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Abstract
Optimizing deep neural networks is one of the
main tasks in successful deep learning. Current
state-of-the-art optimizers are adaptive gradient-
based optimization methods such as ADAM. Re-
cently, there has been an increasing interest in
formulating gradient-based optimizers in a prob-
abilistic framework for better estimation of gra-
dients and modeling uncertainties. Here, we pro-
pose to combine both approaches, resulting in the
Variational Stochastic Gradient Descent (VSGD)
optimizer. We model gradient updates as a prob-
abilistic model and utilize stochastic variational
inference (SVI) to derive an efficient and effective
update rule. Further, we show how our VSGD
method relates to other adaptive gradient-based
optimizers like ADAM. Lastly, we carry out exper-
iments on two image classification datasets and
four deep neural network architectures, where we
show that VSGD outperforms ADAM and SGD.

1. Introduction
The driving force for deep learning success is efficient and
effective optimization (Bottou, 2012; Sun, 2020). Deep
Neural Networks (DNNs) introduce multiple optimization
challenges due to their complexity, size, and loss landscape
with multiple local minima, plateaus, and saddle points.
Since the first attempt to train DNNs with stochastic gradi-
ent descent (SGD), there have been multiple approaches to
speed up the learning process and improve the final perfor-
mance of DNNs.

Nowadays, adaptive gradient-based methods are the leading
optimizers in deep learning. The first advancements arrived
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with the idea of adding momentum to the SGD update rule,
resulting in SGD with momentum (SGDM) (Sutskever
et al., 2013). The next major breakthrough was ADAM
(Kingma & Ba, 2015), which uses the first and second mo-
menta to adapt the learning rate and gradients. Currently,
ADAM is probably the most widely used optimizer in deep
learning due to its relative insensitivity to hyperparameter
values, and much faster initial progress in training compared
to SGD (Sun, 2020).

Recently, there has been an increasing interest in formu-
lating SGD in a probabilistic framework. One example is
(Mandt et al., 2017) in which SGD is used as an approxi-
mate Bayesian inference algorithm analyzed by relating it to
the Ornstein-Uhlbeck process. A different approach utilizes
a Bayesian perspective on SGD to model the uncertainty
for datastreams (Liu et al., 2024).

In this paper, we propose to combine these two approaches,
and, as a result, we obtain a probabilistic framework for
adaptive gradient-based optimizers. First, we formulate a
probabilistic model of SGD. Second, we employ stochastic
variational inference SVI (Hoffman et al., 2013) to derive
an efficient adaptive gradient-based update rule. We refer
to our approach as Variational Stochastic Gradient Descent
(VSGD). We apply our method to optimize overparameter-
ized DNNs on image classification. Compared to ADAM
and SGD, we obtain very promising results.

Our contributions can be summarized as follows:

1. We propose Variational Stochastic Gradient Descent
(VSGD), a novel optimizer that adopts a probabilistic ap-
proach. In VSGD, we model the true gradient and the
noisy gradient as latent and observed random variables, re-
spectively, within a probabilistic model. Additionally, this
unique perspective allows us to manage gradient noise more
effectively by adopting distinct noise models for the true
and noisy gradients.

2. We draw connections between VSGD and sev-
eral established non-probabilistic optimizers, including
NORMALIZED-SGD, ADAM, and SGDM. Our analysis
reveals that many of these methods can be viewed as spe-
cific instances or simplified adaptations of VSGD when
a constant noise model is assumed for both the true and
observed gradients.
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3. Lastly, we carry out an empirical evaluation of VSGD by
comparing its performance against the most popular optimiz-
ers, namely ADAM and SGD in the context of large-scale
image classification tasks using overparameterized deep
neural networks. Our results indicate that VSGD not only
achieves lower generalization errors, but also converges at a
competative rate compared to traditional methods such as
ADAM and SGD. We believe that these findings underscore
the practical advantages of VSGD, making it a compelling
choice for complex deep learning challenges.

2. Background knowledge
Training Neural Nets with Gradient Descent Let us con-
sider a supervised setup for deep neural networks (DNNs)
in which a DNN with weights θ ∈ RD predicts a target
variable y ∈ Y for a given object x ∈ X , fθ : X → Y .
Here, we treat θ as a vector to keep the notation uncluttered.
Theoretically, finding best values of θ can be achieved by
risk minimization: R(θ) = Ep(x,y) [ℓ(fθ(x), y)], where ℓ is
a loss function. In practice, we do not have access to p(x, y),
but we are given a dataset D. Then, training of fθ corre-
sponds to empirical risk minimization (Bottou, 2012; Sun,
2020): L(θ;D) = 1

N

∑N
n=1 ℓ(fθ(xn), yn). We assume that

the loss function is k-differentiable, ℓ ∈ Ck, at least k = 1.

Many optimization algorithms for DNNs are based on gra-
dient descent (GD). Due to computational restrictions on
calculating the full gradient (that is, over all training data-
points) for a DNN, the stochastic version of GD, stochastic
gradient descent (SGD), is employed. SGD results in the
following update rule:

θt = θt−1 − ηtĝt, (1)

where ηt is a learning rate, ĝt = ∇θL(θ;M) is a noisy
version of the full gradient calculated over a mini-batch of
M data points, L(θ;M) = 1

|M |
∑

n∈M ℓ(fθ(xn), yn), and
we assume that E [ĝt] = gt.

Related work Optimization of DNNs is a crucial compo-
nent in deep learning research and, especially, in practical
applications. In fact, the success of deep learning models is
greatly dependent on the effectiveness of optimizers. The
loss landscapes of DNNs typically suffer from multiple lo-
cal minima, plateaus, and saddle points (Du & Lee, 2018),
making the optimization process challenging.

Since the introduction of backpropagation (Rumelhart et al.,
1986; Schmidhuber, 2015), which is based on SGD updates,
multiple techniques have been proposed to improve SGD.
Some improvements correspond to a better initialization
of layers that results in a warm start of an optimizer (e.g.,
(Glorot & Bengio, 2010; He et al., 2015; Sutskever et al.,
2013)), or pre-defined learning schedules (e.g., (Loshchilov
& Hutter, 2016)).

Another active and important line of research focuses on
adaptive gradient-based optimizers. Multiple methods are
proposed to calculate adaptive learning rates for DNN, such
as RMSPROP (Graves, 2013; Tieleman & Hinton, 2012),
ADADELTA (Zeiler, 2012), and ADAM (Kingma & Ba,
2015). ADAM is probably the most popular optimizer due to
its relative insensitivity to hyperparameter values and rapid
initial progress during training (Keskar & Socher, 2017;
Sun, 2020). However, it was pointed out that ADAM may
not converge (Reddi et al., 2018), leading to an improve-
ment of ADAM called ADMSGRAD (Reddi et al., 2018).
There are multiple attempts to understand ADAM that lead
to new theoretical results and new variants of ADAM (e.g.,
(Barakat & Bianchi, 2019; Zou et al., 2019)). In this paper,
we propose a new probabilistic framework that treats gradi-
ents as random variables and utilizes stochastic variational
inference (SVI) (Hoffman et al., 2013) to derive an estimate
of a gradient. We indicate that our method is closely related
to ADAM and is an adaptive gradient-based optimizer.

A different line of research focuses on 2nd-order optimiza-
tion methods that require the calculation of Hessian matrices.
In the case of deep learning, it is infeasible to calculate Hes-
sian matrices for all layers. Therefore, many researchers
focus on approximated 2nd-order optimizers. One of the
most popular methods is KFAC (Martens & Grosse, 2015).
Recently, there have been new developments in this direc-
tion (e.g., (Eschenhagen et al., 2023; Lin et al., 2021; 2023)).
However, extending K-FAC introduces memory overhead
that could be prohibitive, and numerical instabilities might
arise in low-precision settings due to the need for matrix in-
versions or decompositions. Here, we focus on the 1st-order
optimizer. However, we see great potential for extending
our framework to the 2nd-order optimization.

There are various attempts to treat SGD as a probabilistic
framework. For instance, Mandt et al. (2017) presented
an interesting perspective on how SGD can be used for
approximate Bayesian posterior inference. Moreover, they
showed how SGD relates to a stochastic differential equa-
tion (SDE), specifically, the Ornstein-Uhlbeck process. The
idea of perceiving SGD as an SDE was further discussed
in, e.g., (Yokoi & Sato, 2019) with interesting connections
to stochastic gradient Langevin dynamics (Welling & Teh,
2011). Another perspective was on the phrasing SGD as a
Bayesian method either for sampling (Mingard et al., 2021),
modeling parameter uncertainty for streaming data (Liu
et al., 2024) or generalization (Smith & Le, 2017). A differ-
ent approach uses linear Gaussian models to formulate the
generation process of the noisy gradients and infer the hid-
den true gradient with Kalman filter or Bayesian filter, e.g.,
(Bittner & Pronzato, 2004; Vuckovic, 2018; Yang, 2021). In
this paper, we propose to model dependencies between true
gradients and noisy gradients through the Bayesian perspec-
tive using a novel framework. Our framework treats both
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Figure 1. A probabilistic graphical model of our proposed VSGD
optimizer. White circles represent latent variables, gray circles
correspond to observable variables, filled small black circles denote
control variables.

quantities as random variables and allows efficient inference
and incorporation of prior knowledge into the optimization
process. A similar line of work is the natural gradient-based
methods for Bayesian Inference where the optimizer uses
natural gradients instead of Euclidean gradients (Khan et al.,
2018; Osawa et al., 2019). Our work can be considered
orthogonal to this line of work, as they apply ADAM to
a Bayesian model for learning the variational parameters.
VSGD, on the other hand, assumes a Bayesian model for
the gradients themselves and may not necessarily be applied
to a Bayesian inference problem.

3. Methodology
3.1. Our approach: VSGD

A probabilistic model of SGD There are several known
issues with applying SGD to the training of DNNs (Bot-
tou, 2012; Sun, 2020), such as slow convergence due to
gradient explosion/vanishing or too noisy gradient, poor
initialization of weights, and the need for a hyperparameter
search for each architecture and dataset. Here, we would
like to focus on finding a better estimate of the true gradient.
To achieve that, we propose to perceive SGD through a
Bayesian perspective, in which we treat noisy gradients as
observed variables and want to infer the posterior distribu-
tions over true gradients. Subsequently, we can then use
the expected value of the posterior distribution over the true
gradient gt and plug it into the SGD update rule (Eq. 1). In
the following, we present how we can achieve that.

In our considerations, we treat all quantities as random vari-
ables. Hence, the true gradient gt is a latent variable, and
we observe the noisy gradient ĝt. We propose to model gt
and ĝt using Gaussian distributions with precision variables
wg and wĝ , representing the information of systematic and
observation noises, respectively. Here, we use ”observation
noise” to indicate the sampling noise of the observed gradi-
ent and ”systematic noise” to indicate the introduced error
of trying to approximate the real, local area of the gradient
surface with a simplified model. Both precision variables

are treated as Gamma-distributed latent variables. The ad-
vantage of treating precision variables as latent variables
instead of hyperparameters is that this way, we can incorpo-
rate prior knowledge over the systematic and observation
noise as well as having uncertainty over them.

We introduce a control variate ut to serve as a mean for gt
and is essential for our approach. We suggest defining it
as a function that aggregates information from previously
observed noisy gradients ut = h(ĝ1:t−1). Later (Eq. 8), we
will discuss the specific formulation of the function h(·). In
the case of ĝt, we propose using gt as the mean. We assume
that the gradients across each dimension are independent by
modeling them independently. This approach is adopted for
computational efficiency. Moving forward, unless specified
otherwise, all symbols should be considered as scalars.

For the maximum number of iterations T , the joint distribu-
tion is then defined as follows (Figure 1):

p(wg, wĝ,g1:T , ĝ1:T ;u1:T ) (2)

=p(wg)p(wĝ)

T∏
t=1

p(gt|wg;ut)p(ĝt|gt, wĝ), (3)

with the following distributions:

p(gt|wg;ut) = N (ut, w
−1
g ), (4)

p(ĝt|gt, wĝ) = N (gt, w
−1
ĝ ), (5)

p(wg) = Γ(γ, γ), (6)
p(wĝ) = Γ(γ,Kgγ), (7)

where the Gamma distributions Γ(·) are parameterized by
shape and rate. Kg is a hyperparameter designed to reflect
our prior belief about the variance ratio between ĝi and gi,
i.e., Kg = E

[
w−1

ĝ

]
/E
[
w−1

g

]
. A recommended value for

Kg is greater than 1, e.g. Kg = 30, suggesting that the
majority of observed variance stems from observation noise
w−1

ĝ rather than systematic noise w−1
g . γ is a shared hyper-

parameter that indicates the strength of the prior, essentially
equating the prior knowledge with γ observations. A smaller
value for γ, such as 1e− 8, is advised to represent our prior
ignorance. The remaining key question is the choice of the
control variate ut as a way to carry information. In this
paper, we aggregate the information over t by setting the
prior mean for the current gt as the posterior mean of the
previous ones:

ut = Ep(gt|ĝt−1;ut−1)[gt], (8)

where u0 could be set to 0.

An alternative approach to using ut to summarize the knowl-
edge before t is to instead let gt explicitly depend on g1:t−1.
However, incorporating this dependency explicitly would
lead to a non-scalable, fully connected graphical model. A
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common alternative solution is to adopt a Markov structure,
in which gt depends only on the most recent L observations
gt−L:t−1. This aligns the model with frameworks similar
to Kalman filters or Bayesian filters (Kalman, 1960). How-
ever, these models either require known precision terms
beforehand, which is often impractical or necessitate on-
line learning of precisions through computationally inten-
sive methods such as nested loops in variational inference
or Monte Carlo methods, rendering them non-scalable for
training deep neural networks. By introducing ut and treat-
ing it as an additional observation, we can utilize SVI to
avoid nested loops and still guarantee convergence to the
estimated precisions (if any). As demonstrated in this paper,
this strategy proves to be both scalable and efficient.

Stochastic Variational Inference Since the model de-
fined by Eqs. 4-7 requires calculating intractable integral
over latent variables, to find a good estimate of gt, we aim
to approximate the distribution p(wg, wĝ, g1:T , ĝ1:T ;u1:T )
with a variational distribution q(wg, wĝ, g1:T ; τ, ϕ1:T ), pa-
rameterized by the global and local variational parameters
τ and {ϕt}Tt=1 respectively. We achieve this by maximizing
the evidence lower-bound (ELBO) defined by p and q

argmax
τ,ϕ1:T

Eq

[
log

p(wg, wĝ, g1:T , ĝ1:T ;u1:T )

q(wg, wĝ, g1:T ; τ, ϕ1:T )

]
. (9)

We will demonstrate that this objective can be achieved
concurrently with the original optimization objective θ∗ =
argminθ L(θ;D), allowing each SGD iteration of θ to
serve simultaneously as an SVI iteration for Eq. 9. Follow-
ing SVI (Hoffman et al., 2013), we employ the mean-field
approach, assuming the variational posterior is factorized as
follows:

q(wg, wĝ, g1:T ) = q(wg)q(wĝ)

T∏
t=1

q(gt). (10)

We define the marginal variational distributions as:

q(wg) = Γ(ag, bg), (11)
q(wĝ) = Γ(aĝ, bĝ), (12)

q(gt) = N (µt,g, σ
2
t,g), (13)

for t = 1 : T , where the global and local variational pa-
rameters are τ = (ag, aĝ, bg, bĝ)

T and ϕt = (µt,g, σ
2
t,g)

T ,
respectively.

We now outline the complete SVI update process to meet
the objective set in Eq. 9. For detailed derivations, please
see App. A.1. Let τt−1 = (at−1,g, at−1,ĝ, bt−1,g, bt−1,ĝ)

T

and ϕt−1 = (µt−1,g, σ
2
t−1,g)

T represent the global and lo-
cal variational parameters updated just before the t-th SVI
iteration, and we set the control variate:

ut = µt−1,g, (14)

as the variational version of ut as in Eq. 8, and let u0 = 0.
At iteration t, we start by randomly drawing a noisy gradient
ĝt with the sampling algorithm of your choice (e.g. using a
mini-batch of samples). Then, conditioned on ĝt, τt−1, and
ut, we update the local parameter ϕt as follows:

µt,g =
bt−1,ĝ

bt−1,ĝ + bt−1g
µt−1,g +

bt−1,g

bt−1,ĝ + bt−1g
ĝt, (15)

σ2
t,g =

(
at−1,g

bt−1,g
+

at−1,ĝ

bt−1,ĝ

)−1

. (16)

Note that µt,g represents a dynamic weighted average of
the previous estimate µt−1,g and the noisy observation ĝt.
Weights are dynamically determined based on the learned
relative precision between Eq. 4 and Eq. 5. µt,g then acts
as a control variate for the subsequent iteration. Recall that
at,g

bt,g
= Eqt [wg]. Therefore, the variance parameter σ2

t,g is
equal to the inverse sum of the two precisions characterizing
the systematic and observation noise. For an alternative
kernel smoothing view on Eq. 15, please refer to App. A.2.

Given local parameters ϕt, update equations for the global
parameters τt have the form:

at,g = at,ĝ = γ + 0.5, (17)

b′t,g = γ + 0.5
(
σ2
t,g + (µt,g − µt−1,g)

2
)
, (18)

b′t,ĝ = Kgγ + 0.5
(
σ2
t,g + (µt,g − ĝt)

2
)
. (19)

In Eq. 17, at,g and at,ĝ remain constant throughout the itera-
tions and depend purely on the prior strength γ. For the sake
of consistency, they are included in the update equations.
Thus, the posterior belief of the precision parameters wg and
wĝ are determined purely by the rate parameters (b′t,g, b

′
t,ĝ).

Intuitively, they characterize the amount of systematic noise
and observation noise accordingly. In both cases, the prior
value and the estimated variance of the true gradient ad-
ditively contribute to the estimation. The main difference
between the two comes in the third term, which depends
on how much the gradient mean changed in time for the
systematic noise and the difference between the observed
gradient and the mean estimate for the observation noise.

Finally, the SVI updates for the global parameters are:

bt,g = (1− ρt,1(t))bt−1,g + ρt,1(t)b
′
t,g, (20)

bt,ĝ = (1− ρt,2(t))bt−1,ĝ + ρt,2(t)b
′
t,ĝ. (21)

where ρt,1(t) and ρt,2(t) denote the learning rates of SVI
across iterations t. A typical selection for ρ could be as
follows:

ρt,1(t) = t−κ1 , (22)

ρt,2(t) = t−κ2 . (23)
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Algorithm 1 VSGD
Input: SVI learning rate parameter {κ1, κ2}, learning
rate η, prior strength γ, prior variance ratio Kg .
Initialize:
θ0, a0,g = γ; a0,ĝ = γ; b0,g = γ; b0,ĝ = Kgγ;µ0,g = 0
for t = 1 to T do

Compute ĝt for L(θ; ·)
ρt,1 = t−κ1

ρt,2 = t−κ2

Update σ2
t,g, µt,g ▷ Eq. 15, 16

Update at,g , at,ĝ ▷ Eq. 17
Update bt,g , bt,ĝ ▷ Eq. 20,21
Update θt ▷ Eq. 24

end for

In this formulation, κ1 and κ2 are hyperparameters that in-
fluence the behavior of the SVI learning rates. We typically
limit κ1 and κ2 in the range (0.5, 1] to let ρt,1 and ρt,2 meet
the Robbins–Monro conditions (Robbins & Monro, 1951),
and we select κ2 > κ1 to allow for a slower or larger decay-
ing learning rate for wg . For example, setting κ1 = 0.8 and
κ2 = 0.9 allows wg to adapt more rapidly to new develop-
ments compared to wĝ .

Note that when using a mini-batch of samples, ĝt is calcu-
lated as the average of the sampled gradients in the batch.
While in VSGD it is possible to treat the samples in the
mini-batch separately, see App. A.3 for details.

Having concluded the t-th SVI iteration, we then incorpo-
rate the local parameter ϕt to finalize the t-th SGD iteration:

θt = θt−1 −
η√

µ2
t,g + σ2

t,g

µt,g, (24)

where
√
µ2
t,g + σ2

t,g =
√
E [g2t ] represents an estimation of

the local Lipschitz constant. A summary of the steps of the
VSGD algorithm can be seen in Algorithm 1.

3.2. VSGD, CONSTANT VSGD and their connections to
other gradient-based deep learning optimizers

Our probabilistic framework offers a way of estimating
gradients. A natural question to raise here is whether this
framework is related to other 1st order optimizers used in
deep learning. Similarly to well-known methods like ADAM,
VSGD maintains a cache of the first and second momenta of
the gradient, calculated as weighted moving averages. How-
ever, unlike other methods, where these variables remain
constant, VSGD adjusts its weights across iterations.

VSGD and NORMALIZED-SGD First, we can show
how our VSGD method relates to a version of SGD called
NORMALIZED-SGD (Murray et al., 2019) that updates the

gradients as follows:

θt = θt−1 −
η√
ĝ2t

ĝt. (25)

If we take γ → ∞, Kg → 0, then VSGD is approximately
equivalent to NORMALIZED-SGD (Murray et al., 2019).
We can show it by taking b0,g = γ, b0,ĝ = Kgγ. Then, for
γ → ∞ and Kg → 0, Eq. 15 yields:

µ1,g = 0 · Kgγ

Kgγ + γ
+ ĝ1

γ

Kgγ + γ
≈ ĝ1. (26)

In a subsequent iteration, as γ dominates all other values, we
have: at,g ≈ γ, b′t,g ≈ γ, b′t,ĝ ≈ Kgγ. As a result, bt,g ≈ γ,
bt,ĝ ≈ Kgγ. By induction, the variational parameter for gt
at iteration t is the following:

σ2
t,g =

Kgγ
2

γ(Kgγ + γ)
=

Kg

Kg + 1
≈ 0, (27)

µt,g = µt−1,g ·
Kgγ

Kgγ + γ
+ ĝt

γ

Kgγ + γ
≈ ĝt. (28)

As a result, the update rule for θ is approximately the update
rule of NORMALIZE-SGD, namely:

θt ≈ θt−1 −
η√
ĝ2t

ĝt. (29)

CONSTANT VSGD Before we look at further connections
between our VSGD and other optimizers, we first introduce
a simplified version of VSGD with a constant variance ratio
shared between gt and ĝt. This results in the following
model:

p(ω, g1:T , ĝ1:T ;u1:T ) = p(ω)

T∏
t=1

p(gt|ω;ut)p(ĝt|gt, ω),

with the following distributions:

p(gt|ω;ut) = N (ut,K
−1
g ω−1), (30)

p(ĝt|gt, ω) = N (gt, ω
−1), (31)

p(ω) = Γ(γ, γ). (32)

This approach is tantamount to imposing a strong prior on
Eq. 3, dictating that the observation noise is the systematic
noise scaled by Kg. This strong prior affects only the ratio
between systematic and observation noises. Regarding the
prior knowledge of the observation noise ω itself, we can
maintain an acknowledgment of our ignorance by setting γ
to a small value such as 10−8.

Given its characteristic of maintaining a constant variance
ratio, we refer to the algorithm as CONSTANT VSGD. Since
the derivation of CONSTANT VSGD aligns with that of
other variants of VSGD, we omit the detailed derivation
here and directly present the update equations.

5



Variational Stochastic Gradient Descent for Deep Neural Networks

Algorithm 2 CONSTANT VSGD
Input: SVI learning rate parameter κ, SGD learning rate
η, prior strength γ, variance ratio Kg .
Initialize:
θ0, a0,ĝ = γ; b0,ĝ = γ;µ0,g = 0
for t = 1 to T do

Draw ĝt
ρt = t−κ

Update σ2
t,g, µt,g ▷ Eq. 33, 34

Update at,ĝ , bt,ĝ ▷ Eq. 35,36
Update θt ▷ Eq. 37

end for

µt,g =µt−1,g
Kg

Kg + 1
+ ĝt

1

Kg + 1
, (33)

σ2
t,g =

1

Kg + 1

bt−1,ĝ

at−1,ĝ
, (34)

at,ĝ =γ + 1, (35)

bt,ĝ =(1− ρt)bt−1,ĝ + ρt

[
γ (36)

+ 0.5
(
σ2
t,g + (µt,g − ĝt)

2
)

+ 0.5Kg

(
σ2
t,g + (µt,g − µt−1,g)

2
) ]

,

θt =θt−1 −
η√

µ2
t,g + σ2

t,g

µt,g. (37)

The complete CONSTANT VSGD algorithm is outlined in
Algorithm 2, the updates are notably simpler compared to
VSGD, as outlined in Algorithm 1, yet they still offer suffi-
cient flexibility to estimate the uncertainties of the system.
We enumerate the key distinctions between CONSTANT
VSGD and VSGD as follows:

1. In VSGD, two global hidden variables, wg and wĝ, are
employed to represent systematic and observation noise,
respectively. On the contrary, CONSTANT VSGD utilizes ω
for observation noise and constrains the systematic noise to
a fraction 1

Kg
of the observation noise. Due to these reduced

degrees of freedom, all the update equations in CONSTANT
VSGD are simplified.

2. In the first momentum update Eq. 15 of VSGD, the
weights are determined by the ratio between systematic
and observation noise. However, in Eq. 33 of CONSTANT

VSGD, these weights are fixed at { Kg

Kg+1 ,
1

Kg+1}, facili-
tating a direct comparison with other optimizers such as
ADAM.

To sum up, now we know how to simplify VSGD to CON-
STANT VSGD. In the following, we will indicate how CON-
STANT VSGD is connected to other optimizers, namely:
ADAM, SGD with momentum, and AMSGRAD.

3.2.1. CONSTANT VSGD AND ADAM

First, we compare CONSTANT VSGD with one of the
strongest and most popular optimizers for DNNs, ADAM
(Kingma & Ba, 2015). At the t-th iteration, ADAM updates
the first two momenta of the gradient through the following
procedure:

mt =β1mt−1 + (1− β1)ĝt, (38)

vt =β2vt−1 + (1− β2)ĝ
2
t , (39)

where β1, β2 are hyperparameters.

Then, θ is updated as follows:

θt = θt−1 −
η√
ṽt
m̃t, (40)

where m̃t and ṽt are the bias-corrected versions of mt and
vt, namely:

m̃t = mt/(1− βt
1), (41)

ṽt = vt/(1− βt
2). (42)

Now, the counterparts of mt and vt in CONSTANT VSGD,
i.e., the first and second momenta:

E [gt] =µt,g, (43)

E
[
g2t
]
=µ2

t,g + σ2
t,g, (44)

where µt,g is defined in Eq. 33. If we set Kg = β1

1−β1
, then

the first momentum updates in Eq. 33 and Eq. 38 become
identical.

Next, we examine the relationship between Eq. 39 and
Eq. 44. Intuitively, vt (Eq. 39) is an approximation of the
expected second momentum of the noisy gradient E

[
ĝ2t
]
.

While Eq. 44 attempts to quantify the expected second mo-
mentum of the actual gradient E

[
g2t
]
.

By plugging to Eq. 33 and Eq. 34 to Eq. 44, we obtain the
following:

E
[
g2t
]
=µ2

t−1,g

K2
g

(Kg + 1)2
+ ĝ2t

1

(Kg + 1)2
(45)

+
2Kg

(Kg + 1)2
µt−1,g ĝt +

1

Kg + 1

bt−1,ĝ

at−1
. (46)

For clarity, we divide the aforementioned equation into two
components: Eq. 45 and Eq. 46. The first component aligns
with Eq. 39, as both represent weighted sums of an estimated
second momentum and ĝ2t . The distinction arises in the
second component, where CONSTANT VSGD introduces
two additional factors into the weighted sum: µt−1,g ĝt and

1
Kg+1

bt−1,ĝ

at−1
. Specifically, µt−1,g ĝt applies a penalty on

Eq.45 when µt−1,g and ĝt have opposing signs. The factor
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1
Kg+1

bt−1,ĝ

at−1
represents the 1

Kg+1 fraction of observation
noise learned from the data, while a higher observation
noise implies greater uncertainty in gt, leading to a higher
expected value E

[
g2t
]
.

In summary, CONSTANT VSGD described in Algorithm 2
can be regarded as a variant of ADAM. The first momentum
update in both algorithms is equivalent when Kg is set to
β1

1−β1
. However, the second momentum update in CON-

STANT VSGD incorporates an additional data-informed
component that is dynamically adjusted based on the obser-
vation noise learned from the data.

3.2.2. CONSTANT VSGD AND SGD WITH MOMENTUM

The second optimizer to which we compare CONSTANT
VSGD is SGD with the momentum term (SGDM). SGDM
is quite often used for DNN training due to its simplicity and
improved performance compared to SGD (Liu et al., 2020b).
At the t-th iteration, SGDM calculates an increment to θt−1,
denoted by vt, expressed as a weighted sum between the
previous increment vt−1 and the latest noisy gradient ĝt,
namely:

vt = λvt−1 + ηĝt, (47)
θt = θt−1 − vt, (48)

where λ is a hyperparameter. After rearranging Eq. 47, we
get the following:

vt = λvt−1 + ηĝt (49)

= (λ+ η)

[
λ

λ+ η
vt−1 +

η

λ+ η
ĝt

]
. (50)

That is, the increment vt in SGDM is a weighted average
of vt−1 and ĝt, the counterpart of vt in CONSTANT VSGD
is µt,g updated by Eq. 33. Therefore, by choosing Kg such
that Kg = γ

η , the update equations 50 and 33 become iden-
tical except for a constant scaling factor.

3.2.3. CONSTANT VSGD AND AMSGRAD

Another optimizer related to CONSTANT VSGD is AMS-
GRAD (Reddi et al., 2018), a variant of ADAM. AMSGRAD
was introduced to address a specific issue of ADAM in es-
timating the second momentum. To correct the problem, a
factor contributing to ADAM’s suboptimal generalization
performance was introduced. AMSGRAD rectifies it by
incorporating the long-term memory of the past gradients.

Specifically, the momentum accumulation process in AMS-
GRAD remains identical to ADAM, as defined in Eq. 38
and Eq. 39. However, for the parameter update step, AMS-
GRAD differs from AMSGRAD (as in Eq. 40, whether bias-
corrected or not) by incorporating the maximum of the past
second momentum estimates rather than relying solely on

Table 1. Final Average test accuracy, over three random seeds.
VSGD VSGD ADAM ADAMW SGD
(w/ L2) (w/o L2) (w/o L2) (w/ L2) (w/ mom)

CIFAR100

VGG16 70.1 70.0 66.8 66.6 67.9
CONVMIXER 69.8 69.1 66.5 67.0 65.4
RESNEXT-18 71.4 71.2 68.2 69.7 68.5

TINYIMAGENET-200

VGG19 51.2 52.0 47.6 49.0 50.9
CONVMIXER 53.1 52.6 51.9 52.4 52.4
RESNEXT-18 48.7 47.2 48.8 48.9 47.0

the most recent value, that is:

v̂t = max(v̂t−1, vt), (51)

θt = θt−1 −
η√
ṽt
m̃t. (52)

Here, the long-term memory is carried out by calculating the
maximum of all historical second momentum estimations.

Similarly to AMSGRAD, CONSTANT VSGD incorporates
a form of long-term memory regarding past gradient infor-
mation in its second momentum update equations 45 and
46. However, this is not achieved by computing the maxi-
mum of historical values. Notably, the factor 1

Kg+1
bt−1,ĝ

at−1
in

Eq. 46 represents the expected observation noise, estimated
using data up to the (t− 1)-th iteration. In this expression,
while Kg and at−1 remain constant for t ≥ 2, the variable
component is bt−1,ĝ, which is determined by Eq. 36, for
clarity we restate it as:

bt,ĝ =(1− ρt)bt−1,ĝ + ρts, (53)

where:

s = γ + 0.5
(
σ2
t,g + (µt,g − ĝt)

2
)

(54)

+ 0.5Kg

(
σ2
t,g + (µt,g − µt−1,g)

2
)
. (55)

It represents the combined squared systematic and observa-
tion noises after considering ĝt. Thus, Eq.53 suggests that
bt−1,ĝ is a balanced summation of the historical estimate
of bĝ and the newly squared disturbances. The forgetting
rate decreases over t, ρt = t−κ, promoting longer memory
retention in successive iterations. In CONSTANT VSGD,
the magnitude of the memory retention can be modulated
through the hyperparameter κ.

4. Experiments
In this Section, we evaluate the performance of the VSGD
compared to other optimizers on high-dimensional optimiza-
tion problems The task we focus on in our work is training
DNNs to solve classification tasks.
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4.1. Setup

Data We used three benchmark datasets: CIFAR100
(Krizhevsky et al., 2009), TINYIMAGENET-200 (Deng et al.,
2009b)1, and IMAGENET-1K (Deng et al., 2009a). The
CIFAR100 dataset contains 60000 small (32 × 32) RGB
images labeled into 100 different classes, 50000 images
are used for training, and 10000 are left for testing. In the
case of TINYIMAGENET-200, the models are trained on
100000 images from 200 different classes and tested on
10000 images. For a large-scale experiment, we use the
IMAGENET-1K dataset which contains 1,281,167 images
from 1000 classes.

Architectures We evaluate VSGD on various optimiza-
tion tasks and use three different neural network architec-
tures: VGG (Simonyan & Zisserman, 2015), RESNEXT
(Xie et al., 2017), and CONVMIXER (Trockman & Kolter,
2023). We keep the model hyperparameters fixed for all
the optimizers in our experiments. We provide a detailed
description of each architecture in App. B.1.

Hyperparameters We conducted a grid search over the
following hyperparameters: Learning rate (all optimizers);
Weight decay (ADAMW, VSGD); Momentum coefficient
(SGD). For each set of hyperparameters, we trained the
models with three different random seeds and chose the
best one based on the validation dataset. The complete set
of hyperparameters used in all experiments is reported in
Table 3. Furthermore, we apply the learning rate scheduler,
which halves the learning rate after each 10000 training
iterations for CIFAR100 and every 20000 iterations for
TINYIMAGENET-200. We train VGG and CONVMIXER
using batch size 256 for CIFAR100 and batch size 128 for
TINYIMAGENET-200. We use a smaller batch size (128
for CIFAR100 and 64 for TINYIMAGENET-200) with the
RESNEXT architecture to fit training on a single GPU.

4.2. Results

In Table 1, we compare the top-1 test accuracy for ADAM,
ADAMW, SGD (with momentum), VSGD, VSGD with
weight decay for the different architectures and datasets.
The accuracy is averaged across three random seeds. We
observe that VSGD almost always converges to a bet-
ter solution compared to ADAM and SGD, outperforming
ADAM by an average of 2.6% for CIFAR100 and 0.9%
for TINYIMAGENET-200. We present th progression of the
top-1 test accuracy progresses during training in App. B.4
(Figures 2 and 3). Additionally, we provide the training
curves. We observe that VSGD’s convergence is often the
same rate or faster compared to ADAMW.

1We use Tiny Imagenet(Stanford CS231N) provided on
www.image-net.org

Table 2. Average training time on GeForce RTX 2080 Ti (seconds
per training iteration) on CIFAR100 dataset.

MODEL TRAINING TIME

NAME
# PARAMS ADAM VSGD(×106)

VGG16 14.8 0.38 0.41
RESNEXT-18 11.1 0.84 0.87
CONVMIXER-256/8 0.6 0.36 0.38

Runtime & Stability As can be observed in Algorithm 1,
VSGD requires additional operation at each gradient update
step compared to the ADAM optimizer. However, we did not
observe a large computational overhead compared to ADAM
when training on the GPU. To illustrate this, we provide the
average training time (per iteration) in Table 2.

ADAM is known to perform well on deep learning tasks
without the need for extensive hyperparameter tuning. We
observed that our approach also demonstrates stable per-
formance without the need to tune the hyperparameters for
different architectures and datasets separately. Therefore,
we believe that VSGD is generally applicable to various
DNN architectures and tasks, as is the case with ADAM.

Imagenet In order to evaluate VSGD’s performance in
heavily overparameterized domains, we performed an ex-
periment on the Imagenet-1k dataset (Deng et al., 2009a)
where we trained a ResNet-50 with both VSGD and ADAM.
Due to limited computational resources, we did not perform
any hyperparameter tuning for this experiment. For both
optimizers, we used a learning rate of 0.1 with a ONECY-
CLELR learning rate scheduler (Smith & Topin, 2019) and
a batch size of 256. As in the previous experiments, we
set γ to 1e-8. We train both models for 50 epochs. The
top-1 accuracy of the validation set for VSGD was 71.1%,
exceeding ADAM’s 68.7% by 2.4%.

5. Conclusion
In this work, we introduced VSGD, a novel optimization
framework that combines gradient descent with probabilistic
modeling by treating the true gradients as a hidden random
variable. This approach allows for a more principled ap-
proach to model noise over gradients. Not only does this
framework open a new path to optimizing DNNs, but one
can establish links with other popular optimization methods
by certain specific modeling choices in our method. Lastly,
we evaluated VSGD on large-scale image classification
tasks using a variety of deep learning architectures, where
we demonstrated that VSGD consistently outperformed the
baselines and achieved a competitive convergence rate.
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A. Derivations
A.1. Derivation of VSGD

Here, we derive Eq. 15 to Eq. 19 following the SVI technique introduced by (Hoffman et al., 2013). First, we provide a
brief overview of the SVI procedure before diving into the details.

In the t-th SVI iteration, we realize the following steps:

1. Sample ĝ from ĝ1:T , where the sample is denoted by ĝt.

2. Update the local parameters ϕt,1:T with τt−1 and ĝt, such that

ϕt,k =argmax
ϕk

Eq(wg,wĝ ;τt−1)

[
log

p(gk|wg;ut)p(ĝt|gk, wĝ)

q(gk;ϕk)

]
k = 1 : T, (56)

where p(gk|wg;ut) and p(ĝt|gk, wĝ) are defined in Eq. 4 and Eq. 5, respectively. Note that here we use the same gt for
each k ∈ 1 : T , as if the same ĝt is observed T times.

3. Calculate the intermediate global parameters τ ′t with ϕt,1:T , such that:

τ ′t =argmax
τ

Eq(g1:T ;ϕt,1:T )

[
log

p(wg)p(wĝ)
∏T

k=1 p(gk|wg;ut)p(ĝt|gk, wĝ)

q(wg, wĝ; τ)

]
, (57)

where p(wg) and p(wĝ) are defined in Eq. 6 and Eq. 7, respectively.

4. Update the global parameters τt using:

τt = (1− ρ)τt−1 + ρτ ′t , (58)

where ρt = (ρt,1, ρt,2)
T is defined in Eq. 22 and Eq. 23.

5. Pick any ϕt,k = (µt,k, σ
2
t,k)

T ∈ ϕt,1:T , and set ut+1 = µt,k, where ut+1 serves as the control variable for the next
iteration. We can choose any ϕt,k because by the definition (Eq. 56), ϕt,k and ϕt,j are identical for any i, j ∈ 1 : T .

Since all ϕt,k are identical for k = 1 : T , for notational ease, we will use ϕt = (µt,g, σ
2
t,g)

T to represent the unique local
parameter updated in the t-th SVI iteration. Distributions defined in Eq. 3 are in the conjugate exponential family, therefore,
we can derive the closed-form update rule for ϕt according to Eq. 56:

log q(gk;µt,g, σ
2
t,g) ≡ Eq(wg,wĝ ;τt−1) [log p(gk|wg;ut) + log p(ĝt|gk, wĝ)] . (59)

Next, by matching the coefficients of the natural parameters, we get:

µt,g = ut
bt−1,ĝ

bt−1,ĝ + bt−1g
+ ĝt

bt−1,g

bt−1,ĝ + bt−1g
, (60)

σ2
t,g =

bt−1,ĝbt−1g

at−1,g(bt−1,ĝ + bt−1g)
, (61)

where Eq. 61 corresponds to Eq. 16. Putting the control variate ut = µt−1,g in Eq. 60 results in Eq. 15. Note that the shape
parameters at−1,g and at−1,ĝ are cancelled out while deriving Eq. 60, reasons being that the shapes are all equal to the same
constant over the iterations, as later we will show in Eq. 66.

Similarly for τ ′t = (a′t,g, a
′
t,ĝ, b

′
t,g, b

′
t,ĝ), according to Eq. 57:

log q(wg; a
′
t,g, b

′
t,g) ≡Eq(ĝ1:T ;ϕt)

[
log p(wg) +

T∑
k=1

log p(gk|ut, wg)

]
, (62)

=Eq(ĝ1:T ;ϕt) [log p(wg) + T log p(g1|ut, wg)] , (63)

log q(wĝ; a
′
t,ĝ, b

′
t,ĝ) ≡Eq(ĝ1:T ;ϕt)

[
log p(wĝ) +

T∑
k=1

log p(ĝt|gk, wĝ)

]
, (64)

=Eq(ĝ1:T ;ϕt) [log p(wĝ) + T log p(ĝt|g1, wĝ)] . (65)

11



Variational Stochastic Gradient Descent for Deep Neural Networks

Again, by matching the coefficients of the natural parameters:

a′t,g = a′t,ĝ = γ + 0.5T (66)

b′t,g = γ + 0.5T (σ2
t,g + µ2

t,g − 2µt,gµt−1,g + µt−1,g
2) (67)

b′t,ĝ = Kgγ + 0.5T (σ2
t,g + µ2

t,g − 2µt,g ĝt + ĝ2t ) (68)

In Eq. 66, a′t,g and a′t,ĝ equal the same constant over the iterations. As a result, at,g and at,ĝ are also equal constants,
according to Eq .58.

Eq. 66 to Eq. 68 reveals that during the posterior updates of wg and wĝ , choosing a larger value for T increases the emphasis
on the information conveyed by ĝt, consequently diminishing the relative influence of the priors. In VSGD, we have already
made the prior strength, γ, a free parameter, then we can replace T with a constant and still pertain the ability to adjust the
strength between prior and new observation through values of γ.

That means we use a constant value, such as 1, to replace T in Eq. 66, Eq. 67 and Eq. 68, which result in Eq. 18 and Eq. 19.
Eq. 20 and Eq. 21 are derived by simply following Eq. 58. Eq. 17 is derived from the fact that Eq. 66 is a constant, and
interpolation between two equal constants results in the same constant.

A.2. A Kernel Smoothing View on VSGD

If we look at VSGD from a kernel smoothing perspective, making use of ut serves as a cheap approximation to conditioning
on all of the historical data. Namely, VSGD seeks to smooth the local gradient function in a similar way with the following
kernel smoothing task.

There are two noisy observations of the gradient function at θ = θt. They are (θt, ut) and (θt, ĝt). We can define two
Gaussian kernels for each of the noisy observations, governed by w−1

g and w−1
ĝ . By denoting the Gaussian kernels κ1 and

κ2, the smoothed gradient value at θt should be

gt =
κ1(θt, θt)

κ1(θt, θt) + κ2(θt, θt)
ut +

κ2(θt, θt)

κ1(θt, θt) + κ2(θt, θt)
ĝt (69)

After taking the expectation step of SVI (expect out wg and wĝ), the above equation simplifies to Eq (15).

Note that ut in VSGD is introduced as a learned summary of the noisy observations before t and we only need to smooth on
ut as a cheap approximation to smoothing on all of the historical data. Similar simplification technique is commonly seen in
scalable Gaussian Process solutions, as discussed in (Quinonero-Candela & Rasmussen, 2005; Liu et al., 2020a). In these
references, the learned summaries are called the ”inducing points”.

If we look at VSGD as an approximation to the local areas of the gradient function, then the precision term wg can be seen
as a smoothness measure of the gradient surface. In VSGD we assume a global wg , which is equivalent to assuming that the
smoothness of the whole gradient function is governed by a constant. This assumption is not necessarily ideal, but we still
treat it as a global parameter for simplicity and practical reasons.

A.3. Treating Samples Separately in a Mini-bach

Assuming the size of the mini-batch is M , denote the sample gradients {ĝ(i)t }i=1:M . According to (Hoffman et al., 2013),
we would need to calculate Eq. 15 M times and average them in Eq. 18 and Eq. 19. Specifically, we would need to replace
Eq. 15, Eq. 18 and Eq. 19 with:

µ
(i)
t,g = µt−1,g

bt−1,ĝ

bt−1,ĝ + bt−1g
+ ĝ

(i)
t

bt−1,g

bt−1,ĝ + bt−1g
i = 1 : M (70)

b′t,g =

∑M
i=1 γ + 0.5

(
σ2
t,g + (µ

(i)
t,g − µt−1,g)

2
)

M
(71)

b′t,ĝ =

∑M
i=1 Kgγ + 0.5

(
σ2
t,g + (µ

(i)
t,g − ĝ

(i)
t )2

)
M

(72)

12



Variational Stochastic Gradient Descent for Deep Neural Networks

And introduce an additional step

µt,g =

∑M
i=1 µ

(i)
t,g

M
(73)

before Eq. 24.

Based on the equations presented, the computational cost grows linearly with the batch size M . Given the importance of
efficiency in contemporary optimization techniques, above equations were omitted from the main paper. Nonetheless, it is
conceivable that the increased computational expense could be offset by enhanced convergence rates, a hypothesis reserved
for future investigation.
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B. Experimental Details
B.1. Architecture

We have used open-source implementations of all three models.

VGG We use VGG16 and VGG192 with batch normalization. We add adaptive average pooling before the final linear
layer to make the architecture suitable for both 32× 32 and 64× 64 images.

ConvMixer We use ConvMixer3 with 256 channels and set the depth to 8.

ResNeXt ResNeXt4 we set the cardinality (or number of convolution groups) to 8 and the depth to 18 layers. The widen
factor is set to 4, resulting in channels being [64, 256, 512, 1024]. We add adaptive average pooling before the
final linear layer to make the architecture suitable for both 32× 32 and 64× 64 images.

B.2. Hyperparameters

The full set of hyperparameters used in all experiments is reported in Table 3.

Table 3. Hyperparameter values used in all the experiments.

ADAM VSGD

(β1, β2) (0.9, 0.999) —
(κ1, κ2) — (0.9, 0.81)
γ — 1e-8
Kg — 30

learning rate {0.001, 0.005, 0.01, 0.02}
weight deacy {0, 0.01}
momentum coefficient {0.9, 0.99}

B.3. Data Augmentations

We use data augmentations during training to improve the generalizability of the models. These augmentations were the
same for the optimizers and only differ between datasets.

Table 4. Data augmentations.
CIFAR100 TINY IMAGENET-200

RandomCrop(32, padding=4) RandomCrop(64, padding=4)
RandomHorizontalFlip RandomHorizontalFlip

RandomAffine(degrees=45, translate=(0.1, 0.1), scale=(0.9, 1.1))
ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2)

2github.com/alecwangcq/KFAC-Pytorch/blob/master/models/cifar/vgg.py
3github.com/locuslab/convmixer-cifar10
4github.com/prlz77/ResNeXt.pytorch
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Figure 2. Top-1 test accuracy on CIFAR100 dataset.
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Figure 3. Top-1 test accuracy on TINYIMAGENET-200 dataset.

B.4. Training Curves

C. Hyperparameter Sensitivity Analysis
In this Section, we investigate the shape parameter γ’s sensitivity to VSGD’s performance. Higher γ implies a stronger
weight on the prior while a lower γ implies a stronger weight on the current observation. We train VSGD on a wide
range of γ values on CIFAR100 using the CONVMIXER architecture. The results can be observed in Figures 6, 7 and
Table 5. Inspecting Figure 6 (Right) more closely, we observe that while there is a statistically significant difference between
accuracies obtained by different γs, they all perform relatively well as long as γ is not too large.

γ Accuracy

1e-9 67.75
5e-9 68.59
1e-8 69.03
5e-8 69.77
1e-7 69.71
1e-3 60.97

Table 5. Test accuracy on CIFAR100 trained with CONVMIXER for different γ values.

D. Constant VSGD
In this Section, we offer a comparison between VSGD and CONSTANT VSGD. From the modeling point of view, VSGD
has more free parameters that allow our model to learn more complicated distributions. While CONSTANT VSGD imposes
a constraint on VSGD, which is less flexible but may lead to better out-of-sample performance. To investigate this, we ran
additional experiments on CIFAR100 with CONVMIXER architecture. The final accuracy for VSGD was 69.04 ± 0.4,
while the accuracy for CONSTANT VSGD was 68.49± 0.19. The learning curves can be observed in Figure 8.
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Figure 4. Training loss on CIFAR100 dataset.
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Figure 5. Training loss on TinyImagenet-200 dataset.
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Figure 6. Analysis of the hyperparameter γ’sensitivity on the VSGD’s performance in terms of accuracy.
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Figure 7. CIFAR100 learning curves trained with CONVMIXER architecture for different γ values.
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Figure 8. Comparison of CONSTANT-VSGD and VSGD learning curves trained on CIFAR100 with CONVMIXER architecture. The
final accuracy for VSGD is 69.04± 0.4, while the accuracy for CONSTANT-VSGD is 68.49± 0.19.
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