
Optimistic Verifiable Training by Controlling Hardware Nondeterminism

Megha Srivastava 1 Simran Arora 1 Dan Boneh 1

Abstract
The increasing compute demands of AI systems,
such as training foundation models, has led to the
emergence of services that train models on be-
half of clients lacking necessary resources. How-
ever, ensuring correctness of training and guard-
ing against potential training-time attacks, such as
data poisoning and backdoors, poses challenges.
Existing works on verifiable training largely fall
into two classes: proof-based systems, which
struggle to scale due to requiring cryptographic
techniques, and “optimistic” methods that con-
sider a trusted third-party auditor who replicates
the training process. A key challenge with the
latter is that hardware nondeterminism between
GPU types during training prevents an auditor
from replicating the training process exactly, and
such schemes are therefore non-robust. We pro-
pose a method that combines training in a higher
precision than the target model, rounding after in-
termediate computation steps, and storing round-
ing decisions based on an adaptive thresholding
procedure, to successfully control for nondeter-
minism. Across three different NVIDIA GPUs
(A40, Titan XP, RTX 2080 Ti), we achieve ex-
act training replication at FP32 precision for both
full-training and fine-tuning of ResNet-50 (23M)
and GPT-2 (117M) models. Our verifiable train-
ing scheme significantly decreases the storage
and time costs compared to proof-based systems,
carving a pathway for a more efficient solution
for verifiable training of large foundation models.

1. Introduction
We are currently in the “large-scale era” of machine learning
(ML), where the exciting capabilities of modern AI systems,
such as large foundation models (FMs), have required a
dramatic increase in training compute needs (Sevilla et al.,
2022). In turn, several model training services, such as

1Computer Science Department, Stanford University. Corre-
spondence to: Megha Srivastava <megha@cs.stanford.edu>.

Malicious Trainer Auditor

a1s2
Epoch 1

sd23
Epoch 2

cbp2
Epoch 3

fd2u
Epoch 4

a1s2
Epoch 1

sd23
Epoch 2

d23f
Epoch 3

df4g
Epoch 4

(4) share randomness,
architecture,

and rounding logs

abc3 s9f4 3ab8

bcy8 ds5t

m7c3

abc3 9abf kl3r

8b7a t2e3

p4l3

Client (3) share data(1) share data

(5) verification
game

(6) auditor disputes
trainer

(2) training-time attack
(e.g. data poisoning)

Figure 1. Overview of our verifiable training scheme, based on
Teutsch & Reitwießner (2019). After an auditor challenges a
trainer on behalf of a client, they train the model themselves, stor-
ing weights in a Merkle tree, and enter a binary search procedure
to identify the exact steps of the dispute. We show how to account
for hardware nondeterminism so that the auditor and trainer can
use different GPUs, expanding the pool of potential auditors to any
party capable of performing the training task.

Replicate, OpenAI’s Finetuning API, Together AI, Amazon
Sagemaker, MosaicML Training, and Gensyn, have been
created to support clients who lack the resources to train a
model themselves. However, these services require clients
to place a significant degree of trust in them to train the
model correctly, without introducing a training-time attack
such as data poisoning or undetectable backdoors (Wan
et al., 2023; Goldwasser et al., 2022). How can we help a
client, such as an individual or a small company, hold the
service provider accountable in case of misbehavior during
training?

One possibility is for the trainer to provide the client with
a cryptographic proof that the model was trained according
to the specification. However, proof-based systems require
cryptographic techniques that are inefficient and cannot
scale to the complexity of real-world tasks such as FM
training. For instance, recent work based on zero-knowledge
proof systems for verifiable inference, a much simpler task
than training, requires more than 8 minutes to generate
proofs for only 20 images (Liu et al., 2021). Thus, practical
proof-based methods for verifiable training have only been
implemented for simple tasks such as logistic and linear
regression (Garg et al., 2023; Ames et al., 2022).

1

Optimistic Verifiable Training by Controlling Hardware Nondeterminism

An alternative “optimistic” approach is to consider a trusted
third-pary auditor, such as a non-profit organization, that
has sufficient computing resources to perform the training
task, even if not at the bandwidth of a service provider (Fig-
ure 1). When a client suspects foul play, they can ask the
auditor to challenge the trainer by training the model us-
ing the auditor’s own compute, and demonstrate that the
trainer did not train correctly. Based on the evidence re-
quired from the auditor (i.e. the precise timesteps model
training diverged, as shown in Figure 1), the client can then
choose to refuse the trainer’s model, pursue legal action
against the trainer, or even dispute a potentially corrupt
auditor if the client deems such evidence as invalid. This
protocol can be efficiently carried out using techniques from
the literature on verifiable computing, such as the “verifica-
tion game” method of Teutsch & Reitwießner (2019), which
uses an interactive binary-search procedure to identify the
exact intermediate computation step (e.g., training epoch)
where the two parties diverged.

Unfortunately, this approach breaks under nondeterminism
during training: two models trained on different GPU types,
even with same data order and random seed, learn differ-
ent weights (Figure 2). Therefore, simply comparing the
auditor’s and trainer’s model weights is not robust due to
errors from nondeterminism (Jia et al., 2021; Thudi et al.,
2022; Fang et al., 2023). We address this limitation by ask-
ing: can the trainer provide any information to the auditor
that eliminates nondeterminism? We first observe that non-
determinism results from error accumulation in floating-
point (FP) operations – a matrix-vector multiply can result
in different outputs on different GPUs. If these errors are
confined to only the higher precision bits, then one could
train using a higher precision (e.g., FP32) than the target
precision of the model (e.g., FP16), and round back to the
target precision. However, outputs can occasionally straddle
the rounding boundary, causing the trainer and auditor to
diverge, and obtain entirely different models. We propose
a solution where the trainer records rounding directions
for some intermediate computations so that auditor will
perfectly match the trainer.

We then use this strategy to adapt the verification game
from Teutsch & Reitwießner (2019) for verifiable training,
where an efficient Merkle tree (Merkle, 1988) data structure
stores model checkpoint hashes. To determine if training
was performed correctly, the auditor compares the root
hash of their Merkle tree with the trainer’s. If they do not
match, the two parties enter an interactive binary search
game to identify the exact training step of the dispute. This
procedure holds both parties accountable: an auditor can-
not simply claim that a model was improperly trained, but
should convince a third-party (e.g., the public, or a judge)
by showing at what point during training the trainer mis-
behaved. Our verifiable training scheme can scale to tasks

such as full training of ResNet-50 (23M parameters) and
finetuning of GPT-2 (117M parameters), significantly out-
performing existing methods with respect to both time and
storage cost (e.g., over 140 x for GPT-2), and eliminates
non-determinism errors.

Concretely, our contributions include: (1) A method to elim-
inate nondeterminism between two parties training the same
model on different GPU types; (2) A verification scheme
based on this method, which stores model weights in a
Merkle tree for efficient comparison between a trainer and
auditor; (3) Experiments showing the ability of our scheme
to scale to large (e.g., ResNet-50, GPT-2) between three
NVIDIA GPUs (A40, Titan XP, RTX 2080 Ti); (4) Meth-
ods to reduce the storage cost of our approach, including
an adaptive threshold mechanism to reduce the amount of
rounding decisions logged; and (5) Comparisons with exist-
ing methods, including proof-based systems, that highlight
the improved storage and time efficiency of our method,
which is implemented entirely within pytorch.

2. Related Works
Without any verifiable training scheme, significant trust is
placed in the trainer, leaving a client vulnerable to many
different attacks, such as “poisoning” of data samples to
cause undesirable behavior (e.g., generating unsafe text
(Carlini et al., 2023; Koh et al., 2021; Wan et al., 2023)) and
planting backdoors triggered by certain inputs (Goldwasser
et al., 2022). Therefore, training ML models in trusted
environments has been an exciting direction explored by
many researchers. One line of work consists of proof-based
systems, where a proof of correctness (for a desired speci-
fication) is provided using cryptographic techniques such
as succinct non-interactive arguments (SNARKs) (Micali,
1994; Bitansky et al., 2012; Lee et al., 2020; Liu et al., 2021;
Garg et al., 2023; Kang et al., 2022). However, even the
most recent proof-based systems for verifiable training suf-
fer extreme latency, such as 22 minutes for training VGG-11
on one batch of 16 data inputs (Abbaszadeh et al., 2024),
and have primarily been developed for simpler models (e.g.,
logistic regression) that are less likely for a client to delegate
out training for in the first place (Garg et al., 2023; Ames
et al., 2022). Meanwhile, an alternative solution of training
models in a trusted execution environment (TEE), such as
NVIDIA’s H100 “Confidential GPU”, incurs a performance
penalty due to the cost of running inside a TEE (Dhanuskodi
et al., 2023). Furthermore, clients lose all security guaran-
tees if an attacker can extract the attestation key from even
one GPU (Nilsson et al., 2020; Bulck et al., 2018).

Our approach is most similar to proof-of-learning protocols,
which consider a trusted 3rd party that compares checkpoint-
ing during the course of training with the original training
sequence (Jia et al., 2021). However, such methods not

2

Optimistic Verifiable Training by Controlling Hardware Nondeterminism

only incur high storage cost by requiring model weights to
be stored frequently, but are non-robust due to errors from
training nondeterminism. Several works have shown that
proof-of-learning protocols can be spoofed and fail to verify
correctness in several important contexts (Fang et al., 2023;
Kong et al., 2023; Thudi et al., 2022). Although Choi et al.
(2023) recently proposed a verification procedure that is
immune to several known proof-of-learning attacks, their
method is not only limited to supervised learning algorithms,
but also based on an assumption that models temporarily
overfit data during training, which may not always hold true.

GPU Nondeterminism: Prior work has investigated soft-
ware patches for deterministic training, for instance by en-
forcing FP accumulation ordering, at a significant cost to
efficiency (Jooybar et al., 2013; Defour & Collange, 2015;
Chou et al., 2020; TensorFlow, 2021; Zhuang et al., 2021).
While these options address deterministic computation on a
single GPU architecture, achieving deterministic results
across multiple GPU architectures remains challenging
(Crane, 2018a; NVIDIA, 2022). We control hardware non-
determinism across GPUs in order to design an efficient and
reliable verifiable training scheme. However, our method’s
impact extends beyond verifiable training, as nondetermin-
ism can have several negative consequences including bias,
reproducibility, and downstream effects on ML pipelines
(Zhuang et al., 2021; Crane, 2018b; Srivastava et al., 2020).

3. Set-Up: The Verification Game
Our method for verifiable training is based on the interac-
tive verification game proposed by Teutsch & Reitwießner
(2019) in the context of blockchains. The core idea is to re-
solve a dispute between a challenger, in our case the auditor,
and a solver, in our case the trainer, for an expensive com-
putation (e.g., model training). In order for the auditor to
take any meaningful action (e.g., pursue legal action), they
need to prove the exact source of the dispute (e.g., training
time-step where an attack occurred). If we can save model
weights at different time steps into a compact data struc-
ture such as a Merkle tree, then identifying the source of
disagreement can be done efficiently using binary search
(Merkle, 1988). More precisely, the verification game con-
sists of the following parties:

1. trainer, who has putatively trained a model according to
a client’s specifications. In our example, this is a service
provider with sufficient compute power to train a model.

2. client, who receives a model from the trainer and ap-
proaches an auditor.

3. auditor, who officially challenges the trainer on behalf
of a client. This is a 3rd-party that has sufficient re-
sources but does not necessarily provide training as a
service. The client can choose several auditors to audit
the trainer’s model.

4. judge: Sometimes a judge may need to arbitrate a le-
gal claim. The judge can perform small computations
(e.g., one training epoch), but can examine the auditor’s
claims and enforce a penalty against either the trainer,
for incorrect training, or the auditor, for a false alarm.

When the trainer is approached by an auditor, they would
need to share training parameters, model architecture, and
randomness, as shown in Figure 1. The auditor would then
replicate the training process, storing model weights in a
Merkle tree at the same checkpointing interval as the trainer
(ever leaf node in a Merkle tree is a hash of the data and
every non-leaf node is a hash of its children). The main
loop of the verification game starts when both parties have
the root of their respective Merkle trees. If training was
performed correctly, then the trainer’s root should match
the auditor’s. Otherwise, a binary search procedure is per-
formed, where the auditor iteratively descends the Merkle
tree until it identifies two consecutive leaf nodes, i and i+1,
where the hash at i matches that of the trainer, but the
hash at leaf i+ 1 does not. This identifies the point in the
computation of the dispute.

This interactive verification game requires the cooperation
of the trainer. If the trainer refuses to share the value at a
certain node of their Merkle tree within a given time frame,
they can be considered to have failed the audit. Additionally,
the trainer and auditor use a Merkle tree to store model
weights, requiring far less storage than prior work, if cor-
rect training produces identical weights (and identical hash
values).The problem is that training nondeterminism leads
to weight divergence, and causes this verification game to
always fail, so we seek to prevent divergence in training.

4. The Nondeterminism Challenge
Although there are user-side controls for forcing determin-
istic operations within a single GPU architecture , these
controls do not prevent nondeterminism between GPU ar-
chitectures (e.g., NVIDIA H100 and V100), where trained
models can have similar aggregate performance (e.g., ac-
curacy) yet yield very different predictions, as shown in
Figure 2 (Crane, 2018a; NVIDIA, 2022). There are three
main sources of nondeterminism between GPU types:

1. Floating-Point Arithmetic: Computers represent real
values using integer and FP representations, typically the
IEEE 754 standard (Figure 5). There is a tradeoff be-
tween the approximation fidelity and the # of bits used
to represent the real values. The chosen precision con-
trols the representable numerical range (e.g., 32-bit FP val-
ues can represent values between 1.17549435e − 38 and
3.40282347e + 38). Because computers round to repre-
sentable FP values, changing the order in which FP numbers
are accumulated can change the resulting sum (Kahan, 1965;

3

Optimistic Verifiable Training by Controlling Hardware Nondeterminism

(a) CIFAR-10 Classification (Res-Net 50) (b) Shakespeare Text Finetuning (GPT-2)

Test Input

This above all: to
thine own self bedog

cat

deer

0.09

0.69
0.08

0.75

0.20

0.01

0.26

0.29
0.28

true

my

thou

0.0101

0.0098

0.0097

0.0096

0.0083

0.0106

0.0091

0.0100

0.0095

4.18 ppl 4.18 ppl 4.22 ppl89.9 %90.2 % 90.7 %

A40 TitanXP RTX Ti A40 TitanXP RTX TiScores

Accuracy

Scores

PerplexityTest Input

Figure 2. Even after ensuring the same software version, random seed, and use of deterministic algorithms via library flags, training
nondeterminism persists between three GPU types.

Whitehead & Fit-Florea, 2011). Over the course of the many
operations during training, this can lead to a large difference
in the end result between the trainer and auditor.

2. Parallel Computation: In a GPU, a single operation
(called a kernel) is executed by thousands of threads in paral-
lel. GPUs contain a set of streaming multiprocessors (SMs),
which run the thread blocks required for the kernel. At the
hardware level, these blocks are divided into warps that are
assigned to the available cores. Because different GPUs
have a different number and size of compute units, applica-
tions partition arithmetic workloads (e.g., batch matrix mul-
tiplies) differently to achieve high performance (NVIDIA,
2022), thus changing the order of FP operations.

3. Memory Hierarchy and Variable Delays: The time
taken for memory access by each thread depends on the
physical location of the data, which can create variable
delays (Jooybar et al., 2013; Defour & Collange, 2015;
Chou et al., 2020). The GPU memory hierarchy consists
of large amounts of high bandwidth memory (HBM) and
small amounts of fast SRAM memory, and maintains an L1
and L2 cache to improve access times. The caches sizes
and access times differ across GPU architectures, which
affects warp scheduling. For instance, an NVIDIA A100
has 192KB / 40 MB of L1/L2 cache memory, while the
H100 has 256KB / 50MB (NVIDIA, 2023).

To compute primitives such as GEMMs (D = A ·B + C),
the workhorse of machine learning, GPUs split the work of
computing the tiles of D across a thread block (NVIDIA,
2023), resulting in nondeterminism across GPUs that any
robust verifiable training method would need to control.

5. Method Overview
5.1. Accumulation Errors Start at Higher Precision Bits

Our key idea is that if nondeterminism of training between
GPU types occurs due to FP operations, then any error
will initially be introduced in the lower bits. Suppose
that both trainer and auditor train at a higher FP (e.g.,
btr = 64) precision than the client’s target model precision
(e.g., bm = 32) and then periodically round (e.g., br = 32)
after intermediate computation steps (e.g., a convolution
layer). One might hope that this will “erase” the errors due

to nondeterminism, and prevent them from accumulating.
Unfortunately, simply rounding to the nearest FP32 after
each computation during training is insufficient for deter-
minism. The problem is due to rounding errors that straddle
the rounding boundary. Consider Case A in Figure 3, which
shows a divergence in the output of a computation using
FP64 on two different GPUs. Because the outputs of GPU 1
and 2 are on different sides of the boundary, rounding to the
nearest FP32 results in different values, introducing error.

What if the trainer records their rounding choice (e.g., up,
down, none) for every intermediate computation? The
auditor could then copy the trainer’s choice, and there-
fore round to the exact same value and successfully control
for nondeterminism. However, the auditor should not copy
the trainer’s behavior for every output (see Cases B & C,
Figure 3). If a computation output on GPU 1 is too close
to the rounded value, then it is possible that GPU 2 is also
close in distance but from the opposite direction. In this
case, the auditor should ignore the trainer’s choice. We
therefore need to introduce a threshold τ under which the
trainer does not record their rounding choice.

Our method requires upper bounding the divergence ddiv
between any two different GPUs for any intermediate com-
putation f (i.e. difference in outputs for the same input).
Let ϵb represent the distance between two FP32 values, after
rounding to br bits of the mantissa (Figure 5) and control-
ling for the exponent. We need to select br and τ such that
ddiv < ϵbr and ddiv < 2τ (Figure 3). Because the set of
possible FP numbers is finite, there exist optimal bounds for
br and τ . In practice, we find that br ≤ 32 and τ > 0.25·ϵ32
are sufficient for standard intermediate computations in neu-
ral network training (e.g., convolution, layer norm) in FP64.
We study different values for br in Section 6.

5.2. Primitives

We assume both trainer and auditor train models using
the IEEE-754 standard FP numbers (Figure 5). Besides
requiring read and write disk I/O operations, we define the
following functions:

1. rndbr (x): rounds input x to the nearest FP up to br bits
of the mantissa, as shown in Figure 5.

2. log(x, br, τ, f): logs to file f a logging direction c, which

4

Optimistic Verifiable Training by Controlling Hardware Nondeterminism

float32 float32 float32

GPU 1 output
(float64)

float32 float32 GPU 2 output
(float64)

float32

Logging Region
(determined via binary search)

float32float32 float32

Rounding

Case A

log:0 log:2

log:0

log:1

log:1 log:1

Case B

Case C

! !

Figure 3. Divergence between outputs on two different GPUs (in FP64) for a given function and input can result in different rounding
choices when rounding to the nearest FP32. We only wish to log rounding decisions for Case A, where the auditor should copy the
trainer’s rounding choice in order to reach the same value. This requires defining a logging region, determined by a threshold τ ,

is either 0 (down), 1 (ignore), or 2 (up) depending on
threshold τ and rounding amount br, as shown in Algo-
rithm 4.

3. rev(x, br, c): reverses rounding of input x based on log-
ging direction c. If x < rndbr (x) & c = 0, then return
x rounded to the nearest float below x with br precision.
If x > rndbr (x) & c = 2, then return x rounded to the
nearest float above x with br precision. Otherwise, do
not correct.

4. threshold(l, br, btr): identifies the optimal threshold to
log rounding directions (0 or 2) instead of 1, which the
rev function ignores, based on the binary search proce-
dure in Section 5.4.

5. hashsha256(θ): creates a SHA-256 hash of provided
model weights θ (in bm precision).

6. tree(leaf1, leaf2..., leafn) : create a Merkle tree where
each leaf node is the output of hashsha256(θ) for model
weights θ at a given checkpoint, with a checkpointing
interval k (Merkle, 1988).

5.3. Training and Auditing

The trainer’s task begins when a client approaches them
with dataset D, training specifications (epochs E, loss func-
tion loss, etc.), and a requested model precision bm.The
trainer can then choose a training precision btr > bm, a
rounding amount br ≤ bm, and a checkpointing interval k
to periodically store small hashsha256(θ) of model weights
θ in a Merkle tree, for efficient comparison with an eventual
auditor. Then, as detailed in Algorithm 1, the trainer can
perform training as normal, but after every intermediate
computation (e.g., convolution) perform the rndbr operation
on each output. Rounding is applied to computations in
both the forward and backward passes. Finally, either us-
ing a fixed threshold τ or a layer-specific optimal τ from
the threshold function described in Section 5.4, the trainer
applies log, which logs rounding choices only for the compu-
tations an auditor should copy. The output of the algorithm
includes a rounding log file F and the root of the Merkle
tree which, along with the shared randomness R and all
training parameters, the trainer can share with any trusted

third-pary auditor who challenges them.

After a client approaches them, the auditor initiates the
verification game described in Section 3. To avoid penalty,
the trainer must cooperate by sharing the rounding amount
br, randomness R used in training (e.g., a pseudo-random
number generator), the checkpointing interval k, and set
of rounding logs F . The auditor then follows the train-
ing procedure and corrects their rounding choice (e.g., up
or down) to match those logged in F using the rev opera-
tion, as detailed in Algorithm 2 (Appendix). By correcting
each rounding mismatch during the course of training, the
auditor is able to prevent nondeterminism errors from accu-
mulating. Therefore, the auditor can store the hashsha256(θ)
of model weights θ in a Merkle tree at interval k, knowing
that if training was done correctly, the model weights should
be identical to the trainer’s at any timestep. The output of
Algorithm 2 is the root of the auditor’s Merkle tree, which
they can use to compare with the trainer’s root.

5.4. Reducing storage cost

Logging rounding decisions for every neural network layer
output during training incurs a large baseline storage cost,
and is our main limitation. For dataset D, batch size B,
training epochs E, and model layers Lθ, the upper bound on
the total storage cost for verifiable training with our method
is:

storage cost (B) = |D|×E×B×(
L∑

l=1

ol,f +

L∑
l=1

ol,b) (1)

where ol,f and ol,f represent the size of outputs of the for-
ward pass and backward pass of layer l. Note that the log
entries do not need to be kept around in the RAM and can be
written straight to the disk. Moreover, this cost is a one-time
cost incurred by the trainer, who in our context is likely
to be a powerful commercial provider with access to such
storage capacity. Furthermore, as we later show in Section 6,
for models with many linear layers like Transformer-based
language models (e.g., GPT-2), where parameters signifi-
cantly outnumber intermediate computations, this storage
cost is significantly smaller than alternative approaches that

5

Optimistic Verifiable Training by Controlling Hardware Nondeterminism

require saving model weights (Jia et al., 2021). Neverthe-
less, we now describe our method for reducing storage cost
by (i) efficiently encoding rounding logs and (ii) adaptive
selection of the threshold τ to reduce the storage costs.

Efficient Encoding: Each log entry is a value from the
set 0, 1, 2, as opposed to the FP model weights. We pack
sub-sequences of five log entries into a single byte via a
fast GPU-based radix-3 to radix-2 conversion, yielding 1.6
bits/entry storage that is close to the best possible packing of
1.58 bits/entry, and yields a 77% storage reduction relative
to naively storing one log entry per byte.

Adaptive Threshold: Recall that we need to select a thresh-
old τ that controls for whether the trainer logs a rounding
choice, or instead logs 1 which the auditor ignores. The
more one can increase τ , the more 1 values are recorded,
which can make rounding logs more compressible (due to
long sequences of 1s). Furthermore, it is possible that the
divergence ddiv between outputs on two different GPUs,
given the same input, is function-specific. For example,
while convolution requires several matrix multiplications
that might result in a large FP accumulation error, normal-
ization operations are unlikely to result in large ddiv , and a
larger τ can be applied. We develop an efficient algorithm
(Algorithm 3 in the Appendix) to find the optimal value
for τ given a particular layer and data of output values that
led to different rounding choices between any two GPUs
(e.g., Case A in Figure 3). For a given rounding amount br
and training precision btr, the algorithm performs a binary
search between τ = 0.25 · ϵ32 (our upper bound on the ddiv
between two GPUs for any function) and τ = 0.5 · ϵbr (the
rounding boundary). By performing this procedure for the
different intermediate computations in a model, the trainer
can hope to better compress the rounding log F .

Merkle Tree Storage: Storing SHA-256 hashes of model
weights during training in a Merkle tree creates an effi-
cient mechanism for the verification game described in Sec-
tion 3, with negligible storage requirements. The audit ends
when either the trainer withdraws, the auditor confirms
that training was performed correctly, or the auditor can
present paths to the two leaves of their Merkle tree where
divergence starts, providing evidence to dispute the trainer.

6. Empirical Results
We evaluate our verifiable training method on the two large-
scale models listed below with all possible trainer and
auditor pairs across NVIDIA GPUs A40, TITAN Xp, and
RTX 2080 Ti (see Appendix B). In Section 6.2, we compare
our method with recent proof-based systems.

1. ResNet-50: We train (from random initialization)
ResNet-50 (23M) on CIFAR-10 with dataset size 50K
& batch size B=64. Test accuracy = 90.7% after 100

epochs training on Titan RTX Ti.
2. GPT-2: We finetune GPT-2 (117M) on a corpus of Shake-

speare text with dataset size 1.1M tokens, batch size B=8,
and sequence length 64. Perplexity = 4.22 after 1 epoch
training on Titan RTX Ti.

Figure 2 shows that nondeterminism due to GPU architec-
ture exists for both tasks. While we can repeatedly obtain
identical results across training runs on the same GPU ar-
chitecture, training on different GPU architectures results in
fundamentally different models.

6.1. Implementation and Findings

We implement our verifiable training method entirely on top
of the pytorch framework, with torch version 1.13.1
and CUDA version 11.7. The intermediate computations
we apply rndb to are layers (e.g., torch.nn.Conv2D)
in the model’s computation graph. Rounding-related op-
erations (rnd and rev) either using casting or FP functions
(e.g., torch.nextafter) that can run on the GPU, thus
having little impact on computational speed. Because we ob-
served that the torch.randn operation used for dropout
in GPT-2 is non-deterministic for long inputs (even for the
same seed, see Appendix I), we implement our own dropout
as our method requires shared randomness R.

Successful control for non-determinism: Our method
completely eliminates non-determinism between full train-
ing runs of both for both the ResNet-50 training and GPT-2
fine-tuning tasks across all possible trainer and auditor
pairs between the A40, Titan XP, and RTX 2080 Ti GPUs.
As Figure 4 shows, standard FP32 training results in an in-
creasing divergence (l2-distance of weights) between mod-
els on different GPUs over the course of training. Further-
more, we show the simple approach of training in FP64 and
rounding to FP32 after every intermediate computation, but
without the auditor correcting rounding decisions with rev,
fails to mitigate this issue. Only our method, in which the
auditor follows the rounding decisions (br = 32) made by
the trainer for every intermediate computation, eliminates
non-determinism and persists over time. Our implementa-
tion, which requires disk I/O during training to store the
rounding decisions, results in a small increase in training
time for the trainer (1.2-1.4x) and auditor (1.3-1.7x) using
a non-optimized, protoype implementation (Table 4). We
report the storage requirements of our method in Table 1,
showing that our efficient encoding scheme reduces the size
of the trainer’s rounding logs by 77%, relative to naive
logging. Because the Merkle tree stores 32-byte SHA-256
hashes, its overall size (KBs) and creation time are negli-
gible and not reported. Finally, we show that decreasing
the rounding amount b to values even as low as 26 has little
effect on model performance (we observe no change in accu-
racy, so report test loss), but increase training time (Figure

6

Optimistic Verifiable Training by Controlling Hardware Nondeterminism

Steps# Steps % Log Entries Ignored % Log Entries Ignored

%
 T

im
e

In
cr

ea
se

%
 Te

st
 L

os
s C

ha
ng

e

Av
g.

 L
2

W
ei

gh
t D

iff
.

Av
g.

 L
2

W
ei

gh
t D

iff
.

a. b. c. d.

Standard Training Simple Rounding Our Method ResNet-50 GPT-2

GPT-2ResNet-50

b=32

b=26

b=32

b=26

b=32

b=26

b=32

b=26

Figure 4. We successfully control for nondeterminism between GPU types for both ResNet-50 (a.) and GPT-2 (b.) tasks, while standard
training and simple rounding without performing rev corrections result in model divergence over the course of training. Stronger rounding
has minimal affect to model performance (c.), but at the cost of increasing time for trainer (d.).

Table 1. Efficient encoding reduces storage requirements by 77%, and rounding to b = 26 improves the compression further between
5-20% (values reported for 1 step of training). The original proof-of–learning protocol from Jia et al. (2021) requires storing 2.78 GB of
model weights for GPT-2, or more than 140x our storage cost, while still incurring statistical error.

ResNet-50 b = 32 ResNet-50 b = 26 GPT-2 b = 32 GPT-2 b = 26
Naive Encoding 456 MB 456 MB 92 MB 92 MB

Efficient Encoding 105 MB 105 MB 22 MB 22 MB
+ Zip Compression 96 MB 91 MB 20 MB 18 MB

4). We observe that smaller values of b do allow more log
entries to be ignored, improving compression of the file,
which we discuss next.

Compression with adaptive threshold: Our approach out-
performs (Table 1) the storage costs of proof-of-learning
protocols that save model weights for GPT-2 (2.78GB),
which has many linear layers – we observe more than 140x
reduction relative to the approach in Jia et al. (2021). We
further reduce the storage cost of our method by decreas-
ing the rounding amount b and implementing the adaptive
thresholding strategy (Section 5.4). Table 3 reports adaptive
thresholds τ for four different pytorch layers at round-
ing amount br = 32. Convolutions require the lowest τ ,
indicating larger divergence in outputs between GPU types,
which is expected due to the large # of matrix multipli-
cations. Meanwhile, τ is higher for normalization layers,
likely due to smaller divergences between GPU types. Be-
cause adaptive thresholding seeks to reduce the # of times
rounding decisions (0 and 2) are logged and improve log
file compression, we report storage cost after zip compres-
sion in Table 1. As expected, more aggressive rounding
(which results in a higher τ) improves the compression rate.
Although the compression gains are mild in comparison to
our encoding step, they build-up over the course of train-
ing. Finally, we report the average # of rev corrections an
auditor needs to perform for one training step in our two
tasks (Table 2). These values are surprisingly small in com-
parison to the # of operations logged – only a maximum
of 2e-6% (ResNet-50) and 9e-6% (GPT-2) of logged val-
ues, are actually needed by the auditor! We also observe
that severe rounding (e.g., b = 27) completely eliminated
the hardware non-determinism for our tasks, requiring no
corrections from the auditor. This shows a huge gap be-

tween the # of values currently saved by the trainer and
those needed by the auditor, motivating an exciting future
possibility of significantly reducing the storage cost of our
method if we could reliably predict when a divergence will
not occur.

6.2. Comparison with alternative approaches

Logistic Regression: Garg et al. (2023) recently proposed
a zero-knowledge proof-based system for verifiable training
of a logistic regression, which importantly does not leak
information about the client’s data or require a trusted third-
party auditor, unlike our work. However, since verifiable
training itself is motivated by a client not having sufficient
resources to train the model, it is crucial to consider the
implications of scale. The authors report the prover time
and proof size requirements for one training pass of logistic
regression on a dataset of 218 items, with 1024 dimensions
and a batch size of 2014, as 72 seconds (training and proof
generation time) and 350 MB respectively. We replicate
this training task, and find that our method significantly im-
proves upon both storage and time requirements, requiring
only 106 KB and 7 seconds (both training and auditing).
Furthermore, because Garg et al. (2023) do not report the
duration of “offline phase” of their method, their reported
value is a lower bound on the actual time required. Finally,
we note that the original proof-of-learning protocol from
Jia et al. (2021), which also considers a trusted third-party,
would require 9.2 MB per training step to store all model
weights. Our method is at least 85x more space efficient.

VGG-11: Concurrent to this work, Abbaszadeh et al. (2024)
introduce a zero-knowledge proof-of-training protocol for
deep neural networks, presenting results for one batch step

7

Optimistic Verifiable Training by Controlling Hardware Nondeterminism

Table 2. Average # of rev corrections performed by auditor per training step. Even at b = 32, auditing only requires 20-25 corrections
(2e-6 to 9e-6% of samples) per training step.

ResNet-50 b = 32 b = 31 b = 30 b = 29 b = 28 b = 27 b = 26
Forward 15± 3 6± 2 3± 1 3± 1 0 0 0

Backward 10± 0.6 6± 0.6 2± 1 0.7± 0.7 0± 0 0± 0 0± 0

GPT-2 b = 32 b = 31 b = 30 b = 29 b = 28 b = 27 b = 26
Forward 2± 0.7 2.3± 0.8 2.2± 0.4 0.2± 0.2 0.4± 0.2 0± 0 0± 0

Backward 19± 13 0.75± 0.3 1.2± 0.4 0.2± 0.2 0.± 0.0 0± 0 0± 0

Table 3. Adaptive thresholds identified for different operations using Algorithm 3 with b = 32.
2D Convolution Batch Norm Linear Layer Norm

Dimension 256 (1,1) (128, 128, 16, 16) (768,768) (768,1)
τ 0.305 ∗ 2−23 0.499 ∗ 2−23 0.465 ∗ 2−23 0.499 ∗ 2−23

of training for a simplified version of the VGG-11 model
with 10M parameters, which is less than the original VGG-
11 network and ResNet-50 (Simonyan & Zisserman, 2015).
While the authors do not provide architectural details, we
can assume that increasing the # of parameters to the origi-
nal VGG-11 would only increase their reported proof time
and size. We compare their reported values with an im-
plementation of our method for the same task of verifying
the training of VGG-11 on CIFAR-10 with a batch size of
16. While their use of incrementally verifiable computation
leads to tractable proof size (1.36MB vs. the 1.2MB per
iteration cost of our method), Abbaszadeh et al. (2024)’s
method requires 22 min. per training iteration. In compar-
ison, our method requires training and auditing times of only
6 sec. per iteration and is significantly more efficient (factor
of 220x), an important consideration for commercial FM
training. While proof-based systems do not require a third
party, they do so at the cost of relying on hard-to-scale cryp-
tographic techniques, as well as approximating non-linear
functions that can harm performance.

7. Security Analysis
Our work makes a 1-of-n honesty assumption, i.e., as long
as one of n auditors is honest, any attack from a mali-
cious trainer that results in diverging model weights will
be detected. One consideration is the potential manipula-
tion of the rounding logs by an adversarial trainer who
could select rounding decisions that achieve a desired out-
come, and which the auditor would follow. Concretely,
let us define our threat model so that the trainer knows an
auditor’s GPU a priori. Recall that an auditor only copies
the trainer’s rounding decision in Case A in Figure 3, when
both GPUs compute values close to the rounding boundary.
Under this threat model, the trainer can identify the n steps
where the auditor is close to the boundary (as in Case A),
enumerate the set of 2n different models that result from
different rounding decisions, and selectively pick a model
that exhibits a desired property.

However, the trainer cannot use this strategy to embed
an arbitrary property (e.g., a specific backdoor). It can

only select from the set of models that differ in certain
rounding decisions, which all require the trainer to use the
correct training specifications accepted by the client (such
as exact training data & hyperparameters). Furthermore,
since the expected # of divergences between the trainer
and the auditor is extremely small (see Table 2), the set
of possible models where an auditor would not detect an
attack (e.g., many rev ops) is limited. Finally, we show in
Table 5 in the appendix that the divergence (measured both
as ℓ2-norm between model weights and output distributions)
due to GPU non-determinism is significantly less than the
divergence due to data ordering during training. Therefore,
if we a client will accept a model trained with any random
ordering of the data during training, then it is unlikely that an
adversarial trainer — that can only alter rounding decisions
— could produce a model that the client would not accept.
Fully understanding the properties obtained by manipulating
logs adversarially is an important future direction.

8. Limitations and Future Work
Our efficient verifiable training scheme successfully con-
trols for hardware nondeterminism. It expands the pool of
potential auditors of a model training service, allowing us to
envision a world where a client can even use two competing
service providers it trusts to audit each other. Relative to
proof-based systems, a limitation is the need for all parties to
trust the third-party auditor. If the trainer provides finetun-
ing services on top of closed-source models (e.g., OpenAI),
then our scheme will only work for the third-party audi-
tors that the trainer is willing to share model weights with.
Other limitations included the added latency of training in
higher precision and the storage cost. While we have shown
that our method requires significantly less storage than alter-
natives, the vast majority of stored rounding decisions are
not used by the auditor and are therefore unnecessary (Sec-
tion 6). Therefore, an exciting direction for future work is to
mitigate this gap by better predicting when GPU divergence
between computations occurs via stronger noise profiling
(Fang et al., 2023). Finally, another direction for future work
also includes adapting our method for distributed training.

8

Optimistic Verifiable Training by Controlling Hardware Nondeterminism

References
Abbaszadeh, K., Pappas, C., Papadopoulos, D., and Katz,

J. Zero-knowledge proofs of training for deep neural
networks. Cryptology ePrint Archive, Paper 2024/162,
2024. URL https://eprint.iacr.org/2024/
162. https://eprint.iacr.org/2024/162.

Ames, S., Hazay, C., Ishai, Y., and Venkitasubra-
maniam, M. Ligero: Lightweight sublinear argu-
ments without a trusted setup. Cryptology ePrint
Archive, Paper 2022/1608, 2022. URL https:
//eprint.iacr.org/2022/1608. https://
eprint.iacr.org/2022/1608.

Bitansky, N., Canetti, R., Chiesa, A., and Tromer, E. From
extractable collision resistance to succinct non-interactive
arguments of knowledge, and back again. In Innovations
in Theoretical Computer Science (ITCS), pp. 326–349.
ACM, 2012.

Bulck, J. V., Minkin, M., Weisse, O., Genkin, D., Kasikci,
B., Piessens, F., Silberstein, M., Wenisch, T. F., Yarom, Y.,
and Strackx, R. Foreshadow: Extracting the keys to the
intel SGX kingdom with transient Out-of-Order execu-
tion. In 27th USENIX Security Symposium (USENIX
Security 18), pp. 991–1008, Baltimore, MD, August
2018. USENIX Association. ISBN 978-1-939133-04-5.
URL https://www.usenix.org/conference/
usenixsecurity18/presentation/bulck.

Carlini, N., Jagielski, M., Choquette-Choo, C. A., Paleka,
D., Pearce, W., Anderson, H., Terzis, A., Thomas, K.,
and Tramèr, F. Poisoning web-scale training datasets is
practical, 2023.

Choi, D., Shavit, Y., and Duvenaud, D. Tools for verify-
ing neural models’ training data. In Neural Information
Processing Systems, 2023.

Chou, Y. H., Ng, C., Cattell, S., Intan, J., Sinclair, M. D.,
Devietti, J., Rogers, T. G., and Aamodt, T. M. Determin-
istic atomic buffering. In 2020 53rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO),
2020.

Crane, M. Questionable answers in question answer-
ing research: Reproducibility and variability of pub-
lished results. Transactions of the Association for Com-
putational Linguistics, 6:241–252, 2018a. doi: 10.
1162/tacl a 00018. URL https://aclanthology.
org/Q18-1018.

Crane, M. Questionable answers in question answer-
ing research: Reproducibility and variability of pub-
lished results. Transactions of the Association for Com-
putational Linguistics, 6:241–252, 2018b. doi: 10.

1162/tacl a 00018. URL https://aclanthology.
org/Q18-1018.

Defour, D. and Collange, C. Reproducible floating-point
atomic addition in data-parallel environment. In Proc.
of the Federated Conference on Computer Science and
Information Systems, 2015.

Dhanuskodi, G., Guha, S., Krishnan, V., Manjunatha, A.,
Nertney, R., O’Connor, M., and Rogers, P. Creating the
first confidential gpus. Commun. ACM, 67(1):60–67, dec
2023. ISSN 0001-0782. doi: 10.1145/3626827. URL
https://doi.org/10.1145/3626827.

Fang, C., Jia, H., Thudi, A., Yaghini, M., Choquette-Choo,
C. A., Dullerud, N., Chandrasekaran, V., and Papernot,
N. Proof-of-learning is currently more broken than you
think, 2023.

Garg, S., Goel, A., Jha, S., Mahloujifar, S., Mahmoody,
M., Policharla, G.-V., and Wang, M. Experimenting
with zero-knowledge proofs of training. Cryptology
ePrint Archive, Paper 2023/1345, 2023. URL https:
//eprint.iacr.org/2023/1345. https://
eprint.iacr.org/2023/1345.

Goldwasser, S., Kim, M. P., Vaikuntanathan, V., and Zamir,
O. Planting undetectable backdoors in machine learning
models, 2022.

Gupta, K., Jawalkar, N., Mukherjee, A., Chandran, N.,
Gupta, D., Panwar, A., and Sharma, R. Sigma: Secure
gpt inference with function secret sharing. Cryptology
ePrint Archive, Paper 2023/1269, 2023. URL https:
//eprint.iacr.org/2023/1269. https://
eprint.iacr.org/2023/1269.

Jia, H., Yaghini, M., Choquette-Choo, C. A., Dullerud,
N., Thudi, A., Chandrasekaran, V., and Papernot, N.
Proof-of-learning: Definitions and practice. CoRR,
abs/2103.05633, 2021. URL https://arxiv.org/
abs/2103.05633.

Jooybar, H., Fung, W. W. L., O’Connor, M., Devietti, J.,
and Aamodt, T. M. Gpudet: a deterministic gpu archi-
tecture. In ASPLOS ’13: Proceedings of the eighteenth
international conference on Architectural support for pro-
gramming languages and operating systems, 2013.

Kahan, W. Further remarks on reducing truncation errors,
1965. URL https://dl.acm.org/doi/pdf/10.
1145/363707.363723.

Kang, D., Hashimoto, T., Stoica, I., and Sun, Y. Scaling
up trustless dnn inference with zero-knowledge proofs,
2022.

9

https://eprint.iacr.org/2024/162
https://eprint.iacr.org/2024/162
https://eprint.iacr.org/2024/162
https://eprint.iacr.org/2022/1608
https://eprint.iacr.org/2022/1608
https://eprint.iacr.org/2022/1608
https://eprint.iacr.org/2022/1608
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://aclanthology.org/Q18-1018
https://aclanthology.org/Q18-1018
https://aclanthology.org/Q18-1018
https://aclanthology.org/Q18-1018
https://doi.org/10.1145/3626827
https://eprint.iacr.org/2023/1345
https://eprint.iacr.org/2023/1345
https://eprint.iacr.org/2023/1345
https://eprint.iacr.org/2023/1345
https://eprint.iacr.org/2023/1269
https://eprint.iacr.org/2023/1269
https://eprint.iacr.org/2023/1269
https://eprint.iacr.org/2023/1269
https://arxiv.org/abs/2103.05633
https://arxiv.org/abs/2103.05633
https://dl.acm.org/doi/pdf/10.1145/363707.363723
https://dl.acm.org/doi/pdf/10.1145/363707.363723

Optimistic Verifiable Training by Controlling Hardware Nondeterminism

Koh, P. W., Steinhardt, J., and Liang, P. Stronger data
poisoning attacks break data sanitization defenses, 2021.

Kong, Z., Chowdhury, A. R., and Chaudhuri, K. Can mem-
bership inferencing be refuted?, 2023.

Lee, S., Ko, H., Kim, J., and Oh, H. vcnn: Ver-
ifiable convolutional neural network based on zk-
snarks. Cryptology ePrint Archive, Paper 2020/584,
2020. URL https://eprint.iacr.org/2020/
584. https://eprint.iacr.org/2020/584.

Liu, T., Xie, X., and Zhang, Y. zkcnn: Zero knowledge
proofs for convolutional neural network predictions and
accuracy. Cryptology ePrint Archive, Paper 2021/673,
2021. URL https://eprint.iacr.org/2021/
673. https://eprint.iacr.org/2021/673.

Merkle, R. C. A digital signature based on a conventional
encryption function. In Pomerance, C. (ed.), Advances
in Cryptology — CRYPTO ’87, pp. 369–378, Berlin, Hei-
delberg, 1988. Springer Berlin Heidelberg. ISBN 978-3-
540-48184-3.

Micali, S. CS proofs (extended abstracts). In 35th Annual
Symposium on Foundations of Computer Science, Santa
Fe, New Mexico, USA, 20-22 November 1994, pp. 436–
453. IEEE Computer Society, 1994. doi: 10.1109/SFCS.
1994.365746. URL https://doi.org/10.1109/
SFCS.1994.365746.

Nilsson, A., Bideh, P. N., and Brorsson, J. A survey of
published attacks on intel sgx, 2020.

NVIDIA. Determinism across gpu architectures,
2022. URL https://github.com/NVIDIA/
framework-reproducibility/issues/28.

NVIDIA. Cuda: Hopper tuning guide, 2023.
URL https://docs.nvidia.com/cuda/pdf/
Hopper_Tuning_Guide.pdf.

Sevilla, J., Heim, L., Ho, A., Besiroglu, T., Hobb-
hahn, M., and Villalobos, P. Compute trends across
three eras of machine learning. In 2022 Interna-
tional Joint Conference on Neural Networks (IJCNN).
IEEE, July 2022. doi: 10.1109/ijcnn55064.2022.
9891914. URL http://dx.doi.org/10.1109/
IJCNN55064.2022.9891914.

Simonyan, K. and Zisserman, A. Very deep convolutional
networks for large-scale image recognition, 2015.

Srivastava, M., Nushi, B., Kamar, E., Shah, S., and Horvitz,
E. An empirical analysis of backward compatibility in
machine learning systems, 2020.

1 1 0 1 1 0 0 1 1 0 0 1 1…

1 1 0 1 1 0 0 1 1 0 0 1 0

1 1 0 1 1 0 0 1 1 0 0 0 0

Exponent
8 bits

Sign
1 bits

Mantissa
23 bits

round (b=31)

round (b=30)

round (b=32)

IEEE 754 Floating Point Standard

…

…

Figure 5. We define rounding to b bits as rounding to the nearest
32-bit FP number that has 0s in the last 32− b bits of the mantissa,
after accounting for the exponent.

TensorFlow. Tensorflow 2.8.0-rc0, 2021. URL
https://github.com/tensorflow/
tensorflow/releases/tag/v2.8.0-rc0.

Teutsch, J. and Reitwießner, C. A scalable verification
solution for blockchains. CoRR, abs/1908.04756, 2019.
URL http://arxiv.org/abs/1908.04756.

Thudi, A., Jia, H., Shumailov, I., and Papernot, N.
On the necessity of auditable algorithmic defini-
tions for machine unlearning. In 31st USENIX
Security Symposium (USENIX Security 22), pp.
4007–4022, Boston, MA, August 2022. USENIX
Association. ISBN 978-1-939133-31-1. URL
https://www.usenix.org/conference/
usenixsecurity22/presentation/thudi.

Wan, A., Wallace, E., Shen, S., and Klein, D. Poisoning
language models during instruction tuning, 2023.

Whitehead, N. and Fit-Florea, A. Precision & performance:
Floating point and ieee 754 compliance for nvidia
gpus, 2011. URL https://developer.nvidia.
com/sites/default/files/akamai/cuda/
files/NVIDIA-CUDA-Floating-Point.pdf.

Zhuang, D., Zhang, X., Song, S. L., and Hooker, S. Ran-
domness in neural network training: Characterizing the
impact of tooling. In arXiv:2106.11872v1, 2021.

A. IEEE Floating Point Image
See Figure 5.

B. GPU Details
All experiments reported in our paper are run with the fol-
lowing three GPUs:

• NVIDIA Titan XP: 3840 Cores, 12 GB
• NVIDIA RTX 2080 Ti: 4352 Cores, 11 GB
• NVIDIA A40: 10752 Cores, 48 GB

10

https://eprint.iacr.org/2020/584
https://eprint.iacr.org/2020/584
https://eprint.iacr.org/2020/584
https://eprint.iacr.org/2021/673
https://eprint.iacr.org/2021/673
https://eprint.iacr.org/2021/673
https://doi.org/10.1109/SFCS.1994.365746
https://doi.org/10.1109/SFCS.1994.365746
https://github.com/NVIDIA/framework-reproducibility/issues/28
https://github.com/NVIDIA/framework-reproducibility/issues/28
https://docs.nvidia.com/cuda/pdf/Hopper_Tuning_Guide.pdf
https://docs.nvidia.com/cuda/pdf/Hopper_Tuning_Guide.pdf
http://dx.doi.org/10.1109/IJCNN55064.2022.9891914
http://dx.doi.org/10.1109/IJCNN55064.2022.9891914
https://github.com/tensorflow/tensorflow/releases/tag/v2.8.0-rc0
https://github.com/tensorflow/tensorflow/releases/tag/v2.8.0-rc0
http://arxiv.org/abs/1908.04756
https://www.usenix.org/conference/usenixsecurity22/presentation/thudi
https://www.usenix.org/conference/usenixsecurity22/presentation/thudi
https://developer.nvidia.com/sites/default/files/akamai/cuda/files/NVIDIA-CUDA-Floating-Point.pdf
https://developer.nvidia.com/sites/default/files/akamai/cuda/files/NVIDIA-CUDA-Floating-Point.pdf
https://developer.nvidia.com/sites/default/files/akamai/cuda/files/NVIDIA-CUDA-Floating-Point.pdf

Optimistic Verifiable Training by Controlling Hardware Nondeterminism

We are able to successfully replicate training runs between
all pairs of these 3 GPUs.

C. Logging Algorithm
See Algorithm 4

D. Train Algorithm
See Algorithm 1.

E. Audit Algorithm
See Algorithm 2.

F. Adaptive Thresholding Algorithm
See Algorithm 3.

G. Time Requirements
See Table 4.

H. Model Divergence Comparison
See Table 5.

I. Random Number Generation
Our verifiable training scheme requires shared randomness
between the trainer and auditor, which is used for decid-
ing input data batching, weight initialization, and operations
such as dropout (randomly setting outputs to zero). More
formally, our scheme requires sharing the same random
seed and pseudo-random generator. However, in our imple-
mentation based on pytorch (assuming the same software
version between trainer and auditor), we chose to rely on
the the torch random seed functionality. While this suc-
cessfully controls for batch input ordering and weight initial-
ization, it is unfortunately not sufficient for random number
generation, as operations such as torch.nn.randn()
leverage parallelism when the requested # of values is higher
than a certain amount. Specifically, we found that across
T40, RTX 2080 Ti, V100, A40, and A100, given the same
seed, torch.randint() produces identical tensors onlt up to
size 40960. At size 40961, T40 (which is an older GPU)
deviated from the rest. Likewise, at size 69633, 2080 Ti de-
viated from the rest, and so on. Based on these observations,
we arranged for calls to torch.randint() in the dropout layer
(which is the only operation using large random tensors in
our tasks) to be replaced by generating and concatenating
multiple random tensors of size 40960 or less. Specifically,
a random tensor of size n > 40960 is generated by concate-
nating (n//40960) random tensors of size 40960 and one

random tensor of size (n%40960). However, we emphasize
that it is therefore important in our scheme either for both
parties to implement this change a priori, or simply use an
external source for pseudorandomness.

Algorithm 1 train

INPUT: dataset D, epochs E, batch size B, shared
randomness R, model Wθ, loss function loss, rounding
amount br, training precision btr, target model precision
bm, checkpointing interval k
OUTPUT: Merkle tree root Mroot, rounding log file F

1: F,Mleaves ← create empty file and leaf list
2: Wθ ← init(R, btr) //initialize weights
3: T ← D∗E

B
4: for t = 1...T do
5: input← batch(R,D,B) // get data batch

// forward pass
6: for layer lθ ∈Wθ.layers do
7: output← lθ(input)
8: τ ← threshold(lθ, br, btr) //set threshold
9: log(output, br, τ, F)

10: output← rndbr (output)
11: input← output
12: end for
13: loss← loss(output)
14: // backward pass, reversed layers
15: grad output← ∇loss

16: for layer lθ ∈Wθ.layers do
17: grad input← ∇lθ (grad output)
18: τ ← threshold(∇lθ , br, btr)
19: log(grad input, br, τ, F)
20: grad input← rndbr (grad input)
21: grad output← grad input
22: end for
23: θ ← update update weights
24: if t mod k = 0 then
25: Mleaves.append(hashsha256(θ in precision bm))
26: end if
27: end for
28: Mroot ← tree(Mleaves) // create Merkle tree
29: return F,Mroot, and model Wθ in target precision bm

11

Optimistic Verifiable Training by Controlling Hardware Nondeterminism

Algorithm 2 audit

INPUT: dataset D, epochs E, batch size B, shared
randomness R, model Wθ, loss function loss, rounding
amount br, training precision btr, target model precision
bm, checkpointing interval k, log file F from trainer
OUTPUT: Merkle tree root Mroot

1: Mleaves ← create empty leaf list
2: Wθ ← init(R, btr) //initialize weights
3: T ← D∗E

B
4: for t = 1...T do
5: input← batch(R,D,B) // get data batch

// forward pass
6: for layer lθ ∈Wθ.layers do
7: output← lθ(input)
8: for outputi ∈ output do
9: // Match trainer rounding

10: c← read(outputi, F)
11: outputi ← rev(outputi, br, c)
12: end for
13: input← output
14: end for
15: loss← loss(output)
16: // backward pass
17: grad output← ∇loss

18: for layer lθ ∈Wθ.layers do
19: grad input← ∇lθ (grad output)
20: for grad inputi ∈ grad input do
21: // Match trainer rounding
22: c← read(grad inputi, F)
23: grad inputi ← rev(grad inputi, br, c)
24: end for
25: grad output← grad input
26: end for
27: θ ← update update weights
28: if t mod k = 0 then
29: Mleaves.append(hashsha256(θ in precision bm))
30: end if
31: end for
32: Mroot ← tree(Mleaves) // create Merkle tree
33: return Mroot

Algorithm 3 threshold

INPUT: layer l, rounding amount br, training precision btr
OUTPUT: threshold τ

1: P ← initialize empty list
2: N,T ← initialize large # of data points and iterations
3: for i=1...N do
4: GPU1, GPU2 ← select two different GPU archi-

tectures
5: x ← select random input for layer l in btr floating-

point precision
6: y1 ← lGPU1(x), y2 ← lGPU2(x), apply layer l on

input x on each GPU
7: if rndbr (y1) ̸= rndbr (y2) then
8: if y1 > rndbr (y1) and y2 < rndbr (y2) then
9: P.append(|y1 − rndbr (y1)|)

10: P.append(|y2 − rndbr (y2)|)
11: end if
12: if y1 < rndbr (y1) and y2 > rndbr (y2) then
13: P.append(|y1 − rndbr (y1)|)
14: P.append(|y2 − rndbr (y2)|)
15: end if
16: end if
17: end for
18: //binary search to select threshold
19: lower, upper, τ ← 0.25 ∗ (2−23), 0.5 ∗ (29−br), 0
20: for t=1...T do
21: τ ← (lower + upper)/2
22: success← True
23: for pi ∈ P do
24: exp←get exponent of pi
25: if pi < exp ∗τ then
26: success← False
27: end if
28: end for
29: if success then
30: lower ← τ
31: else
32: upper ← τ
33: end if
34: end for
35: return τ

12

Optimistic Verifiable Training by Controlling Hardware Nondeterminism

Algorithm 4 log

INPUT: value x, rounding amount br, threshold τ , file F

1: exp← get exponent of x
2: if |x− rndbr (x)| > exp ∗τ and x < rndbr (x) then
3: write(2, F) // log rounding up
4: else if |x−rndbr (x)| > exp ∗τ and x > rndbr (x) then
5: write(0, F) // log rounding down
6: else
7: write(1, F) // log rounding ignore
8: end if

J. Comparison with GPT-2 Inference
The previously discussed proof-based systems for verifi-
able training by-pass the need for a third-party auditor,
but very few efficient systems exist in the literature. Many
more works study secure inference of deep neural networks,
which could be used to construct verifiable training proto-
cols with stronger security guarantees than ours (e.g., al-
lowing a trainer to keep a proprietary model’s weights
private), but come at a significant cost to performance and
resources. To demonstrate this, we consider adapting Gupta
et al. (2023)’s protocol for secure inference of GPT-2 based
on multi-party computation, to our context of verifiable
training. Gupta et al. (2023) show how two parties, the
client with private data and the trainer, can jointly com-
pute the forward pass of a known model architecture without
revealing additional information beyond the model output
to each other. Because they report the the communication
overhead P = 0.37GB and time T = 0.96 seconds for
one forward pass on a single data input, we can calculate
2 × P ×D × E = 189 GB and 2 × T ×D × E = 983
seconds as estimated communication cost and time, respec-
tively, for 1 step of training in out GPT-2 task, where 2
considers both the forward and backward pass. Compared
with our method’s required storage cost (18MB) and training
time (11s for training, 13.5 seconds for auditing), scaling
Gupta et al. (2023)’s protocol for training would introduce
around a 10,000x data and 40x time overhead.

13

Optimistic Verifiable Training by Controlling Hardware Nondeterminism

Table 4. Training time requirements, including Merkle tree operations (at k = 5), for 1 step of training broken down by stage of our
verifiable training process. Note that reported times are specific to the particular dataset, batch size, and task, and using a non-optimized
prototype codebase – therefore the relative increase is time is more important.

ResNet-50 GPT-2
Original (No Rounding or Disk I/O) 24s 8s

Trainer 28s 11s
Auditor 31s 13.5

Table 5. Comparison of model divergence due to data ordering versus GPU non-determinism. Reported numbers are averaged between 10
pairs of models, error bars are standard deviation.

Metric Data Ordering GPU Non-determinism
l2 weight difference 133.2± 9 1.1± 0.07
l2 output distance 5.3± 0.03 0.26± 0.02

14

