
ar
X

iv
:2

40
9.

01
08

8v
1

 [
cs

.C
R

]
 2

 S
ep

 2
02

4

Towards Split Learning-based Privacy-Preserving Record
Linkage

Michail Zervas
ics20015@uom.edu.gr

Dept. of Applied Informatics, University of Macedonia
Thessaloniki, Greece

Alexandros Karakasidis
a.karakasidis@uom.edu.gr

Dept. of Applied Informatics, University of Macedonia
Thessaloniki, Greece

ABSTRACT

Split Learning has been recently introduced to facilitate applica-

tions where user data privacy is a requirement. However, it has

not been thoroughly studied in the context of Privacy-Preserving

Record Linkage, a problem in which the same real-world entity

should be identified among databases from different dataholders,

but without disclosing any additional information. In this paper,

we investigate the potentials of Split Learning for Privacy-Preserving

Record Matching, by introducing a novel training method through

the utilization of Reference Sets, which are publicly available data

corpora, showcasingminimal matching impact against a traditional

centralized SVM-based technique.

CCS CONCEPTS

• Information systems→Entity resolution; •Computingmethod-

ologies → Support vector machines; • Security and privacy →

Privacy-preserving protocols.

KEYWORDS

Privacy-Preserving Record Linkage, Split Learning, SupportVector

Machines

1 INTRODUCTION

The entity resolution problem boils down to identifying the same

real world entity in distinct datasets. When these entities are struc-

tured in relational records, we refer to the record linkage problem.

As these datasets originate from databases of different dataholders,

common unique identifiers are not usually available. In this case,

combinations of attributes forming a candidate key may be em-

ployed. When combined, these attributes, called quasi-identifiers,

can uniquely identify an entity.

A basic problem with quasi-identifiers is that they are usually

the result of manual input. As such, they suffer from problems as

misspellings and typos. To this end, in the case of strings, to be able

to compare possibly misspelled attributes from different records

distance or similarity measures are used [4] with certain thresh-

olds. When a pair of records agrees within these thresholds for

each of its corresponding attributes, then this pair of records is

considered as matched and these two records are linked.

What has been described so far is the classical version of the

record linkage problem. However, in the recent years, the situa-

tion has become even more complicated, including a variety of rea-

sons, ranging from emerging privacy-oriented legislation around

the world, such as GDPR or HIPAA, business confidentiality in

terms of competition, and so on. To this end, the direct plaintext

comparison of record attributes becomes problematic as it reveals

sensitive or classified information. A typical example of such a case

is linking patients records from datasets of different organizations,

e.g. in terms of medical research.

To address these problems, privacy-preserving techniques have

emergedwhere, instead of revealing the entire dataset (e.g. through

transferring), only the linkage results are revealed to the datahold-

ers participating in the process. This problem is called Privacy-

Preserving Record Linkage (PPRL) and it aims at identifying records

describing the same real world entities, i.e. individuals, across dif-

ferent databases while not revealing any other information.

In thiswork, we showcase our efforts for employing a Split Learn-

ing (SL) [9] approach for PPRL. The proposed methodology is ver-

satile and able to accommodate a variety of Machine Learning al-

gorithms. To demonstrate its operation, we employ Support Vector

Machines, used in the past for the classical version of the Record

Linkage problem [3]. Split Learning is a fairly recently introduced

technique aimed at training AI models without the need for direct

data interchanges. Instead, intermediate representations, coined

as smashed data in the SL terminology are used. To utilize this

methodology we created these representations employing Refer-

ence Sets (RS), i.e. publicly available corpora that can be used as

an intermediate point of reference for data obfuscation [12].

The proposed technique offers a series of advantages, compared

to state-of-the-art approaches [8]. First, it does not require a third

party playing the role of linkage unit. Second, it maintains privacy

as, through the use of Reference Sets, no encoded data are trans-

ferred, but tensors of distances. Third, it manages to achieve a very

low loss in terms of matching accuracy. To this end, in this paper:

• We introduce a protocol for Privacy-Preserving RecordMatch-

ing utilizing SVMs for enabling Split Learning.

• Weprovide amethodology for training individual SVMmod-

els at the dataholders without the need of data interchange.

• We provide empirical evidence of the performance of our

method.

The rest of this manuscript is organized as follows. Section 2

contains related work. In Section 3 we formally present the prob-

lem we address and provide the necessary prerequisites for this

work. We present our method in Section 4 and its evaluation in

Section 5. Finally, we conclude and lay out our next steps in Sec-

tion 6.

2 RELATED WORK

A recent survey on PPRL may be found in [8]. One of the most pop-

ular approaches to this problem regards the use of Bloom filters

[14, 17], which are combined with n-grams and the resulting bit

vectors are ANDed for assessing matching status. For this purpose,

a separate server referred to as the Linkage Unit is used. Our ap-

proach does not require such an external entity. Furthermore, such

http://arxiv.org/abs/2409.01088v1

Conference’17, July 2017, Washington, DC, USA Zervas and Karakasidis

solutions have certain vulnerabilities, requiring additional harden-

ing measures [7].

Beyond Bloom Filters, bit vectors and Locality Sensitive Hash-

ing have been combined [19], at an increased computational cost

[5]. A two-step hash method with quasi-identifiers converted into

n-grams is proposed in [13], requiring, however, a Linkage Unit

and a threshold to perform approximate matching. Differential pri-

vacy has also been used for PPRL, with current solutions focusing

on categorical and numerical attributes [15], while this work fo-

cuses on strings.

Cryptography-based methods have been also proposed, exhibit-

ing, nevertheless, high computational cost. Homomorphic encryp-

tion is also susceptible to certain types of attacks[6]. Garbled cir-

cuits [2], need further investigation regarding size and reusabil-

ity [16]. Fuzzy Vaults [11] relying on polynomial reconstruction

through interpolation, should also be further investigated in terms

of matching performance.

Finally, the rise of capabilities of Large Language Models (LLMs)

provided a new perspective to the classical Entity Resolution prob-

lem offering novel approaches (e.g. [10]) with LLMs used to en-

hance performance. Nevertheless, to the best of our knowledge,

there has not been, up to now, an approach that utilizes LLMs and

preserving privacy, at the same time.

3 PREREQUISITES

In this section, the problem to be solved is formally described and

the required background of the proposed approach is presented.

3.1 Problem Formulation

Without harming the general case, two data sources are consid-

ered, called Alice (�) and Bob (�), who respectively hold A� and A�

records each. We denote as A�8 and A�8 the 8-th record of Alice and

Bob, respectively. We represent the 9-th attribute of these records

as A�
8
. 9 and A�

8
. 9 .

Privacy-Preserving Record Matching is the problem of matching

all pairs of A� and A� records referring to the same real world entity,

so that no further information is revealed to�,� or any other party

involved except for the identifiers of the linked A�s and A�s.

As Alice and Bob’s databases are expected to have different schemas,

their records have different attributes and do not share any com-

mon candidate keys. Let '� be Alice’s schema and '� be Bob’s

schema and let us assume that in these schemas< of the attributes

are common between the two sources forming a composite key.

These attributes are quasi-identifiers being names, surnames, ad-

dresses, birth dates and so on, being unable each on its own to

uniquely identify a record. We refer to these attributes asmatching

attributes ormatching fields. The composite key is used to uniquely

identify a record and as such, to determinewhen two recordsmatch,

i.e., when they refer to the same entity, by comparing the respec-

tive attributes. Considering that these data are often dirty, match-

ing should rely on a similarity or distance function.

Let us consider D as the domain of each matching attribute, a

similarity function B8< 9 () : D×D → [0..1] and a threshold C 9 > 0.

Given records A�8 and A�8 with matching attributes A8 .1, . . . , A8 .< for

both Alice and Bob, we define the following matching function

Algorithm 1: Protocol Overview.

/* Preparation */

1 Agree_on_Common_Reference_Set ();

2 Build_Smashed_Dataset ();

/* Training */

3 Create_Training_Data ();

4 Perform_Split_Training ();

/* Private Matching */

5 Deliver_Smashed_Data ();

6 Split_Privacy-Preserving Matching ();

7 Exchange_Matching ();

" : D ×D → {0, 1}:

"(A�8 , A
�
8) =

{

1, iff B8< 9 (A
�
8
. 9, A�

8
. 9) ≥ C 9 ,∀9 ∈ [1,<]

0, otherwise.
(1)

If"(A�
8
, A�
8
) = 1, then the pair (A�

8
, A�
8
) is a match.

This formulates Privacy Preserving Matching (PPM) and, after

this process concludes, the only additional gained information by

matching parties should be the identifiers of the matched records.

3.2 Support Vector Machines

Support-vector machines (SVMs) [20] are machine learning mod-

els that build optimal separation hyperplanes utilizable in classi-

fication problems, by trying to maximize a margin, i.e. the dis-

tance between this hyperplane and each of the classes to be sep-

arated. For this to happen, a labeled training set is required. For

non-linearly separable datasets, SVMs use a transformation to a

new coordinate space described as the kernel trick, where similar-

ity may be computed into the transformed space using the original

dataset. This is performed using certain similarity functions called

kernel functions. The Gaussian RBF kernel function [18] is such a

function.

4 METHODOLOGY

After presenting our building blocks we now present our approach.

4.1 Overview

Let us start by describing the broader image on how to use sepa-

rately trained SVMs to perform Privacy-Preserving Matching, on

the premises of Split Learning.

4.2 A Split Learning-based Protocol

To be able to perform Privacy-Preserving Matching using Split

Learning, we devised a protocol which is illustrated in Algorithm

1. Initially, the matching parties agree on a common RS and the at-

tributes that will be used (line 1). It is important for the RS to either

originate from a totally different domain from the datasets or to be

preprocessed so as not to contain data that may be found within

thematching datasets. Then, data to bematched at each dataholder

are mapped to the RS to create a smashed representation, as illus-

trated in line 2. Then, each dataholder separately builds its feature

vectors to be used for local training (line 3). Line 4 stands for the

Towards Split Learning-based Privacy-Preserving Record Linkage Conference’17, July 2017, Washington, DC, USA

fourth step which is split training separately taking place at each

dataholder. After training, smashed data are exchanged (line 5). Us-

ing these representations, each dataholder performs matching in-

dividually (line 6). Then, the process concludes with each party

delivering matched data identifiers to the other (line 7). The pro-

posed protocol assumes that all communications take place using

secure channels.

4.3 Reference Set & Data Mapping

As SVMs are models used for supervised learning, training data

are required. In Entity Resolution, and as a result in PPRL, being

a special sub-case of this problem, the goal is to identify which

pairs of entities are matching and which are not. The same holds

for records. In the classical case of record linkage using a SVM

[3], features are built using distances (or similarities) between com-

mon fields after a direct comparison. However, in the case of PPRL

this cannot occur, as this would comprise a privacy breach. For

this purpose, we propose a novel method for generating feature

vectors for training the individual SVMs at each dataholder, using

their own data. The result is a vector of distances between a data-

holder’s recordset A and '(, the common Reference Set used. This

process requires as inputs a recordset A and a Reference Set '(,

both with alphanumeric fields, a mapping " from A to '(, com-

mon for all matching parties, and produces a distances vector � .

This mapping will be used both for locally training the SVM and

during the matching process. As such, for each record attribute in

A a distance or similarity measure is calculated between this record

attribute and the attribute of '(participating in the mapping, for

all '(records. As more than two candidate pairs of records may

have the same distance, instead of relating a matching attribute A8
of A with a single '(attribute, A8 is related with multiple attributes

'(. As for each record in '(there are : reference attributes, a map-

ping of A8 can now have up to : ∗<∗ |'(| values. Wemay see details

in Example 1.

Example 1. Let us assume that we have the following Reference

Set: [[FirstName: ’CHARLIE’, LastName: ’ADLER’], [FirstName: ’JAY’

LastName: ’ADLER’]]. We would like to map a record with the fol-

lowing attributes: [FirstName: ‘ADA’, MiddleName: ‘IVY’, LastName:

‘KING’]. Let us also assume that we use Edit Distance [4] as a dis-

tance metric. In this case, the following distance calculations will

take place:[Ed(ADA, CHARLIE), Ed(ADA, JAY)] = [6, 3], [Ed(KING,

ADLER), Ed(KING, ADLER)] = [5, 5], [Ed(IVY, CHARLIE), Ed(IVY,

JAY)] = [7, 2], [Ed(IVY, ADLER), Ed(IVY, ADLER)] = [5, 5]. So the

resulting distances vector � will be: � =[[6, 3], [5, 5], [7, 2], [5, 5]].

4.4 Synthetic Data Generation for Split
Training

In our Split Learning-based protocol, synthetic training data are in-

dividually generated at each party, utilizing its own recordset A , the

common Reference Set, '(, and the attribute mapping" between

A and '(. Algorithm 2 illustrates this method. First, a corrupted ver-

sion of A , A ′ is built by performing Edit Distance operations (line

1). Then, a distance vector �′ is built for this corrupted dataset A ′

through the data mapping process described above. For this cor-

rupted version �′ and the original � , we will create a new feature

Algorithm 2: Synthetic Training Data Building.

Input:

- D: Distance vector between r and RS

- r: Dataset with alphanumeric fields

- M: Mapping between r & RS

Output:

- F: Array of feature vectors

1 A ′ ←Corrupt (A);

2 �′ ← MapDataSetToRefSet (A ′, '(,");

3 � ← [];

4 foreach A8 ∈ A do // for each row

5 � .Append ([d (�8 , �
′
8), 1]);

6 : ← �′
: 6=8

;

7 � .Append ([d (�8 , �
′
:), 0]);

8 end

9 return F;

vector by calculating the distances between the two vectors and la-

bel the pair �8 and �
′
8 with 1, as matching (line 5). Then, to create

non-matching pairs, records : that are non matching with 8 are

selected from the same dataholder’s recordset and the same op-

eration is performed (line 6). For this approach to work properly,

each party’s recordset should have been deduplicated beforehand.

Having created a synthetic training recordset, each party will now

locally train its own model. Example 2 clarifies this process.

Example 2. Continuing the previous example, let’s say that we

have corrupted the record from Example 1, adding a character to the

Surname field, and then we apply the same process. The result is a

distance vector �′ with �′ = [[6, 3], [6, 6], [7, 2], [5, 5]]. Now, to

create the feature vector, we need to compare � and �′ . To do so,

we will employ cosine distance. As such, we have: �=[cos([6, 3], [6,

3]), cos([5,5],[6,6]), cos([7,2], [7,2]), cos([5,5],[5,5])] = [0, 0.1414, 0, 0].

Since this vector represents a matching pair of records it gets labeled

as matching or “1”.

Algorithm 3: Data Matching with Split-Learning SVM.

Input:

- ��: Distances vector for party A

- �� : Distances vector for party B

- (+"(): The locally trained model

Output:

- "�: A matching array

1 "�← [];

2 foreach 8 ∈ �� do // A’s rows

3 foreach 9 ∈ �� do // B’s rows

4 "�.Append (SVM(d (8 , 9)));

5 end

6 end

7 returnMA;

Conference’17, July 2017, Washington, DC, USA Zervas and Karakasidis

4.5 Split Data Matching

After training concludes, matching parties exchange their Smashed

Datasets which actually are distance vectors. Now, each party indi-

vidually performs record matching, following the steps illustrated

in Algorithm 3. For every item of the Distance Vector �� from

Alice, its distance is calculated against every item of Bob’s �� , as

during the training dataset generation, illustrated in Example 2.

Then, the resulting vector is labeled as matching or non-matching

using the locally trained SVM (line 4). The array of matches "�

is eventually produced (line 7). Finally, that each party delivers to

the other the actual matching data.

4.6 Discussion on Privacy Preservation

Our Split Learning-based method has been designed to operate as-

suming a Honest But Curious setup. In this case, both parties try

to infer as much information as possible adhering to the protocol.

To prove the privacy-preserving characteristics of out method, we

shall consider a series of attack types as described in [21] and dis-

cuss how it performs in such situations.

First, there are Dictionary Attacks, where an adversary attempts

to identify a sensitive value using a publicly available dictionary

and encoding its values so as to match a dataset’s encoded val-

ues. Our method is invulnerable to these attacks since each party

receives from the other an array of distances (or similarities). As

these functions are non-bijective (such a distance or similarity may

be produced by more than one pairs of strings), the calculated dis-

tances between the dictionary entries and the RS cannot uniquely

identify a real record.

Next, there are Frequency Analysis Attacks, where an adversary

uses a public dataset to study its distribution and identify quasi-

identifier attributes. In our case, as the distances vector contains

distances and these functions are non-bijective, there is no relation

between the frequency of a dictionary entry and its distance from

the Reference Set.

In Similarity Attacks, an adversary may exploit the fact that dis-

tributions of similarities between encoded and plain text fields are

maintained. so as to relate plain text values with encoded values.

In our approach, Edit Distances are used, which are not limited by

the bounds of similarity functions. As in previous cases, Edit Dis-

tance features non-bijectivity. On top of that, these distances are

calculated against a custom made RS, unknown to the attacker. As

such, launching a similarity attack is not feasible, as the attacker

does not know either of the strings these distances refer to.

Finally, there are the Linkage and Ciphertext-only Attacks, rely-

ing on linking publicly available information to reveal the quasi-

identifiers. In Ciphertext-only attacks, the adversary analyses ci-

phertexts to recover plain texts. Let us consider the case where

a dataholder tries to perform a brute-force attack. First of all, an

external attacker will not know the Reference Set agreed by the

matching parties. As such, and also considering that Edit Distance

is non-bijective and that the intersection between the RS and the

recordset is empty, even if an attacker manages to create a vector

of distances identical to the recovered one, she has no evidence of

the strings compared that will result in such a vector.

5 EMPIRICAL EVALUATION

To evaluate the performance of our method, we conducted a series

of experiments andmeasured matching quality and execution time.

In this section, we present our results, but first we will describe the

datasets we have used and our experimental setup.

5.1 Experimental Setup and Datasets

For our evaluation we have used Python 3, and scikit-learn1. We

ran our experiments on a Core i5-10600K host with 16GB of main

memory powered by Ubuntu 22.04.

We used recordsets coming from the North Carolina voters data-

base2, having used three samples with 5000, 20000 records and

50000 records each. In each sample, we have used the following

string attributes: ‘last name’, ‘first name’ and ‘middle name’ and

deduplicated the dataset so that these attributes form a candidate

key. Then, we generated two databases. The first one belongs to

Alice, while the second one belongs to Bob. Since we are inter-

ested in linking low quality data, we corrupted Bob’s records us-

ing the German Record Linkage Center’s data corrupter [1], with

the dataset on Bob’s side containing one error per row for the cor-

rupted records, so that a join operationusing these quasi-identifiers

yields an empty result set. As our method features a Reference Set,

we created two such Reference Sets of 200 and 2000 records using

actor names fromWikipedia3. These were built so that no attribute

value from the recordsets is found in the Reference Sets.

Wemeasurematching performance, in terms of correctlymatched

record pairs using Precision and Recall. Precision is defined as the

fraction of the relevant elements among the retrieved elements,

while Recall is defined as the fraction of the retrieved relevant el-

ements divided by the total relevant elements: %A428B8>= =)%
)%+�%

and '420;; =)%
)%+�# . At this point, we have to stress that each

party performs matching individually. As such, matching perfor-

mance varies, depending on the performance of the SVM model

trained locally. To this end, we report Precision and Recall sepa-

rately so as to provide a more detailed view of our method’s per-

formance. We also report time efficiency in terms of testing time.

To have a broader view of ourmethod,we considered two setups

for our SVM classifier. The first setup employs a Linear SVM kernel

with a hyperparameter C=100 at both parties, while the second

one employs an RBF kernel with C=0.01 at both parties. We have

used Edit Distance as a distance function between the Reference

Set and each party’s recordset and Cosine Distance to calculate the

distances between the resulting distance vectors. For each setup,

we have performed three executions and report the average results

for Precision, Recall and matching time. Finally, to be able to have

a basis of comparison, we also compare against a single local SVM

classifier, as described in [3].

5.2 Evaluation of Matching Performance

To evaluate the matching performance and the behavior of our

method, we will consider the size of the Reference Set used and

the size of the Training Set used. We will vary these parameters

1Implementation available at: https://github.com/mikez3/Split-Learning-Privacy-Preserving-Record-Linkage
2https://dl.ncsbe.gov/?prefix=data
3https://en.wikipedia.org/w/index.php?title=Category:20th-century_American_male_actors

https://github.com/mikez3/Split-Learning-Privacy-Preserving-Record-Linkage
https://dl.ncsbe.gov/?prefix=data
https://en.wikipedia.org/w/index.php?title=Category:20th-century_American_male_actors

Towards Split Learning-based Privacy-Preserving Record Linkage Conference’17, July 2017, Washington, DC, USA

5000 20000 50000
Dataset Size

0.86

0.88

0.90

0.92

0.94

0.96

0.98

Pr
ec

isi
on

Linear-1-200
Linear-1-2000
Linear-2-200
Linear-2-2000
Linear-Plain

RBF-1-200
RBF-1-2000
RBF-2-200
RBF-2-2000
RBF-Plain

(a) Method Precision vs. RS size.

5000 20000 50000
Dataset Size

0.90

0.92

0.94

0.96

0.98

1.00

Re
ca

ll

Linear-1-200
Linear-1-2000
Linear-2-200
Linear-2-2000
Linear-Plain

RBF-1-200
RBF-1-2000
RBF-2-200
RBF-2-2000
RBF-Plain

(b) Method Recall vs. RS size.

5000 20000 50000
Dataset Size

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Pr
ec

isi
on

Linear-1-2000
Linear-2-2000
Linear-Plain-2000
RBF-1-2000
RBF-2-2000
RBF-Plain-2000

Linear-1-5000
Linear-2-5000
Linear-Plain-5000
RBF-1-5000
RBF-2-5000
RBF-Plain-5000

(c) Method Precision vs. Training Set size.

5000 20000 50000
Dataset Size

0.90

0.92

0.94

0.96

0.98

1.00

Re
ca

ll

Linear-1-2000
Linear-2-2000
Linear-Plain-2000
RBF-1-2000
RBF-2-2000
RBF-Plain-2000

Linear-1-5000
Linear-2-5000
Linear-Plain-5000
RBF-1-5000
RBF-2-5000
RBF-Plain-5000

(d) Method Recall vs. Training Set size.

Figure 1: Results of the Experimental Evaluation.

and examine how our method behaves with respect to the dataset

sample size used for matching in terms of Precision and Recall.

Impact of Reference Set Size. Let us begin our assessment by vary-

ing the Reference Set size, while using a training dataset equal to

5000 records. The results of this set of experiments are illustrated in

Fig. 1a and 1b. The horizontal axis represents the size of the dataset

we attempted to match, while the vertical axis the respective mea-

sure, i.e. Precision or Recall. We report results both for the Linear

and RBF kernels. For the results of the Split process, we illustrate

results for both Reference Set sizes for each of the matching, des-

ignated by ‘-1-’ for Alice and ‘-2-’ for Bob, while the case of simple

SVM, without privacy characteristics is designated by “Plain”.

We will first present our Precision results (Fig. 1a) starting with

Plain SVM training, with Precision at 0.99 for the 5000 records

datasets, dropping to 0.95 for the 50000 records datasets, indicating

that Precision slightly drops as dataset size increases. Next, for the

case of Split Learning, in all cases, Precision also drops, but faster,

as the size of the matching datasets increases. RS size does not

exhibit significant performance impact. However, there are slight

fluctuations in Precision between Alice and Bob, something which

is anticipated, since each of them has been trained using different

data. This is the reason that Alice and Bob exhibit different perfor-

mances using the Linear or the RBF kernel.

Recall results are illustrated in Fig. 1b. First, we may discern that

all Plain classifiers achieve absolute Recall, without being affected

by matching set sizes. The performance of the Split Learning clas-

sifiers has not been deteriorated, in this case, as opposed to the

case of Precision, when the size of the matching dataset increases.

In this case, there is a drop in performance by approximately 3%

when Linear kernels have been used and up to 6% when RBF ker-

nels are used. For both parties the performance is aligned. On the

other hand, the size of the Reference Set used does not incur any

impact.

Conference’17, July 2017, Washington, DC, USA Zervas and Karakasidis

Impact of Training Set Size. To examine the impact of the Train-

ing Set size on matching performance, we change our setup keep-

ing the RS size fixed to 2000 records, while we vary the size of

the Training Set. Particularly, we consider two training setups, one

with 2000 records and one with 5000 records. The results of this

part of our evaluation for Precision and Recall are illustrated in

Fig. 1c and Fig. 1d respectively. These figures have been set up in

a similar way with Fig. 1a and Fig. 1b.

Starting with Precision, let us consider the case of Plain SVMs,

for the Linear kernel. Precision starts at 0.99 for the 5000 records

datasets, dropping to 0.95, when 50000 records arematched, regard-

less of the Training Set size. The Plain RBF kernel exhibits lower

performance where performance drop is also steepest, with Preci-

sion values starting at 0.98 and dropping to 0.87. For Split Learning,

Precision drops also, as the matching dataset size increases, but in

a steeper manner. However, we may extract some additional useful

conclusions. First of all, we may see that both Split Learning-based

classifiers, ‘-1-’ and ‘-2-’ exhibit similar performance considering

the same kernel and Training Set size. Next, it is easy to discern

that, in terms of Precision, the larger Training Set (dotted lines) of-

fers significantly better performance compared to the smaller one.

This difference is significant, reaching 0.14 of Precision, for the

case of the 50000 matching records. On the other hand, compared

to the case of Plain models, using large Training Sets may deterio-

rate performance only by 10%, which is the price to pay for protect-

ing privacy. When matching smaller recordsets, this difference, in

the case of 5000 records is only 1%. Finally, using a smaller Train-

ing Set causes a more significant drop in performance, illustrated

by a steepest slope in Fig. 1c, as the size of the matching datasets

rise. This leads us to the conclusion that, when larger datasets are

to be matched, larger Training Sets should be employed.

Recall results for this set of experiments are illustrated in Fig.

1d. Starting with the Plain SVM cases again, they achieve absolute

Recall regardless of the kernel used. For Split Learning, the results

are quite interesting, especially when considered in conjunction of

those of Fig. 1c. To begin with, we may discern that Recall is not

affected by the size of data to be matched, regardless the Training

Set size or the kernel used for training. Nevertheless, using smaller

Training Sets, designated by solid lines, results in higher Recall, ap-

proximately 0.98, compared to the cases of using the 5000 records

datasets for training. However, in the latter case, Recall is between

0.96 and 0.99. This means a less than 4% drop compared to the ideal

case. Considering, now, the results for Precision as well, it is evi-

dent that using larger Training Sets results in high Precision at a

very small cost of Recall, being a fair trade-off. To sum up, we have

illustrated that at an expense of 10% in Precision and less than 2% in

Recall, we have managed to provide privacy when matching 50000

records datasets. For smaller datasets (i.e. 5000 records), Precision

may only drop by 0.01.

5.3 Evaluation of Time Performance

Having seen how Split Learning-based Privacy-Preserving Match-

ing behaves in terms of Precision and Recall, it would be interesting

to see how much time these methods require to match data. First,

of all, matching time is not affected by the size of the Reference Set

used. To this end, we will report times for the cases we have used

5000 20000 50000
Dataset Size

0

500

1000

1500

2000

M
at
ch

in
g
Ti
m
e

Linear-1
Linear-2
Linear-Plain

RBF-1
RBF-2
RBF-Plain

Figure 2: Matching times comparison.

a Reference Set of 5000 records, with the cases of 2000 records ex-

hibiting minimal fluctuations. These results are illustrated in Fig.

2, with the horizontal axis representing the size of the dataset to

be matched, while the vertical one stands for time in seconds.

Startingwith Linear SVMs, for each of the two parties 8.6 and 6.7

secs are required, on average, to match 5000 records, respectively.

For 20000 records, these times are 115.8 and 104.2 secs, while for

50000 records, 739.9 and 663.6 secs elapsed respectively. For the

Plain SVM, these times are 2.4, 31.5 and 191.4 secs. It is evident

that to offer privacy, almost four times the time of the Plain Linear

SVM classifier is required. For the case of RBF SVMs, somewhat

more time is needed to conclude the matching process. For 5000

records, 23 and 20 secs elapsed at each party on average. For 20000

records, 347.9 and 323.2 secs were required and, finally, matching

50000 records requires 2244.5 and 2107.6 seconds on average. For

the Plain SVM classifier, these times are 19.5, 300.3 and 1864.1 secs,

respectively.

6 CONCLUSIONS & FUTUREWORK

In this paper, a Split Learning-based Privacy-Preserving Record

Matching using Support Vector machines and synthetic training

data generation was presented. Its key characteristics are that it

does not require a Linkage Unit, no data interchange takes place

between data holders and that a small performance overhead is in-

curred, compared to the use of SVMs for plain text record linkage.

Our future work is focused on improving the synthetic training set

generation so as to further elevate matching results and to also ap-

ply differential privacy-based noise at the smashed-data, so as to

also provide formal statistical privacy guarantees.

REFERENCES
[1] T. Bachteler and J. Reiher. 2012. A Test Data Generator for Evaluating Record

Linkage Methods. Technical Report. German RLCWork. Paper No. wp-grlc-2012-
01.

[2] Feng Chen, Xiaoqian Jiang, Shuang Wang, Lisa M. Schilling, Daniella Meeker,
Toan Ong, Michael E. Matheny, Jason N. Doctor, Lucila Ohno-Machado, and
Jaideep Vaidya. 2018. Perfectly Secure and Efficient Two-Party Electronic-
Health-Record Linkage. IEEE Internet Comput. 22, 2 (2018), 32–41.

[3] Peter Christen. 2008. Automatic record linkage using seeded nearest neigh-
bour and support vector machine classification. In Proceedings of the 14th ACM
SIGKDD international conference on Knowledge discovery and data mining. 151–
159.

[4] Peter Christen. 2012. Data Matching - Concepts and Techniques for Record Link-
age, Entity Resolution, and Duplicate Detection. Springer.

Towards Split Learning-based Privacy-Preserving Record Linkage Conference’17, July 2017, Washington, DC, USA

[5] Peter Christen, Thilina Ranbaduge, and Rainer Schnell. 2020. Linking Sensitive
Data - Methods and Techniques for Practical Privacy-Preserving Information Shar-
ing. Springer.

[6] Aleksander Essex. 2019. Secure Approximate String Matching for Privacy-
Preserving Record Linkage. IEEE Transactions on Information Forensics and Se-
curity 14, 10 (2019), 2623–2632.

[7] Martin Franke, Ziad Sehili, Florens Rohde, and Erhard Rahm. 2021. Evaluation
of Hardening Techniques for Privacy-Preserving Record Linkage.. In 24th In-
ternational Conference on Extending Database Technology. OpenProceedings.org,
289–300.

[8] Aris Gkoulalas-Divanis, Dinusha Vatsalan, Dimitrios Karapiperis, and Murat
Kantarcioglu. 2021. Modern Privacy-PreservingRecord Linkage Techniques: An
Overview. IEEE Transactions on Information Forensics and Security 16 (2021),
4966–4987.

[9] Otkrist Gupta and Ramesh Raskar. 2018. Distributed learning of deep neural
network over multiple agents. Journal of Network and Computer Applications
116 (2018), 1–8.

[10] Huahang Li, Longyu Feng, Shuangyin Li, Fei Hao, Chen Jason Zhang, Yuanfeng
Song, and Lei Chen. 2024. On leveraging large language models for enhancing
entity resolution. arXiv preprint arXiv:2401.03426 (2024).

[11] Xhino Mullaymeri and Alexandros Karakasidis. 2021. Using Fuzzy Vaults for Pri-
vacy Preserving Record Linkage. In The 23rd International Workshop on Design,
Optimization, Languages and Analytical Processing of Big Data (CEUR Workshop
Proceedings, Vol. 2840). CEUR-WS.org, 101–110.

[12] Chaoyi Pang, Lifang Gu, David Hansen, and Anthony Maeder. [n. d.]. Privacy-
preserving fuzzy matching using a public reference table. In Intelligent Patient
Management. Springer, 71–89.

[13] Thilina Ranbaduge, Peter Christen, and Rainer Schnell. 2020. Secure and Ac-
curate Two-Step Hash Encoding for Privacy-Preserving Record Linkage. In Ad-
vances in Knowledge Discovery and Data Mining - 24th Pacific-Asia Conference
(Lecture Notes in Computer Science, Vol. 12085). Springer, 139–151.

[14] Thilina Ranbaduge, Dinusha Vatsalan, and Ming Ding. 2023. Privacy-preserving
deep learning based record linkage. IEEE Transactions on Knowledge and Data
Engineering (2023).

[15] Fang-Yu Rao, Jianneng Cao, Elisa Bertino, andMurat Kantarcioglu. 2019. Hybrid
Private Record Linkage: Separating Differentially Private Synopses fromMatch-
ing Records. ACM Transactions on Privacy and Security 22, 3 (2019), 15:1–15:36.

[16] Ahsan Saleem, Abid Khan, Furqan Shahid, Masoom Alam, and Muham-
mad Khurram Khan. 2018. Recent advancements in garbled computing: How
far have we come towards achieving secure, efficient and reusable garbled cir-
cuits. Journal of Network and Computer Applications 108 (2018), 1–19.

[17] Rainer Schnell, Tobias Bachteler, and Jörg Reiher. 2009. Privacy-preserving
record linkage using Bloom filters. BMC Medical Informatics and Decision Mak-
ing 9 (2009), 41.

[18] Bernhard Schölkopf and Alexander J Smola. 2002. Learning with kernels: support
vector machines, regularization, optimization, and beyond. MIT press.

[19] Duncan Smith. 2017. Secure pseudonymisation for privacy-preserving proba-
bilistic record linkage. Journal of Information Security and Applications 34 (2017),
271–279.

[20] Vladimir Vapnik. 1999. The nature of statistical learning theory. Springer science
& business media.

[21] Anushka Vidanage, Thilina Ranbaduge, Peter Christen, and Rainer Schnell. 2022.
A Taxonomy of Attacks on Privacy-Preserving Record Linkage. Journal of Pri-
vacy and Confidentiality 12, 1 (2022).

	Abstract
	1 Introduction
	2 Related Work
	3 Prerequisites
	3.1 Problem Formulation
	3.2 Support Vector Machines

	4 Methodology
	4.1 Overview
	4.2 A Split Learning-based Protocol
	4.3 Reference Set & Data Mapping
	4.4 Synthetic Data Generation for Split Training
	4.5 Split Data Matching
	4.6 Discussion on Privacy Preservation

	5 Empirical Evaluation
	5.1 Experimental Setup and Datasets
	5.2 Evaluation of Matching Performance
	5.3 Evaluation of Time Performance

	6 Conclusions & Future Work
	References

