 1/|5|, ensuring that all states receive equal weight in the RMSE metric. The
correction factor (; then reweights TD updates so that their effective sampling distribution aligns with this
uniform target.

From Figure[6] both the base off-policy algorithm and our approach achieve nearly identical results. Because
the uniform behaviour policy induces an almost uniform stationary distribution across the 500 discrete states,
the mismatch between v}, and the evaluation distribution is minimal in the Taxi domain. Consequently, the
uncorrected off-policy TD baseline already exhibits low bias, and all methods converge to similar asymptotic
RMSE values. Nevertheless, Figure [6a]shows that SSBC-TD consistently tracks the on-policy TD curve while
maintaining slightly higher variance due to its correction factor (;. The improvement over the plain off-policy
baseline indicates that even small distributional mismatches are effectively mitigated by the correction. The
on-policy and SSBC-TD curves nearly coincide, confirming that the state-distribution correction produces

on-policy-like behaviour in this domain. Figure @ further illustrates that the learned surrogate hg* N
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Figure 5: Gridworld CIliff Walking. (a) SSBC-TD consistently bridges the gap between on- and off-policy
learning, achieving low bias and smooth convergence. (b—c) The mismatch between ¢(s), vx, and v, illustrates how
steady-state bias arises and how the surrogate correction mitigates it.

closely approximates the true steady-state distribution . The red mixture mean envelope remains nearly
flat across the 500 discrete states, validating that the mixture model with £ = 10 components can faithfully
represent an almost uniform distribution. Together, these results show that SSBC-TD is stable and nearly
unbiased when the steady-state distribution is uniform, matching on-policy accuracy while requiring only
off-policy samples.

4.3 Continuous Domain

4.3.1 Mountain Car

The Mountain Car environment consists of a continuous two-dimensional state space s = (z, &), representing
the car’s horizontal position and velocity, and a discrete action set {—1,0,+1} corresponding to left, no, or
right acceleration. The goal is to reach the top of the right hill despite insufficient engine power for a direct
ascent, requiring the agent to build momentum by oscillating between the slopes. We evaluate our algorithm
with discount factor v = 0.4, emphasizing short-horizon control stability. The behaviour policy m, selects
actions uniformly, while the target policy m prefers rightward thrust near the left slope and conservative
deceleration near the goal region. The behaviour steady-state distribution v is approximated online using
a Gaussian-mixture density with ¢ = 15 components, and the design distribution ¢ is taken to be flat over
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Figure 6: (Left) RMSE as a function of trajectory transitions, comparing on-policy TD, the off-policy TD baseline,
and SSBC-TD. The on-policy and SSBC-TD curves nearly coincide, both lying below the uncorrected off-policy
baseline, indicating that the state-distribution correction achieves on-policy-like accuracy under a nearly uniform
steady-state. (Right) Approximation of the uniform steady-state distribution (black stems) by a Gaussian-mixture
surrogate hg* by with £ = 10 over 500 discrete states, confirming that the mixture surrogate accurately matches the
almost uniform v.

the reachable region Sy = [—1.2,0.6] x [—0.07,0.07]. The correction factor (; reweights updates toward this
uniform distribution, mitigating steady-state bias without amplifying variance excessively at small ~.

Figure [7] shows the RMSE versus iteration. Each curve denotes the mean over independent runs. The lower
discount factor accelerates the contraction of the projected Bellman operator, ensuring stable and monotonic
error decay throughout training. The SSBC-TD trajectory lies consistently between the on-policy and off-
policy curves, confirming that the state-distribution correction removes most of the steady-state bias while
maintaining stable learning dynamics. At a low discount factor (v = 0.4), the value function depends primar-
ily on near-term rewards, making the learning process less sensitive to long-horizon distributional mismatch.
Consequently, all three methods converge smoothly, though off-policy TD remains slightly biased due to
evaluation under the behaviour distribution v,. The SSBC-TD correction reduces this bias by reweighting
updates toward the flat ¢, thereby aligning the projected Bellman fixed point more equally likely across all
the observed states. Since 7 is small, the effective variance amplification caused by (; is modest, yielding a
smooth error curve and stable asymptotic behaviour. Overall, the experiment demonstrates that SSBC-TD
remains consistent and robust even when the target horizon is short, achieving a good balance between bias
reduction and variance control.

4.3.2 CartPole

The Cartpole environment has a continuous four-dimensional state s = (z, &, 0, 9) and a discrete two-action
set {—1,+1} corresponding to left or right force applied to the cart. We compare the algorithm under
the discount factor v = 0.9. The behaviour policy m, selects each action uniformly at random, inducing a
broad steady-state distribution v}, that explores a wide range of cart positions and pole angles. The target
policy 7 is a stabilizing controller that maintains the pole near the upright configuration, whose stationary
distribution v, is concentrated around small |6] and \9| We approximate v, using a Gaussian-mixture density
with ¢ = 15 mixture components, fitted online from the behaviour trajectory via incremental updates. The
design distribution ¢ is taken to be flat over a bounded region Sy C S representing the empirically reachable
portion of the state space, defined as the axis-aligned bounding box enclosing the 1st—99th percentile of
states encountered under mp:

SO = [Smin - 53 Smax T 5]7 Q(S) 08 1{5 € SO}a

with ¢ providing a small margin (5-10%) beyond observed extremes. For reproducibility under the standard
Gym Cartpole, the analytical bounds [—2.4,2.4] x [—3.0,3.0] x [—0.21,0.21] x [—3.5,3.5] were used as Sp.
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Figure 7: Performance on the Mountain Car environment with discount factor v = 0.4. The plot compares on-policy
TD, SSBC-TD (ours), and the off-policy TD (baseline) in terms of RMSE versus iteration. Curves represent mean
values across multiple runs, with shaded bands denoting empirical variability: narrow for on-policy TD and wider
for SSBC-TD and off-policy TD. All methods converge smoothly, and the SSBC-TD curve lies consistently between
on-policy and off-policy baselines, indicating effective steady-state bias correction.

This flat choice assigns equal weight to all reachable states, ensuring the RMSE metric is unbiased toward
any region of high occupancy in v,. The correction factor (; reweights TD updates away from the behaviour
steady-state and toward this uniform design distribution, while the importance ratio p; adjusts for action-
selection mismatch. Figure [8] shows the RMSE versus iteration, where each curve denotes the mean over
independent runs and shaded regions mark empirical variability. The performance hierarchy follows naturally
from the bias—variance interplay among the three estimators. On-policy TD remains unbiased since sampling
and evaluation distributions coincide. SSBC-TD introduces the correction factor (;, which reduces steady-
state bias, but increases variance due to state-dependent reweighting. Consequently, it converges more slowly
than on-policy TD yet achieves a lower error floor than the uncompensated off-policy TD baseline, whose
updates project onto the behaviour distribution v, and thus converge to a biased fixed point. The advantage
of SSBC-TD is more pronounced due to larger ~y, since long-horizon dependencies amplify steady-state bias
effects.
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Figure 8: Performance on the Cartpole environment with discount factor v = 0.9. The plot compares on-policy
TD, the proposed SSBC-TD, and the off-policy TD baseline in terms of RMSE versus iteration. Curves show mean
values across independent runs; shaded bands represent empirical variability. All three methods display non-monotone
transient dynamics, but ultimately settle into a stable ordering in which on-policy TD attains the lowest asymptotic
error, SSBC-TD converges to an intermediate level, and the off-policy TD baseline retains the highest residual RMSE,
consistent with partial correction of steady-state bias using the user-specified Gaussian g(s).
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4.3.3 Acrobot

The Acrobot environment consists of a two-link underactuated pendulum with continuous state s =
(61,02, 91, 92), where 6; and 6> denote the angles of the first and second links relative to the vertical downward
direction, and 61,6, are their respective angular velocities. The action space is discrete, A = {-1,0,+1},
corresponding to the application of negative, zero, or positive torque at the joint between the two links.
We consider a behaviour policy 7, that selects each action uniformly at random, m(a | s) = 1/3, thereby
inducing a broad steady-state distribution v, that covers both swing-down and transitional configurations.
The target policy 7 is a hand-crafted stochastic stabilizing controller defined by a linear feedback rule: a
continuous torque signal

0, — 0% 0
* T Y1 1 T ("1
W) =~Ke [92 —95} s [‘9‘21 7

where (67,05) corresponds to the upright equilibrium. The resulting torque is discretized to the nearest
action in {—1,0,4+1}, executed with probability 1 — e, and replaced by a random alternative action with
probability €. This rule ensures persistent exploration while maintaining stabilizing behaviour around the
upright configuration. The induced Markov chain under = admits a unique stationary distribution v, that
is sharply concentrated near the upright manifold. Here, ¢ is chosen as a single Gaussian centered at the
upright configuration my, = (67, 63,0,0) with small angular variance and moderate velocity variance. This
q is not required to equal v,, but is intended to be qualitatively close, thereby biasing the iterates toward
states that are important under the target policy. Also, we consider the mixture width to be ¢ = 100.
Figure [9] reports the RMSE of value prediction versus iteration for on-policy TD, the off-policy TD baseline,
and the proposed SSBC-TD, averaged over multiple independent runs. During the transient phase, all
methods exhibit non-monotone fluctuations as both the density model i and the value parameters adapt
under noisy off-policy data. Eventually, a consistent ordering emerges: on-policy TD achieves the lowest
asymptotic RMSE, as it directly samples from the true stationary distribution v,; SSBC-TD converges to an
intermediate error floor that lies strictly below the uncompensated off-policy baseline, demonstrating that the
Gaussian ¢ is sufficiently close to v, to mitigate steady-state bias; and the off-policy TD baseline retains the
highest residual error due to its dependence on v}, without long-horizon correction. This behaviour aligns
with theoretical expectations: when ¢ approximates but does not exactly match the target steady-state
distribution, the proposed correction reduces but cannot eliminate the asymptotic bias, thereby narrowing,
but not closing the gap to on-policy performance. We also provide here the likeliness between the behaviour
policy steady-state probability distribution v, and the estimated surrogate distribution h(-;6*,A*). The
results are provided in Figure

4.4 Hyper-parameter Sensitivity

We empirically examine how the two timescale parameters, the TD step-size a; and the importance-ratio
step—size f;, influence the accuracy and stability of our SSBC—TD algorithm. All experiments are conducted
on the classic control task MountainCar from the Gymnasium suite. Our hyperparameter grid search reveals
a critical interplay between the TD step-size («;) and the ratio step-size (5;). The heat map (Figure
illustrates that the best-performing configurations cluster around higher oy values, particularly when paired
with smaller f; values. The combination of ay = 0.2 and f; = 0.005 achieves the lowest final RMSE,
indicating an effective balance between rapid updates to the steady-state distribution approximation and
gradual correction of the steady-state distribution mismatch. This result underscores the importance of
carefully tuning these timescales to mitigate the “deadly triad” interaction between function approximation,
bootstrapping, and off-policy learning. The curve plot (Figure further validates this observation by
showing how different «; settings converge over episodes. Notably, the curve for oy = 0.2 exhibits the fastest
decline in RMSE, stabilizing at the lowest error level compared to other configurations. Polyak averaging
plays a crucial role in smoothing out fluctuations during training, as evidenced by the reduced variance in
the RMSE curves across episodes. By incorporating Polyak averaging, our approach effectively mitigates the
noise introduced by stochastic updates, leading to more stable and accurate value predictions.
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Figure 9: Performance on the Acrobot environment for discount factor v = 0.8. The plot compares on-policy
TD, the proposed SSBC-TD, and the off-policy TD baseline in terms of the root-mean-squared error (RMSE) of
value prediction versus iteration. Each curve represents the mean across multiple independent runs. All methods
exhibit transient non-monotone phases early in training as the density model h(s; 0 /\) and the value parameters
co-evolve. As learning stabilizes, the on-policy TD achieves the lowest asymptotic error, SSBC-TD converges to an
intermediate error floor, and the uncompensated off-policy TD baseline attains the highest residual RMSE. This
hierarchy confirms that the state-distribution correction using the user-specified Gaussian q(s) effectively mitigates,
but does not completely remove the steady-state bias inherent in off-policy prediction.
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Figure 10: Comparison between the true behaviour-policy steady-state distribution and its surrogate mixture
estimate. Left: Empirical steady-state probabilities of the behaviour policy (1) computed over multiple long-
run trajectories. Right: Individual Gaussian components and their optimally weighted combination forming the
surrogate distribution hA N . The close alignment between the mean surrogate and the empirical steady-state profile
demonstrates that the fitted mixture provides a close and stable approximation to the behaviour-policy stationary
distribution.

4.5 Trajectory Robustness

We evaluate trajectory-length sensitivity on a 5 x 5 Gridworld with absorbing terminals at (0,0) and (4,4).
Each episode starts in the cell (0,4) and evolves for 60 time-steps under a uniform-random behaviour policy;
upon reaching a terminal, the agent is reset to the start cell and the trajectory continues. We generated five
such trajectories (Figure Run 0-4), using independent random seeds to expose path-level variability.
We then applied a constant step-size SSBC-TD agent with 5, = 0.05. The micro-trajectories illustrate
how an ergodic uniform policy can still visit states in markedly different orders at short horizons. Run 1
drifts almost exclusively downwards, Run 2 performs horizontal sweeps along the top row before descending,
whereas Run 3 forms an almost symmetric lattice tour. Runs 0 and 4 highlight the “reset effect”: a diagonal
sprint to the lower left corner followed by immediate reinitialization injects additional exploratory diversity
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Figure 11: Hyperparameter sensitivity of SSBC-TD on MountainCar: Final RMSE as a function of the TD step-size
(o) and ratio step-size (3;). Darker shades indicate lower error. The minimum RMSE (marked) occurs at a; = 0.2
and B: = 0.005, revealing that aggressive TD updates paired with conservative ratio estimation optimally balance
convergence and stability.
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Figure 12: Convergence of SSBC-TD on MountainCar using the best 3; for each a; (from Figure ) The a; = 0.2
curve (B: = 0.005) achieves the fastest error reduction and lowest asymptotic RMSE (& 70), demonstrating Polyak
averaging’s role in stabilizing high-step-size regimes. Smaller o (e.g., 0.02) exhibit slower convergence due to delayed

implicit averaging.
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Figure 14: Comparison of the approximation of the true behaviour policy’s stationary distribution using the Gaus-
sian mixtures across various trajectories

Uniform RMSE

Figure 15: SSBC-TD demonstrates trajectory-agnostic stability, efficiently correcting steady-state bias regardless
of path stochasticity

that would otherwise take longer to accumulate. These early visitation biases explain the modest run-to-run
spread observed in the residual histograms: SSBC-TD first adapts to whichever subset of states it samples
most frequently. Over the long run updates, however, the random policy’s mixing property smooths out
those disparities: each run ultimately visits every state with frequency close to the stationary distribution,
and the TD iterates converge to a common, tight error band (uniform-RMSE ~ 4.5 £ 0.1).

4.6 ~ Sensitivity

Here we study the relationship between the discount factor v and the error in off-policy value prediction.
The experiment considers a Taxi discrete control task. The state and action spaces are discrete. Both
TD(0) and SSBC-TD are trained off-policy using the same fixed behaviour—target policy pair and identical
feature representations, with final RMSE computed against Monte Carlo estimates under the target policy.
The results are illustrated in Figure As v increases, the longer effective horizon exacerbates distribution
mismatch and steady-state bias in plain TD(0), leading to a steady rise in RMSE and greater variability across
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Figure 16: RMSE as a function of discount factor « for plain off-policy TD(0) and steady-state bias—corrected TD
(SSBC-TD) on a discrete Taxi control task. SSBC-TD consistently achieves lower RMSE, with the gap widening as
v increases.
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Figure 17: Ablation on the choice of stationary-distribution target ¢ for SSBC-TD in a Taxi control task. Four
variants are considered: oracle ¢ = v, (true target policy distribution), uniform over states, behaviour visitation
distribution v, and a deliberately misspecified distribution. Closer alignment of ¢ to v, yields consistently lower
RMSE, with the advantage widening as v — 1.

runs. SSBC-TD, by applying (-weights that approximate the stationary distribution correction, mitigates
this bias and maintains a lower error profile across 7 values. The widening advantage of SSBC-TD for v — 1
aligns with the theoretical predictions: the stability condition x;y? < 1 for plain TD becomes harder to
satisfy at high ~, whereas SSBC-TD effectively reduces the mismatch constant, relaxing the condition to
K kqv? < 1, thereby extending the range of stable and accurate operation.
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4.7 g Sensitivity

We study here the sensitivity of SSBC-TD to the choice of ¢, the stationary-distribution target used in its
correction term. The discrete control task used here is a Taxi environment. We consider a discrete control task
with fixed target and behaviour policies, identical feature representation, and the same step-size schedules
across all runs. The SSBC-TD algorithm is applied with four different choices of the stationary-distribution
target ¢ in its correction term (;. The oracle choice uses the exact stationary distribution v, of the target
policy; uniform assigns equal probability to all states; behaviour uses the empirical stationary distribution
v, from the behaviour policy; and mis-specified uses a biased distribution that incorrectly overweights rarely
visited states and underweights important ones. The RMSE vs v curves show a clear ordering: the oracle
q achieves the lowest error across all 7y, with the margin over other choices growing as 7 increases. This
matches the theoretical prediction that the stability condition improves from r,7? < 1 to K, k47? < 1, where
K kg is minimized when ¢ = v,. Uniform ¢ performs moderately well for smaller v but suffers at large
due to equal weighting of states that are rarely relevant to the target policy. Using v, offers only limited
improvement, since it does not correct the long-horizon mismatch. The mis-specified g provides the smallest
benefit and, for high 7, behaves similarly to plain TD, illustrating that poor g choices can erase the gains
of the correction. This underscores the importance of accurate or well-chosen ¢ for leveraging SSBC-TD’s
stability advantage in long-horizon settings.

5 Conclusion & Future Work

In this paper, we consider the off-policy value prediction in reinforcement learning, specifically in the context
of linear function approximation. The proposed algorithm aims to minimize the steady-state bias in the
off-policy value prediction, where the bias arises due to the differences in the sampling distribution of states
and actions between the target policy and the behaviour policy. Our work opens up several avenues for
future research. First, integrating steady-state bias correction with deep value function approximators is
a promising direction to tackle large-scale problems. Second, the idea of distribution correction might be
extended to control settings: for example, off-policy actor-critic algorithms could use a similar mechanism to
reweight the critic updates, or one could correct state occupancy in off-policy policy gradient methods. Third,
an interesting theoretical question is how steady-state bias correction interacts with function approximation
error and whether it can alleviate the deadly triad (function approximation, off-policy, and bootstrapping).
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