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Abstract

Articulated object manipulation is a fundamental yet challenging task in robotics.
Due to significant geometric and semantic variations across object categories, previ-
ous manipulation models struggle to generalize to novel categories. Few-shot learn-
ing is a promising solution for alleviating this issue by allowing robots to perform a
few interactions with unseen objects. However, extant approaches often necessitate
costly and inefficient test-time interactions with each unseen instance. Recognizing
this limitation, we observe that despite their distinct shapes, different categories
often share similar local geometries essential for manipulation, such as pullable
handles and graspable edges - a factor typically underutilized in previous few-shot
learning works. To harness this commonality, we introduce ‘Where2Explore’,
an affordance learning framework that effectively explores novel categories with
minimal interactions on a limited number of instances. Our framework explicitly
estimates the geometric similarity across different categories, identifying local
areas that differ from shapes in the training categories for efficient exploration
while concurrently transferring affordance knowledge to similar parts of the objects.
Extensive experiments in simulated and real-world environments demonstrate our
framework’s capacity for efficient few-shot exploration and generalization.

1 Introduction
Articulated objects, such as doors, drawers, scissors, and faucets, are ubiquitous in our daily lives.
Therefore, the ability of robots to manipulate these objects is of critical importance. Many previous
works have been done on perceiving and manipulating articulated objects [25, 35, 38, 3]. However,
due to the significant variance in the objects’ structure, 3D geometry, and articulation types across
categories, developing efficient perception and manipulation systems that can generalize to those
variations remains challenging [7, 25, 41].

An intuitive solution to equip models with generalized manipulation knowledge is training them on
large-scale datasets. However, conducting real-world interactions with diverse objects or acquiring 3D
models encompassing potential categories can be prohibitively time-consuming and costly. Moreover,
this approach could still fail with the emergence of new object categories or designs (e.g., a cup with
novel geometries resembling a gourd as shown in Figure 1).

Since encountering novel objects is inevitable in real-world applications, few-shot learning, which
allows robots to propose interactions with novel objects and adapt their understanding to them,
has emerged as a promising solution. However, previous few-shot learning works for articulated
object manipulation usually focus on instance-level exploration and adaptation, requiring test-time
interactions on each novel object [35, 27]. This limitation hinders the efficiency and safety of
real-world applications of robots.
This paper investigates the open question of cross-category few-shot learning, in which the model is
required to understand how to manipulate a novel category via interactions with a limited number of
objects. After the few-shot exploration, the model should be able to manipulate other unseen objects
within the same category without further test-time interactions.
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Figure 1: Where2Explore framework. Our model, solely trained on training categories (Top Left)
and having never seen mugs, utilizes the underlying similarity in local geometries across different
categories (Top Right), enabling it to identify uncertain yet important areas for interaction (Bottom
Left). After minimal interactions, our model could manipulate unseen objects (Bottom Right) in this
category.

Different from instance-level few-shot learning that focuses on discovering kinematic and dynamic
information of a specific object, cross-category few-shot learning proposes a more demanding
requirement for the exploration strategy to select informative interactions on different object categories.
Considering the substantial semantic and geometric gap between known shapes and novel categories,
forming an efficient exploration strategy for out-of-distribution objects is challenging. However, we
point out that despite distinct overall shapes, different categories often share similar local geometries
crucial for manipulation (e.g., pullable handles, pushable boards, and graspable edges, as shown in
Figure 1). This property of possessing similar significant geometries across different categories is
typically ignored or underutilized by previous instance-level few-shot learning studies.

To effectively discover these critical local geometries for cross-category few-shot learning, we propose
a ‘Where2Explore’ framework by explicitly requesting the system to estimate the semantic similarity
of geometries on novel objects with geometries already known by the model (As shown in the top
part of Figure 1). When faced with objects from a novel object category (e.g., mugs), our framework
identifies the uncertain yet important areas on the novel objects to interact with (Bottom Left of
the Figure). Via fine-tuning our network with the interactions on novel objects, the model could
generalize to unseen objects within this novel category (Bottom Right).

Our system is built in several steps. Firstly, we require a representation that encapsulates diverse
semantic and geometric information from known categories to form a supporting set from which
we could expand the learned knowledge to novel categories. The desired properties in our system
are fulfilled by point-level affordance, which provides per-point manipulation priors with detailed
semantic and geometric information on various objects [25, 38, 35, 46]. Next, we implement a
‘similarity network’ to measure the geometric similarity between shapes in different categories and
those in the supporting set. This is achieved by partitioning the training set, exposing our similarity
module to a wider range of categories, and supervising the learning of similarity in a cross-category
manner. Finally, we perform few-shot learning on novel categories by proposing interactions on the
low-similarity areas, indicating unseen yet significant geometries.

We evaluate our framework by training our model on constrained object categories and applying
few-shot learning to novel categories with limited shapes. After the exploration, we evaluate our
model on unseen objects in the novel categories. The results demonstrate our framework’s capability
to efficiently explore novel categories by exploiting geometric similarity. Additionally, we examine
our framework’s robustness across diverse combinations of training and testing categories, yielding
consistent results.

In summary, the contributions of this paper include:
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• Exploring the challenging task of cross-category few-shot learning for articulated object manip-
ulation, requiring the model to capture fine-grained geometric information from an entirely new
category using a few interactions with limited instances.

• Introducing the ‘Where2Explore’ affordance learning framework that explicitly measures the
semantic similarity of local geometries across different categories, which successfully guides the
exploration on novel categories with only a few interactions.

• Our experiments, both in a simulator and the real world, show that our proposed framework can
efficiently explore novel categories and generalize to unseen instances.

2 Related Work
Perceiving Articulated Objects for Manipulation. Future home-assistant robots need to possess
the ability to perceive and manipulate a wide variety of articulated objects within human environments.
Previous studies have made significant advancements in estimating and tracking the segmentation
of the articulated parts [18, 43, 8, 15, 33], the 6-DoF part poses [20, 21, 36, 22, 9], the joint
parameters [32, 34, 45, 13], and digital twins [26, 16, 12, 14]. Based on these perceptual signals,
subsequent motion planners and controllers [31, 4, 2, 24, 1] can manipulate the articulated objects.
Our work focuses on learning dense manipulation affordance heatmaps over the input 3D object,
augmenting the basic part and joint parameters with fine-grained geometry-to-action mappings.

Affordance Learning on Articulated Objects. The concept of affordance [11] plays a pivotal role
in facilitating the manipulation of articulated objects. In the literature, researchers have been exploring
learning manipulation affordance on articulated objects [19, 17, 23, 6, 25, 38, 41, 30, 10, 42, 40, 5].
Although these works can accurately predict manipulation affordances for articulated objects, they
frequently encounter difficulties handling novel unseen objects significantly different from the training
data, which is the core problem we study in this paper. A noteworthy piece of research closely aligned
with ours is the AdaAfford system [35] that learns to fine-tune the affordance prediction of novel
objects using a limited number of interactions. While AdaAfford focuses on rapidly adapting to a
single novel instance within known training object categories, our work addresses the more arduous
challenge of generalizing to an entirely new category of articulated objects.

3 Problem Formulation
In line with prior affordance learning studies [25, 38, 46, 37], given an N-point 3D partial point cloud
observation of an articulated object O ∈ RN×3 and a set of action directions and gripper orientations
{Rp

1, R
p
2, R

p
3, · · · |R

p
i ∈ SO(3)} on each point, the visual manipulation affordance is defined as a

dense prediction Aff ∈ RN×3, where a ∈ [0, 1]N on each point indicates whether the action on that
point would result in a part motion. This definition forms a fine-grained geometry-to-action mapping.

During the few-shot exploration, the model needs to propose a few interactions I = {I1, I2, · · ·}
sequentially. Each interaction Ii = (Oi, pi, Ri) represents a task-specific hard-coded trajectory
defined in Where2Act [25], parametrized by the interaction point pi ∈ Oi and the action direction
and gripper orientation Ri ∈ SO(3). The interaction will result in a part motion mi. The model will
be fine-tuned by the proposed interactions I and corresponding outcomes {m1,m2, · · ·}.

4 Method
As shown in Figure 2, we propose the ‘Where2Explore’ framework to explicitly leverage the
similar semantics on local geometries shared across different categories for cross-category few-
shot exploration. To achieve this, we divide the training categories into two parts - the affordance
category Caff and the similarity categories Csim. We begin by learning point-level manipulation
affordance on the affordance category to create a supporting set containing semantic and geometric
information on known shapes (Figure 2, Left) 4.1. Next, we introduce the ‘similarity module’ to form
a representation that connects the geometries in the supporting set with geometries across category
boundaries. This module is trained by comparisons between the geometries in Caff with those in
Csim. (Middle) 4.2. Then, to expand the supporting set along the similarity representation we built,
we perform few-shot learning on novel categories with the guidance of the similarity module, which
transfers its prediction to novel categories through shared local geometries (Right) 4.3. Finally, we
describe the network and training strategy 4.4.

4.1 Affordance Learning for Building Supporting Set
To conduct the cross-category few-shot exploration task, firstly, we need to build a supporting set from
which we can expand our knowledge to a broader range of categories. This requires a representation
that encapsulates the learned semantic and geometric information in known categories.
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Figure 2: Method overview: We first employ affordance learning on the affordance category to form
our supporting set (Left). Then, we estimate the semantic similarity between learned geometries and
geometries from the similarity categories (Middle). Finally, leveraging the shared local geometries in
novel categories, we conduct few-shot learning with the transferred similarity prediction (Right).

Visual manipulation affordance has been proven by previous works to have fine-grained manipulation
information and is able to generalize to unseen objects within the same category [25, 38, 35]. We
exploit these valuable properties to build up our supporting set. Following Where2Act [25], we build
a module to predict the per-point affordance. Given a specific action Ri on a point pi of a partial point
cloud Oi, the affordance module is required to predict whether the given action will result in a part
motion. We train the affordance module on training categories to build up its semantic understanding
of geometries in the training categories.

However, previous affordance learning works suffer a dramatic performance drop when tested on
novel categories. To enable our framework to smoothly expand the supporting set to include wider
object categories, we need a cross-category representation that links similar geometries across
categories.

4.2 Cross-category Similarity Learning
We propose to explicitly estimate the similarity between geometries from different categories with
the learned geometries in the supporting set. The similarity should act as a set of ‘bridges’ connecting
shapes in the supporting set and the geometries from different categories. To be specific, the
proposed similarity should be equipped with the following properties. Firstly, the similarity should
be conditioned on specific actions (the action type, action direction, and gripper orientation) because
even geometrically similar areas can have distinct semantic meanings when the action is different.
For example, handles are significant in pulling whereas less important in pushing, and a horizontal
handle could not be grasped by a gripper whose pose is also horizontal. Besides, similarity should be
based on the current knowledge of affordance, showing high similarity when the learned affordance
could directly generalize to a given geometry, which indicates this geometry is semantically similar
to the supporting set and verse versa.

To achieve the first property, as shown in the middle of Figure 3, we propose a ‘similarity module’
to predict the semantic similarity. The similarity module is designed to take a partial point cloud of
an object Oi ∈ R3×N , a set of action directions and gripper orientations {Ri} on each point, and is
required to predict per-point similarity Sim ∈ RN based on these inputs. This design enables the
similarity to be aware of specific actions and thus has the potential to contain manipulation semantics
instead of only relying on the shape geometry.

In order to acquire the second property, the key is to expose our similarity module to categories that
are broader than what our affordance module is trained on. As shown in the 3 (Left), we divide
the training categories into two parts - the affordance category Caff that only contains one category
and the similarity categories Csim that contains three categories (which also contains the affordance
category). We train our affordance on Caff and supervise the similarity module using Csim.

During training, the interactions on the affordance category (e.g., cabinets) are used to supervise the
affordance module, as shown in the previous section. However, interactions on similarity categories
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Figure 3: Cross-category similarity learning. We use a similarity module to predict the similarity
conditioned on specific actions (Middle). While the affordance category is used to train the affordance
representation (Top Right), the split similarity categories are used to supervise the learning of the
similarity module by comparing the GT interactions with the affordance prediction (Bottom Right).

(e.g., faucets, and windows) are kept from updating the affordance module. Instead, we compare
the affordance prediction on objects from similarity categories with the ground-truth interaction
results and use the accuracy of affordance prediction during training to supervise the learning of the
similarity module, which is:

Sim(Oi, pi, Ri) := Accu(Aff(Oi, pi, Ri),mi), Oi ∈ Csim, (1)

where Sim and Aff stand for the similarity and affordance prediction given a specific action. The
Accu is computed using the accuracy in predicting the affordance score of an action during training.

As straightforward as this approach may appear, the learned similarity holds valuable properties
for cross-category exploration. Since the similarity is trained in a cross-category manner, it forces
the network to focus on local geometries shared across different objects, which is beneficial for
generalizing to novel categories. Moreover, the learned similarity is based on the current knowledge of
affordance, highlighting the areas where the current model is uncertain while saving the unnecessary
exploration on geometries that the affordance could directly generalize to. Finally, similarity defined
through this approach could reveal the semantic meaning of geometries with regards to manipulating
them instead of only relying on the similarity of shapes.

4.3 Few-shot Learning Loop

After the similarity linking the supporting set and different geometries are learned, we perform a
few-shot exploration of novel categories (unseen by both modules) with the learned similarity module.

As shown in the right part of figure 2, when faced with a novel category, our framework will first
predict the similarity of the objects. Thanks to the property that similarity is conditioned on action
directions and gripper orientations, we could sample interactions in diverse directions and poses
Ri to indicate which action on what geometry pi ∈ Oi contains the most informative semantics.
Then, by choosing the action with the lowest similarity prediction, the model performs a short-term
manipulation trajectory and observes the result of the interaction as a part motion mi (the right part
of the figure). Finally, both the affordance module and the similarity module will be updated by this
interaction (Oi, pi, Ri,mi) and be ready for the next prediction on the object to indicate where to
explore. This loop will break if the similarity on the instance reaches a bar or the interaction budget
is reached.

Through just a few interactions on the instances from an unseen category, our model explores the
semantic and geometric significant areas of a novel category and captures the common features shared
with already learned categories. Via these few-shot explorations, the knowledge of manipulation
affordance on training categories is transferred to novel categories. Thanks to the generalization
ability of affordance within one category, our adapted affordance could manipulate unseen objects
from this category without additional interactions.
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4.4 Network Architecture and Training Strategy

Our network consists of two modules - the affordance module and the similarity module. We use a
PointNet++ segmentation network [29] encoder for extracting features from 3D partial point clouds.
The encoder will output a per-point feature of 128 dimensions. We let the two modules share the
same encoder since we want the similarity module to be based on affordance prediction. We employ
Multilayer Perceptrons (MLP) with one hidden layer of size 128 to implement both decoders.

Affordance Loss. To supervise the learning of the affordance network, We deploy a binary cross-
entropy loss, which measures the error between the affordance prediction of a given interaction and a
binary label indicating whether the action results in a part motion (i.e., mi reaches the threshold of
0.01).

Similarity Loss. To train the similarity module, we use an L1 loss to measure the distance between
Similarity prediction and the ground truth accuracy. This accuracy is calculated as the ratio of correct
predictions to total prediction attempts for each interaction during training.

We balance the positive and negative interactions during training and sampling the same amount of
instances from different object categories equally. We train both modules simultaneously to learn the
proposed affordance and similarity until they converge. Please see supplementary for more details.

5 Experiments
To demonstrate the ability of our framework to propose informative interactions for cross-category
exploration efficiently. We intentionally train our model with constrained training categories. Then,
we perform few-shot learning on a wide variety of categories using only a few instances. Finally,
we test our fine-tuned model on unseen instances in novel categories to demonstrate that our model
learns the general semantic and geometric information. We set up three baselines for comparisons.
We also conduct ablation studies to prove the efficiency of our exploration strategy.

5.1 Data and Settings
Data. Following [25, 35], we use SAPIEN [39] with NVIDIA PhysX [28] as our simulator. We use
942 articulated 3D objects covering 14 categories to show our cross-category exploration ability.

To simulate the challenging cross-category few-shot task in the real world. We divide the categories
into only three training categories and 11 novel categories. The shapes in all the categories are
further divided into two disjoint sets of training and testing shapes. See supplementary for more
details.

Experiment Settings. We conduct experiments under two different manipulation action types
(pushing and pulling). We first train the networks on three training categories and then perform
few-shot learning on 11 novel categories. Finally, we evaluate the model by testing objects from the
novel categories.

For the training stage, to filter out randomness and prove the universal effectiveness of our framework,
we conduct experiments using 4 different training category combinations, which are {cabinet,
faucet, window}, {cabinet, switch, refrigerator}, {table, Faucet, refrigerator} and {table, switch,
window}. These category combinations are chosen because they could cover representative articula-
tions (revolute and prismatic joints). For baselines, we train the models using all training objects in
training categories, whereas we divide the training categories into two parts to train our framework,
as mentioned in the method. The first category in each combination is the training category.

For few-shot learning, we perform exploration on objects from the novel categories (i.e., the rest
11 categories). We conduct two experiments. The first experiment is few-shot learning on all novel
categories simultaneously, which requires the model to choose the objects and interactions that
contain uncertain yet significant semantic properties. We also perform few-shot learning on each
novel category separately to match the real-world scenario.

It is worth noticing that we only choose 10 instances from each novel category for few-shot
learning and evaluate the model on unseen objects in the novel categories, which challenges the
model’s ability to explore wisely in order to learn the semantic and geometric information that could
generalize to unseen objects.

Environment Settings. Following Where2Act and AdaAfford [25, 35], we abstract away the robot
arm and only use a Franka Panda flying gripper as the robot actuator. The input partial point cloud is
assumed to be cleanly segmented out. To generate the point clouds, we mount an RGB-D camera
with known intrinsic parameters 5-unit-length away pointing to the center of the target object.
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5.2 Baselines, Ablations, and Metrics
Baselines and Ablations. We compare our framework with several baselines:

• Where2Act [25]: an affordance learning framework predicting the visual actionable affordance
using a partial point cloud. During few-shot learning, Where2Act will sample interaction on the
points with an affordance score closest to 0.5.

• AdaAfford [35]: an affordance learning method that explores test-time few-shot adaptation. During
few-shot exploration, the interactions are proposed by a curiosity module that is optimized for
discovering the dynamic information of a specific object.

• PointEncoder [44]: a pre-trained transformer framework that takes point cloud as input and
could perform few-shot learning on classification and segmentation tasks. This baseline uses the
pre-trained transformer encoder to extract features for few-shot affordance learning.

We select Where2Act as a baseline to compare the exploration ability of certainty represented by our
similarity with the certainty defined in classification tasks. We use AdaAfford to evaluate the ability
of instance-level exploration strategy on cross-category few-shot learning. We select PointEncoder
to compare our framework with a network pre-trained on large-scale datasets.

Besides, we compare to ablated versions of our method to verify our exploration strategy:
• No-explore (lower bound): our affordance model directly evaluated on novel categories without

few-shot exploration, which represents the lower bound of few-shot learning.

• Explore-random: a variant of our proposed framework that explores novel objects through random
interactions.

• Explore-noSim: a variant of our proposed framework that uses the same exploration strategy as
Where2act instead of using the similarity module.

• Full-data (upper bound): our affordance model trained on all categories with abundant data. We
choose this ablation to represent the upper bound of affordance learning.

Evaluation Metrics. Following Where2Act [25] and AdaAfford [35], we use the F-score, balancing
the precision and recall, to evaluate the predictions of the visual affordance and use the sample
successful rate to evaluate the ability of the learned affordance to propose successful actions. We
calculate the sample success rate by randomly selecting one action predicted as successful by the
affordance module, performing the interaction, and observing the result. The final rate is reported as
the percentage of successful interactions in the simulation. For both the F-score and sample success
rate, we use the average score of the four different training category combinations.

5.3 Quantitative Results and Analysis

F-score Sample successful rate
Method Pushing Pulling Pushing Pulling

Where2Act 25.6 / 28.0 / 30.4 6.4 / 7.5 / 8.5 15.7 / 17.0 / 19.9 3.9 / 4.3 / 6.2

AdaAfford 27.5 / 29.7 / 32.0 3.7 / 4.0 / 4.4 27.2 / 31.3 / 37.1 9.1 / 9.4 / 11.1

PointEncoder 19.4 / 19.4 / 29.9 2.9 / 4.6 / 5.9 11.6 / 10.9 / 29.9 1.8 / 3.1 / 9.2

Ours 35.4 / 38.5 / 41.6 12.1 / 12.5 / 24.2 31.3 / 37.3 / 39.5 11.5 / 13.4 / 14.9
Table 1: Few-shot learning on novel categories using different interaction budget (1, 2, 5).

Table 1 shows the results of few-shot learning on novel categories using different interaction budgets.
Our method outperforms others in all metrics, particularly in ‘pulling’ actions. The pulling action is
more demanding in selecting informative geometries to interact with (e.g., drawer handles, kettle lids).
Specifically, compared to Where2Act, our framework could more efficiently explore novel categories,
proving that the cross-category similarity is a better representation of certainty on novel geometries
than certainty defined in classification tasks. Compared to the AdaAfford, our results suggest that
instance-level exploration strategies which focus on dynamic information for a single object fail to
generalize well across categories. Notably, AdaAfford requires test-time interaction for affordance
prediction, making the comparison unfair since our model predicts affordance from only visual
observation. Compared with PointEncoder, we show that our framework better understands the
semantic information for manipulation than a pre-trained encoder, even if it is trained on a large-scale
dataset and achieves generalization ability on several tasks.
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Methods Pushing unseen instances in novel categories Pulling unseen instances in novel categories

Where2Act 22.1 10.5 42.8 43.4 31.2 47.4 51.7 8.9 6.0 13.1 12.1 2.5 5.4 8.3
AdaAfford 24.4 7.5 50.1 48.8 25.5 44.3 52.2 9.2 4.3 14.0 11.3 2.7 7.8 9.2
PointEncoder 20.4 14.2 29.3 24.1 22.7 26.8 29.8 3.9 9.6 7.7 7.8 4.7 8.9 9.0
Ours 36.5 15.6 60.5 48.5 39.7 61.5 66.0 26.6 15.8 28.8 19.1 8.7 16.4 13.8

F-score (%)

Where2Act 14.1 5.9 42.4 35.7 22.2 34.8 39.4 7.4 5.3 18.2 18.2 1.5 3.0 4.5
AdaAfford 14.4 7.5 47.1 47.4 24.2 40.4 43.2 7.7 7.5 25.0 11.3 1.3 3.1 5.4
PointEncoder 13.1 3.4 18.7 17.3 12.4 17.5 21.0 3.0 3.9 4.3 7.8 0.6 4.3 3.6
Ours 29.5 9.6 54.5 41.9 32.8 49.2 54.7 17.1 16.0 35.5 21.4 15.1 11.3 15.4

Sample successful rate (%)

Table 2: Evaluation of few-shot learning on different categories separately (5 interaction budget)

F-score Sample successful rate
Method Pushing Pulling Pushing Pulling

No-explore 20.6 3.9 12.1 3.2

Explore-random 24.9 / 28.8 / 29.0 4.0 / 6.1 / 9.2 15.0 / 18.4 / 21.6 3.4 / 5.2 / 5.1

Explore-noSim 24.8 / 25.2 / 30.2 6.8 / 6.7 / 8.4 15.0 / 19.2 / 25.5 5.4 / 6.2 / 5.3

Ours 35.4 / 38.5 / 41.6 12.1 / 12.5 / 24.2 31.3 / 37.3 / 39.5 11.5 / 13.4 / 14.9
Full-data 47.9 27.1 40.3 13.9

Table 3: Ablations on the exploration strategy using different interaction budget (1, 2, 5).

We also conduct few-shot affordance learning on representative categories separately to match the
real-world scenario. Table 2 presents the quantitative comparisons against the baselines showing that
our method achieves the best performance in most entries (especially in pulling tasks).

In Table 3, we compare our full method against several variants of our framework. Compared
with No-explore, we observe that the proposed similarity could smoothly guide the cross-category
generalization of affordance. Compared with other exploration strategies Explore-random and
Explore-noSim that fail to discover important local areas, our strategy is dramatically more effective
and efficient. Our framework also achieves comparable performance compared with Full-data,
which is trained on all categories with abundant data. Considering that our framework only uses 0.3%
of the original data, it further proves the efficiency of our exploration strategy.

5.4 Qualitative Results and Analysis

Affordance Similarity Where2Act strategy 

Affordance Similarity AdaAfford strategy Affordance Similarity AdaAfford strategy 

Affordance Similarity

Pushing Pulling

Where2Act strategy 

Figure 4: Visualization of different exploration strategies on novel objects. The action directions are
set to the normal direction of each point in this visualization.
Figure 4 compares the visualization of our proposed similarity with exploration strategies of
Where2Act [25] and AdaAfford [35] on novel categories. Compared with Where2Act, our proposed
similarity is more geometric-aware, successfully discovering uncertain geometries (e.g., whether the
handle joint is at its limit) to interact with and familiar shapes (e.g., windows) to save exploration
budget. Compared with AdaAfford, which fails to generalize to novel categories, our framework
could still propose reasonable exploration strategies on novel categories leveraging local similarity.
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Figure 5: Pushing (top) and pulling (middle and bottom) affordance and similarity prediction on
novel object categories. Although Affordance fails to directly generalize to novel categories (Left)
via interacting on low-similarity areas (Middle), our framework could learn the semantic information
on them (Right). In this visualization, for objects in the simulator, the action directions are set to
the normal direction of each point. For objects from the real world, the direction is the vertically up
direction.
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Figure 6: Real-world experiment set up (Left), similarity-guided exploration (Middle), and manipula-
tion after exploration (Right). The pulling direction is vertical in this visualization.

Figure 5 shows the visualization of our proposed affordance and similarity on novel categories. While
affordance fails to directly generalize to novel objects (Left), the similarity module can still discover
areas that contain uncertain yet important semantic information to interact with (Middle). With a
few similarity-guided interactions on the novel category, the affordance could capture the geometric
information of novel objects. Note that although we choose the same novel object for visualization,
the adapted manipulation affordance could directly generalize to other unseen objects in this category.

Figure 6 shows the qualitative results in the real world. We require our model, which is only trained
on cabinets, windows, and faucets, to perform a few-shot exploration on four mugs and manipulate
another mug after the exploration. We use pulling as our action primitive since it’s more challenging.
All objects are fixed to the tabletop to ensure the observed motion is a part motion instead of an entire
movement. Please refer to the supplementary for more details.

6 Conclusion

We investigate the critical yet challenging task of cross-category few-shot affordance learning.
The proposed ‘Where2Explore’ framework leverages the similarities in geometries across different
categories to guide exploratory interactions on uncertain yet significant areas during few-shot learning.
This study of cross-category few-shot exploration is beneficial to the real-world application of robots
by empowering them to understand and manipulate novel categories through minimal interactions.

Limitations and Future Works. Our performance drops on categories with significant shape
variance. Future works could use ‘similarity’ to divide local geometries into parts according to their
manipulation properties, which might improve the generalization ability towards more objects.
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