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ABSTRACT

Proteins perform diverse biological functions, governed by the intricate relationship
between their sequence and three-dimensional structure. While protein language
models (PLMs) have demonstrated remarkable success in functional annotation
and structure prediction, their potential for sequence-structure co-design remains
underexplored. This limitation arises from pre-training objectives that favor masked
token prediction over generative modeling. In this work, we systematically explore
sampling strategies to enhance the generative capabilities of PLMs for co-design.
Notably, we introduce a ranked iterative decoding with re-masking scheme, en-
abling PLMs to generate sequences and structures more effectively. Benchmarking
ESM3 across multiple scales, we demonstrate that using PLMs effectively at sam-
pling time for co-design tasks can outperform specialized architectures that lack
comparable scaling properties. Our work advances the field of computational
protein design by equipping PLMs with robust generative capabilities tailored to
sequence-structure interdependence.

1 INTRODUCTION

Proteins are essential biomolecules that perform a wide array of functions in living organisms, driven
by the intricate relationship between their sequences and three-dimensional structures. Advancements
in computational protein design have significantly benefited from the development of protein language
models (PLMs) (Rives et al., 2021; Lin et al., 2023b; Hayes et al., 2024; Ferruz et al., 2022; Wang et al.,
2024a), which leverage the vast amount of available sequence data to learn meaningful representations.
Such representations have shown promise in tasks ranging from functional annotation (Hu et al.,
2022; Zhang et al., 2024) to structure prediction (Lin et al., 2023b), emphasizing the utility of PLMs
in understanding the sequence-structure-function paradigm.

Recently, multimodal PLMs like SaProt (Su et al., 2023) and ESM3 (Lin et al., 2023b) have further
extended this success by modeling both sequence and structure through the tokenization of protein
backbones into discrete tokens (van den Oord et al., 2018). This multimodal approach offers new
opportunities for capturing the sequence-structure interplay. However, most PLMs, including ESM3,
are trained using masked language modeling (MLM) objectives (Devlin, 2018; Liu, 2019), which
are designed for representation learning and not optimized for generative tasks. As a result, their
potential for generating novel, biologically meaningful proteins remains under-explored.

In this work, we explore the generative potential of ESM3 on protein co-design, a task that demands
the simultaneous generation of sequences and their corresponding structural representations. To ad-
dress the challenges of jointly sampling both modalities, we introduce ranked iterative decoding with
re-masking as an effective co-design sampling strategy. We benchmark ESM3’s performance against
bespoke methods specifically designed for co-design and analyze how model size impacts key metrics.
Our findings highlight that ESM3, despite being a general-purpose PLM, can deliver competitive
results while remaining scalable and adaptable for large-scale protein design applications.
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2 METHODS

2.1 BACKGROUND

Notation. A protein is represented by its amino acid sequence X = (x1, . . . , xL) ∈ XL, where L is
the number of residues and X denotes the set of 20 standard amino acids. The backbone structure
of the protein is given by y ∈ RL×4×3, encompassing all heavy atoms along the backbone. Using
a pre-trained structure encoder q(z | y), the structure y is transformed into a sequence of latent
structure tokens Z = (z1, . . . , zL) ∈ ZL, where Z is a predefined vocabulary of latent codes. These
structure tokens zi are then mapped into embedding vectors and decoded back to the 3D structure
y. Throughout the following sections, we use the discrete random variables X and Z to denote the
sequence tokens and structure tokens with respective probability mass functions p(X) and p(Z).

Model. Let m : XL × ZL → RL×20 × RL×|Z| denote a masked language model (MLM) that
takes as input a tokenized protein sequence and structure (X,Z) of length L, possibly with some
positions replaced with [MASK] , and outputs two matrices X̂, Ẑ with shapes L× 20 and L× |Z|
containing log probabilities over the set of amino acid and structure tokens in X and Z respectively.
The probability distribution over the residues and structure tokens at position i with temperature τ is

p̂(Xi|X,Z) = softmax(X̂i/τ) & p̂(Zi|X,Z) = softmax(Ẑi/τ) (1)

2.2 CO-DESIGN VIA SAMPLING

Concept. In co-design, our goal is to sample from the joint sequence and structure distribution
p(x,y). Many existing methods simplify this by factorizing the joint distribution into p(y)p(x|y)
or p(x)p(y|x), which imposes a dependency order and ignores the full bidirectional relationship
between modalities. Instead, we frame p(x,y) as an undirected model, specifically a Markov random
field (MRF) (Wang & Cho, 2019), and use MCMC sampling methods to better approximate joint
samples from the target distribution.

2.2.1 CHOICE OF SAMPLING METHOD

Our sampling algorithm proceeds as follows. For a protein of length L, we start with fully masked
amino acid and structure tokens (X,Z)i = [MASK] ∀i ∈ [L]. For each step t, we pass the current
sample (X,Z)t through the MLM m (potentially after masking), generating the posterior distribution
in eq. (1). From here, we selectively sample new residue or structure tokens to fill masked positions
and obtain (X,Z)t+1. This process is repeated until all L positions are unmasked.

Gibbs-like sampling. At each iteration t, Gibbs-like sampling selects a masked position i and
unmasks it by sampling from eq. (1). We follow the methodology introduced by the authors of the
ESM3 paper by performing Gibbs-like sampling for one modality at a time, starting with the sequence
followed by the structure. We use a constant temperature of 0.7 for both tracks.

Chain-of-thought sampling. Chain-of-thought sampling as introduced by the ESM3 authors is an
extension to Gibbs-like sampling that first unmasks the secondary structure tokens (SS8), followed by
the structure track, and finally the amino acid tokens. The authors found that this ordering provided
higher quality unconditional samples than Gibbs-like sampling with sequence and structure alone.

2.2.2 RANKED ITERATIVE DECODING W/ RE-MASKING

Although Gibbs-like sampling and Chain-of-thought sampling frame each modality as a Markov
random field, it remains that both methods impose an arbitrary ordering by fully unmasking one track
before moving onto the next. Instead, we propose a ranked iterative decoding algorithm that unmasks
all modalities simultaneously, treating the full joint distribution as an MRF.

Formally, at each iteration t, iterative decoding selects a masked position for each modality to unmask.
We found that prioritizing locations based on the position-specific entropy yielded higher quality
samples. We generalize this to accommodate various ranking functions f(·) applied over the masked
positions. The overall inference pipeline is detailed in algorithm 3.

Entropy ranking. We use the entropy of the posterior token distribution at unmasked locations as
a proxy of model uncertainty. Formally, the ranking score of the masked position (for structure) at
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index i at time t is given by

f(i) = −
∑
z∈Z

p̂(Zi
1 = z|Xt, Zt) log p̂(Z

i
1 = z|Xt, Zt)

The same applies to other modalities such as sequence and secondary structure by swapping the
conditioned variable. The positions in the sequence are then ranked and decoded according to
their position-specific entropy in ascending order. Importantly, we perform a single inference of p̂
to compute the posterior distributions for all modalities (e.g., structure, sequence, and secondary
structure) in parallel. This allows decoding to be conducted simultaneously for each modality.

Max-logit ranking. Here, we rank positions according to the value of the maximum logit in the pre-
softmax output of the MLM m. We prioritize positions with the highest top logit score, interpreting
this value as the model’s confidence at a particular location in the sequence. Formally, the ranking
function for max-logit at index i is defined as:

f(i) = max
z∈Z

p̂(Zi
1 = z|Xt, Zt′)

Secondary structure ranking. We consider a discrete ranking score that uses the secondary structure
prediction head of ESM3. Given a user-defined function g(·) ∈ {1, . . . , 8} that maps the eight
secondary structures (SS8) in the Dictionary of Protein Secondary Structure (DSSP) to an ordering
score, we use the following ranking function to prioritize positions with preferred SS8 tokens.

f(i) =

{
−g(sit) sit ̸= [MASK]
−∞ sit = [MASK]

where sit is the identity of the structure token at position i and timestep t.

Ranked re-masking. We introduce a ranked re-masking strategy inspired from corrector sampling
(Gat et al., 2024) that re-masks locations that have already been decoded according to a ranking
function as described above. Intuitively, we achieve this by performing 1 + βt unmasking steps
followed by β re-masking steps where β ≥ 1. In practice, we experimented with the following
ranking functions: (1) the minimum per-location entropy and (2) the minimum logit per location. We
provide experimental results for both choices in appendix D.2.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Metrics. We follow the protocol proposed by previous protein co-design works (Wang et al., 2024b;
Lu et al., 2024a; Campbell et al., 2024) and evaluate the designability, quality, diversity, and
novelty of generated proteins. We provide additional details for these metrics in appendix C.1.

Baselines. We consider multiple open-source protein generation models as evaluation baselines for
the co-design task. These include models that first generate one modality, then predict the other using
a separate model. ProteinGenerator (Lisanza et al., 2023) performs sequence space diffusion while
predicting the structure at each step with RosettaFold (Baek et al., 2021). Conversely, Protpardelle
(Chu et al., 2023) performs Euclidean diffusion on the structure while iteratively predicting the
sequence with ProteinMPNN. More fittingly, we consider models that jointly sample both modalities:
Multiflow (Campbell et al., 2024) and PLAID (Lu et al., 2024a).

3.2 RANKED RE-MASKING IMPROVES DESIGNABILITY

We begin by studying the effect of sampling strategy on the designability of generated proteins. Using
ESM3-small, we sampled 100 proteins of each length in {50, 100, 200, 500} using one of Gibbs-like
sampling, chain-of-thought sampling, and ranked iterative decoding with and without re-masking. In
fig. S1, we plot the pLDDT and pTM scores for each sample. We find that ranked iterative decoding
provides by far the highest confidence samples and that our re-masking strategy further improves
both of these metrics. In Hayes et al. (2024) it was shown that samples with pLDDT > 0.8 and pTM
> 0.8 were highly designable. We reproduce this result in fig. S2 by plotting the ccRMSD of proteins
passing this confidence threshold versus all proteins generated by the model.
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Table 1: Evaluation of co-design performance across ESM3 size and sampling strategies

ccRMSD
(↓)

ccRMSD < 2Å
(↑)

# Seq.
Clus.
(↑)

# Str.
Clus.
(↑)

MMseqs
Seq Id%

(↓)

Foldseek
TM (↓)

β-Sheet
(%)

α-Helix
(%)

Gibbs-like 17.6 0.16 6 6 0.85 0.86 0.16 0.37
CoT 5.67 0.54 50 30 0.56 0.64 0.29 0.42
Rank 4.50 0.59 50 37 0.57 0.63 0.26 0.46

Gibbs-like 15.4 0.15 15 14 0.60 0.66 0.09 0.50
CoT 9.81 0.38 26 21 0.60 0.64 0.21 0.52
Rank 6.52 0.35 33 27 0.59 0.55 0.26 0.41

Gibbs-like 30.5 0.15 6 14 0.67 0.70 0.00 0.91
CoT 16.5 0.34 22 20 0.52 0.80 0.05 0.42
Rank 8.96 0.28 22 19 0.59 0.65 0.22 0.50

Method

Large (98B)

Medium (7B)

Small (1.4B)

3.3 CO-DESIGN PERFORMANCE SCALES WITH PLM SIZE

Next, we investigate the effect of model size on co-design performance. ESM3 offers three model
sizes: ESM3-small (1.4B), ESM3-medium (7B), and ESM3-large (98B). The latter two are available
via API calls, but are highly rate limited. Thus, we generate 100 proteins of length 100 for each
model using each sampling strategy and plot the ccRMSD by method and model size in fig. 1. We
observe that increasing the model size improves designability across sampling strategies and that
ranked iterative decoding remains the superior method. We report comprehensive metrics for this
experiment in table 1, where we observe that increasing the model size also improves the diversity
of sampled proteins with a greater number of unique sequence and structure clusters. Finally, we
examine the proportion of alpha helix and beta sheet residues in the generated samples in fig. 1. Here,
we additionally include samples obtained via the secondary structure ranking function introduced in
section 2.2 by prioritizing beta sheets, which successfully shifts the composition of our samples.
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Figure 1: (left) ccRMSD of generated samples by ESM3 variants with different sampling strategies.
(right) Proportion of alpha helix versus beta sheet residues for different generation methods.

3.4 COMPARISON TO BASELINE METHODS

Following previous work on unconditional co-design, we sample 100 proteins for each length in
{50, 100, 200, 500}, for a total of 400 samples per method. We sample baseline methods with
default parameters as provided by the authors. For the ranked iterative decoding methods, we use the
min-entropy ranking function for unmasking and the max-entropy ranking for re-masking. These
choices were made after a comprehensive sweep of ranking functions in appendices D.1 and D.2.

The results in tables 2 and 3 highlight key tradeoffs in protein co-design, where optimizing for one
metric often comes at the cost of another. Designability, as measured by the proportion of structures
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with ccRMSD < 2Å, reveals that bespoke methods like Multiflow (0.71) outperform the ESM3-based
methods (0.60 for ESM3 (Rank w/ remask)). However, the fact that a general-purpose protein
language model (PLM) like ESM3, without architectural modifications or fine-tuning, approaches
this performance demonstrates its scalability and adaptability in tackling co-design tasks. When
considering diversity, novelty, and quality together, ESM3 (Rank w/ remask) achieves a balanced
performance. Although it generates fewer sequence clusters (82) compared to Multiflow (327),
it maintains moderate novelty with a Foldseek TM-score of 0.84 and competitive quality metrics,
including a perplexity of 4.23 and an scSR score of 0.45. By contrast, methods like PLAID offer
higher novelty at the cost of lower designability and higher perplexity. This balance achieved by
ESM3 underscores its ability to produce biologically coherent and novel sequences while remaining
scalable, making it a promising approach for large-scale protein co-design tasks.

Table 2: Evaluation of protein Designability using cross-consistency (cc-*) and self-consistency
(sc-*) metrics.

ccTM (↑) scTM (↑) ccRMSD (↓) ccSR (↑) ccRMSD < 2Å (↑)

Multiflow 0.87 0.87 3.19 0.51 0.71
PLAID 0.68 0.61 8.19 0.26 0.31
ProteinGenerator 0.60 0.66 10.4 0.28 0.18
Protpardelle 0.69 0.65 11.9 0.45 0.45

ESM3-small (Gibbs-like) 0.41 0.43 32.8 0.15 0.16
ESM3-small (CoT) 0.58 0.52 19.9 0.27 0.42
ESM3-small (Rank w/o remask) 0.66 0.62 27.3 0.43 0.52
ESM3-small (Rank w/ remask) 0.71 0.68 23.3 0.44 0.60

Table 3: Evaluation of Quality, Diversity and Novelty of co-designed proteins. pLDDT refers to the
confidence score returned by the generative model; ”-” is used for models which do not produce a
pLDDT metric. Diversity and novelty metrics are computed on designable proteins (ccRMSD < 2Å).

inner
TM
(↓)

#Seq.
Clus.
(↑)

#Str.
Clus.
(↑)

MMseqs
Seq Id%

(↓)

Foldseek
TM (↓)

pLDDT
(↑)

β-Sheet
(%)

α-Helix
(%)

scSR
(↑)

PPL.
(↓)

Multiflow 0.39 327 83 0.61 0.41 - 0.12 0.70 0.56 8.65
PLAID 0.32 168 88 0.50 0.79 0.59 0.14 0.44 0.26 15.37
ProteinGenerator 0.45 144 14 0.57 0.50 0.73 0.03 0.67 0.33 9.43
Protpardelle 0.49 97 73 0.56 0.51 - 0.12 0.54 0.46 9.34

ESM3 (Gibbs-like) 0.81 25 15 0.67 0.95 0.65 0.003 0.64 0.11 5.95
ESM3 (CoT) 0.55 55 105 0.58 0.71 0.77 0.06 0.53 0.31 5.6
ESM3 (Rank w/o remask) 0.34 67 81 0.63 0.82 0.79 0.14 0.42 0.44 4.12
ESM3 (Rank w/ remask) 0.39 82 79 0.66 0.84 0.81 0.16 0.39 0.45 4.23

Diversity Novelty Quality

4 CONCLUSION AND LIMITATIONS

In this work, we investigated the potential of multimodal protein language models like ESM3 for se-
quence and structure co-design, focusing on enhancing their generative capabilities through improved
sampling strategies. Our benchmarking across model sizes further underscores the adaptability of
foundational PLMs for protein co-design. Further, we conduct a comprehensive benchmark across
different model sizes and against recent co-design methods, showcasing the potential of out-of-the-
box foundational PLMs for this task. While our results highlight the promise of PLMs for co-design,
they also reveal that ESM3 does not yet surpass state-of-the-art methods across all evaluation metrics.
This suggests that additional refinements such as fine-tuning process after the MLM pre-training
stage (Lu et al., 2024b) may be necessary to fully unlock the model’s generative potential. Despite
these limitations, our study highlights important challenges in multi-modal protein generation and
lays the groundwork for future advancements to build upon. We hope that our findings will motivate
further research into protein co-design, advancing the development of generative models that better
capture the relationship between protein sequence and structure.
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MEANINGFULNESS STATEMENT

A meaningful representation of life requires understanding the intricate relationships between key
biological modalities—sequence, structure, function, and dynamics—that drive cellular processes.
Our work contributes to this direction by exploring how ESM3, a multimodal foundation protein
language model, can jointly sample and co-design protein sequences and structures. By addressing
the challenges of capturing these interconnected modalities, we take a step toward developing models
capable of representing the complexity of life at the molecular level.
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Lewis, Victor Garcia Satorras, Bastiaan S Veeling, Regina Barzilay, Tommi Jaakkola, et al. Fast
protein backbone generation with se (3) flow matching. arXiv preprint arXiv:2310.05297, 2023a.

Jason Yim, Brian L Trippe, Valentin De Bortoli, Emile Mathieu, Arnaud Doucet, Regina Barzilay,
and Tommi Jaakkola. Se (3) diffusion model with application to protein backbone generation.
arXiv preprint arXiv:2302.02277, 2023b.

Zuobai Zhang, Jiarui Lu, Vijil Chenthamarakshan, Aurélie Lozano, Payel Das, and Jian Tang.
Structure-informed protein language model. arXiv preprint arXiv:2402.05856, 2024.

9

https://www.biorxiv.org/content/early/2023/03/28/2022.02.07.479398
https://www.biorxiv.org/content/early/2023/03/28/2022.02.07.479398
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1902.04094
https://arxiv.org/abs/2402.18567
https://arxiv.org/abs/2402.18567
https://api.semanticscholar.org/CorpusID:274166333
https://api.semanticscholar.org/CorpusID:274166333
https://www.biorxiv.org/content/early/2022/07/22/2022.07.21.500999
https://www.biorxiv.org/content/early/2022/07/22/2022.07.21.500999


486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review for LMRL Workshop at ICLR 2025

A EXTENDED RELATED WORK

Here we describe additional related work.

Protein Language Foundation Models. In recent years, several language models of protein sequence
have been built. Among these, the ESM series (Meier et al., 2021; Lin et al., 2023a) have become
dominant with BERT-like pretraining objectives (Devlin et al., 2019), garnering great attention
for successful application in downstream tasks such as property engineering (Biswas et al., 2020).
On the other hand, models of protein structure have dramatically increased in scale, evolving into
multipurpose foundation models that enable a wide range of downstream tasks. Structure prediction
models like the AlphaFold series (Jumper et al., 2021; Abramson et al., 2024), Chai-1 (Discovery
et al., 2024), and most recently Boltz-1 (Wohlwend et al., 2024) are now capable of modeling complex
multimodal biomolecular interactions beyond just protein complexes. At the intersection of these
directions lies the emerging trend of protein language foundation models (PLFM) such as ESM3
(Hayes et al.) that tokenize the protein structure and jointly model all modalities as a family of
languages. These multipurpose models are capable of both representation learning and generative
modeling tasks and benefit from the performance scaling of the transformer architecture (Vaswani
et al., 2023).

Generative Modeling for Proteins State-of-the-art models for protein design have mainly focused
on generating the backbone folds. Among these, diffusion-based (Ingraham et al., 2023; Watson
et al., 2023) and flow-based (Chen & Lipman, 2023; Bose et al., 2023; Huguet et al., 2024) models
operating on protein frames (Yim et al., 2023a;b) or simply the Cα residues (Lin & AlQuraishi,
2023; Trippe et al., 2022) have proven successful. On the other hand, methods also exist for
designing protein sequences (Brandes et al., 2022; Alamdari et al., 2024; Madani et al., 2023), usually
followed by structure generation with a folding model. However, protein design is inherently a
multimodal problem that requires sampling from the joint distribution of sequence and structure.
Instead of factorizing this into a two-step procedure, Multiflow (Campbell et al., 2024) builds on top
of FrameFlow (Yim et al., 2023b) and uses discrete flow matching to simultaneously generate the
sequence. More recently, PLAID (Lu et al., 2024a) performs Euclidean diffusion in the latent space
of ESMFold (Lin et al., 2023a) and learns a sequence decoder to jointly sample both modalities.

Sampling from Language Models. Protein language models estimate transition probabilities be-
tween sequences, making them suitable for interpretation as Markov random fields. When the
system’s mutational space stabilizes, various Markov Chain Monte Carlo (MCMC) techniques,
including Gibbs sampling and Metropolis-Hastings can be applied to explore sequence space effi-
ciently (Geman & Geman, 1984; Metropolis et al., 1953; Hastings, 1970). For example, Wang &
Cho (2019) demonstrated how Gibbs sampling could be used to generate text by treating the English
language model Bert as a Markov random field.

B ADDITIONAL METHODS DETAILS

Algorithm descriptions. Here in algorithms 1 to 3, we provide the pseudocode for Gibbs-like
sampling, Chain-of-thought sampling, and ranked iterative decoding with re-masking, respectively.

Algorithm 1 Gibbs-like Sampling

1: Input: ESM3 mθ(x, z), sequence length L, temperature t
2: for i = shuffle({1, . . . , L}) do
3: xi ∼ exp(logmθ(x

i|xj ̸=i)/t)

4: for i = shuffle({1, . . . , L}) do
5: zi ∼ exp(logmθ(z

i|zj ̸=i, x)/t)

6: return (x, z)
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Algorithm 2 Chain-of-Thought Sampling

1: Input: ESM3 mθ(x, z, s), sequence length L, temperature t
2: for i = shuffle({1, . . . , L}) do
3: si ∼ exp(logmθ(s

i|sj ̸=i)/t)

4: for i = shuffle({1, . . . , L}) do
5: zi ∼ exp(logmθ(z

i|zj ̸=i, s)/t)

6: for i = shuffle({1, . . . , L}) do
7: xi ∼ exp(logmθ(x

i|xj ̸=i, z, s)/t)

8: return (x, z)

Algorithm 3 Rank-Informed Iterative Decoding w/ Remasking

1: Input: ESM3 mθ(x, z), forward ranking function f(i) ∀ i ∈ L, backward ranking function
b(i) ∀ i ∈ L, number of steps N , decoding schedule {α}Nn=1, remasking schedule {βn}Nn=1,
temperature schedule {Tn}Nn=1

2: Initialize x, z ←mx,mz

3: for n = 1 to N do
4: Rank i ∈ L using f(i)
5: Rank i ∈ L using b(i)
6: Sample predictions x̂i, ẑi ∼ exp(logmθ(x

i, zi|x, z)/Tn), i ∈ [L]
7: Evaluate forward ranking scores ux, uz ← f(x̂), f(ẑ)
8: Evaluate backward ranking scores vx, vz ← b(x̂), b(ẑ)
9: Select positions to unmask Ux, Uz ← argsort(ux)[−αn :], argsort(uz)[−αn :]

10: Assign xi, zj ← x̂i, ẑj ∀ i ∈ Ux, j ∈ Uz

11: Select positions to re-mask Vx, Vz ← argsort(vx)[−βn :], argsort(vz)[−βn :]
12: Assign xi, zj ← [MASK] x, [MASK] z;∀ i ∈ Vx, j ∈ Vz

13: return (x, z)

C ADDITIONAL EXPERIMENTAL DETAILS

C.1 CO-DESIGN METRICS

Here, we provide descriptions of the metrics we use to evaluate the co-designed samples in section 3.

Designability. We fold the sequence using ESMFold (Lin et al., 2023a) to obtain a predicted
structure ŷ(x), then calculate the cross-consistency TM-score (ccTM) and cross-consistency RMSD
(ccRMSD) between y and ŷ(x). Conversely, we use ProteinMPNN (Dauparas et al., 2022) to predict
8 sequences from the structure and report the best sequence recovery score (ccSR) with respect to x.
Additionally, we use OmegaFold (Wu et al., 2022) to re-fold these 8 sequences and report the lowest
TM-score (scTM) between these predicted structures and the original coordinates y. Comparing
ccTM against scTM tells us how consistent the co-designed sequence is compared to one obtained by
inverse-folding the structure retroactively.

Quality. For structure quality, we report the percentage of alpha-helix and beta-strand residues in
the secondary structure. For sequence quality, we report self-consistency sequence recovery (scSR),
which is obtained by folding a generated sequence then inverse-folding the result. Finally, we evaluate
the sequence perplexity under an autoregressive protein language model RITA-XL (Hesslow et al.,
2022).

Diversity & Novelty. We first retain only the generated proteins that are designable with ccRMSD
< 2Å. Among these samples, we report the number of sequence and structure clusters computed by
MMseqs2 (Steinegger & Söding, 2017) and Foldseek (van Kempen et al., 2023) respectively. For
novelty, we report the Foldseek TM-score between the designable structures and their closest match
in PDB100. Similarly, for every designable sequence, we calculate the sequence identity with the
closest homolog in UniRef50 (Suzek et al., 2014).
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D ADDITIONAL RESULTS

D.1 CHOICE OF UN-MASKING RANKING FUNCTION

We provide here co-design results obtained by sweeping the ranking functions described in section 2.2.
For each strategy, we follow the same protocol as section 3.4 by sampling 100 proteins at various
sequence lengths, and report the following metrics: fraction designable (ccRMSD < 2Å), number
of designable sequence and structure clusters (#Seq. Clus. & #Str. Clus.), the sequence identity to
UniRef50 (MMseqs Seq Id%), the Foldseek TM score (Foldseek TM), and the percentage of alpha
and beta sheet residues (α-Helix, β-Sheet). We use sampling temperatures of 0.25, 1.2 and 0.4 for
the sequence, structure, and secondary structure tracks with temperature annealing.

Table S1: Evaluation of co-design performance using different un-masking ranking functions

ccRMSD < 2Å
(↑)

# Seq.
Clus.
(↑)

# Str.
Clus.
(↑)

MMseqs
Seq Id%

(↓)

Foldseek
TM (↓)

β-Sheet
(%)

α-Helix
(%)

Min Entropy 0.66 67 81 0.63 0.82 0.14 0.42
Max Logit 0.67 62 75 0.61 0.80 0.13 0.40
SS8 α 0.56 50 68 0.58 0.78 0.10 0.50
SS8 β 0.58 54 70 0.59 0.79 0.24 0.35

D.2 CHOICE OF RE-MASKING RANKING FUNCTION

Similarly to appendix D.1, we provide co-design results for the ranking function used in the re-
masking step described in section 2.2.2. For this experiment, we use minimum entropy ranking for
the un-masking strategy and the same temperature scheme as described above.

Table S2: Evaluation of co-design performance using different re-masking ranking functions

ccRMSD < 2Å
(↑)

# Seq.
Clus.
(↑)

# Str.
Clus.
(↑)

MMseqs
Seq Id%

(↓)

Foldseek
TM (↓)

β-Sheet
(%)

α-Helix
(%)

Max Entropy 0.71 82 79 0.66 0.84 0.16 0.39
Min Logit 0.69 80 78 0.67 0.85 0.15 0.38
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D.3 EVALUATING DESIGNABILITY OF ESM3 SAMPLES BY CONFIDENCE

Here, we evaluate the choice of sampling strategy on the confidence and designability of samples
generated by ESM3-open. In fig. S1, we plot the pLDDT and pTM of samples generated by each
method. Additionally, in fig. S2, we plot the ccRMSD of samples obtained via ESM3. We see that the
high confidence samples with pLDDT > 0.8 and pTM > 0.8 achieve higher designability (ccRMSD
≤ 2Å).
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Figure S1: pLDDT (left) and pTM (right) of unconditional generations using ESM3-open according
to sampling method (CoT: Chain-of-Thought, Ranked Dec: Ranked Iterative Decoding)
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Figure S2: Cross-consistency RMSD of high confidence samples from ESM3 with pLDDT > 0.8 &
pTM > 0.8 (left) and all ESM3 samples (right)
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D.4 STRUCTURE GALLERY

Here we plot protein structures of varying lengths sampled from ESM3.

Figure S3: Unconditionally co-designed samples by ESM3 using ranked iterative sampling with
re-masking 3. Rows are ordered from top to bottom by increasing sequence length in {50, 100, 200,
500}.
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