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ABSTRACT

Monitoring the training of neural networks via scalar curves often obscures early,
subtle indicators of failure within the high-dimensional, nonconvex optimization
process. This paper presents a pioneering framework that reconceptualizes neu-
ral network training as a high-dimensional spatiotemporal signal. By employing
masked autoencoding on internal activations and gradients, a vision-based diag-
nostician is pretrained to perform open-set classification of training failures in
real time, adhering to strict causal constraints. This approach achieves earlier
and more reliable detection than conventional scalar-curve or generic video-based
baselines across a diverse range of unseen models, datasets, and optimizers. Con-
cretely, synchronized sequences of layer activations and gradients are rendered
into internal-state videos. A Dynamics Masked Autoencoder (DYNAMICS-MAE)
learns domain-specific representations of these dynamics, and a Temporal Vision
Diagnostician (TEVID) equipped with an evidential learning head maps these
video clips to a taxonomy of actionable diagnostic labels (e.g., overfitting, instabil-
ity, catastrophic forgetting, concept bias). The model is designed to abstain from
prediction under significant distribution shifts by classifying inputs as Unknown.
The evaluation protocol is tailored for practical monitoring, emphasizing metrics
such as time-to-detect, event-time area under the precision-recall curve, and risk-
coverage analysis, complemented by a decision-theoretic utility measure. On over
500 held-out training runs that span unseen architectures, datasets, and optimizers
(including anomaly types withheld during training), the proposed method attains
an event-time area under the precision-recall curve of 0.96 ± 0.01 and triggers
alerts a median of 6.2 epochs earlier than rule-based systems at a consistent 5%
false-alarm rate. These results suggest a new class of Machine Learning Opera-
tions (MLOps) tools capable of perceiving the training process through its internal
dynamics, paving the way for self-diagnosing and ultimately self-healing training
systems.

1 INTRODUCTION

The training of deep neural network models is a notoriously complex, chaotic, and high-dimensional
optimization process, frequently punctuated by a variety of failure modes that can stall research or
production projects for days or even weeks. In industrial and large-scale academic settings, where
models are trained on massive datasets using distributed clusters of accelerators, the cost of a single
failed multi-week training run can be immense. These costs are multifaceted, encompassing direct
compute expenditure, which can amount to tens of thousands of dollars for foundational models; the
opportunity cost of delayed projects, which can impact quarterly business goals; and the significant
allocation of highly skilled engineering hours to laborious, manual debugging - a process often
characterized as more art than science. While Machine Learning Operations (MLOps) has made
significant strides in automating deployment, monitoring, and data pipelines (Berberi et al., 2025),
the core diagnostic process - understanding why a model is failing to train - remains a largely manual,
heuristic-driven, and often frustrating endeavor. This gap represents a critical disconnect between
post-deployment monitoring and pre-deployment introspection. Practitioners typically rely on low-
dimensional, scalar metrics, such as a plateauing validation loss or a fluctuating training loss, to
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signal a problem. However, these metrics are analogous to a single thermometer reading for a
complex biological system; they provide extremely limited context, can lag significantly behind the
actual onset of an issue, and are often insufficient to distinguish between different root causes. For
instance, is a fluctuating validation loss caused by an excessively high learning rate, the onset of
severe overfitting, a silent data-loading bottleneck, or periodic hardware failures? Scalar metrics
alone cannot provide a definitive answer. Recent work attempting to classify failures from loss
history still faces this fundamental information bottleneck (Miseta et al., 2024), forcing practitioners
into a reactive cycle of ad-hoc experimentation and guesswork - a process that is neither scalable
nor robust to human error.

This paper introduces a new paradigm: treating the dynamic internal state of a training network
as a rich, spatio-temporal signal ripe for automated analysis. The central posit is that a special-
ized vision transformer, when exposed to “movies” constructed from sequences of a network’s ac-
tivations and gradients, can learn the latent features that characterize a network’s training health.
This is analogous to moving from a single electrocardiogram (EKG) lead, which captures aggregate
electrical activity, to a full functional magnetic resonance imaging (MRI) scan, which provides a
high-resolution, spatio-temporal view of brain activity to diagnose a neurological condition. Such a
model can furnish a timely, semantically grounded diagnosis that goes beyond simple anomaly de-
tection to classify the type of failure. The core hypothesis is that the high-dimensional trajectory of a
network’s internal representations through its parameter space contains the necessary information to
not only detect but also classify training pathologies long before they become manifest in aggregate
scalar statistics.

To achieve this, this work makes several key contributions. First, it defines a novel framework for
causal, open-set streaming diagnosis of neural network training, supported by a rigorous evaluation
protocol based on time-to-detect, event-time Area Under the Precision-Recall Curve (Event-Time
AUPRC), risk-coverage analysis, and a decision-theoretic utility metric. Second, to learn gener-
alizable representations of these dynamics, a domain-specific self-supervised pre-training strategy,
DYNAMICS-MAE, is introduced to reconstruct heavily masked internal-state videos, significantly
boosting data efficiency and generalization. Third, an extensive, curated dataset of training dy-
namics from a diverse range of architectures, datasets, and optimizers has been created and will be
released, providing a robust benchmark for this new task. The main contribution, TEVID, exploits
this pre-trained model and an evidential deep learning head to provide reliable, real-time diagnoses.
Through comprehensive benchmarking and rigorous ablation studies, it is demonstrated that this ap-
proach significantly outperforms baselines, generalizing effectively to unseen architectures, datasets,
optimizers, and even entirely novel anomaly types.

The paper is structured as follows. Section 2 begins by situating this work within the existing
literature. The task of causal streaming diagnosis is then formalized, and the theoretical motivation
for the proposed framework is provided in Section 3. The methodology, from data generation to the
TEVID architecture, is detailed in Section 4. A rigorous set of experiments in Section 5 validates
the approach, demonstrating its superior performance and generalization capabilities. The paper
concludes in Section 6 with a discussion of the findings, their implications, and promising avenues
for future work.

2 RELATED WORK

This research synthesizes insights from several distinct domains, including time-series monitoring,
video representation learning, uncertainty quantification, and MLOps. Traditional approaches to
training monitoring have largely focused on scalar telemetry, such as loss curves. Recent efforts
have applied modern time-series models to this data to detect anomalies like overfitting or insta-
bility (Miseta et al., 2024). It is argued, however, that these methods are inherently limited by the
information bottleneck of projecting the high-dimensional state of a network onto a single scalar.
The proposed methodology circumvents this limitation by treating the sequences of internal states
(activations and gradients) directly as a rich, video-like signal. This reframing connects the ap-
proach to the field of video understanding, where models like TimeSformer (Bertasius et al., 2021)
and masked autoencoders such as VideoMAE (Wang et al., 2023; Pei et al., 2024; Gundavarapu
et al., 2024; Yang et al., 2024a) have demonstrated powerful capabilities in learning spatio-temporal
representations. A crucial distinction of the present work is the development of a domain-specific
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pre-training strategy, DYNAMICS-MAE, tailored to learn the intrinsic grammar of optimization dy-
namics, rather than the priors of natural scenes. This aligns with a broader trend in self-supervised
learning where domain-specific pre-training on scientific or specialized data consistently outper-
forms generic pre-training from other domains (Zhang et al., 2024; Gui et al., 2024), a finding
strongly supported by the conducted ablation studies.

Recognizing that novel failure modes are inevitable in real-world applications, the task is framed as
open-set, streaming diagnosis (Yang et al., 2024b). To enable a robust “Unknown/Abstain” option,
the system incorporates an evidential deep learning (EDL) head (Ulmer et al., 2023). EDL provides a
principled way to quantify model uncertainty, allowing the system to identify out-of-distribution in-
puts corresponding to unseen anomalies. This area has seen significant recent progress and has been
systematically surveyed (Ulmer et al., 2023; Shen et al., 2024). This approach connects the system to
the broader field of selective classification, where models can defer prediction when uncertain. This
is a paradigm for which rigorous evaluation via risk-coverage analysis has become standard practice
(Fisch et al., 2022; Traub et al., 2024; Goren et al., 2024). While conformal prediction offers a
complementary, distribution-free method for achieving formal guarantees on performance and risk
control (Bates et al., 2021; Angelopoulos et al., 2024; Zecchin & Simeone, 2024; Xu et al., 2024),
risk-coverage curves are adopted for their intuitive and powerful evaluation of open-set performance
in this context.

Finally, this work seats within the broader context of instrumenting and understanding neural net-
work internals. The high-dimensional data captured provides a view into the optimization process
that is deeply informed by dynamical systems theory. The ground-truth labeling, for instance, uses
proxies for stability such as local Lyapunov estimates and Hessian curvature, concepts that are in-
creasingly used to analyze training dynamics and model robustness (Storm et al., 2024). The efficient
computation of these quantities often relies on techniques like Hessian-vector products (Pearlmut-
ter, 1994; Miani et al., 2024), and tools like Centered Kernel Alignment (CKA) help interpret the
learned dynamics (Zhou et al., 2024). However, this deep instrumentation raises significant pri-
vacy concerns, as raw gradients can be vulnerable to inversion and membership inference attacks
(Dimitrov et al., 2024; Liu et al., 2023; Wu et al., 2024). These risks are acknowledged, and it
is demonstrated that a differentially private capture mechanism is a viable mitigation. Within the
MLOps ecosystem (Berberi et al., 2025), the proposed system serves as an automated, real-time
diagnostic tool, complementing static analysis and debugging tools like those proposed by Berberi
et al. (2025) by offering continuous, semantic insight throughout the training process itself. In sum-
mary, this work is unique in its end-to-end, causal streaming framework that models internal states
as spatio-temporal signals, leverages domain-specific pre-training, and integrates a selective head to
handle open-set failures under real-time constraints.

3 PROBLEM FORMULATION AND THEORETICAL MOTIVATION

3.1 CAUSAL STREAMING DIAGNOSIS

The task is formalized as streaming diagnosis. At any given training step t, the diagnostic model’s
input is a causal window of internal states Xt−W :t = {Xt, Xt−1, . . . , Xt−W }, where each Xi is
a multi-modal observation of the network’s internal state (e.g., a tuple of activation and gradient
tensors sampled from selected layers). The model’s output is a calibrated probability distribution
p(ŷt|Xt−W :t) over a discrete set of diagnostic labels Y = {Healthy, Overfitting, Instability, ...}.
Critically, to ensure robustness in real-world, open-set environments where novel failure modes are
common, the label set Y must include not only known anomaly classes but also an essential “Un-
known Anomaly” or “Abstain” option. This is a central challenge in the field of open-set recognition
(Wang et al., 2024). This challenge is managed through an evidential deep learning framework (Ul-
mer et al., 2023), which allows the model to quantify its own uncertainty and explicitly flag novel
failure modes it was not trained to recognize, aligning with recent advances and comprehensive
surveys in the field (Ulmer et al., 2023; Shen et al., 2024).

A foundational principle of this framework is the strict separation of concerns: the diagnostic model
must operate using only training-time signals. It is rigorously prohibited from accessing any valida-
tion targets, test set data, or future information during diagnosis to avoid information leakage and
ensure its real-world applicability. This is a critical constraint for detecting phenomena like overfit-
ting, which are formally defined by deteriorating validation performance but must be predicted from
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the dynamics of the training run alone. The ground-truth labels for training the diagnostician are de-
termined ex post facto using privileged validation data, but the model itself operates under the same
informational constraints as a practitioner monitoring a live training job. This causal constraint is
the core of the problem’s difficulty and practical relevance. Table 1 provides an auditable summary
of this crucial causal constraint. The high-level intuition for the labeling of each anomaly class is
as follows: overfitting is characterized by a diverging validation loss while training loss improves,
and instability is marked by chaotic local divergence or repeated loss spikes. Detailed, statistically
rigorous definitions are provided in Appendix A.

Table 1: Data-Access Protocol for Causal Integrity. This table provides details on the information
available to the system at different stages, ensuring no leakage from future or privileged data sources
during inference.

Signal Capture Cadence Availability Usage

Layer Activations Every 50 training steps Training Time TEVID Train & Inference
Layer Gradients Every 50 training steps Training Time TEVID Train & Inference
Scalar Train Loss Every training step Training Time Baseline Models, Labeling

Heuristics
Validation Metrics Every epoch Post-Epoch Ground-Truth Labeling & Fi-

nal Evaluation ONLY
Optimizer State Every training step Post-Hoc (Labeling only) Privileged input for ground-truth

labeling of instability (see Ap-
pendix A), not available to
TEVID.

Hyperparameters Static per run Pre-Run Baseline Models, Metadata

3.2 AN INFORMATION-THEORETIC RATIONALE

The central hypothesis of this work can be justified from an information-theoretic and statistical
sufficiency perspective. A core assumption is that the sequence of high-dimensional internal states
provides a more statistically sufficient signal for diagnosis than any low-dimensional projection of
it, such as the scalar loss.

Information Asymmetry Rationale. Let y ∈ Y be the true diagnostic label for a training run,
treated as a random variable. LetXt = g(Θt, Dt) be the observed internal state (a tuple of activation
and gradient tensors) at step t, for parameters Θt and mini-batch Dt. The scalar loss lt is a function
of this internal state and the data, lt = h(Xt, Dt). Assumptions: (i) The mapping h from the high-
dimensional state Xt to the scalar loss lt is a highly compressive, approximately deterministic func-
tion. (ii) The underlying diagnostic state y influences the sequence of internal states, which in turn
determines the sequence of losses. This establishes a Markov chain: y → {Xt−W :t} → {lt−W :t}.
By the Data Processing Inequality (DPI), it follows directly that no post-processing of a signal can
increase the information it contains about a source variable. This provides a formal theoretical guar-
antee that the mutual information between the diagnostic label and the observed signals is ordered:
I(y; {Xt−W :t}) ≥ I(y; {lt−W :t}). The proposed framework is explicitly designed to exploit this
information gap by learning a diagnostic function directly from the richer, more informative sig-
nal. The core premise is that this inequality is not just non-strict but represents a substantial gap in
practice.

Empirical Validation of Sufficiency. The DPI provides a theoretical upper bound, but does this
information gap exist and is it substantial in practice? It is argued more strongly that the internal-
state “channel” is empirically a more sufficient statistic for the diagnostic task than the scalar-loss
“channel”. This hypothesis is tested by framing it as a regressibility check. Two simple probing
models are trained: one to predict the scalar loss lt from the corresponding flattened internal state
Xt, and another to predict a flattened representation of Xt from a historical window of scalar losses
{lt−W :t}. As detailed in Section 5.4, predicting the loss from the state is a nearly deterministic task
(mean R2 > 0.95), indicating that the loss is a simple projection of the state. In stark contrast,
predicting the state from the loss is effectively impossible (mean R2 < 0.05). This profound one-
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way flow of information empirically demonstrates that Xt contains rich structural information that
is collapsed and irrevocably lost in the scalar projection lt.

4 METHODOLOGY

The proposed methodology is a multi-phase process designed for rigor and scalability: (1) a Data
Factory to systematically generate a high-quality, diverse dataset of training dynamics; (2) a self-
supervised pre-training phase to learn general dynamics representations from unlabeled data; and
(3) a supervised fine-tuning and evaluation phase for the TEVID diagnostician. The entire pipeline
is illustrated in Figure 1.

Figure 1: Overview of the proposed methodology. (a) Phase 1: A data factory systematically gen-
erates diverse training runs and converts their internal states into a standardized video format. (b)
Phase 2: A masked autoencoder, DYNAMICS-MAE, learns general representations of optimization
dynamics from unlabeled videos through a reconstruction task. (c) Phase 3: The pre-trained encoder
is subsequently fine-tuned within the TEVID architecture, which utilizes an evidential head to pro-
duce a semantic diagnosis and a corresponding uncertainty score for robust open-set detection.

4.1 PHASE 1: THE DATA FACTORY

The foundation of this work is a flexible data generation pipeline constructed to systematically cre-
ate a large and diverse dataset of both “healthy” and “anomalous” training runs. The goal was to
move beyond common benchmarks to ensure robustness across a wide factorial of conditions. The
final dataset composition, summarized in Table 2, spans multiple architectural paradigms (CNNs,
Transformers, MLP-Mixers), datasets of varying scale and modality (vision and text), and distinct
optimizer families. Anomalies were both systematically induced (e.g., by setting extreme learning
rates, corrupting labels and simulating data stalls) and captured from naturally occurring failures
during exploratory experiments. This diversity is crucial for training a diagnostician that learns fun-
damental patterns of failure rather than spurious correlations tied to a specific setup. A complete,
granular breakdown of run counts and dataset characteristics is provided in Appendix B.

To create a uniform “video frame” structure from the network’s internals, a consistent layer hooking
and preprocessing policy is employed. Outputs are captured from module blocks at early, middle,
and late stages of the network, along with their corresponding gradients. These multi-channel,
variably-sized tensors are then transformed via dimensionality reduction and resizing into a fixed-
size, 6-channel image format. This “video-ization” pipeline is a critical component, translating
the abstract concept of network state into a format amenable to modern vision architectures. Full
details of this process, including precise hook locations for each architecture family, are provided in
Appendix B.
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Table 2: Summary of architectures, datasets and optimizers considered in this study. The test set
features a full factorial design with completely disjoint architectures, datasets, and optimizers to
rigorously test generalization capabilities.

Split Architectures Datasets Optimizers

Train/Val ResNet-18/34, EffNet-B4,
ConvNeXt-T, Swin-V2-S,
AlexNet, ViT-B/16, DeiT-S

CIFAR-100, Tiny-ImageNet AdamW, SGD

Held-Out Test ConvNeXt-V2-T, RegNetY-4GF,
MaxViT-T, MobileNetV3-L,
MLP-Mixer-B, DenseNet-121,
MViT-Small, Transformer-LM

SVHN, ImageNet-100, WikiText-
2

Lion, Adafactor

4.2 PHASE 2: SELF-SUPERVISED PRE-TRAINING WITH DYNAMICS-MAE

To learn general representations of training dynamics without relying on expensive, hand-crafted
labels, DYNAMICS-MAE is introduced - a self-supervised pre-training strategy inspired by Video-
MAE (Wang et al., 2023). A large corpus of unlabeled training “movies” is collected from a wide
variety of runs. For each movie clip, a high-ratio (90%) tube masking strategy is applied, which
removes the vast majority of spatio-temporal patches. This forces the model to move beyond sim-
ple spatial interpolation and learn the deeper temporal regularities of the optimization process. For
instance, to reconstruct a masked patch representing gradients in a late layer, the model must infer
the information flow from previous layers and earlier time steps, effectively learning the grammar
of backpropagation dynamics. A Vision Transformer-based encoder-decoder model is then trained
to reconstruct the original masked patches from the visible context. This pretext task compels the
encoder to learn the fundamental spatio-temporal correlations and structures inherent to the evolu-
tion of activations and gradients during optimization. The resulting pretrained encoder serves as a
powerful initialization for the downstream diagnostic task, significantly boosting performance and
data efficiency, as detailed in the ablations in Appendix C.

4.3 PHASE 3: SUPERVISED FINE-TUNING OF TEVID

The pre-trained encoder from DYNAMICS-MAE is used to initialize the core of the diagnostic
model, which is then fine-tuned on the labeled dataset.

The TEVID Architecture. TEVID is based on a factorized Vision Transformer architecture, sim-
ilar to TimeSformer (Bertasius et al., 2021), for computational efficiency. It processes input “clips”
of 10 frames, where each frame is a 6-channel composite of activations and gradients. The model
employs factorized self-attention: spatial self-attention is applied within each time step indepen-
dently, followed by temporal self-attention across corresponding patches from all time steps. This
significantly reduces computational complexity compared to full spatio-temporal attention, making
it feasible for real-time monitoring. The final output representation from the model’s ‘[CLS]‘ to-
ken is then passed to a specialized classification head designed for open-set recognition. A detailed
breakdown of the GFLOPs computation is provided in Appendix K.

Open-Set Recognition Head. To handle novel anomalies not seen during training, the standard
softmax classification head is replaced with an evidential deep learning (EDL) layer based on the
Dirichlet distribution (Ulmer et al., 2023). This head outputs not just a prediction but also a measure
of its own uncertainty. Inferences with high uncertainty are flagged as ‘Unknown‘, allowing the sys-
tem to gracefully handle unexpected failure modes. The model is trained to produce high evidence
for the correct class while remaining uncertain about incorrect classes. The uncertainty threshold
is calibrated on the validation set, and the full, rigorous mathematical formulation, including the
complete loss function with all necessary terms, is provided in Appendix D.

Streaming Inference and Evaluation. For evaluation, a strict causal streaming protocol is used.
Predictions are made using a sliding window with no look-ahead. A diagnostic alert is triggered
when a specific anomaly class’s probability exceeds a decision threshold for several consecutive
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predictions, reducing spurious alerts. The system is evaluated using a suite of appropriate metrics,
including Time-to-Detect (TTD), event-time Area Under the Precision-Recall Curve (Event-Time
AUPRC), risk-coverage curves for open-set analysis, and a decision-theoretic utility score. Formal
definitions for all metrics are available in Appendix E.

5 EXPERIMENTS AND RESULTS

All models were trained using PyTorch 2.4 on NVIDIA A100 and RTX 4090 GPUs. All reported
confidence intervals are 95% Bias-Corrected and Accelerated (BCa) bootstrap intervals based on
2,000 replicates, ensuring statistical robustness. The bootstrap resampling unit is the entire training
run, not individual timesteps, to properly account for temporal dependencies. Full experimental and
training details are provided in Appendix F.

5.1 BASELINE COMPARISONS

TEVID is compared against a comprehensive suite of baselines on the held-out test set, which
comprises 501 distinct runs. These baselines range from classical statistical process control meth-
ods (BOCPD, CUSUM) applied to scalar curves, to modern deep learning models for time-series
(TCN), to strong, general-purpose video classification architectures. A novel “Hessian Forecaster”
baseline is also included, which attempts to predict failures from a more informative scalar signal
- an estimate of the top Hessian eigenvalue - to test if a “smarter” scalar is sufficient. The re-
sults presented in Table 3 demonstrate that TEVID, benefiting from self-supervised pre-training on
high-dimensional dynamics, quantitatively and significantly outperforms all other methods. On a
threshold-independent basis, TEVID achieves a superior Event-Time AUPRC of 0.96±0.01. When
operating at a fixed 5% False Alert Rate (FAR), it detects anomalies a median of 6.2 epochs ear-
lier than the rule-based ground truth, a significant lead over the next-best video baseline. The stark
failure of all scalar models, which are blind to the high-frequency, multi-scale patterns in inter-
nal states, confirms the initial information-theoretic hypothesis: one-dimensional projections of the
system state are information-poor and insufficient for robust, semantic diagnosis.

Table 3: Comparison with baselines on the held-out test set (N = 501 runs). TEVID achieves supe-
rior diagnostic capability across all metrics. Intervals are 95% BCa bootstrap CIs. “(+ DYNAMICS-
MAE)” indicates the proposed self-supervised pre-training.

Input Type Model Macro F1 (Known) Event-Time AUPRC Med. Lead (Epochs) GFLOPs

Scalar Telemetry

BOCPD N/A 0.45 ± 0.04 -1.5 (lags) –
CUSUM (residuals) N/A 0.49 ± 0.04 -1.1 (lags) –
Curve-TCN 0.56 ± 0.04 0.61 ± 0.03 -1.2 (lags) 0.5
Hessian Forecaster (TCN) 0.59 ± 0.03 0.64 ± 0.03 1.9 1.1

Internal States

R(2+1)D 0.78 ± 0.02 0.82 ± 0.02 3.5 64.2
Video-Swin-T 0.81 ± 0.02 0.88 ± 0.01 4.1 54.8
TEVID (scratch) 0.84 ± 0.02 0.91 ± 0.01 4.8 16.5
TEVID (+ DYNAMICS-MAE) 0.90 ± 0.01 0.96 ± 0.01 6.2 16.5

Macro F1 excludes Healthy. Lead time at 5% FAR; positive = earlier detection.

5.2 GENERALIZATION TO UNSEEN ARCHITECTURES, DATASETS, AND OPTIMIZERS

The true test of TEVID is its ability to generalize to scenarios fundamentally different from its train-
ing distribution. The factorial-design test set was constructed specifically for this purpose. As shown
in Table 4, the model maintains remarkably high performance across different architectural families
(ConvNets, Vision Transformers, MLP-Mixers) and when diagnosing runs that use entirely new op-
timizers (Lion, Adafactor), which induce qualitatively different optimization dynamics. The slight
performance dip on the Transformer-LM for the WikiText-2 dataset is expected, given the modality
shift, yet the performance remains strong, indicating a high degree of generalization. This robust
performance strongly suggests that the model has learned abstract, portable signatures of training
pathologies - the fundamental geometric and statistical patterns of failure - rather than memorizing
superficial patterns specific to its training distribution.
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Table 4: Generalization to unseen scenarios. Event-Time AUPRC remains high across architecture
families, datasets, and optimizers.

Factor Scenario Event-Time AUPRC Median Lead (Epochs)

Architecture
ConvNet family (ConvNeXtV2, RegNet) 0.97 ± 0.01 6.4 ± 0.3

ViT family (MaxViT, MViT) 0.96 ± 0.01 6.1 ± 0.4

Language model (Transformer-LM) 0.92 ± 0.02 5.5 ± 0.6

Optimizer
Lion 0.95 ± 0.01 6.0 ± 0.4

Adafactor 0.94 ± 0.02 5.8 ± 0.5

5.3 ANALYSIS OF MODEL CAPABILITIES

A series of analytical experiments were performed to dissect the sources of TEVID’s performance
and verify its behavior.

Domain-Specific Pre-training is Crucial. Ablation studies, detailed in Appendix C, confirm that
the domain-specific DYNAMICS-MAE pre-training is a key contributor to performance. It signif-
icantly outperforms training from scratch, pre-training on scalar time-series, and even pre-training
with a powerful VideoMAE model trained on natural videos (Kinetics-400). This demonstrates that
learning the intrinsic structure of optimization trajectories is more effective than transferring generic,
natural-world spatio-temporal priors.

Robustness and Causal Integrity. The model’s predictions degrade gracefully under data pertur-
bations like quantization and random frame dropping. Further tests confirm that the model critically
relies on the precise temporal synchronization between activation and gradient signals and is not
using simple statistical shortcuts. Most importantly, a causal integrity check shows that TEVID can
predict failures more than two epochs before the rule-based system can even begin to gather evi-
dence, confirming it has learned true leading indicators. A full breakdown of these robustness and
causality tests is in Appendix G.

Open-Set Performance and Interpretability. On a test set containing five entirely novel anomaly
types, the evidential head successfully identified them as ’Unknown’ with an AUROC of 0.89. At
its calibrated uncertainty threshold of u > 0.35, TEVID abstains on 20% of test set inputs, which
allows it to reduce the error rate on known classes from a baseline of 10% down to 4.5%. Further-
more, interpretability analysis using Centered Kernel Alignment (CKA) reveals that TEVID learns
abstract, architecture-agnostic signatures for failure modes. The representation for “Overfitting” in a
ConvNet is shown to be highly similar to that in a Transformer, suggesting a deep, conceptual under-
standing. Full results, including a confusion matrix for novel anomalies, are presented in Appendix
H.

5.4 EMPIRICAL VALIDATION OF INFORMATION ASYMMETRY

To empirically support the theoretical argument from Section 3.2, the proposed regressibility check
was conducted. An MLP regressor trained to predict the scalar training loss lt from a flattened
internal state representation Xt achieved a near-perfect R2 of 0.96± 0.02. Conversely, a more pow-
erful TCN model trained to predict the state from a history of scalar losses performed very poorly,
achieving an R2 of just 0.04± 0.01. This stark asymmetry provides strong empirical evidence that
the internal states are a far more sufficient statistic for diagnosis and contain a wealth of information
that is discarded when projecting down to the loss curve alone. Details on the probe architectures
are located in Appendix F.

6 DISCUSSION, LIMITATIONS, AND FUTURE WORK

This paper has designed, implemented, and validated an end-to-end framework for the semantic di-
agnosis of neural network training. By treating internal dynamics as a video signal and leveraging
domain-specific self-supervised pre-training, the model, TEVID, can accurately identify a taxon-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

omy of complex training anomalies in real-time. Crucially, it generalizes robustly across unseen
architectures, datasets, and optimizers, demonstrating that it has learned fundamental principles of
optimization pathologies. Under a plausible decision-theoretic cost model, TEVID’s policy was
shown to minimize expected operational cost, confirming its practical utility (see Appendix I for full
analysis).

Limitations. The primary limitation remains the predefined taxonomy of faults. While the eviden-
tial learning head allows the model to abstain on novel anomalies, a more sophisticated open-world
recognition or few-shot anomaly classification framework is a key area for future work. Addition-
ally, the data capture process incurs a non-trivial overhead in computation and storage. While it
was found that adaptive sampling can mitigate this, further optimization is needed for extremely
large-scale models. A full scalability analysis is presented in Appendix K.

Future Directions. The logical extension of this research is to move from passive diagnosis to
active intervention, creating a closed-loop, self-healing system. A potential avenue for future work
involves framing this as a reinforcement learning problem where TEVID’s diagnosis (the state)
informs a policy network that can take corrective actions (the action space), such as adjusting hy-
perparameters like learning rate or weight decay in real time. The reward function would be a
combination of final model performance and computational cost. Another promising direction is
developing hyper-conditioned adapters (e.g., LoRA or HyperNetworks) to enable rapid, few-shot
adaptation of TEVID to entirely new architectural families with minimal labeled data. Finally, en-
riching the input representation with other efficiently computable signals, such as estimates of the
loss landscape’s spectral properties derived from low-rank Hessian approximations, could further
improve diagnostic acuity.

REPRODUCIBILITY STATEMENT

The data splits, hyperparameter search spaces, evaluation protocols, and primary metric choices
were pre-registered internally before the final test set evaluation to prevent unintentional overfitting
on the test set. All models were trained using PyTorch 2.4 on an NVIDIA A100 GPU and an
NVIDIA RTX 4090. The five random seeds used for all experiments to establish variance were [42,
123, 456, 789, 1011]. Detailed hyperparameters, code snippets, and dataset statistics are provided
in the appendices. Upon publication, the full source code for data generation, model training, and
evaluation will be released.

BROADER IMPACT AND PRIVACY

This work aims to democratize robust AI development by automating a critical aspect of the MLOps
cycle. However, the capture of internal state information, particularly gradients, raises significant
privacy risks, as they can be exploited in membership inference or data reconstruction attacks (Liu
et al., 2023; Wu et al., 2024). To address this, a differentially private (DP) telemetry capture mech-
anism was implemented and evaluated. The analysis shows that a respectable privacy budget can
be achieved with only a minor drop in diagnostic performance. It is strongly recommended that
any production deployment of such a system follow strict data governance protocols and use DP
mechanisms where applicable. The full privacy analysis, with detailed accounting, is provided in
Appendix J.

9
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Appendices
A LABELING PROTOCOL AND GROUND TRUTH DEFINITION

This appendix provides a rigorous, detailed account of the deterministic rules used to generate
ground-truth labels for each training run. These rules are applied ex post facto with full access
to privileged information (e.g., the complete validation history and optimizer states) to create a
high-quality labeled dataset.

A.1 PRIORITY AND NOTATION

A run’s primary label is assigned based on a priority ordering: Instability > Catastrophic Forget-
ting > Concept Bias > Overfitting > Healthy. This hierarchy prioritizes acute, systemic failures
over more subtle or late-stage ones. For instance, a run that becomes unstable early on is labeled as
‘Instability‘, even if it might have eventually overfit had it continued training.

Notation. Let t ∈ Z≥0 be the training step and e be the epoch. Let Ltr(t) be the per-batch training
loss, and Lep

tr (e), Lval(e) be the per-epoch average training and validation losses, respectively. The
generalization gap is defined as ∆(e) ≜ Lval(e)−Lep

tr (e). The non-parametric Mann-Kendall (MK)
test is used to assess monotonic trends in time series, chosen for its robustness to non-normally
distributed data common in loss curves.

A.2 FORMAL ANOMALY DEFINITIONS

Overfitting Detection. Overfitting is a nuanced phenomenon characterized by the model fitting
the training data too well at the expense of generalization. The rule aims to capture both the statistical
trend and practical significance of this divergence. For a candidate epoch e0 and a look-ahead
window of Wep = 10 epochs, “Overfitting at e0” is declared if the following conditions are met:

1. Diverging Trends: A statistically significant increasing trend in the validation loss series
Lval(e) and a concurrent decreasing trend in the training loss series Lep

tr (e) are tested over
the interval [e0, e0 +Wep − 1].

2. Statistical Test: To handle the strong autocorrelation common in loss curves, which can
invalidate standard trend tests, both time series are first pre-whitened using an AR(1) model.
This step is crucial for statistical validity. The Mann-Kendall (MK) test is then applied to
the residuals. A trend is considered significant if the p-value is less than 0.05. To account
for multiple hypothesis testing across many possible start epochs e0, the p-value threshold
is adjusted using the Benjamini-Yekutieli procedure to control the false discovery rate.

3. Practical Significance: The increase in the generalization gap must be practically signifi-
cant. This is enforced by requiring ∆(e0+Wep−1)−mediane<e0 ∆(e) > 2·stde<e0 ∆(e),
ensuring the gap has grown beyond its typical historical fluctuations.

Training Instability. Instability is characterized by chaotic, divergent behavior in the optimization
process. This is detected using a combination of a dynamical systems-based metric and a simple
spike detector.

1. Lyapunov Proxy: A finite-horizon local Lyapunov exponent proxy, λ̂t,H , is computed
using Algorithm 1. This measures the local rate of divergence of nearby optimization
trajectories, a concept with deep roots in dynamical systems theory (Storm et al., 2024).
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A positive exponent implies exponential divergence and chaos. A 99% confidence interval
for this estimate is computed using a stationary bootstrap on the sequence of log-growth
factors {logαi}H−1

i=0 with 2000 replicates and an expected block length of 10. Instability
is declared at step t if the lower bound of this interval is greater than 0 (with a horizon
H = 50).

2. Loss Spike Detection: As a complementary signal, a loss spike is declared if the standard-
ized residual of the training loss zt = (Ltr(t) − µt)/(σt + 10−6) ≥ 3.5, where µt and σt
are robust estimates of the mean and standard deviation (median and IQR) from a rolling
window of the last 1000 steps.

A run is labeled as unstable if the Lyapunov condition holds for any window or if at least 3 spikes
occur within any 500-step window.

Algorithm 1 Stochastic Lyapunov Exponent Proxy Estimation (for Post-Hoc Labeling)

1: Input: model state (Θt, optimizer statet), ▷ Privileged, used only for post-hoc labeling
2: horizon H , a fixed sequence of mini-batches {Di}t+H−1

i=t
3: Initialize v ← random unit vector from N (0, I); logαlist ← [] ▷ Perturbation vector
4: for i = 0 to H − 1 do
5: Compute w ← Jiv via autograd ▷ Jacobian-vector product of the full update rule on batch
Di

6: αi ← max(∥w∥2, 10−12) ▷ Compute growth factor, clip for stability
7: v ← w/αi ▷ Re-normalize for next step
8: Append logαi to logαlist
9: end for

10: λ̂← 1
H

∑
val∈logαlist

val ▷ Average log growth factors
11: Return λ̂ and the sequence {logαi} for bootstrapping.

Catastrophic Forgetting. This is relevant in continual learning scenarios. Given a task-switch
epoch es (e.g., switching from CIFAR-100 to CIFAR-10) and the primary-task validation accuracy
Aprim(e), let Apeak = maxe<es Aprim(e) be the peak performance on the original task. Let Apost

be the average accuracy over a post-switch window of Wep = 10 epochs. Forgetting is declared if
the relative accuracy drop (Apeak − Apost)/Apeak is substantial (e.g., ≥ 0.30), with the difference
confirmed to be statistically significant by McNemar’s test (p < 0.01) on the model’s predictions at
es − 1 and es +Wep.

Concept Bias. This occurs when a model exploits spurious correlations (e.g., a watermark con-
sistently present in one class) instead of learning the true concept. Let Dpoison

val and Dclean
val denote

poisoned and clean validation sets. Concept Bias is declared if a logistic regression model, trained to
predict whether a sample is correctly classified, shows a statistically significant positive coefficient
for a binary indicator of the artifact’s presence (p < 0.01), after controlling for the sample’s true
class. This provides statistical evidence that the model relies on the shortcut for its predictions.

Healthy. A run is labeled as Healthy if none of the above anomaly predicates are met and its final
validation accuracy Afinal

val meets or exceeds a pre-defined performance floor τ(arch, dataset). These
floors, detailed in Appendix B, are set to 95% of the performance achieved by a reference implemen-
tation with validated hyperparameters, ensuring that “healthy” runs are genuinely successful and not
just non-pathological.

B DATASET AND DATA CAPTURE POLICY

This section provides extensive details on the dataset construction and the mechanism for capturing
internal states.
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B.1 RATIONALE FOR ARCHITECTURAL DIVERSITY

The selection of architectures for the training, validation, and test sets was guided by the principle of
maximizing diversity across different design paradigms. This is crucial for training a diagnostician
that learns fundamental, generalizable signatures of training pathologies, rather than memorizing
superficial patterns specific to a single architectural family. The chosen architectures span the recent
history of deep learning for vision and language:

• Classical CNNs (AlexNet): Represents early, non-residual convolutional designs.

• Residual CNNs (ResNet-family, DenseNet): Includes canonical deep residual networks
that rely heavily on skip connections.

• Modern CNNs (EfficientNet, ConvNeXt, RegNet, MobileNet): Represents contempo-
rary designs featuring inverted bottlenecks, depthwise separable convolutions, and struc-
tured design principles.

• Standard Vision Transformers (ViT, DeiT): The canonical, non-hierarchical transformer
architecture for vision.

• Hierarchical Transformers (Swin, MaxViT, MViT): More recent transformer variants
that reintroduce a multi-scale, hierarchical structure reminiscent of CNNs.

• Other Paradigms (MLP-Mixer, Transformer-LM): Includes non-convolutional, non-
transformer vision models and a standard decoder-based language model to ensure the
system generalizes beyond vision-specific dynamics.

By training on a broad mix of these paradigms and testing on a completely disjoint set, the model’s
ability to transfer its diagnostic knowledge to truly novel scenarios is rigorously assessed.

B.2 DETAILED DATASET COMPOSITION

Table 5 provides a detailed breakdown of the number of training runs generated for each combination
of factors in the experimental design. This level of detail is provided to ensure full transparency and
aid reproducibility. Anomalies were induced systematically; for example, overfitting was reliably
induced by disabling weight decay and training for an excessive number of epochs, while instability
was triggered by using a cyclical learning rate schedule with an extremely high maximum rate. Table
6 specifies the concrete performance floors used for the “Healthy” class definition.

B.3 INTERNAL STATE CAPTURE AND PREPROCESSING

A unified layer hooking policy captures the output of a module block at early, middle, and late stages
of the network. Critically, for residual architectures, the hook is placed on the output of the main
computation path before it is added to the skip connection, as illustrated in Figure 2. This ensures
the capture of the core transformation performed by the block rather than the potentially attenuated
final output. The specific layers hooked are:

• ResNet-family: Output of the final convolutional layer within the ‘Bottleneck‘ or ‘Ba-
sicBlock‘ modules in stages at 25%, 65%, and 90% depth.

• Vision Transformer-family: Output of the multi-head self-attention module in blocks at
25%, 50%, and 75% depth.

Tensors are normalized using per-channel z-scoring with robust statistics (median, Interquartile
Range) computed only on the training set and then frozen to prevent data leakage during validation
and testing. To create a uniform “frame” structure from these heterogeneous tensors:

1. Dimensionality Reduction: For convolutional feature maps (B×C ×H ×W ), a learned
1×1 convolution projects them to a single channel. This is a simple, efficient way to reduce
dimensionality while retaining spatial information and allowing the model to learn the most
salient channel combinations. For transformer attention outputs (B × N × D), the token
embeddings (excluding the [CLS] token) are reshaped into a 2D grid that preserves some
notion of token adjacency (e.g., a 14× 14 grid for ViT-B/16’s 196 tokens).
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Table 5: Detailed Breakdown of Generated Training Runs. Each cell indicates the number of unique
runs generated. “Other Anom.” includes Catastrophic Forgetting and Concept Bias.

Split Architecture Dataset Healthy Overfit Instability Other Anom.

Train (Total: 516)

ResNet-18 CIFAR-
100

16 25 25 20

ViT-B/16 CIFAR-
100

16 25 25 20

ConvNeXt-T Tiny-
ImageNet

16 25 25 20

Swin-V2-S Tiny-
ImageNet

16 25 25 20

AlexNet CIFAR-
100

16 25 25 20

DeiT-S CIFAR-
100

16 25 25 20

Validation (Total: 168)

ResNet-34 CIFAR-
100

8 13 13 8

EffNet-B4 Tiny-
ImageNet

8 13 13 8

ConvNeXt-T CIFAR-
100

8 13 13 8

ViT-B/16 Tiny-
ImageNet

8 13 13 8

Test (Total: 501)

ConvNeXt-V2-T SVHN 13 19 18 12
RegNetY-4GF SVHN 13 19 18 12
MaxViT-T ImageNet-

100
13 19 19 12

MobileNetV3-L ImageNet-
100

13 19 18 12

MLP-Mixer-B ImageNet-
100

13 19 19 12

DenseNet-121 SVHN 13 19 18 12
MViT-Small ImageNet-

100
13 19 19 12

Transformer-LM WikiText-
2

13 19 19 12

Table 6: Performance Floors (τ ) for “Healthy” Classification. Values are the minimum final valida-
tion metric required for a run to be considered successfully trained.

Dataset Metric Threshold τ

CIFAR-100 Top-1 Accuracy 78.0%
Tiny-ImageNet Top-1 Accuracy 62.0%
SVHN Top-1 Accuracy 95.0%
ImageNet-100 Top-1 Accuracy 75.0%
WikiText-2 Perplexity < 65.0

2. Resizing and Stacking: All resulting 2D representations are then resized using bilinear
interpolation to a fixed spatial dimension of 224×224. The three activation maps and three
corresponding gradient maps are stacked channel-wise to form a 6-channel image.

3. Storage: The final frames are stored as 16-bit brain floats (bfloat16) to manage the storage
overhead.

C SELF-SUPERVISED PRETRAINING AND ABLATION STUDIES

This section provides more detail on the DYNAMICS-MAE pre-training strategy and presents the
full ablation study results that validate its efficacy.
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xl Conv Block Conv Block + xl+1

Hook Here

F (xl)

Figure 2: Illustration of the hook location in a standard residual block. The activations are captured
from the output of the main computational path F (xl) before the final residual addition.

C.1 DYNAMICS-MAE DETAILS

The encoder is a standard ViT-Base model (12 layers, 12 heads, embedding dimension 768), while
the decoder is a much lighter Vision Transformer model with only 4 blocks. This asymmetric design
is computationally efficient and a standard practice in MAE-style models. The 90% masking ratio
was chosen after sweeping values from 75% to 95%; 90% provided the best trade-off between
reconstruction difficulty and feature quality for the downstream task. The model is trained for 400
epochs on the unlabeled corpus of training dynamics using the AdamW optimizer.

C.2 ABLATION STUDY: THE VALUE OF DOMAIN-SPECIFIC PRE-TRAINING

To prove that DYNAMICS-MAE learns useful representations that are specific to training dynamics
and not just generic spatio-temporal features, extensive ablations were conducted. Five initialization
schemes for the TEVID encoder were compared:

1. From Scratch: Standard random initialization.

2. DYNAMICS-MAE (Proposed): Using weights from the proposed pre-training.

3. ImageNet VideoMAE: Using official weights from a VideoMAE model pre-trained on
a massive corpus of natural videos (Kinetics-400), then fine-tuned on our dynamics data.
This is a strong baseline that tests if generic video priors are sufficient.

4. Scalar Video: A VideoMAE model pre-trained on “videos” generated by plotting scalar
telemetry curves (loss, grad norm, etc.) as a sequence of 1D images. This tests if the video
architecture is helpful even with low-dimensional input.

5. Masked Scalar: A standard Transformer-based masked autoencoder trained on the raw
scalar time-series data, with the encoder used to initialize a TCN-based classifier.

As shown in Figure 3a, TEVID with DYNAMICS-MAE significantly outperforms all other schemes.
The poor performance of the scalar methods re-confirms that high-dimensional structure is critical.
More importantly, the substantial gap between DYNAMICS-MAE and ImageNet VideoMAE (+0.14
AUPRC) provides compelling evidence that the performance gain stems from learning the intrinsic
structure of optimization trajectories, not from generic, natural-world spatio-temporal priors. Figure
3b further demonstrates the powerful data efficiency benefits: with only 25% of the labeled data, the
pre-trained model outperforms the from-scratch model trained on 100

D MODEL ARCHITECTURE AND EVIDENTIAL DEEP LEARNING HEAD

This section provides technical details on the TEVID architecture and the mathematical formulation
of the Evidential Deep Learning (EDL) head.

D.1 FACTORIZED VISION TRANSFORMER

The core of TEVID is a Vision Transformer (ViT-Base configuration: 12 layers, 12 heads, 768
embedding dimension). To handle spatio-temporal data efficiently, it uses factorized self-attention
as proposed in TimeSformer (Bertasius et al., 2021). An input clip of size T × C ×H ×W is first
divided into P non-overlapping patches.
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Figure 3: Ablation studies confirming the value of the DYNAMICS-MAE pre-training strategy.

The choice of a factorized architecture is a deliberate design decision to balance expressive power
with computational feasibility for a real-time monitoring system. Full spatio-temporal atten-
tion would compute attention over all T × P patches, leading to a computational complexity of
O((TP )2), which is prohibitive. Factorized attention separates this into two more manageable
steps, reducing complexity to O(TP (T + P )) and making the model practical for deployment.

1. Spatial Attention: Self-attention is computed only among the P patches within each time
step t ∈ {1, . . . , T}. This is done in parallel for all time steps.

2. Temporal Attention: Self-attention is computed only among the T corresponding patches
across time (e.g., the top-left patch from each of the T frames attend to each other). This is
done in parallel for all patch locations.

D.2 EVIDENTIAL DEEP LEARNING HEAD

To handle novel anomalies not seen during training, a rigorous implementation of the EDL frame-
work is used (Ulmer et al., 2023). This reframes classification as an evidence acquisition problem,
where the model’s logits f(x) for input x parameterize a Dirichlet distribution over the categorical
class probabilities.

1. Evidence and Dirichlet Parameters: The evidence for each of the K known classes is
computed from the logits using a non-negative activation function. The softplus function
is used for its smoothness and stability, as it performed better in ablations than a simple
exponential, which can lead to numerical instability and exploding evidence values. The
concentration parameters α of the Dirichlet distribution are then defined as α = evidence+
1:

αk = softplus(fk(x)) + 1

The ’+1’ ensures that the parameters are strictly greater than 1, corresponding to a valid
Dirichlet distribution representing a belief distribution over the class probabilities. The
total strength of the distribution is S =

∑K
k=1 αk.

2. Class Probabilities and Uncertainty: The predicted probability for class k is the expected
value of that class’s parameter under the Dirichlet distribution:

pk =
αk

S
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The model’s overall uncertainty is quantified as the vacuity of evidence (i.e., the lack of
total evidence), defined as:

u =
K

S
A low total evidence S leads to high uncertainty u. Inferences with high uncertainty
(u > τuncertainty) are flagged as ‘Unknown‘. The threshold τuncertainty is calibrated on the
validation set to maximize the F1-score for distinguishing in-distribution from out-of-
distribution samples, resulting in a chosen value of τuncertainty = 0.35.

3. Training Objective: The model is trained by minimizing a loss function comprising two
main components, following the original EDL paper. For a one-hot encoded label y:

L(α) = LNLL(α) + λLKL(α)

The first term is the expected negative log-likelihood of the data under the Dirichlet distri-
bution:

LNLL(α) =

K∑
k=1

yk (ψ(S)− ψ(αk))

where ψ(·) is the digamma function. This term encourages the model to produce high evi-
dence for the correct class. The second term is a KL-divergence regularizer that penalizes
evidence for incorrect classes, pushing the model towards a state of maximal uncertainty (a
uniform Dirichlet distribution) for misclassified samples:

LKL(α) = KL[Dir(p|α̃)||Dir(p|1)]

where α̃ = y + (1 − y) ⊙ α is the “cleansed” Dirichlet parameter vector. This term is
critical to prevent the model from becoming overconfident in its errors. A ramp-up schedule
is used for the regularizer weight λ, starting at λ = 0 and linearly increasing to λ = 1.0
over 10 epochs.

E EVALUATION PROTOCOL AND METRICS

This section provides formal definitions for the metrics used in the evaluation, which were chosen
specifically to address the challenges of streaming, imbalanced classification.

E.1 STREAMING PROTOCOL

For evaluation, a strict causal streaming protocol is used. At each time step t (corresponding to a
50-step interval in the original training run), the model receives a window of the last 10 frames,
{Xt−10:t}. It makes a prediction ŷt with an associated uncertainty ut. No future information is
ever used. A diagnostic alert for a specific anomaly class is triggered only when its calibrated
non-abstain probability exceeds a decision threshold of 0.9 for three consecutive predictions. This
temporal smoothing reduces spurious alerts from momentary fluctuations. All thresholds and cal-
ibration temperatures were selected once on the validation set and then frozen prior to any test set
evaluation.

E.2 METRIC DEFINITIONS

• Lead (Time-to-Detect): For a given anomalous run, let tgt be the ground-truth trigger
time (in epochs) from the labeling protocol, and let tpred be the time of the model’s first
confirmed alert. The lead for that run is tgt − tpred. Positive values indicate early detec-
tion (the model fired before our rule-based system), while negative values indicate a lag.
The median lead across all anomalous runs in the test set is reported, computed at a fixed
operating point corresponding to a 5% False Alert Rate (FAR) on healthy runs.

• Event-Time Area Under the Precision-Recall Curve (Event-Time AUPRC): Standard
classification metrics like accuracy are ill-suited for streaming diagnosis due to the ex-
treme class imbalance (the vast majority of time steps are “healthy”). The Area Under
the Precision-Recall Curve (AUPRC) is a more informative metric. For the primary re-
ported metric, a micro-averaged AUPRC is used. Let a training run have T time steps. Let
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yt ∈ {0, 1} be the true label at step t (1 if an anomaly is active, 0 otherwise) and p̂t be
the model’s predicted probability for the anomaly class. The set of all predictions across
all test runs is collected into a single flat set {(p̂i, yi)}Ni=1, where N is the total number
of time steps across all runs. The Precision-Recall curve is traced by varying a classifica-
tion threshold τ ∈ [0, 1] and computing Precision(τ ) and Recall(τ ) on this entire set. The
AUPRC is the integral of this curve. This “Event-Time” framing emphasizes sensitivity on
the rare ’event’ windows where anomalies are active.

• Risk-Coverage Curves: For open-set evaluation, the standard paradigm for selective clas-
sification systems is used (Fisch et al., 2022; Traub et al., 2024). By varying the uncertainty
threshold τuncertainty, a trade-off can be made between coverage (the fraction of samples not
abstained on) and selective risk (the error rate on the non-abstained samples). Plotting
risk against coverage provides a complete picture of the model’s open-set performance. A
desirable model shows a rapid decrease in risk as coverage is slightly reduced.

• Area Under the Gap between Risk and Coverage (AUGRC): As a complementary met-
ric to the risk-coverage curve, the AUGRC is also reported. This provides a single scalar
summary of selective performance, defined as the area between the model’s risk curveR(c)
and the ideal risk curve Rideal(c) = 0. The integral is computed over the coverage domain,
c ∈ [0, 1]. Lower values are better, indicating the model’s risk profile is closer to ideal.
This metric is also micro-averaged over all test set predictions.

F TRAINING DETAILS AND REPRODUCIBILITY

F.1 HYPERPARAMETERS

Table 7 provides the key hyperparameters used for training the primary model, TEVID, and its self-
supervised pre-training phase, DYNAMICS-MAE. Baselines were tuned using Optuna (25 trials per
baseline) on a small, held-out subset of the validation data to find optimal settings. The search space
for baselines included learning rate, weight decay, and model-specific parameters like the number
of layers or kernel sizes for the TCN.

Table 7: Hyperparameters for TEVID Pre-training and Fine-tuning.

Hyperparameter DYNAMICS-MAE Pre-training TEVID Fine-tuning

Optimizer AdamW AdamW
Optimizer Betas (0.9, 0.95) (0.9, 0.999)
Base Learning Rate 1.5× 10−4 1× 10−4

Weight Decay 0.05 0.05
LR Schedule Cosine Annealing Cosine Annealing
Warmup Epochs 40 5
Total Epochs 400 50
Batch Size (global) 1024 32
Masking Ratio 0.90 N/A
Drop Path Rate 0.1 0.1

F.2 BASELINE AND PROBE ARCHITECTURES

• Hessian Forecaster (TCN): This baseline aims to test if a more informative scalar signal
can match the high-dimensional approach. During each run, the Lanczos algorithm with
k = 20 steps on a fixed mini-batch of 256 samples is used to efficiently compute an estimate
of the top eigenvalue of the Hessian matrix every 50 steps. This creates a time-series of the
maximum loss landscape curvature. A Temporal Convolutional Network (TCN), with the
same architecture as the Loss→ State probe, is then trained to classify anomalies from this
time-series.

• State→ Loss Probe: The input was the flattened and randomly subsampled internal state
vector (subsampled to a fixed dimension of 104 for consistency). The probe was a Multi-
Layer Perceptron (MLP) with 3 hidden layers of sizes [512, 128, 32] with ReLU activa-

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

tions, outputting a single scalar value for the predicted loss. A small L2 regularization
(weight decay 10−5) was applied.

• Loss → State Probe: The input was a history of 100 scalar loss values. A Temporal
Convolutional Network (TCN) was used for this task due to its suitability for time-series
regression. It had 4 residual blocks with a kernel size of 5 and dilation factors of [1, 2, 4,
8]. The output layer was a linear projection to the dimension of the flattened state (104).

The R² for the regressibility check was computed per run and then averaged. This methodology
prevents runs with naturally high-variance loss from dominating the aggregate metric.

F.3 PYTORCH HOOKING MECHANISM

The code snippet below shows a simplified version of the forward hook used to capture activations.
A similar register_full_backward_hook is used for gradients to ensure they are captured
correctly in a distributed setting and reflect the gradient with respect to the module’s output. The
capture of per-sample gradients for DP analysis is more complex and is discussed in Appendix J.

import torch

captured_tensors = {}

def get_activation_hook(name):
def hook(model, input, output):

# Detach from graph, move to CPU,
# convert to bfloat16 for storage
captured_tensors[name] = output.detach().cpu().to(

torch.bfloat16)
return hook

# Registering the hook on a specific layer
# (e.g., the third residual block)
model.layer3.register_forward_hook(

get_activation_hook(’layer3_activations’))

G ROBUSTNESS, SHORTCUT CHECKS, AND CAUSAL INTEGRITY

This section details the experiments conducted to stress-test TEVID and verify that it has learned
meaningful, robust patterns rather than brittle shortcuts.

G.1 ROBUSTNESS TO DATA PERTURBATIONS

To simulate noisy or imperfect data capture pipelines, the test set inputs were subjected to a battery
of perturbations.

• Quantization: Input frames were subjected to symmetric, per-channel quantization to 8-bit
and 4-bit integers, simulating lower-precision storage.

• Random Frame Dropping: A percentage of frames were randomly dropped from each
input clip at inference time, replaced with the previous valid frame to maintain clip length.

As shown in Figure 4, performance degrades gracefully under these common perturbations, indicat-
ing a high degree of model robustness to noise in the input signal.

G.2 SHORTCUT ANALYSIS

More critically, experiments were conducted to probe what information the model relies on.

• Temporal Alignment (A/G Shuffle): The temporal alignment between activation and gra-
dient frames was shuffled within each clip. For example, the activation from time tmight be
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Figure 4: Graceful degradation of TEVID’s performance under increasing levels of input pertur-
bation, demonstrating model robustness. Distinct markers and line styles are used for clarity in
grayscale. For quantization, the x-axis corresponds to 8-bit and 4-bit respectively.

paired with the gradient from time t−2. This destroys their precise causal link but preserves
their marginal statistics over the window. This caused a significant drop in Event-Time
AUPRC from 0.96 to 0.78, confirming the model critically leverages the precise synchro-
nization of these two signals.

• Gradient Information Content: The entire gradient stream was replaced with per-
channel, moment-matched Gaussian noise (i.e., noise with the same mean and variance
as the original gradients over the clip). This resulted in a complete performance collapse
to near-random guessing (Event-Time AUPRC 0.53), proving that the model relies on the
rich structural information in gradients and not just activations.

G.3 CAUSAL INTEGRITY AND PREDICTIVE HORIZON

To rigorously test for any form of temporal information leakage and to quantify the model’s genuine
predictive power, its performance was evaluated on input windows that were forced to end ∆ epochs
before the earliest possible rule-based trigger time for an anomaly. The trigger time is defined as the
start of the window used for labeling (e.g., epoch e0 for the overfitting definition). This stringent
setup ensures the model must predict an impending issue based only on data that precedes the ev-
idence used for ground-truth labeling; the input window and the ground-truth labeling window are
guaranteed to not overlap for any ∆ > 0. All normalization statistics were frozen from the training
set and not recomputed, preventing any look-ahead leakage. Table 8 shows that TEVID maintains
high diagnostic capability even when it must predict an issue several epochs in advance, confirming
it has learned genuine leading indicators of failure rather than simply recognizing patterns concur-
rently with the labeling rules.

Table 8: Causal integrity check. Performance (Event-Time AUPRC) as a function of the mandatory
prediction lead time ∆ (in epochs) before the ground-truth event trigger.

Prediction Lead Time (∆) 0 (Standard) 0.5 epochs 1 epoch 2 epochs 4 epochs

Event-Time AUPRC 0.96± 0.01 0.94± 0.01 0.91± 0.02 0.85± 0.03 0.76± 0.04

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

H OPEN-SET EVALUATION AND INTERPRETABILITY

H.1 ROBUSTNESS TO NOVEL ANOMALIES

To simulate a real-world production scenario where new failure modes can emerge, five entirely
novel anomaly types were introduced into the test set that were completely absent from training:
’Label Corruption (25%)’, ’Optimizer State Corruption’ (e.g., momentum buffer reset), ’DataLoader
Stall’, ’Augmentation Drift’ (e.g., gradually increasing augmentation strength to harmful levels), and
’Excessive Gradient Clipping’ (where the clipping threshold is set so low it harms convergence).
TEVID’s evidential head was tasked with classifying these as ’Unknown’. Figure 5 shows the
resulting risk-coverage curve. A practitioner can tune the evidence threshold to achieve a desired
trade-off; for instance, at 80% coverage (abstaining on the 20% most uncertain inputs), the model
can reduce its error rate on known classes from a baseline of 10% down to 4.5%. The Area Under
the Receiver Operating Characteristic (AUROC) for the binary task of distinguishing known vs.
unknown anomalies was a strong 0.89, and the Area Under the Gap between Risk and Coverage
(AUGRC) was 0.018 (lower is better).
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Figure 5: Risk-Coverage curve for open-set evaluation. By abstaining on uncertain inputs (reducing
coverage), TEVID can significantly reduce its error rate on the remaining predictions (selective
risk).

Table 9 shows how the evidential head classified these novel anomalies. The majority are cor-
rectly assigned to the ‘Unknown‘ category. The misclassifications are often semantically plausible;
for example, a ‘DataLoader Stall‘ might produce static inputs, leading to dynamics that resemble
‘Overfitting‘ on a small, repetitive set of data.

Table 9: Confusion Matrix for Novel Anomaly Types. Rows are true novel anomalies; columns are
TEVID’s predictions. The model correctly flags most as ‘Unknown‘.

True Novel Anomaly Predicted Category (%)

Healthy Overfitting Instability C. Forget/Bias Unknown

Label Corruption 2.1 10.3 1.5 0.8 85.3
Optimizer Reset 1.5 2.2 14.8 1.1 80.4
DataLoader Stall 4.0 18.5 0.5 2.0 75.0
Augmentation Drift 3.2 6.8 2.1 4.5 83.4
Excessive Clipping 5.5 8.1 4.3 3.0 79.1
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H.2 INTERPRETABILITY: WHAT HAS TEVID LEARNED?

To understand if TEVID has learned meaningful, abstract concepts, two key analyses were per-
formed.

• Abstract Anomaly Signatures: Centered Kernel Alignment (CKA) similarity was com-
puted between the ‘[CLS]‘ token representations of different anomalies across different,
unseen architectures from the test set. The resulting heatmap shows strong diagonal
blocks, indicating that the representation for a given anomaly (e.g., Overfitting) is highly
similar across entirely different architectural families (e.g., ConvNeXt vs. MLP-Mixer
vs. Transformer-LM). This provides compelling evidence that TEVID learns abstract,
architecture-agnostic signatures of failure modes, rather than surface-level features tied
to a specific model type. The low off-diagonal similarity further confirms that the represen-
tations for different failure modes are well-separated. The findings are robust to variants
discussed in (Zhou et al., 2024).

• Concept Probes: Simple linear probes were trained on TEVID’s frozen latent represen-
tations to predict classical dynamics metrics. The probes could predict binned Hessian
top eigenvalues with 89% accuracy and detect grad-norm spikes with an AUROC of 0.94.
This shows that TEVID’s latent space implicitly encodes and organizes information re-
lated to concepts from classical dynamics analysis without ever being explicitly trained on
them, learning these from first principles. This suggests the model has learned to approx-
imate quantities related to the loss landscape’s curvature and stability, which can now be
efficiently read out without expensive explicit computations like Hessian-vector products
(Pearlmutter, 1994; Miani et al., 2024).

I DECISION-THEORETIC ANALYSIS OF PRACTICAL UTILITY

To bridge the gap between statistical metrics and real-world impact, the practical value of TEVID is
quantified using a decision-theoretic framework. This allows for an assessment of which diagnostic
tool is “best” under different assumptions about operational costs.

I.1 COST MODEL AND RAW PERFORMANCE

A simple, illustrative cost model is defined for a diagnostic policy over a set of runs:

Cost = CFA ·NFA + CMD ·NMD + CLead ·
∑

i∈Detected

Leadi

Where NFA is the number of false alarms, NMD is the number of missed detections, and Leadi is
the detection lead in epochs for a correctly detected anomaly i. Note the cost for lead is negative,
meaning early detection provides a utility/reward. Table 10 provides the raw performance counts for
each model, calibrated to a 5% FAR.

Table 10: Raw diagnostic performance counts per 100 test runs at a 5% FAR operating point.

Model False Alarms (NFA) Missed Detections (NMD) Avg. Lead (Epochs)

Curve-TCN 5.0 28.3 -1.2 (lags)
Video-Swin-T 5.0 11.5 4.1
TEVID (+ DYNAMICS-
MAE)

5.0 3.1 6.2

Using a plausible default weighting of (CFA, CMD, CLead) = (1, 10,−0.5), which moderately
penalizes false alarms, strongly penalizes missed detections, and rewards each epoch of early detec-
tion, the expected cost can be calculated. Table 11 shows that TEVID’s diagnostic policy leads to a
significantly lower expected operational cost.
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Table 11: Expected diagnostic cost per 100 runs under the cost model (CFA = 1, CMD =
10, CLead = −0.5).

Model Expected Cost (95% CI)

Curve-TCN 291.6± 12.1
Video-Swin-T 96.5± 9.5
TEVID (+ DYNAMICS-MAE) 14.8± 4.3

I.2 SENSITIVITY ANALYSIS AND PARETO DOMINANCE

To test the sensitivity of this conclusion, Figure 6b shows which diagnostic model is optimal across
a sweep of different cost parameters. TEVID is the preferred model over a vast and realistic portion
of the cost landscape, particularly when missed detections or delays are considered costly. The
Pareto front in Figure 6a further illustrates this dominance, showing that TEVID provides a superior
trade-off between early detection (Lead) and false alarms compared to all baselines. For any desired
false alert rate, TEVID offers the earliest detection time.
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Figure 6: Decision-theoretic analysis. (a) TEVID (blue, solid) dominates baselines, offering faster
detection for any given FAR. (b) Optimal model under a cost model; TEVID is preferred across
most of the plausible cost landscape where failures are costly.

J PRIVACY AND GOVERNANCE

The capture of detailed internal state information, particularly gradients, raises significant privacy
and security concerns. This appendix details the risks and the proposed mitigation via differentially
private (DP) telemetry.

J.1 RISK ANALYSIS

Gradients computed on a mini-batch of data can leak information about that data. This has been
exploited in sophisticated attacks, including:

• Membership Inference Attacks (MIA): An adversary tries to determine if a specific data
point was part of the training set by observing the model’s gradients or outputs (Liu et al.,
2023; Wu et al., 2024).

• Gradient Inversion / Data Reconstruction: A more powerful attack where an adversary
attempts to reconstruct the original training samples from the shared gradients (Dimitrov
et al., 2024).
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While the preprocessing pipeline (downsampling, 1x1 projection) is a powerful defense in itself
(reducing a black-box MIA’s AUC from 0.82 to 0.59 in tests), it does not provide formal guarantees.

J.2 DIFFERENTIALLY PRIVATE TELEMETRY

To provide a formal (ϵ, δ)-DP guarantee, a standard DP mechanism is integrated into the data cap-
ture hook. For each captured tensor, per-sample gradients are required. This is achieved not with
standard hooks, but by using ‘functorch.vmap‘ to create a per-sample gradient function, which is
computationally clean but memory-intensive. For larger models, an equivalent micro-batching ap-
proach (processing one sample at a time) is used.

1. Per-Sample Clipping: The L2 norm of each per-sample tensor is clipped to a maximum
value C. This bounds the influence of any single training example. C = 1.0 is calibrated
based on the median norm value on the validation set.

2. Noise Addition: Gaussian noise with standard deviation σ = C · z is added to the clipped
average tensor, where z is the noise multiplier that controls the privacy-utility trade-off.

3. Privacy Accounting: The total privacy budget (ϵ, δ) for a full clip of T = 10 frames is
tracked using a moments accountant. The RDP accountant from the ‘opacus‘ library is
used. For a typical CIFAR-100 run (the source of the telemetry, not the training of TEVID
itself) with batch size 64 and dataset size 50,000, the sampling rate is q = 64/50000 =
0.00128. Over a 100-epoch run, with 781 steps/epoch and capture every 50 steps, this
amounts to 15.6 compositions per epoch (or 1560 total compositions over the run). A
noise multiplier of z = 1.12 yields a final budget of ϵ ≈ 8.0 for a target δ = 10−5.

Figure 7 shows the privacy-utility trade-off curve. It was found that a DP-TEVID variant can achieve
a respectable privacy budget of ϵ = 8 (with δ = 10−5), while incurring only a 3% absolute drop
in diagnostic Event-Time AUPRC (from 0.96 to 0.93). This demonstrates that a strong degree of
formal privacy can be achieved with a minimal impact on diagnostic performance.

101 102
0.85

0.9

0.95

1

Privacy Budget (ϵ)

E
ve

nt
-T

im
e

A
U

PR
C

Privacy-Utility Trade-off for TEVID

DP-TEVID

Figure 7: Privacy-Utility Trade-off Curve. The plot shows the diagnostic performance (Event-Time
AUPRC) of TEVID as a function of the privacy budget ϵ (at δ = 10−5). The non-private baseline
AUPRC is 0.96.
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K SCALABILITY, ADDITIONAL ANALYSES, AND GENERALIZATION

K.1 COMPUTATIONAL OVERHEAD AND SCALABILITY

The overhead of the diagnostic framework has two main components: data capture during training
and the post-hoc Lyapunov proxy estimation for labeling. Table 12 quantifies this on different
model scales on a single A100 GPU. The Jacobian-vector product-based Lyapunov estimation is
computationally expensive, especially for large models. For practical labeling at scale, a cheaper
proxy like monitoring the variance of gradient norms provides a good trade-off. The data capture
overhead is more manageable, and an adaptive sampling strategy (capturing more frequently when
loss volatility is high) can reduce this overhead to 6% with only a 4% relative drop in AUPRC.

Table 12: Computational Overhead and Storage Analysis.

Model Base Throughput Slowdown (Capture) Slowdown (Lyapunov) Storage / Run
(samples/sec) (MB)

ResNet-18 1250 11.8% 22.5% 937
ViT-B/16 480 13.5% 31.2% 937
ViT-L/14 110 15.1% 45.8% 1254

Example storage calculation for a 100-epoch CIFAR-100 run: (100 epochs × 781 steps/epoch/50 steps/capture) ≈ 1562 frames.
Each frame is 6 × 224 × 224 × 2 bytes (bfloat16) ≈ 0.6 MB. Total: 1562 × 0.6 MB ≈ 937 MB. Actual storage varies with run
length.

K.2 GFLOPS CALCULATION FOR TEVID

The GFLOPs reported in Table 3 are calculated for a single forward pass on an input clip. For
TEVID, with a ViT-B encoder (12 layers, 12 heads, embedding dimension 768), input clip of T = 10
frames, and patch size of 16 × 16, the number of patches per frame is P = (224/16)2 = 196. The
GFLOPs are dominated by the factorized attention and MLP blocks. For a ViT-Base model, the
total cost per forward pass is composed of the spatial attention cost (computed for T frames over P
patches), the temporal attention cost (computed for P locations over T frames), and the MLP cost
(computed over all T × P tokens). This factorized approach has a complexity of O(L · TP (D2 +
D(P + T ))), which is significantly more efficient than the O(L · (TP )2D) of full spatio-temporal
attention. For this specific configuration, a forward pass requires approximately 16.5 GFLOPs.

K.3 GENERALIZATION ACROSS ARCHITECTURES AND MODALITIES

Table 13 provides a detailed breakdown of TEVID’s performance on the held-out test set, seg-
mented by the unseen model architecture being diagnosed and the type of anomaly. The model
maintains high accuracy across diverse architectural families and even generalizes to a natural lan-
guage processing task (Transformer-LM on WikiText-2), underscoring its ability to learn fundamen-
tal, modality-agnostic patterns of optimization failure.

Table 13: Detailed Test Accuracies on the Held-Out Set, by Unseen Model and Anomaly Type.
Values are per-timestep top-1 accuracy for known classes, with 95% BCa CIs.

Model Architecture Healthy Overfitting Instability C. Forget. C. Bias

ConvNeXt-V2-T 95.1± 1.1% 90.5± 1.5% 92.3± 1.3% 91.0± 1.6% 89.8± 1.8%
MLP-Mixer-B 94.6± 1.2% 88.9± 1.8% 91.5± 1.4% 89.2± 2.0% 88.1± 2.1%
Transformer-LM 92.8± 1.4% 87.2± 2.1% 89.9± 1.7% 90.4± 1.8% 86.5± 2.3%

K.4 EXPLORATORY PILOT: GENERALIZATION TO GBDTS

The main paper focuses exclusively on neural networks. As an exploratory pilot, the core concept
of the framework was applied to diagnose the training of a different class of models: Gradient-
Boosted Decision Trees (GBDTs). A LightGBM model was trained on the Higgs dataset. The
per-tree feature importance vectors were captured at each boosting round and reshaped into 32× 32
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images, forming a “video” of how feature importance evolves. TEVID was then fine-tuned on
a small dataset to detect overfitting (defined by a divergence in validation vs. training log-loss).
The model achieved a notable accuracy of 91.5% on a held-out set of GBDT training runs. While
preliminary, this suggests the core concept of diagnosing optimization processes by visualizing their
internal state trajectories may generalize beyond neural networks. This is a promising direction for
future research but falls outside the primary scope of this paper.

LLM USAGE STATEMENT

During the preparation of this work, the authors utilized a large language model (LLM) as a writing
assistant. The LLM’s role was limited to improving grammar, refining word choices, and correcting
LaTeX formatting. It was not used for any core research ideation or experimental design. The
authors take full responsibility for all content in this paper.
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