Decentralized Deterministic Multi-Agent Reinforcement Learning

Anonymous Author(s) Affiliation Address email

Abstract

¹² 1 Introduction

 Cooperative multi-agent reinforcement learning (MARL) has seen considerably less use than its single-agent analog, in part because often no central agent exists to coordinate the cooperative agents. As a result, decentralized architectures have been advocated for MARL. Recently, decentralized architectures have been shown to admit convergence guarantees comparable to their centralized counterparts under mild network-specific assumptions (see [Zhang et al.](#page-10-0) [\[2018\]](#page-10-0), [Suttle et al.](#page-9-0) [\[2019\]](#page-9-0)). In this work, we develop a decentralized actor-critic algorithm with deterministic policies for multi- agent reinforcement learning. Specifically, we extend results for actor-critic with stochastic policies [\(Bhatnagar et al.](#page-9-1) [\[2009\]](#page-9-1), [Degris et al.](#page-9-2) [\[2012\]](#page-9-2), [Maei](#page-9-3) [\[2018\]](#page-9-3), [Suttle et al.](#page-9-0) [\[2019\]](#page-9-0)) to handle deterministic policies. Indeed, theoretical and empirical work has shown that deterministic algorithms outperform [t](#page-9-4)heir stochastic counterparts in high-dimensional continuous action settings [\(Silver et al.](#page-9-4) [\[January](#page-9-4) [2014b\]](#page-9-4), [Lillicrap et al.](#page-9-5) [\[2015\]](#page-9-5), [Fujimoto et al.](#page-9-6) [\[2018\]](#page-9-6)). Deterministic policies further avoid estimating the complex integral over the action space. Empirically this allows for lower variance of the critic estimates and faster convergence. On the other hand, deterministic policy gradient methods suffer from reduced exploration. For this reason, we provide both off-policy and on-policy versions of our results, the off-policy version allowing for significant improvements in exploration. The contributions of this paper are three-fold: (1) we derive the expression of the gradient in terms of the long-term average reward, which is needed in the undiscounted multi-agent setting with deterministic policies; (2) we show that the deterministic policy gradient is the limiting case, as policy variance tends to zero, of the stochastic policy gradient; and (3) we provide a decentralized deterministic multi-agent actor critic algorithm and prove its convergence under linear function approximation.

³³ 2 Background

34 Consider a system of N agents denoted by $\mathcal{N} = [N]$ in a decentralized setting. Agents determine ³⁵ their decisions independently based on observations of their own rewards. Agents may however com-³⁶ municate via a possibly time-varying communication network, characterized by an undirected graph 37 $G_t = (\mathcal{N}, \mathcal{E}_t)$, where \mathcal{E}_t is the set of communication links connecting the agents at time $t \in \mathbb{N}$. The 38 networked multi-agent MDP is thus characterized by a tuple $(S, \{\mathcal{A}^i\}_{i\in\mathcal{N}}, P, \{R^i\}_{i\in\mathcal{N}}, \{G_t\}_{t\geq 0})$ 39 where S is a finite global state space shared by all agents in N, A^i is the action space of agent i, and 40 ${\{\mathcal{G}_t\}}_{t\geq0}$ is a time-varying communication network. In addition, let $\mathcal{A} = \prod_{i\in\mathcal{N}}\mathcal{A}^i$ denote the joint 41 action space of all agents. Then, $P : S \times A \times S \rightarrow [0, 1]$ is the state transition probability of the 42 MDP, and $R^i : \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ is the local reward function of agent i. States and actions are assumed 43 globally observable whereas rewards are only locally observable. At time t , each agent i chooses its action $a_t^i \in A^i$ given state $s_t \in S$, according to a local parameterized policy $\pi_{\theta^i}^i : S \times A^i \to [0, 1]$, 45 where $\pi_{\theta i}^{i}(s, a^{i})$ is the probability of agent *i* choosing action a^{i} at state s, and $\theta^{i} \in \Theta^{i} \subseteq \mathbb{R}^{m_{i}}$ is 46 the policy parameter. We pack the parameters together as $\theta = [(\theta^1)^{\top}, \cdots, (\theta^N)^{\top}]^{\top} \in \Theta$ where 47 $\Theta = \prod_{i \in \mathcal{N}} \Theta^i$. We denote the joint policy by $\pi_{\theta} : \mathcal{S} \times \mathcal{A} \to [0, 1]$ where $\pi_{\theta}(s, a) = \prod_{i \in \mathcal{N}} \pi_{\theta^i}^i(s, a^i)$. ⁴⁸ Note that decisions are decentralized in that rewards are observed locally, policies are evaluated 49 locally, and actions are executed locally. We assume that for any $i \in \mathcal{N}$, $s \in \mathcal{S}$, $a^i \in \mathcal{A}^i$, the 50 policy function $\pi_{\theta^i}^i(s, a^i) > 0$ for any $\theta^i \in \Theta^i$ and that $\pi_{\theta^i}^i(s, a^i)$ is continuously differentiable with 51 respect to the parameters $θ^i$ over $Θ^i$. In addition, for any $θ ∈ Θ$, let $P^θ : S × S → [0, 1]$ denote the transition matrix of the Markov chain ${s_t}_{t\geq0}$ induced by policy π_θ , that is, for any $s, s' \in \mathcal{S}$, 53 $P^{\theta}(s'|s) = \sum_{a \in A} \pi_{\theta}(s, a) \cdot P(s'|s, a)$. We make the standard assumption that the Markov chain ${s_4}$ ${s_t}_{t\geq0}$ is irreducible and aperiodic under any π_θ and denote its stationary distribution by d_θ .

- 55 Our objective is to find a policy π_θ that maximizes the long-term average reward over the network.
- 56 Let r_{t+1}^i denote the reward received by agent i as a result of taking action a_t^i . Then, we wish to solve:

$$
\max_{\theta} J(\pi_{\theta}) = \lim_{T \to \infty} \frac{1}{T} \mathbb{E} \left[\sum_{t=0}^{T-1} \frac{1}{N} \sum_{i \in \mathcal{N}} r_{t+1}^i \right] = \sum_{s \in \mathcal{S}, a \in \mathcal{A}} d_{\theta}(s) \pi_{\theta}(s, a) \overline{R}(s, a),
$$

57 where $\bar{R}(s, a) = (1/N) \cdot \sum_{i \in \mathcal{N}} R^i(s, a)$ is the globally averaged reward function. Let \bar{r}_t 58 $(1/N) \cdot \sum_{i \in \mathcal{N}} r_i^i$, then $\overline{R}(s, a) = \mathbb{E} [\overline{r}_{t+1}|s_t = s, a_t = a]$, and therefore, the global relative actionvalue function is: $Q_{\theta}(s, a) = \sum_{t \geq 0} \mathbb{E}[\overline{r}_{t+1} - J(\theta)|s_0 = s, a_0 = a, \pi_{\theta}]$, and the global relative so state-value function is: $V_{\theta}(s) = \sum_{a \in \mathcal{A}} \pi_{\theta}(s, a) Q_{\theta}(s, a)$. For simplicity, we refer to V_{θ} and Q_{θ} as simply the state-value function and action-value function. We define the advantage function as as simply the state-value function and action-value function. We define the advantage function as 62 $A_{\theta}(s, a) = Q_{\theta}(s, a) - V_{\theta}(s)$.

⁶³ [Zhang et al.](#page-10-0) [\[2018\]](#page-10-0) provided the first provably convergent MARL algorithm in the context of the ⁶⁴ above model. The fundamental result underlying their algorithm is a local policy gradient theorem:

$$
\nabla_{\theta^i} J(\mu_\theta) = \mathbb{E}_{s \sim d_\theta, a \sim \pi_\theta} \left[\nabla_{\theta^i} \log \pi_{\theta^i}^i(s, a^i) \cdot A_\theta^i(s, a) \right],
$$

where $A^i_\theta(s,a) = Q_\theta(s,a) - \tilde{V}^i_\theta(s,a^{-i})$ is a local advantage function and $\tilde{V}^i_\theta(s,a^{-i}) =$ 65 66 $\sum_{a^i \in A^i} \pi_{\theta^i}^i(s, a^i) Q_{\theta}(s, a^i, a^{-i})$. This theorem has important practical value as it shows that the 67 policy gradient with respect to each local parameter $θⁱ$ can be obtained locally using the corresponding score function $\nabla_{\theta^i} \log \pi_{\theta^i}^i$ provided that agent i has an unbiased estimate of the advantage functions 69 A^i_θ or A_θ . With only local information, the advantage functions A^i_θ or A_θ cannot be well estimated ⁷⁰ since the estimation requires the rewards $\{r_t^i\}_{i \in \mathcal{N}}$ of all agents. Therefore, they proposed a consensus ⁷¹ based actor-critic that leverages the communication network to share information between agents 72 by placing a weight $c_t(i, j)$ on the message transmitted from agent j to agent i at time t. Their action-value function Q_θ was approximated by a parameterized function $\hat{Q}_\omega : \mathcal{S} \times \mathcal{A} \to \mathbb{R}$, and each za agent i maintains its own parameter ω^i , which it uses to form a local estimate \hat{Q}_{ω^i} of the global Q_{θ} . 75 At each time step t, each agent i shares its local parameter ω_t^i with its neighbors on the network, and 76 the shared parameters are used to arrive at a consensual estimate of Q_{θ} over time.

⁷⁷ 3 Local Gradients of Deterministic Policies

 While the use of a stochastic policy facilitates the derivations of convergence proofs, most real-world control tasks require a deterministic policy to be implementable. In addition, the quantities estimated in the deterministic critic do not involve estimation of the complex integral over the action space found in the stochastic version. This offers lower variance of the critic estimates and faster convergence. To address the lack of exploration that comes with deterministic policies, we provide both off-policy and on-policy versions of our results. Our first requirement is a local deterministic policy gradient ⁸⁴ theorem.

85 We assume that $A^i = \mathbb{R}^{n_i}$. We make standard regularity assumptions on our MDP. That is, we as assume that for any $s, s' \in S$, $P(s'|s, a)$ and $Rⁱ(s, a)$ are bounded and have bounded first and s second derivatives. We consider local deterministic policies $\mu_{\theta i}^i : S \to A^i$ with parameter vector $\theta^i \in \Theta^i$, and denote the joint policy by $\mu_\theta : \mathcal{S} \to \mathcal{A}$, where $\mu_\theta(s) = (\mu_{\theta^1}^1(s), \dots, \mu_{\theta^N}^N(s))$ and $\theta = [(\theta^1)^\top, \dots, (\theta^N)^\top]^\top$. We assume that for any $s \in \mathcal{S}$, the deterministic policy function $\mu_{\theta^i}^i(s)$ 90 is twice continuously differentiable with respect to the parameter θ^i over Θ^i . Let P^{θ} denote the 91 transition matrix of the Markov chain $\{s_t\}_{t\geq 0}$ induced by policy μ_{θ} , that is, for any $s, s' \in \mathcal{S}$, 92 $P^{\theta}(s'|s) = P(s'|s, \mu_{\theta}(s))$. We assume that the Markov chain $\{s_t\}_{t>0}$ is irreducible and aperiodic 93 under any μ_{θ} and denote its stationary distribution by $d^{\mu_{\theta}}$.

94 Our objective is to find a policy μ_{θ} that maximizes the long-run average reward:

$$
\max_{\theta} J(\mu_{\theta}) = \mathbb{E}_{s \sim d^{\mu_{\theta}}} [\bar{R}(s, \mu_{\theta}(s))] = \sum_{s \in \mathcal{S}} d^{\mu_{\theta}}(s) \bar{R}(s, \mu_{\theta}(s)).
$$

⁹⁵ Analogous to the stochastic policy case, we denote the action-value function by P $Q_{\theta}(s, a) =$ 96 $\sum_{t\geq 0} \mathbb{E}[\bar{r}_{t+1} - J(\mu_{\theta})|s_0 = s, a_0 = a, \mu_{\theta}]$, and the state-value function by $V_{\theta}(s) = Q_{\theta}(s, \mu_{\theta}(s))$. 97 When there is no ambiguity, we will denote $J(\mu_{\theta})$ and $d^{\mu_{\theta}}$ by simply $J(\theta)$ and d^{θ} , respectively. We ⁹⁸ present three results for the long-run average reward: (1) an expression for the local deterministic 99 policy gradient in the on-policy setting $\nabla_{\theta^i} J(\mu_\theta)$, (2) an expression for the gradient in the off-policy ¹⁰⁰ setting, and (3) we show that the deterministic policy gradient can be seen as the limit of the stochastic ¹⁰¹ one.

¹⁰² On-Policy Setting

103 **Theorem 1** (Local Deterministic Policy Gradient Theorem - On Policy). *For any* $\theta \in \Theta$, $i \in \mathcal{N}$, 104 $\nabla_{\theta} i J(\mu_{\theta})$ *exists and is given by*

$$
\nabla_{\theta^i} J(\mu_{\theta}) = \mathbb{E}_{s \sim d^{\mu_{\theta}}} \left[\nabla_{\theta^i} \mu_{\theta^i}^i(s) \nabla_{a^i} Q_{\theta}(s, \mu_{\theta^{-i}}^{-i}(s), a^i) \big|_{a^i = \mu_{\theta^i}^i(s)} \right].
$$

105 The first step of the proof consists in showing that $\nabla_{\theta}J(\mu_{\theta})$ = $\mathbb{E}_{s\sim d^\theta}\left[\nabla_\theta\mu_\theta(s)\nabla_a\left.Q_\theta(s,a)\right|_{a=\mu_\theta(s)}\right]$ 106 $\mathbb{E}_{s \sim d^{\theta}} |\nabla_{\theta} \mu_{\theta}(s) \nabla_a Q_{\theta}(s, a)|_{a = \mu_a(s)}$. This is an extension of the well-known stochastic 107 case, for which we have $\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{s \sim d_{\theta}} [\nabla_{\theta} \log(\pi_{\theta}(a|s)) Q_{\theta}(s, a)]$, which holds for a long-term ¹⁰⁸ averaged return with stochastic policy (e.g Theorem 1 of [Sutton et al.](#page-10-1) [\[2000a\]](#page-10-1)). See the Appendix for ¹⁰⁹ the details.

110 **Off-Policy Setting** In the off-policy setting, we are given a behavior policy $\pi : \mathcal{S} \to \mathcal{P}(\mathcal{A})$, and 111 our goal is to maximize the long-run average reward under state distribution d^{π} :

$$
J_{\pi}(\mu_{\theta}) = \mathbb{E}_{s \sim d^{\pi}}\big[\bar{R}(s, \mu_{\theta}(s))\big] = \sum_{s \in \mathcal{S}} d^{\pi}(s)\bar{R}(s, \mu_{\theta}(s)).\tag{1}
$$

¹¹² Note that we consider here an excursion objective [\(Sutton et al.](#page-10-2) [\[2009\]](#page-10-2), [Silver et al.](#page-9-7) [\[January 2014a\]](#page-9-7),

113 [Sutton et al.](#page-10-3) [\[2016\]](#page-10-3)) since we take the average over the state distribution of the behaviour policy π of 114 the state-action reward when selecting action given by the target policy μ_{θ} . We thus have:

115 Theorem 2 (Local Deterministic Policy Gradient Theorem - Off Policy). *For any* $\theta \in \Theta$, $i \in \mathcal{N}$, 116 $\pi: \mathcal{S} \to \mathcal{P}(\mathcal{A})$ *a fixed stochastic policy,* $\nabla_{\theta^i} J_{\pi}(\mu_{\theta})$ *exists and is given by*

$$
\nabla_{\theta^i} J_{\pi}(\mu_{\theta}) = \mathbb{E}_{s \sim d^{\pi}} \left[\nabla_{\theta^i} \mu_{\theta^i}^i(s) \nabla_{a^i} \left. \bar{R}(s, \mu_{\theta^{-i}}^{-i}(s), a^i) \right|_{a^i = \mu_{\theta^i}^i(s)} \right].
$$

Proof. Since d^{π} is independent of θ we can take the gradient on both sides of [\(1\)](#page-2-0)

$$
\nabla_{\theta} J_{\pi}(\mu_{\theta}) = \mathbb{E}_{s \sim d^{\pi}} \left[\nabla_{\theta} \mu_{\theta}(s) \nabla_{a} \bar{R}(s, \mu_{\theta}(s)) \big|_{a = \mu_{\theta}(s)} \right].
$$

118 Given that $\nabla_{\theta^i} \mu_{\theta}^j(s) = 0$ if $i \neq j$, we have $\nabla_{\theta} \mu_{\theta}(s) = \text{Diag}(\nabla_{\theta^1} \mu_{\theta_1}^1(s), \dots, \nabla_{\theta^N} \mu_{\theta_N}^N(s))$ and the ¹¹⁹ result follows.

This result implies that, off-policy, each agent needs access to μ_{o-}^{-i} This result implies that, off-policy, each agent needs access to $\mu_{\theta_t^{-i}}^{-i}(s_t)$ for every t.

121 Limit Theorem As noted by [Silver et al.](#page-9-4) [\[January 2014b\]](#page-9-4), the fact that the deterministic gradient is a limit case of the stochastic gradient enables the standard machinery of policy gradient, such as compatible-function approximation [\(Sutton et al.](#page-10-4) [\[2000b\]](#page-10-4)), natural gradients [\(Kakade](#page-9-8) [\[2001\]](#page-9-8)), on-line feature adaptation [\(Prabuchandran et al.](#page-9-9) [\[2016\]](#page-9-9),) and actor-critic [\(Konda](#page-9-10) [\[2002\]](#page-9-10)) to be used with deterministic policies. We show that it holds in our setting. The proof can be found in the Appendix.

126 **Theorem 3** (Limit of the Stochastic Policy Gradient for MARL). Let $\pi_{\theta,\sigma}$ be a stochastic policy 127 *such that* $\pi_{\theta,\sigma}(a|s) = \nu_{\sigma}(\mu_{\theta}(s),a)$, where σ *is a parameter controlling the variance, and* ν_{σ} *satisfy* ¹²⁸ *Condition [1](#page-13-0) in the Appendix. Then,*

$$
\lim_{\sigma \downarrow 0} \nabla_{\theta} J_{\pi_{\theta,\sigma}}(\pi_{\theta,\sigma}) = \nabla_{\theta} J_{\mu_{\theta}}(\mu_{\theta})
$$

¹²⁹ *where on the l.h.s the gradient is the standard stochastic policy gradient and on the r.h.s. the gradient* ¹³⁰ *is the deterministic policy gradient.*

¹³¹ 4 Algorithms

¹³² We provide two decentralized deterministic actor-critic algorithms, one on-policy and the other ¹³³ off-policy and demonstrate their convergence in the next section; assumptions and proofs are provided ¹³⁴ in the Appendix.

¹³⁵ On-Policy Deterministic Actor-Critic

Algorithm 1 Networked deterministic on-policy actor-critic

Initialize: step $t = 0$; parameters $\hat{J}_0^i, \omega_0^i, \tilde{\omega}_0^i, \theta_0^i, \forall i \in \mathcal{N}$; state s_0 ; stepsizes $\{\beta_{\omega,t}\}_{t \geq 0}, \{\beta_{\theta,t}\}_{t \geq 0}$ Draw $a_0^i = \mu_{\theta_0^i}^i(s_0)$ and compute $\tilde{a}_0^i = \nabla_{\theta^i} \mu_{\theta_0^i}^i(s_0)$ Observe joint action $a_0 = (a_0^1, \dots, a_0^N)$ and $\tilde{a}_0 = (\tilde{a}_0^1, \dots, \tilde{a}_0^N)$
reneat repeat for $i\in\mathcal{N}$ do Observe s_{t+1} and reward $r_{t+1}^i = r^i(s_t, a_t)$ Update $\hat{J}_{t+1}^i \leftarrow (1 - \beta_{\omega,t}) \cdot \hat{J}_t^i + \beta_{\omega,t} \cdot r_{t+1}^i$
Draw action $a_{t+1} = \mu_{\theta_t^i}^i(s_{t+1})$ and compute $\tilde{a}_{t+1}^i = \nabla_{\theta^i} \mu_{\theta_t^i}^i(s_{t+1})$ end for Observe joint action $a_{t+1} = (a_{t+1}^1, \dots, a_{t+1}^N)$ and $\tilde{a}_{t+1} = (\tilde{a}_{t+1}^1, \dots, \tilde{a}_{t+1}^N)$
for $i \in \mathcal{N}$ do for $i \in \mathcal{N}$ do Update: $\delta_t^i \leftarrow r_{t+1}^i - \hat{J}_t^i + \hat{Q}_{\omega_t^i}(s_{t+1}, a_{t+1}) - \hat{Q}_{\omega_t^i}(s_t, a_t)$ **Critic step:** $\left.\widetilde{\omega}_{t}^{i} \leftarrow \omega_{t}^{i} + \beta_{\omega,t} \cdot \delta_{t}^{i} \cdot \nabla_{\omega} \hat{Q}_{\omega^{i}}(s_{t}, a_{t})\right|_{\omega = \omega_{t}^{i}}$ Actor step: $\theta^i_{t+1} = \theta^i_t + \beta_{\theta,t} \cdot \nabla_{\theta^i} \mu^i_{\theta^i_t}(s_t) \nabla_{a^i} \hat{Q}_{\omega^i_t}(s_t, a^{-i}_t, a^i) \Big|_{a^i = a^i_t}$ t Send $\widetilde{\omega}_t^i$ to the neighbors $\{j \in \mathcal{N} : (i, j) \in \mathcal{E}_t\}$ over \mathcal{G}_t
Concentrum state $\omega_t^i \sim \sum_{i,j} \widetilde{\omega}_i^j$ **Consensus step:** $\omega_{t+1}^i \leftarrow \sum_{j \in \mathcal{N}} c_t^{ij} \cdot \widetilde{\omega}_t^j$ end for Update $t \leftarrow t + 1$ until end

- 136 Consider the following on-policy algorithm. The actor step is based on an expression for $\nabla_{\theta^i} J(\mu_\theta)$
- 137 in terms of $\nabla_{a}Q_{\theta}$ (see Equation [\(15\)](#page-12-0) in the Appendix). We approximate the action-value function Q_{θ}
- 138 using a family of functions \hat{Q}_ω : $S \times A \to \mathbb{R}$ parameterized by ω , a column vector in \mathbb{R}^K . Each agent
- 139 *i* maintains its own parameter ω^i and uses \hat{Q}_{ω^i} as its local estimate of Q_θ . The parameters ω^i are
- updated in the critic step using consensus updates through a weight matrix $C_t = \begin{pmatrix} c_t^{ij} \end{pmatrix}$ 140 updated in the critic step using consensus updates through a weight matrix $C_t = \left(c_t^{ij}\right)_{i,j} \in \mathbb{R}^{N \times N}$
- ¹⁴¹ where c_t^{ij} is the weight on the message transmitted from i to j at time t, namely:

$$
\hat{J}_{t+1}^i = (1 - \beta_{\omega,t}) \cdot \hat{J}_t^i + \beta_{\omega,t} \cdot r_{t+1}^i \tag{2}
$$

$$
\widetilde{\omega}_t^i = \omega_t^i + \beta_{\omega,t} \cdot \delta_t^i \cdot \nabla_{\omega} \hat{Q}_{\omega^i}(s_t, a_t) \Big|_{\omega = \omega_t^i} \tag{3}
$$

$$
\omega_{t+1}^i = \sum_{j \in \mathcal{N}} c_t^{ij} \cdot \widetilde{\omega}_t^j \tag{4}
$$

¹⁴² with

$$
\delta_t^i = r_{t+1}^i - \hat{J}_t^i + \hat{Q}_{\omega_t^i}(s_{t+1}, a_{t+1}) - \hat{Q}_{\omega_t^i}(s_t, a_t).
$$

143 For the actor step, each agent i improves its policy via:

$$
\theta_{t+1}^i = \theta_t^i + \beta_{\theta,t} \cdot \nabla_{\theta^i} \mu_{\theta_t^i}^i(s_t) \cdot \nabla_{a^i} \hat{Q}_{\omega_t^i}(s_t, a_t^{-i}, a^i) \Big|_{a^i = a_t^i}.
$$
\n⁽⁵⁾

144 Since Algorithm [1](#page-3-0) is an on-policy algorithm, each agent updates the critic using only (s_t, a_t, s_{t+1}) , at time t knowing that $a_{t+1} = \mu_{\theta_t}(s_{t+1})$. The terms in blue are additional terms that need to be shared ¹⁴⁶ when using compatible features (this is explained further in the next section).

 Off-Policy Deterministic Actor-Critic We further propose an off-policy actor-critic algorithm, defined in Algorithm [2](#page-5-0) to enable better exploration capability. Here, the goal is to maximize $J_{\pi}(\mu_{\theta})$ where π is the behavior policy. To do so, the globally averaged reward function $\bar{R}(s, a)$ is 150 approximated using a family of functions $\hat{R}_\lambda : \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ that are parameterized by λ , a column 151 vector in \mathbb{R}^K . Each agent *i* maintains its own parameter λ^i and uses \hat{R}_{λ^i} as its local estimate of \bar{R} . Based on [\(1\)](#page-2-1), the actor update is

$$
\theta_{t+1}^i = \theta_t^i + \beta_{\theta,t} \cdot \nabla_{\theta^i} \mu_{\theta_t}^i(s_t) \cdot \nabla_{a^i} \hat{R}_{\lambda_t^i}(s_t, \mu_{\theta_t^{-i}}^{-i}(s_t), a^i) \Big|_{a^i = \mu_{\theta_t^i}(s_t)},
$$
\n
$$
\tag{6}
$$

which requires each agent i to have access to μ_{ϵ}^{j} the therm is search agent i to have access to $\mu_{\theta_i}^j(s_t)$ for $j \in \mathcal{N}$.

¹⁵⁴ The critic update is

$$
\widetilde{\lambda}_t^i = \lambda_t^i + \beta_{\lambda, t} \cdot \delta_t^i \cdot \nabla_\lambda \hat{\bar{R}}_{\lambda^i}(s_t, a_t) \Big|_{\lambda = \lambda_t^i} \tag{7}
$$

$$
\lambda_{t+1}^i = \sum_{j \in \mathcal{N}} c_t^{ij} \widetilde{\lambda}_t^j,\tag{8}
$$

¹⁵⁵ with

$$
\delta_t^i = r^i(s_t, a_t) - \hat{R}_{\lambda_t^i}(s_t, a_t). \tag{9}
$$

156 In this case, δ_t^i was motivated by distributed optimization results, and is not related to the local 157 TD-error (as there is no "temporal" relationship for R). Rather, it is simply the difference between ¹⁵⁸ the sample reward and the bootstrap estimate. The terms in blue are additional terms that need to be ¹⁵⁹ shared when using compatible features (this is explained further in the next section).

¹⁶⁰ 5 Convergence

¹⁶¹ To show convergence, we use a two-timescale technique where in the actor, updating deterministic 162 policy parameter θ^i occurs more slowly than that of ω^i and \hat{J}^i in the critic. We study the asymptotic 163 behaviour of the critic by freezing the joint policy μ_θ , then study the behaviour of θ_t under convergence ¹⁶⁴ of the critic. To ensure stability, projection is often assumed since it is not clear how boundedness of

Algorithm 2 Networked deterministic off-policy actor-critic

Initialize: step $t = 0$; parameters λ_0^i , λ_0^i , θ_0^i , $\forall i \in \mathcal{N}$; state s_0 ; stepsizes $\{\beta_{\lambda,t}\}_{t \geq 0}$, $\{\beta_{\theta,t}\}_{t \geq 0}$ Draw $a_0^i \sim \pi^i(s_0)$, compute $a_0^i = \mu_{\theta_i^i}^i(s_0)$ and $\widetilde{a}_0^i = \nabla_{\theta^i} \mu_{\theta_0^i}^i(s_0)$ Observe joint action $a_0 = (a_0^1, \ldots, a_0^N)$, $\dot{a}_0 = (\dot{a}_0^1, \ldots, \dot{a}_0^N)$ and $\tilde{a}_0 = (\tilde{a}_0^1, \ldots, \tilde{a}_0^N)$ repeat for $i \in \mathcal{N}$ do Observe s_{t+1} and reward $r_{t+1}^i = r^i(s_t, a_t)$ end for for $i \in \mathcal{N}$ do Update: $\delta_t^i \leftarrow r_{t+1}^i - \hat{R}_{\lambda_t^i}(s_t, a_t)$ **Critic step:** $\left.\widetilde{\lambda}_t^i \leftarrow \lambda_t^i + \beta_{\lambda,t} \cdot \delta_t^i \cdot \nabla_\lambda \hat{R}_{\lambda^i}(s_t, a_t)\right|_{\lambda = \lambda_t^i}$ t **Actor step:** $\theta_{t+1}^i = \theta_t^i + \beta_{\theta,t} \cdot \nabla_{\theta^i} \mu_{\theta_t^i}^i(s_t) \cdot \nabla_{a^i} \hat{\bar{R}}_{\lambda_t^i}(s_t, \mu_{\theta_t^{-i}}^{-i}(s_t), a^i) \Big|_{a^i = \mu_{\theta_t^i}(s_t)}$ t Send $\widetilde{\lambda}_t^i$ to the neighbors $\{j \in \mathcal{N} : (i,j) \in \mathcal{E}_t\}$ over \mathcal{G}_t end for for $i \in \mathcal{N}$ do **Consensus step:** $\lambda_{t+1}^i \leftarrow \sum_{j \in \mathcal{N}} c_t^{ij} \cdot \widetilde{\lambda}_t^j$ Draw action $a_{t+1} \sim \pi(s_{t+1})$, compute $\dot{a}_{t+1}^i = \mu_{\theta_{t+1}^i}^i(s_{t+1})$ and compute $\tilde{a}_{t+1}^i =$ $\nabla_{\theta^i} \mu^i_{\theta^i_{t+1}}(s_{t+1})$ end for Observe joint action $a_{t+1} = (a_{t+1}^1, \ldots, a_{t+1}^N), a_{t+1} = (a_{t+1}^1, \ldots, a_{t+1}^N)$ and $\tilde{a}_{t+1} = (\tilde{a}_{t+1}^1, \ldots, \tilde{a}_{t+1}^N)$ $\begin{array}{l} \widetilde{a}^1_{t+1}, \ldots, \widetilde{a}^N_{t+1} \ \widetilde{a}^1_{t+1} \end{array}$ Update $t \leftarrow t + 1$ until end

 $\{\theta_t^i\}$ can otherwise be ensured (see [Bhatnagar et al.](#page-9-1) [\[2009\]](#page-9-1)). However, in practice, convergence is typically observed even without the projection step (see [Bhatnagar et al.](#page-9-1) [\[2009\]](#page-9-1), [Degris et al.](#page-9-2) [\[2012\]](#page-9-2), [Prabuchandran et al.](#page-9-9) [\[2016\]](#page-9-9), [Zhang et al.](#page-10-0) [\[2018\]](#page-10-0), [Suttle et al.](#page-9-0) [\[2019\]](#page-9-0)). We also introduce the following technical assumptions which will be needed in the statement of the convergence results. 169 Assumption 1 (Linear approximation, average-reward). For each agent i, the average-reward function

170 \bar{R} is parameterized by the class of linear functions, i.e., $\hat{R}_{\lambda^i,\theta}(s, a) = w_{\theta}(s, a) \cdot \lambda^i$ where $w_{\theta}(s, a) =$ $[w_{\theta,1}(s,a),...,w_{\theta,K}(s,a)] \in \mathbb{R}^K$ is the feature associated with the state-action pair (s,a) . The 172 feature vectors $w_{\theta}(s, a)$, as well as $\nabla_a w_{\theta, k}(s, a)$ are uniformly bounded for any $s \in \mathcal{S}$, $a \in \mathcal{A}$, $k \in \mathcal{A}$ 173 [1, K]. Furthermore, we assume that the feature matrix $W_{\pi} \in \mathbb{R}^{|S| \times K}$ has full column rank, where the k-th column of $W_{\pi,\theta}$ is $\left[\int_{\mathcal{A}} \pi(a|s)w_{\theta,k}(s,a)da, s \in \mathcal{S}\right]$ for any $k \in [1, K]$.

175 **Assumption 2** (Linear approximation, action-value). For each agent i , the action-value function 176 is parameterized by the class of linear functions, i.e., $\hat{Q}_{\omega^i}(s, a) = \phi(s, a) \cdot \omega^i$ where $\phi(s, a) =$ $[\phi_1(s, a), \dots, \phi_K(s, a)] \in \mathbb{R}^K$ is the feature associated with the state-action pair (s, a) . The feature 178 vectors $\phi(s, a)$, as well as $\nabla_a \phi_k(s, a)$ are uniformly bounded for any $s \in \mathcal{S}$, $a \in \mathcal{A}$, $k \in \{1, \ldots, K\}$. Furthermore, we assume that for any $\theta \in \Theta$, the feature matrix $\Phi_{\theta} \in \mathbb{R}^{|\mathcal{S}| \times K}$ has full column rank, where the k-th column of Φ_{θ} is $[\phi_k(s, \mu_{\theta}(s)), s \in S]$ for any $k \in [\![1, K]\!]$. Also, for any $u \in \mathbb{R}^K$, 181 $\Phi_{\theta}u \neq 1$.

182 Assumption 3 (Bounding θ). The update of the policy parameter θ^i includes a local projection by 183 $\Gamma^i : \mathbb{R}^{\hat{m}_i} \to \Theta^{\hat{i}}$ that projects any θ_i^i onto a compact set Θ^i that can be expressed as $\{\theta^i | q_j^i(\theta^i) \leq \Theta^i\}$ 184 0, $j = 1, \ldots, s^i$ $\subset \mathbb{R}^{m_i}$, for some real-valued, continuously differentiable functions $\{q_j^i\}_{1 \leq j \leq s^i}$ 185 defined on \mathbb{R}^{m_i} . We also assume that $\Theta = \prod_{i=1}^N \Theta^i$ is large enough to include at least one local 186 minimum of $J(\theta)$.

187 We use $\{\mathcal{F}_t\}$ to denote the filtration with $\mathcal{F}_t = \sigma(s_\tau, C_{\tau-1}, a_{\tau-1}, r_{\tau-1}, \tau \leq t)$.

188 **Assumption 4** (Random matrices). The sequence of non-negative random matrices $\{C_t = (c_t^{ij})_{ij}\}$ ¹⁸⁹ satisfies:

190 1. C_t is row stochastic and $\mathbb{E}(C_t|\mathcal{F}_t)$ is a.s. column stochastic for each t, i.e., $C_t \mathbf{1} = \mathbf{1}$ and 191 **1**^T $\mathbb{E}(C_t|\mathcal{F}_t) = \mathbf{1}^\top$ a.s. Furthermore, there exists a constant $\eta \in (0,1)$ such that, for any 192 $c_t^{ij} > 0$, we have $c_t^{ij} \ge \eta$.

- 193 2. C_t respects the communication graph \mathcal{G}_t , i.e., $c_t^{ij} = 0$ if $(i, j) \notin \mathcal{E}_t$.
- 194 3. The spectral norm of $\mathbb{E}\left[C_t^\top \cdot (I \mathbf{11}^\top/N) \cdot C_t\right]$ is smaller than one.
- 195 4. Given the σ -algebra generated by the random variables before time t, C_t , is conditionally 196 independent of s_t , a_t and r_{t+1}^i for any $i \in \mathcal{N}$.
- 197 **Assumption 5** (Step size rules, on-policy). The stepsizes $\beta_{\omega,t}$, $\beta_{\theta,t}$ satisfy:

$$
\sum_t \beta_{\omega,t} = \sum_t \beta_{\theta,t} = \infty
$$

$$
\sum_t (\beta_{\omega,t}^2 + \beta_{\theta,t}^2) < \infty
$$

$$
\sum_t |\beta_{\theta,t+1} - \beta_{\theta,t}| < \infty.
$$

- 198 In addition, $\beta_{\theta,t} = o(\beta_{\omega,t})$ and $\lim_{t\to\infty} \beta_{\omega,t+1}/\beta_{\omega,t} = 1$.
- 199 **Assumption 6** (Step size rules, off-policy). The step-sizes $\beta_{\lambda,t}$, $\beta_{\theta,t}$ satisfy:

$$
\sum_{t} \beta_{\lambda,t} = \sum_{t} \beta_{\theta,t} = \infty, \qquad \sum_{t} \beta_{\lambda,t}^2 + \beta_{\theta,t}^2 < \infty
$$

$$
\beta_{\theta,t} = o(\beta_{\lambda,t}), \qquad \lim_{t \to \infty} \beta_{\lambda,t+1}/\beta_{\lambda,t} = 1.
$$

On-Policy Convergence To state convergence of the critic step, we define $D^s_{\theta} = \text{Diag}\left[d^{\theta}(s), s \in \mathbb{R}\right]$ \mathcal{S} , $\bar{R}_{\theta} = \left[\bar{R}(s, \mu_{\theta}(s)), s \in \mathcal{S} \right]^{\top} \in \mathbb{R}^{|\mathcal{S}|}$ and the operator $T_{\theta}^Q : \mathbb{R}^{|\mathcal{S}|} \to \mathbb{R}^{|\mathcal{S}|}$ for any action-value vector $Q \in \mathbb{R}^{|S|}$ (and not $\mathbb{R}^{|S| \cdot |A|}$ since there is a mapping associating an action to each state) as:

$$
T^Q_{\theta}(Q') = \bar{R}_{\theta} - J(\mu_{\theta}) \cdot \mathbf{1} + P^{\theta} Q'.
$$

Theorem 4. *Under Assumptions [3,](#page-5-1) [4,](#page-5-2) and [5,](#page-6-0) for any given deterministic policy* μ_{θ} *, with* $\{\hat{J}_t\}$ *and* $\{\omega_t\}$ generated from [\(2\)](#page-4-0), we have $\lim_{t\to\infty} \frac{1}{N} \sum_{i\in\mathcal{N}} \hat{J}_t^i = J(\mu_\theta)$ and $\lim_{t\to\infty} \omega_t^i = \omega_\theta$ a.s. for any $i \in \mathcal{N}$ *, where*

$$
J(\mu_{\theta}) = \sum_{s \in \mathcal{S}} d^{\theta}(s) \bar{R}(s, \mu_{\theta}(s))
$$

 200 *is the long-term average return under* μ_{θ} *, and* ω_{θ} *is the unique solution to*

$$
\Phi_{\theta}{}^{\top} D_{\theta}^{s} \left[T_{\theta}^{Q} (\Phi_{\theta} \omega_{\theta}) - \Phi_{\theta} \omega_{\theta} \right] = 0. \tag{10}
$$

Moreover, ω_{θ} *is the minimizer of the Mean Square Projected Bellman Error (MSPBE), i.e., the solution to*

$$
\underset{\omega}{\text{minimize}} \ \|\Phi_{\theta}\omega - \Pi T_{\theta}^{Q}(\Phi_{\theta}\omega)\|_{D_{\theta}^{s}}^{2},
$$

where Π is the operator that projects a vector to the space spanned by the columns of Φ_θ , and $\|\cdot\|^2_{D^s_\theta}$ 201

 202 *denotes the euclidean norm weighted by the matrix* D_{θ}^{s} *.*

203 To state convergence of the actor step, we define quantities $\psi_{t,\theta}^i, \xi_t^i$ and $\xi_{t,\theta}^i$ as

$$
\begin{split} & \psi_{t,\theta}^{i} = \nabla_{\theta^{i}} \mu_{\theta^{i}}^{i}(s_{t}) \quad \text{and} \quad \psi_{t}^{i} = \psi_{t,\theta_{t}}^{i} = \nabla_{\theta^{i}} \mu_{\theta^{i}_{t}}^{i}(s_{t}), \\ & \xi_{t,\theta}^{i} = \nabla_{a_{i}} \hat{Q}_{\omega_{\theta}}(s_{t}, a_{t}^{-i}, a_{i}) \Big|_{a_{i} = a_{i} = \mu_{\theta^{i}_{t}}^{i}(s_{t})} = \nabla_{a_{i}} \phi(s_{t}, a_{t}^{-i}, a_{i}) \Big|_{a_{i} = a_{i} = \mu_{\theta^{i}_{t}}^{i}(s_{t})} \omega_{\theta}, \\ & \xi_{t}^{i} = \nabla_{a_{i}} \hat{Q}_{\omega_{t}^{i}}(s_{t}, a_{t}^{-i}, a_{i}) \Big|_{a_{i} = \mu_{\theta^{i}}^{i}(s_{t})} = \nabla_{a_{i}} \phi(s_{t}, a_{t}^{-i}, a_{i}) \Big|_{a_{i} = \mu_{\theta^{i}}^{i}(s_{t})} \omega_{t}^{i}. \end{split}
$$

204 Additionally, we introduce the operator $\hat{\Gamma}(\cdot)$ as

$$
\hat{\Gamma}^i \left[g(\theta) \right] = \lim_{0 \le \eta \to 0} \frac{\Gamma^i \left[\theta^i + \eta \cdot g(\theta) \right] - \theta^i}{\eta} \tag{11}
$$

205 for any $\theta \in \Theta$ and $g: \Theta \to \mathbb{R}^{m_i}$ a continuous function. In case the limit above is not unique we take 206 $\hat{\Gamma}^i[g(\theta)]$ to be the set of all possible limit points of [\(11\)](#page-7-0).

 207 **Theorem 5.** *Under Assumptions* [2,](#page-5-3) [3,](#page-5-1) [4,](#page-5-2) and [5,](#page-6-0) the policy parameter θ_t^i obtained from [\(5\)](#page-4-1) converges ²⁰⁸ *a.s. to a point in the set of asymptotically stable equilibria of*

$$
\dot{\theta}^i = \hat{\Gamma}^i \left[\mathbb{E}_{s_t \sim d^\theta, \mu_\theta} \left[\psi^i_{t,\theta} \cdot \xi^i_{t,\theta} \right] \right], \quad \text{for any } i \in \mathcal{N}.
$$
 (12)

²⁰⁹ *In the case of multiple limit points, the above is treated as a differential inclusion rather than an* ²¹⁰ *ODE.*

²¹¹ The convergence of the critic step can be proved by taking similar steps as that in [Zhang et al.](#page-10-0) [\[2018\]](#page-10-0).

²¹² For the convergence of the actor step, difficulties arise from the projection (which is handled using ²¹³ Kushner-Clark Lemma [Kushner and Clark](#page-9-11) [\[1978\]](#page-9-11)) and the state-dependent noise (that is handled by

²¹⁴ "natural" timescale averaging [Crowder](#page-9-12) [\[2009\]](#page-9-12)). Details are provided in the Appendix.

215 **Remark.** Note that that with a linear function approximator Q_{θ} , $\psi_{t,\theta}$ · $\xi_{t,\theta}$ = 216 $\nabla_{\theta} \mu_{\theta}(s_t) \nabla_a \hat{Q}_{\omega_{\theta}}(s_t, a) \Big|_{a = \mu_{\theta}(s_t)}$ may not be an unbiased estimate of $\nabla_{\theta} J(\theta)$:

$$
\mathbb{E}_{s\sim d^{\theta}}\big[\psi_{t,\theta}\cdot\xi_{t,\theta}\big] = \nabla_{\theta}J(\theta) + \mathbb{E}_{s\sim d^{\theta}}\left[\nabla_{\theta}\mu_{\theta}(s)\cdot\left(\nabla_{a}\hat{Q}_{\omega_{\theta}}(s,a)\Big|_{a=\mu_{\theta}(s)} - \nabla_{a}Q_{\omega_{\theta}}(s,a)\big|_{a=\mu_{\theta}(s)}\right)\right].
$$

²¹⁷ A standard approach to overcome this approximation issue is via compatible features (see, for

218 example, [Silver et al.](#page-9-7) [\[January 2014a\]](#page-9-7) and [Zhang and Zavlanos](#page-10-5) [\[2019\]](#page-10-5)), i.e. $\phi(s, a) = a \cdot \nabla_{\theta} \mu_{\theta}(s)^{\top}$, 219 giving, for $\omega \in \mathbb{R}^m$,

$$
\hat{Q}_{\omega}(s, a) = a \cdot \nabla_{\theta} \mu_{\theta}(s)^{\top} \omega = (a - \mu_{\theta}(s)) \cdot \nabla_{\theta} \mu_{\theta}(s)^{\top} \omega + \hat{V}_{\omega}(s),
$$

with $\hat{V}_{\omega}(s) = \hat{Q}_{\omega}(s, \mu_{\theta}(s))$ and $\nabla_{a} \hat{Q}_{\omega}(s, a) \Big|_{a = \mu_{\theta}(s)} = \nabla_{\theta} \mu_{\theta}(s)^{\top} \omega.$

²²⁰ We thus expect that the convergent point of [\(5\)](#page-7-1) corresponds to a small neighborhood of a local 221 optimum of $J(\mu_{\theta})$, i.e., $\nabla_{\theta_i} J(\mu_{\theta}) = 0$, provided that the error for the gradient of the action-222 value function $\nabla_a \hat{Q}_\omega(s, a)\Big|_{a=\mu_\theta(s)} - \nabla_a Q_\theta(s, a)\Big|_{a=\mu_\theta(s)}$ is small. However, note that using 223 compatible features requires computing, at each step t, $\phi(s_t, a_t) = a_t \cdot \nabla_{\theta} \mu_{\theta}(s_t)$. Thus, in 224 Algorithm [1,](#page-3-0) each agent observes not only the joint action $a_{t+1} = (a_{t+1}^1, \ldots, a_{t+1}^N)$ but also 225 $(\nabla_{\theta^1} \mu_{\theta_t^1}^1(s_{t+1}), \dots, \nabla_{\theta^N} \mu_{\theta_t^N}^N(s_{t+1}))$ (see the parts in blue in Algorithm [1\)](#page-3-0).

²²⁶ Off-Policy Convergence

227 **Theorem 6.** *Under Assumptions [1,](#page-5-4) [4,](#page-5-2) and [6,](#page-6-1) for any given behavior policy* π *and any* $\theta \in \Theta$ *, with* 228 $\{\lambda_t^i\}$ generated from [\(7\)](#page-4-2), we have $\lim_{t\to\infty}\lambda_t^i = \lambda_\theta$ *a.s. for any* $i \in \mathcal{N}$, where λ_θ is the unique ²²⁹ *solution to*

$$
B_{\pi,\theta} \cdot \lambda_{\theta} = A_{\pi,\theta} \cdot d_{\pi}^{s} \tag{13}
$$

230 *where* d^s_π = $\left[d^\pi(s), s \in S\right]^\top$, $A_{\pi, \theta}$ = $\left[\int_{\mathcal{A}} \pi(a|s) \bar{R}(s, a) w(s, a)^\top \mathrm{d}a, s \in \mathcal{S}\right] \in \mathbb{R}^{K \times |\mathcal{S}|}$ and 231 $B_{\pi,\theta} = \left[\sum_{s \in \mathcal{S}} d^{\pi}(s) \int_{\mathcal{A}} \pi(a|s) w_i(s,a) \cdot w(s,a)^\top \mathrm{d}a, 1 \leq i \leq K \right] \in \mathbb{R}^{K \times K}.$

²³² From here on we let

$$
\xi_{t,\theta}^{i} = \nabla_{a_{i}} \hat{R}_{\lambda_{\theta}}(s_{t}, \mu_{\theta_{t}}^{-i}(s_{t}), a_{i})\Big|_{a_{i} = \mu_{\theta_{t}}^{i}(s_{t})} = \nabla_{a_{i}} w(s_{t}, \mu_{\theta_{t}}^{-i}(s_{t}), a_{i})\Big|_{a_{i} = \mu_{\theta_{t}}^{i}(s_{t})} \lambda_{\theta}
$$
\n
$$
\xi_{t}^{i} = \nabla_{a_{i}} \hat{R}_{\lambda_{t}^{i}}(s_{t}, \mu_{\theta_{t}}^{-i}(s_{t}), a_{i})\Big|_{a_{i} = \mu_{\theta_{t}}^{i}(s_{t})} = \nabla_{a_{i}} w(s_{t}, \mu_{\theta_{t}}^{-i}(s_{t}), a_{i})\Big|_{a_{i} = \mu_{\theta_{t}}^{i}(s_{t})} \lambda_{t}^{i}
$$

²³³ and we keep

$$
\psi_{t,\theta}^i = \nabla_{\theta^i} \mu_{\theta^i}^i(s_t), \text{ and } \psi_t^i = \psi_{t,\theta_t}^i = \nabla_{\theta^i} \mu_{\theta_t}^i(s_t).
$$

234 Theorem 7. Under Assumptions [1,](#page-5-4) [3,](#page-5-1) [4,](#page-5-2) and [6,](#page-6-1) the policy parameter θ_t^i obtained from [\(6\)](#page-4-3) converges ²³⁵ *a.s. to a point in the asymptotically stable equilibria of*

$$
\dot{\theta}^i = \Gamma^i \left[\mathbb{E}_{s \sim d^\pi} \left[\psi^i_{t,\theta} \cdot \xi^i_{t,\theta} \right] \right]. \tag{14}
$$

²³⁶ We define compatible features for the action-value and the average-reward function in an analogous 237 manner: $w_{\theta}(s, a) = (a - \mu_{\theta}(s)) \cdot \nabla_{\theta} \mu_{\theta}(s)^{\top}$. For $\lambda \in \mathbb{R}^m$,

$$
\hat{\bar{R}}_{\lambda,\theta}(s,a) = (a - \mu_{\theta}(s)) \cdot \nabla_{\theta} \mu_{\theta}(s)^{\top} \cdot \lambda \n\nabla_{a} \hat{\bar{R}}_{\lambda,\theta}(s,a) = \nabla_{\theta} \mu_{\theta}(s)^{\top} \cdot \lambda
$$

and we have that, for $\lambda^* = \operatorname*{argmin}_{\lambda} \mathbb{E}_{s \sim d^{\pi}} \left[\|\nabla_a \hat{R}_{\lambda,\theta}(s, \mu_\theta(s)) - \nabla_a \bar{R}(s, \mu_\theta(s))\|^2 \right]$:

$$
\nabla_{\theta} J_{\pi}(\mu_{\theta}) = \mathbb{E}_{s \sim d^{\pi}} \big[\nabla_{\theta} \mu_{\theta}(s) \cdot \nabla_{a} \bar{R}(s, a) \big|_{a = \mu_{\theta}(s)} \big] = \mathbb{E}_{s \sim d^{\pi}} \big[\nabla_{\theta} \mu_{\theta}(s) \cdot \nabla_{a} \hat{\bar{R}}_{\lambda^{*}, \theta}(s, a) \big|_{a = \mu_{\theta}(s)} \big].
$$

²³⁸ The use of compatible features requires each agent to observe not only the joint action taken

239 $a_{t+1} = (a_{t+1}^1, \ldots, a_{t+1}^N)$ and the "on-policy action" $\dot{a}_{t+1} = (\dot{a}_{t+1}^1, \ldots, \dot{a}_{t+1}^N)$, but also $\tilde{a}_{t+1} =$

240 $(\nabla_{\theta^1} \mu_{\theta_t^1}^1(s_{t+1}), \ldots, \nabla_{\theta^N} \mu_{\theta_t^N}^N(s_{t+1}))$ (see the parts in blue in

²⁴¹ We illustrate algorithm convergence on multi-agent extension of a continuous bandit problem from

²⁴² Sec. 5.1 of [Silver et al.](#page-9-4) [\[January 2014b\]](#page-9-4). Details are in the Appendix. Figure [2](#page-11-0) shows the convergence

²⁴³ of Algorithms 1 and 2 averaged over 5 runs. In all cases, the system converges and the agents are able to coordinate their actions to minimize system cost.

Figure 1: Convergence of Algorithms 1 and 2 on the multi-agent continuous bandit problem.

244

²⁴⁵ 6 Conclusion

 We have provided the tools needed to implement decentralized, deterministic actor-critic algorithms for cooperative multi-agent reinforcement learning. We provide the expressions for the policy gradients, the algorithms themselves, and prove their convergence in on-policy and off-policy settings. We also provide numerical results for a continuous multi-agent bandit problem that demonstrates the convergence of our algorithms. Our work differs from [Zhang and Zavlanos](#page-10-5) [\[2019\]](#page-10-5) as the latter was based on policy consensus whereas ours is based on critic consensus. Our approach represents agreement between agents on every participants' contributions to the global reward, and as such, provides a consensus scoring function with which to evaluate agents. Our approach may be used in compensation schemes to incentivize participation. An interesting extension of this work would be to prove convergence of our actor-critic algorithm for continuous state spaces, as it may hold with assumptions on the geometric ergodicity of the stationary state distribution induced by the [d](#page-9-13)eterministic policies (see [Crowder](#page-9-12) [\[2009\]](#page-9-12)). The expected policy gradient (EPG) of [Ciosek and](#page-9-13) [Whiteson](#page-9-13) [\[2018\]](#page-9-13), a hybrid between stochastic and deterministic policy gradient, would also be interesting to leverage. The Multi-Agent Deep Deterministic Policy Gradient algorithm (MADDPG) of [Lowe et al.](#page-9-14) [\[2017\]](#page-9-14) assumes partial observability for each agent and would be a useful extension, but it is likely difficult to extend our convergence guarantees to the partially observed setting.

References

- Albert Benveniste, Pierre Priouret, and Michel Métivier. *Adaptive Algorithms and Stochastic Approximations*. Springer-Verlag, Berlin, Heidelberg, 1990. ISBN 0-387-52894-6.
- Shalabh Bhatnagar, Richard S. Sutton, Mohammad Ghavamzadeh, and Mark Lee. Natural actor-critic algorithms. *Automatica*, 45(11):2471–2482, November 2009. ISSN 0005-1098. doi: 10.1016/j.
- automatica.2009.07.008. URL <http://dx.doi.org/10.1016/j.automatica.2009.07.008>.
- Kamil Ciosek and Shimon Whiteson. Expected Policy Gradients for Reinforcement Learning. *arXiv e-prints*, art. arXiv:1801.03326, Jan 2018.
- Martin Crowder. Stochastic approximation: A dynamical systems viewpoint by vivek s. borkar. *International Statistical Review*, 77(2):306–306, 2009.
- Thomas Degris, Martha White, and Richard S. Sutton. Off-policy actor-critic. *CoRR*, abs/1205.4839, 2012. URL <http://arxiv.org/abs/1205.4839>.
- Scott Fujimoto, Herke van Hoof, and Dave Meger. Addressing function approximation error in actor-critic methods. *CoRR*, abs/1802.09477, 2018. URL <http://arxiv.org/abs/1802.09477>.
- Sham Kakade. A natural policy gradient. In *Proceedings of the 14th International Conference on*
- *Neural Information Processing Systems: Natural and Synthetic*, NIPS'01, pages 1531–1538, Cam-
- bridge, MA, USA, 2001. MIT Press. URL [http://dl.acm.org/citation.cfm?id=2980539.](http://dl.acm.org/citation.cfm?id=2980539.2980738) [2980738](http://dl.acm.org/citation.cfm?id=2980539.2980738).
- Vijaymohan Konda. *Actor-critic Algorithms*. PhD thesis, Cambridge, MA, USA, 2002. AAI0804543.
- Harold J. (Harold Joseph) Kushner and (joint author.) Clark, Dean S. *Stochastic approximation methods for constrained and unconstrained systems*. New York : Springer-Verlag, 1978. ISBN 0387903410.
- Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Manfred Otto Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. *CoRR*, abs/1509.02971, 2015.
- Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-agent actor- critic for mixed cooperative-competitive environments. *Neural Information Processing Systems (NIPS)*, 2017.
- Hamid Reza Maei. Convergent actor-critic algorithms under off-policy training and function approxi-mation. *CoRR*, abs/1802.07842, 2018. URL <http://arxiv.org/abs/1802.07842>.
- P. Marbach and J. N. Tsitsiklis. Simulation-based optimization of markov reward processes. *IEEE Transactions on Automatic Control*, 46(2):191–209, Feb 2001. ISSN 0018-9286. doi: 10.1109/9. 905687.
- K. J. Prabuchandran, Shalabh Bhatnagar, and Vivek S. Borkar. Actor-critic algorithms with online feature adaptation. *ACM Trans. Model. Comput. Simul.*, 26(4):24:1–24:26, February 2016. ISSN 1049-3301. doi: 10.1145/2868723. URL <http://doi.acm.org/10.1145/2868723>.
- Martin L. Puterman. *Markov Decision Processes: Discrete Stochastic Dynamic Programming*. John Wiley & Sons, Inc., New York, NY, USA, 1st edition, 1994. ISBN 0471619779.
- David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller. Deterministic Policy Gradient Algorithms. *International Conference on Machine Learning*, pages 387–395, January 2014a.
- David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller. Deterministic Policy Gradient Algorithms. *International Conference on Machine Learning*, pages 387–395, January 2014b.
- Wesley Suttle, Zhuoran Yang, Kaiqing Zhang, Zhaoran Wang, Tamer Basar, and Ji Liu. A multi-agent off-policy actor-critic algorithm for distributed reinforcement learning. *CoRR*, abs/1903.06372, 2019. URL <http://arxiv.org/abs/1903.06372>.

 Richard S Sutton, David A. McAllester, Satinder P. Singh, and Yishay Mansour. Policy gradient methods for reinforcement learning with function approximation. In S. A. Solla, T. K. Leen, and

 K. Müller, editors, *Advances in Neural Information Processing Systems 12*, pages 1057–1063. MIT Press, 2000a.

- Richard S Sutton, David A. McAllester, Satinder P. Singh, and Yishay Mansour. Policy gradient methods for reinforcement learning with function approximation. In S. A. Solla, T. K. Leen, and K. Müller, editors, *Advances in Neural Information Processing Systems 12*, pages 1057–1063. MIT Press, 2000b.
- Richard S. Sutton, Hamid Reza Maei, Doina Precup, Shalabh Bhatnagar, David Silver, Csaba Szepesvári, and Eric Wiewiora. Fast gradient-descent methods for temporal-difference learning with linear function approximation. In *Proceedings of the 26th Annual International Conference on Machine Learning*, ICML '09, pages 993–1000, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-516-1.
- Richard S. Sutton, A. Rupam Mahmood, and Martha White. An emphatic approach to the problem of off-policy temporal-difference learning. *J. Mach. Learn. Res.*, 17(1):2603–2631, January 2016. ISSN 1532-4435. URL <http://dl.acm.org/citation.cfm?id=2946645.3007026>.
- Kaiqing Zhang, Zhuoran Yang, Han Liu, Tong Zhang, and Tamer Basar. Fully decentralized multi-agent reinforcement learning with networked agents. 80:5872–5881, 10–15 Jul 2018.
- Yan Zhang and Michael M. Zavlanos. Distributed off-policy actor-critic reinforcement learning with policy consensus. *CoRR*, abs/1903.09255, 2019.

³²⁹ Numerical experiment details

 We demonstrate the convergence of our algorithm in a continuous bandit problem that is a multi- agent extension of the experiment in Section 5.1 of Silver et al. (2014). Each agent chooses 332 an action $a^i \in \mathbb{R}^m$. We assume all agents have the same reward function given by $R^i(a) =$ $-(\sum_i a^i - a^*)^{\mathsf{T}} C (\sum_i a^i - a^*)$. The matrix C is positive definite with eigenvalues chosen from $\{0.1, 1\}$, and $a^* = [4, ..., 4]^T$. We consider 10 agents and action dimensions $m = 10, 20, 50$. Note that there are multiple possible solutions for this problem, requiring the agents to coordinate their 336 actions to sum to a^* . We assume a target policy of the form $\mu_{\theta^i} = \theta^i$ for each agent i and a Gaussian 337 behaviour policy $\beta(\cdot) \sim \mathcal{N}(\theta^i, \sigma_\beta^2)$ where $\sigma_\beta = 0.1$. We use the Gaussian behaviour policy for both Algorithms 1 and 2. Strictly speaking, Algorithm 1 is on-policy, but in this simplified setting where the target policy is constant, the on-policy version would be degenerate such that the Q estimate does not affect the TD-error. Therefore, we add a Gaussian behaviour policy to Algorithm 1. Each agent 341 maintains an estimate $Q^{\omega^i}(a)$ of the critic using a linear function of the compatible features $a - \theta$ and a bias feature. The critic is recomputed from each successive batch of $2m$ steps and the actor is updated once per batch. The critic step size is 0.1 and the actor step size is 0.01. Performance is evaluated by measuring the cost of the target policy (without exploration). Figure [2](#page-11-0) shows the convergence of Algorithms 1 and 2 averaged over 5 runs. In all cases, the system converges and the agents are able to coordinate their actions to minimize system cost. The jupyter notebook will be made available for others to use. In fact, in this simple experiment, we also observe convergence under discounted rewards.

Figure 2: Convergence of Algorithms 1 and 2 on the multi-agent continuous bandit problem.

³⁴⁹ Proof of Theorem [1](#page-2-1)

³⁵⁰ The proof follows the same scheme as [Sutton et al.](#page-10-1) [\[2000a\]](#page-10-1), naturally extending their results for a 351 deterministic policy μ_{θ} and a continuous action space A.

352 Note that our regularity assumptions ensure that, for any $s \in S$, $V_{\theta}(s)$, $\nabla_{\theta}V_{\theta}(s)$, $J(\theta)$, $\nabla_{\theta}J(\theta)$,

353 $d^{\theta}(s)$ are Lipschitz-continuous functions of θ (since μ_{θ} is twice continuously differentiable and Θ is 354 [c](#page-9-15)ompact), and that $Q_\theta(s, a)$ and $\nabla_a Q_\theta(s, a)$ are Lipschitz-continuous functions of a [\(Marbach and](#page-9-15) ³⁵⁵ [Tsitsiklis](#page-9-15) [\[2001\]](#page-9-15)).

356 We first show that $\nabla_{\theta} J(\theta) = \mathbb{E}_{s \sim d^{\theta}} \left[\nabla_{\theta} \mu_{\theta}(s) \nabla_a Q_{\theta}(s, a) \big|_{a = \mu_{\theta}(s)} \right]$.

357 The Poisson equation under policy μ_{θ} is given by [Puterman](#page-9-16) [\[1994\]](#page-9-16)

$$
Q_{\theta}(s, a) = \bar{R}(s, a) - J(\theta) + \sum_{s' \in \mathcal{S}} P(s'|s, a) V_{\theta}(s').
$$

³⁵⁸ So,

$$
\nabla_{\theta}V_{\theta}(s) = \nabla_{\theta}Q_{\theta}(s, \mu_{\theta}(s))
$$
\n
$$
= \nabla_{\theta}[\bar{R}(s, \mu_{\theta}(s)) - J(\theta) + \sum_{s' \in S} P(s'|s, \mu_{\theta}(s))V_{\theta}(s')]
$$
\n
$$
= \nabla_{\theta}\mu_{\theta}(s) \nabla_{a}\bar{R}(s, a)|_{a = \mu_{\theta}(s)} - \nabla_{\theta}J(\theta) + \nabla_{\theta} \sum_{s' \in S} P(s'|s, \mu_{\theta}(s))V_{\theta}(s')
$$
\n
$$
= \nabla_{\theta}\mu_{\theta}(s) \nabla_{a}\bar{R}(s, a)|_{a = \mu_{\theta}(s)} - \nabla_{\theta}J(\theta)
$$
\n
$$
+ \sum_{s' \in S} \nabla_{\theta}\mu_{\theta}(s) \nabla_{a}P(s'|s, a)|_{a = \mu_{\theta}(s)} V_{\theta}(s') + \sum_{s' \in S} P(s'|s, \mu_{\theta}(s))\nabla_{\theta}V_{\theta}(s')
$$
\n
$$
= \nabla_{\theta}\mu_{\theta}(s)\nabla_{a} \left[\bar{R}(s, a) + \sum_{s' \in S} P(s|s', a)V_{\theta}(s') \right] \Big|_{a = \mu_{\theta}(s)}
$$
\n
$$
- \nabla_{\theta}J(\theta) + \sum_{s' \in S} P(s'|s, \mu_{\theta}(s))\nabla_{\theta}V_{\theta}(s')
$$
\n
$$
= \nabla_{\theta}\mu_{\theta}(s)\nabla_{a} Q_{\theta}(s, a)|_{a = \mu_{\theta}(s)} + \sum_{s' \in S} P(s'|s, \mu_{\theta}(s))\nabla_{\theta}V_{\theta}(s') - \nabla_{\theta}J(\theta)
$$

³⁵⁹ Hence,

$$
\nabla_{\theta}J(\theta) = \nabla_{\theta}\mu_{\theta}(s)\nabla_{a}Q_{\theta}(s,a)|_{a=\mu_{\theta}(s)} + \sum_{s'\in\mathcal{S}}P(s'|s,\mu_{\theta}(s))\nabla_{\theta}V_{\theta}(s') - \nabla_{\theta}V_{\theta}(s)
$$

$$
\sum_{s\in\mathcal{S}}d^{\theta}(s)\nabla_{\theta}J(\theta) = \sum_{s\in\mathcal{S}}d^{\theta}(s)\nabla_{\theta}\mu_{\theta}(s)\nabla_{a}Q_{\theta}(s,a)|_{a=\mu_{\theta}(s)}
$$

$$
+ \sum_{s\in\mathcal{S}}d^{\theta}(s)\sum_{s'\in\mathcal{S}}P(s'|s,\mu_{\theta}(s))\nabla_{\theta}V_{\theta}(s') - \sum_{s\in\mathcal{S}}d^{\theta}(s)\nabla_{\theta}V_{\theta}(s).
$$

Using stationarity property of d^{θ} , we get

$$
\sum_{s \in S} \sum_{s' \in S} d^{\theta}(s) P(s'|s, \mu_{\theta}(s)) \nabla_{\theta} V_{\theta}(s') = \sum_{s' \in S} d^{\theta}(s') \nabla_{\theta} V_{\theta}(s').
$$

Therefore, we get

$$
\nabla_{\theta}J(\theta) = \sum_{s \in \mathcal{S}} d^{\theta}(s) \nabla_{\theta} \mu_{\theta}(s) \nabla_{a} Q_{\theta}(s, a)|_{a = \mu_{\theta}(s)} = \mathbb{E}_{s \sim d^{\theta}} \big[\nabla_{\theta} \mu_{\theta}(s) \nabla_{a} Q_{\theta}(s, a)|_{a = \mu_{\theta}(s)} \big].
$$

360 Given that $\nabla_{\theta_i} \mu_{\theta}^j(s) = 0$ if $i \neq j$, we have $\nabla_{\theta} \mu_{\theta}(s) = \text{Diag}(\nabla_{\theta_i} \mu_{\theta_i}^1(s), \dots, \nabla_{\theta_N} \mu_{\theta_N}^N(s)),$ which ³⁶¹ implies

$$
\nabla_{\theta^i} J(\theta) = \mathbb{E}_{s \sim d^{\theta}} \left[\nabla_{\theta^i} \mu_{\theta^i}^i(s) \nabla_{a^i} Q_{\theta}(s, \mu_{\theta^{-i}}^{-i}(s), a^i) \big|_{a^i = \mu_{\theta^i}^i(s)} \right]. \tag{15}
$$

³⁶² Proof of Theorem [3](#page-3-1)

363 We extend the notation for off-policy reward function to stochastic policies as follows. Let β be a 364 behavior policy under which $\{s_t\}_{t\geq 0}$ is irreducible and aperiodic, with stationary distribution d^{β} . For 365 a stochastic policy $\pi : \mathcal{S} \to \mathcal{P}(\mathcal{A})$, we define

$$
J_{\beta}(\pi) = \sum_{s \in \mathcal{S}} d^{\beta}(s) \int_{\mathcal{A}} \pi(a|s) \overline{R}(s,a) da.
$$

366 Recall that for a deterministic policy $\mu : S \to A$, we have

$$
J_{\beta}(\mu) = \sum_{s \in \mathcal{S}} d^{\beta}(s) \bar{R}(s, \mu(s)).
$$

³⁶⁷ We introduce the following conditions which are identical to Conditions B1 from [Silver et al.](#page-9-7) ³⁶⁸ [\[January 2014a\]](#page-9-7).

- 369 **Conditions 1.** Functions ν_{σ} parametrized by σ are said to be regular delta-approximation on $\mathcal{R} \subset \mathcal{A}$ ³⁷⁰ if they satisfy the following conditions:
- 371 1. The distributions ν_{σ} converge to a delta distribution: $\lim_{\sigma \downarrow 0} \int_{\mathcal{A}} \nu_{\sigma}(a', a) f(a) da = f(a')$ 372 for $a' \in \mathcal{R}$ and suitably smooth f. Specifically we require that this convergence is uniform
- 373 in a' and over any class F of L-Lipschitz and bounded functions, $\|\nabla_a \tilde{f}(a)\| < L < \infty$,
- 374 $\sup_a f(a) < b < \infty$, i.e.:

$$
\lim_{\sigma \downarrow 0} \sup_{f \in \mathcal{F}, a' \in \mathcal{R}} \left| \int_{\mathcal{A}} \nu_{\sigma}(a', a) f(a) da - f(a') \right| = 0.
$$

- 375 2. For each $a' \in \mathcal{R}$, $\nu_{\sigma}(a', \cdot)$ is supported on some compact $\mathcal{C}_{a'} \subseteq \mathcal{A}$ with Lipschitz boundary 376 bd(C_{α}), vanishes on the boundary and is continuously differentiable on C_{α} .
- 377 3. For each $a' \in \mathcal{R}$, for each $a \in \mathcal{A}$, the gradient $\nabla_{a'} \nu_{\sigma}(a', a)$ exists.
- 378 4. Translation invariance: for all $a \in A$, $a' \in \mathcal{R}$, and any $\delta \in \mathbb{R}^n$ such that $a + \delta \in A$, зтя $a' + \delta \in \mathcal{A}$, $\nu_{\sigma}(a', a) = \nu_{\sigma}(a' + \delta, a + \delta)$.

380 The following lemma is an immediate corollary of Lemma 1 from [Silver et al.](#page-9-7) [\[January 2014a\]](#page-9-7).

Lemma 1. Let ν_{σ} be a regular delta-approximation on $\mathcal{R} \subseteq \mathcal{A}$. Then, wherever the gradients exist

$$
\nabla_{a'}\nu(a',a) = -\nabla_a\nu(a',a).
$$

³⁸¹ Theorem [3](#page-3-1) is a less technical restatement of the following result.

382 **Theorem 8.** Let μ_{θ} : S \rightarrow A. Denote the range of μ_{θ} by $\mathcal{R}_{\theta} \subseteq \mathcal{A}$, and $\mathcal{R} = \cup_{\theta} \mathcal{R}_{\theta}$. For 383 *each* θ *, consider* $\pi_{\theta,\sigma}$ *a* stochastic policy such that $\pi_{\theta,\sigma}(a|s) = \nu_{\sigma}(\mu_{\theta}(s),a)$ *, where* ν_{σ} satisfy *conditions* [1](#page-13-0) *on* R*.* Then, there exists $r > 0$ such that, for each $\theta \in \Theta$, $\sigma \mapsto J_{\pi_{\theta,\sigma}}(\pi_{\theta,\sigma})$, 385 $\sigma \mapsto J_{\pi_{\theta,\sigma}}(\mu_{\theta}), \sigma \mapsto \nabla_{\theta}J_{\pi_{\theta,\sigma}}(\pi_{\theta,\sigma})$ *, and* $\sigma \mapsto \nabla_{\theta}J_{\pi_{\theta,\sigma}}(\mu_{\theta})$ are properly defined on $[0,r]$ (with $J_{\pi_{\theta,0}}(\pi_{\theta,0})=J_{\pi_{\theta,0}}(\mu_\theta)=J_{\mu_\theta}(\mu_\theta)$ and $\nabla_\theta J_{\pi_{\theta,0}}(\pi_{\theta,0})=\nabla_\theta J_{\pi_{\theta,0}}(\mu_\theta)=\nabla_\theta J_{\mu_\theta}(\mu_\theta)$), and we ³⁸⁷ *have:*

$$
\lim_{\sigma \downarrow 0} \nabla_{\theta} J_{\pi_{\theta,\sigma}}(\pi_{\theta,\sigma}) = \lim_{\sigma \downarrow 0} \nabla_{\theta} J_{\pi_{\theta,\sigma}}(\mu_{\theta}) = \nabla_{\theta} J_{\mu_{\theta}}(\mu_{\theta}).
$$

³⁸⁸ To prove this result, we first state and prove the following Lemma.

1389 Lemma 2. There exists $r > 0$ such that, for all $\theta \in \Theta$ and $\sigma \in [0, r]$, stationary distribution $d^{\pi_{\theta, \sigma}}$ *exists and is unique. Moreover, for each* θ ∈ Θ*,* σ 7→ d ^πθ,σ *and* σ 7→ ∇θd ^πθ,σ ³⁹⁰ *are properly defined* α on $[0, r]$ and both are continuous at 0.

Proof of Lemma [2.](#page-13-1) For any policy β , we let $\left(P_{s,s'}^{\beta}\right)$ 392 *Proof of Lemma 2*. For any policy β , we let $(P_{s,s'}^{\beta})_{s,s' \in S}$ be the transition matrix associated to the 393 Markov Chain $\{s_t\}_{t\geq 0}$ induced by β . In particular, for each $\theta \in \Theta$, $\sigma > 0$, $s, s' \in \mathcal{S}$, we have

$$
P_{s,s'}^{\mu_{\theta}} = P(s'|s, \mu_{\theta}(s)),
$$

\n
$$
P_{s,s'}^{\pi_{\theta,\sigma}} = \int_{\mathcal{A}} \pi_{\theta,\sigma}(a|s) P(s'|s,a) da = \int_{\mathcal{A}} \nu_{\sigma}(\mu_{\theta}(s),a) P(s'|s,a) da.
$$

394 Let $\theta \in \Theta$, $s, s' \in \mathcal{S}$, $(\theta_n) \in \Theta^{\mathbb{N}}$ such that $\theta_n \to \theta$ and $(\sigma_n)_{n \in \mathbb{N}} \in \mathbb{R}^{+\mathbb{N}}$, $\sigma_n \downarrow 0$:

$$
\left| P_{s,s'}^{\pi_{\theta_n,\sigma_n}} - P_{s,s'}^{\mu_{\theta}} \right| \le \left| P_{s,s'}^{\pi_{\theta_n,\sigma_n}} - P_{s,s'}^{\mu_{\theta_n}} \right| + \left| P_{s,s'}^{\mu_{\theta_n}} - P_{s,s'}^{\mu_{\theta}} \right|.
$$

395 Applying the first condition of Conditions [1](#page-13-0) with $f : a \mapsto P(s'|s, a)$ belonging to F:

$$
\left| P_{s,s'}^{\pi_{\theta_n,\sigma_n}} - P_{s,s'}^{\mu_{\theta_n}} \right| = \left| \int_{\mathcal{A}} \nu_{\sigma_n}(\mu_{\theta_n}(s),a) P(s'|s,a) da - P(s'|s,\mu_{\theta_n}(s)) \right|
$$

$$
\leq \sup_{f \in \mathcal{F}, a' \in \mathcal{R}} \left| \int_{\mathcal{A}} \nu_{\sigma_n}(a',a) f(a) da - f(a') \right| \underset{n \to \infty}{\longrightarrow} 0.
$$

396 By regularity assumptions on $\theta \mapsto \mu_{\theta}(s)$ and $P(s'|s, \cdot)$, we have

$$
\left|P_{s,s'}^{\mu_{\theta_n}} - P_{s,s'}^{\mu_{\theta}}\right| = \left|P(s'|s,\mu_{\theta_n}(s)) - P(s'|s,\mu_{\theta}(s))\right| \underset{n \to \infty}{\longrightarrow} 0.
$$

³⁹⁷ Hence,

$$
\left| P_{s,s'}^{\pi_{\theta_n,\sigma_n}} - P_{s,s'}^{\mu_\theta} \right| \underset{n \to \infty}{\longrightarrow} 0.
$$

398 Therefore, for each $s, s' \in S$, $(\theta, \sigma) \mapsto P_{s,s'}^{\pi_{\theta,\sigma}}$, with $P_{s,s'}^{\pi_{\theta,0}} = P_{s,s'}^{\mu_{\theta}}$, is continuous on $\Theta \times \{0\}$. Note τ that, for each $n \in \mathbb{N}$, $P \mapsto \prod_{s,s'} (P^n)_{s,s'}$ is a polynomial function of the entries of P. Thus, for 400 each $n \in \mathbb{N}$, $f_n : (\theta, \sigma) \mapsto \prod_{s,s'}^{\sigma} (P^{\pi_{\theta,\sigma}n})_{s,s'}$, with $f_n(\theta, 0) = \prod_{s,s'} (P^{\mu_{\theta}n})_{s,s'}$ is continuous on 401 $\Theta \times \{0\}$. Moreover, for each $\theta \in \Theta$, $\sigma \geq 0$, from the structure of $P^{\pi_{\theta,\sigma}}$, if there is some $n^* \in \mathbb{N}$ 402 such that $f_{n^*}(\theta, \sigma) > 0$ then, for all $n \geq n^*$, $f_n(\theta, \sigma) > 0$.

403 Now let us suppose that there exists $(\theta_n) \in \Theta^{\mathbb{N}^*}$ such that, for each $n > 0$ there is a $\sigma_n \leq n^{-1}$ such 404 that $f_n(\theta_n, \sigma_n) = 0$. By compacity of Θ , we can take (θ_n) converging to some $\theta \in \Theta$. For each 405 $n^* \in \mathbb{N}$, by continuity we have $f_{n^*}(\theta, 0) = \lim_{n \to \infty} f_{n^*}(\hat{\theta}_n, \sigma_n) = 0$. Since P^{μ_θ} is irreducible and

aperiodic, there is some $n \in \mathbb{N}$ such that for all $s, s' \in \mathcal{S}$ and for all $n^* \ge n$, $\left(P^{\mu_{\theta} n^*}\right)$ 406 aperiodic, there is some $n \in \mathbb{N}$ such that for all $s, s' \in \mathcal{S}$ and for all $n^* \ge n$, $\left(P^{\mu_{\theta}n^{-}}\right)_{s, s'} > 0$, i.e. 407 $f_{n*}(\theta, 0) > 0$. This leads to a contradiction.

408 Hence, there exists $n^* > 0$ such that for all $\theta \in \Theta$ and $\sigma \leq n^{*-1}$, $f_n(\theta, \sigma) > 0$. We let $r = n^{*-1}$. It

409 follows that, for all $\theta \in \Theta$ and $\sigma \in [0,r]$, $P^{\pi_{\theta,\sigma}}$ is a transition matrix associated to an irreducible and 410 aperiodic Markov Chain, thus $d^{\pi_{\theta,\sigma}}$ is well defined as the unique stationary probability distribution 411 associated to $P^{\pi_{\theta,\sigma}}$. We fix $\theta \in \Theta$ in the remaining of the proof.

412 Let β a policy for which the Markov Chain corresponding to P^{β} is irreducible and aperiodic. Let 413 $s_* \in S$, as asserted in [Marbach and Tsitsiklis](#page-9-15) [\[2001\]](#page-9-15), considering stationary distribution d^{β} as a 414 vector $(d_s^{\beta})_{s \in \mathcal{S}} \in \mathbb{R}^{|\mathcal{S}|}$, d^{β} is the unique solution of the balance equations:

$$
\sum_{s \in \mathcal{S}} d_s^{\beta} P_{s,s'}^{\beta} = d_{s'}^{\beta} \quad s' \in \mathcal{S} \backslash \{s_*\},
$$

$$
\sum_{s \in \mathcal{S}} d_s^{\beta} = 1.
$$

415 Hence, we have A^{β} an $|S| \times |S|$ matrix and $a \neq 0$ a constant vector of $\mathbb{R}^{|S|}$ such that the balance ⁴¹⁶ equations is of the form

$$
A^{\beta}d^{\beta} = a \tag{16}
$$

417 with $A_{s,s'}^{\beta}$ depending on $P_{s',s}^{\beta}$ in an affine way, for each $s, s' \in \mathcal{S}$. Moreover, A^{β} is invertible, thus 418 d^{β} is given by

$$
d^{\beta} = \frac{1}{\det(A^{\beta})} \text{adj}(A^{\beta})^{\top} a.
$$

419 Entries of adj (A^{β}) and $\det(A^{\beta})$ are polynomial functions of the entries of P^{β} .

420 Thus, $\sigma \mapsto d^{\pi_{\theta,\sigma}} = \frac{1}{\det(A^{\pi_{\theta,\sigma}})} \text{adj}(A^{\pi_{\theta,\sigma}})^{\top} a$ is defined on $[0,r]$ and is continuous at 0.

421 Lemma [1](#page-13-2) and integration by parts imply that, for $s, s' \in S, \sigma \in [0, r]$:

$$
\int_{\mathcal{A}} \nabla_{a'} \nu_{\sigma}(a', a)|_{a' = \mu_{\theta}(s)} P(s'|s, a) da = - \int_{\mathcal{A}} \nabla_{a} \nu_{\sigma}(\mu_{\theta}(s), a) P(s'|s, a) da
$$

$$
= \int_{\mathcal{C}_{\mu_{\theta}(s)}} \nu_{\sigma}(\mu_{\theta}(s), a) \nabla_{a} P(s'|s, a) da + \text{boundary terms}
$$

$$
= \int_{\mathcal{C}_{\mu_{\theta}(s)}} \nu_{\sigma}(\mu_{\theta}(s), a) \nabla_{a} P(s'|s, a) da
$$

where the boundary terms are zero since ν_{σ} vanishes on the boundary due to Conditions [1.](#page-13-0)

423 Thus, for $s, s' \in \mathcal{S}, \sigma \in [0, r]$:

$$
\nabla_{\theta} P_{s,s'}^{\pi_{\theta,\sigma}} = \nabla_{\theta} \int_{\mathcal{A}} \pi_{\theta,\sigma}(a|s) P(s'|s,a) da
$$
\n
$$
= \int_{\mathcal{A}} \nabla_{\theta} \pi_{\theta,\sigma}(a|s) P(s'|s,a) da
$$
\n
$$
= \int_{\mathcal{A}} \nabla_{\theta} \mu_{\theta}(s) \nabla_{a'} \nu_{\sigma}(a',a)|_{a'=\mu_{\theta}(s)} P(s'|s,a) da
$$
\n
$$
= \nabla_{\theta} \mu_{\theta}(s) \int_{\mathcal{C}_{\mu_{\theta}(s)}} \nu_{\sigma}(\mu_{\theta}(s),a) \nabla_{a} P(s'|s,a) da
$$
\n(17)

⁴²⁴ where exchange of derivation and integral in [\(17\)](#page-15-0) follows by application of Leibniz rule with:

425 • $\forall a \in \mathcal{A}, \theta \mapsto \pi_{\theta, \sigma}(a|s)P(s'|s, a)$ is differentiable, and $\nabla_{\theta} \pi_{\theta, \sigma}(a|s)P(s'|s, a)$ 426 $\nabla_{\theta} \mu_{\theta}(s) \nabla_{a'} \nu_{\sigma}(a', a)|_{a' = \mu_{\theta}(s)}$

427

428
$$
\bullet \ \text{Let } a^* \in \mathcal{R}, \forall \theta \in \Theta,
$$

$$
\|\nabla_{\theta}\pi_{\theta,\sigma}(a|s)P(s'|s,a)\| = \left\|\nabla_{\theta}\mu_{\theta}(s) \nabla_{a'}\nu_{\sigma}(a',a)|_{a'=\mu_{\theta}(s)}\right\|
$$

\n
$$
\leq \|\nabla_{\theta}\mu_{\theta}(s)\|_{op} \left\|\nabla_{a'}\nu_{\sigma}(a',a)|_{a'=\mu_{\theta}(s)}\right\|
$$

\n
$$
\leq \sup_{\theta \in \Theta} \|\nabla_{\theta}\mu_{\theta}(s)\|_{op} \|\nabla_{a}\nu_{\sigma}(\mu_{\theta}(s),a)\|
$$

\n
$$
= \sup_{\theta \in \Theta} \|\nabla_{\theta}\mu_{\theta}(s)\|_{op} \|\nabla_{a}\nu_{\sigma}(a^*,a-\mu_{\theta}(s)+a^*)\|
$$
 (18)
\n
$$
\leq \sup_{\theta \in \Theta} \|\nabla_{\theta}\mu_{\theta}(s)\|_{op} \sup_{a \in \mathcal{C}_{a^*}} \|\nabla_{a}\nu_{\sigma}(a^*,a)\| \mathbf{1}_{a \in \mathcal{C}_{a^*}}
$$

where
$$
\| \cdot \|_{op}
$$
 denotes the operator norm, and (18) comes from translation invariance (we take
430
$$
\nabla_a \nu_{\sigma}(a^*, a) = 0 \text{ for } a \in \mathbb{R}^n \setminus C_{a^*}
$$
 \therefore $a \mapsto \sup_{\theta \in \Theta} \|\nabla_{\theta} \mu_{\theta}(s)\|_{op} \sup_{a \in C_{a^*}} \|\nabla_a \nu_{\sigma}(a^*, a)\| \mathbf{1}_{a \in C_{a^*}}$ is

431 measurable, bounded and supported on \mathcal{C}_{a^*} , so it is integrable on A.

432 • Dominated convergence ensures that, for each $k \in [\![1,m]\!]$, partial derivative $g_k(\theta) = \frac{\partial \theta_k}{\partial \theta_k} \int_A \nabla_\theta \pi_{\theta,\sigma}(a|s) P(s'|s, a) da$ is continuous: let $\theta_n \downarrow \theta$, then 433 $\partial_{\theta_k} \int_{\mathcal{A}} \nabla_{\theta} \pi_{\theta,\sigma}(a|s) P(s'|s,a) da$ is continuous: let $\theta_n \downarrow \theta$, then

$$
g_k(\theta_n) = \partial_{\theta_k} \int_{\mathcal{A}} \nabla_{\theta} \pi_{\theta_n, \sigma}(a|s) P(s'|s, a) da
$$

= $\partial_{\theta_k} \mu_{\theta_n}(s) \int_{\mathcal{C}_{a^*}} \nu_{\sigma}(a^*, a - \mu_{\theta_n}(s) + a^*) \nabla_a P(s'|s, a) da$

$$
\xrightarrow[n \to \infty]{} \partial_{\theta_k} \mu_{\theta}(s) \int_{\mathcal{C}_{a^*}} \nu_{\sigma}(a^*, a - \mu_{\theta}(s) + a^*) \nabla_a P(s'|s, a) da = g_k(\theta)
$$

with the dominating function $a \mapsto \sup$ 434 with the dominating function $a \mapsto \sup_{a \in C_{a^*}} |\nu_{\sigma}(a^*, a)| \sup_{a \in \mathcal{A}} ||\nabla_a P(s'|s, a)|| \mathbf{1}_{a \in C_{a^*}}$.

435 Thus $\sigma \mapsto \nabla_{\theta} P_{s,s'}^{\pi_{\theta,\sigma}}$ is defined for $\sigma \in [0,r]$ and is continuous at 0, with $\nabla_{\theta} P_{s,s'}^{\pi_{\theta,0}} =$ 436 $\nabla_{\theta} \mu_{\theta}(s) \nabla_{a} P(s'|s, a)|_{a = \mu_{\theta}(s)}$. Indeed, let $(\sigma_n)_{n \in \mathbb{N}} \in [0, r]^{+\mathbb{N}}$, $\sigma_n \downarrow 0$, then, applying the first 437 condition of Conditions [1](#page-13-0) with $f : a \mapsto \nabla_a P(s'|s, a)$ belonging to F, we get

$$
\left\|\nabla_{\theta} P_{s,s'}^{\pi_{\theta,\sigma_n}} - \nabla_{\theta} P_{s,s'}^{\mu_{\theta}}\right\|
$$

=\left\|\nabla_{\theta}\mu_{\theta}(s)\right\|_{op} \left\|\int_{\mathcal{C}_{\mu_{\theta}(s)}} \nu_{\sigma_n}(\mu_{\theta}(s),a) \nabla_a P(s'|s,a) da - \nabla_a P(s'|s,a)\big|_{a=\mu_{\theta}(s)} \right\| \to 0.

438 Since $d^{\pi_{\theta,\sigma}} = \frac{1}{\det(A^{\pi_{\theta,\sigma}})}$ adj $(A^{\pi_{\theta,\sigma}})^{\top}$ a with $|\det(A^{\pi_{\theta,\sigma}})| > 0$ for all $\sigma \in [0,r]$ and since entries 439 of adj $(A^{\pi_{\theta,\sigma}})$ and $\det(A^{\pi_{\theta,\sigma}})$ are polynomial functions of the entries of $P^{\pi_{\theta,\sigma}}$, it follows that

440 $\sigma \mapsto \nabla_{\theta} d^{\pi_{\theta,\sigma}}$ is properly defined on $[0,r]$ and is continuous at 0, which concludes the proof of ⁴⁴¹ Lemma [2.](#page-13-1) \Box

⁴⁴² We now proceed to prove Theorem [8.](#page-13-3)

443 Let $\theta \in \Theta$, π_{θ} as in Theorem [3,](#page-3-1) and $r > 0$ such that $\sigma \mapsto d^{\pi_{\theta,\sigma}}$, $\sigma \mapsto \nabla_{\theta} d^{\pi_{\theta,\sigma}}$ are well defined on 444 $[0, r]$ and are continuous at 0. Then, the following two functions

$$
\sigma \mapsto J_{\pi_{\theta,\sigma}}(\pi_{\theta,\sigma}) = \sum_{s \in S} d^{\pi_{\theta,\sigma}}(s) \int_{\mathcal{A}} \pi_{\theta,\sigma}(a|s) \bar{R}(s,a) da,
$$

$$
\sigma \mapsto J_{\pi_{\theta,\sigma}}(\mu_{\theta}) = \sum_{s \in S} d^{\pi_{\theta,\sigma}}(s) \bar{R}(s,\mu_{\theta}(s)),
$$

as are properly defined on $[0, r]$ (with $J_{\pi_{\theta,0}}(\pi_{\theta,0}) = J_{\pi_{\theta,0}}(\mu_{\theta}) = J_{\mu_{\theta}}(\mu_{\theta})$). Let $s \in S$, by taking ⁴⁴⁶ similar arguments as in the proof of Lemma [2,](#page-13-1) we have

$$
\nabla_{\theta} \int_{\mathcal{A}} \pi_{\theta,\sigma}(a|s) \bar{R}(s,a) da = \int_{\mathcal{A}} \nabla_{\theta} \pi_{\theta,\sigma}(a,s) \bar{R}(s,a) da,
$$

$$
= \nabla_{\theta} \mu_{\theta}(s) \int_{\mathcal{C}_{\mu_{\theta}(s)}} \nu_{\sigma}(\mu_{\theta}(s),a) \nabla_{a} \bar{R}(s,a) da.
$$

447 Thus, $\sigma \mapsto \nabla_{\theta} J_{\pi_{\theta,\sigma}}(\pi_{\theta,\sigma})$ is properly defined on $[0, r]$ and

$$
\nabla_{\theta} J_{\pi_{\theta,\sigma}}(\pi_{\theta,\sigma}) = \sum_{s \in \mathcal{S}} \nabla_{\theta} d^{\pi_{\theta,\sigma}}(s) \int_{\mathcal{A}} \pi_{\theta,\sigma}(a|s) \bar{R}(s,a) da \n+ \sum_{s \in \mathcal{S}} d^{\pi_{\theta,\sigma}}(s) \nabla_{\theta} \int_{\mathcal{A}} \pi_{\theta,\sigma}(a|s) \bar{R}(s,a) da \n= \sum_{s \in \mathcal{S}} \nabla_{\theta} d^{\pi_{\theta,\sigma}}(s) \int_{\mathcal{A}} \nu_{\sigma}(\mu_{\theta}(s),a) \bar{R}(s,a) da \n+ \sum_{s \in \mathcal{S}} d^{\pi_{\theta,\sigma}}(s) \nabla_{\theta} \mu_{\theta}(s) \int_{\mathcal{C}_{\mu_{\theta}(s)}} \nu_{\sigma}(\mu_{\theta}(s),a) \nabla_{a} \bar{R}(s,a) da.
$$

448 Similarly, $\sigma \mapsto \nabla_{\theta} J_{\pi_{\theta,\sigma}}(\mu_{\theta})$ is properly defined on $[0, r]$ and

$$
\nabla_{\theta} J_{\pi_{\theta,\sigma}}(\mu_{\theta}) = \sum_{s \in \mathcal{S}} \nabla_{\theta} d^{\pi_{\theta,\sigma}}(s) \bar{R}(s, \mu_{\theta}(s)) + \sum_{s \in \mathcal{S}} d^{\pi_{\theta,\sigma}}(s) \nabla_{\theta} \mu_{\theta}(s) \nabla_{a} \bar{R}(s, a) \big|_{a = \mu_{\theta}(s)}
$$

449 To prove continuity at 0 of both $\sigma \mapsto \nabla_{\theta} J_{\pi_{\theta,\sigma}}(\pi_{\theta,\sigma})$ and $\sigma \mapsto \nabla_{\theta} J_{\pi_{\theta,\sigma}}(\mu_{\theta})$ (with $\nabla_{\theta} J_{\pi_{\theta,0}}(\pi_{\theta,0}) =$ 450 $\nabla_{\theta} J_{\pi_{\theta,0}}(\mu_{\theta}) = \nabla_{\theta} J_{\mu_{\theta}}(\mu_{\theta})$), let $(\sigma_n)_{n\geq 0} \downarrow 0$:

$$
\|\nabla_{\theta} J_{\pi_{\theta,\sigma_n}}(\pi_{\theta,\sigma_n}) - \nabla_{\theta} J_{\pi_{\theta,0}}(\pi_{\theta,0})\| \leq \|\nabla_{\theta} J_{\pi_{\theta,\sigma_n}}(\pi_{\theta,\sigma_n}) - \nabla_{\theta} J_{\pi_{\theta,\sigma_n}}(\mu_{\theta})\| + \|\nabla_{\theta} J_{\pi_{\theta,\sigma_n}}(\mu_{\theta}) - \nabla_{\theta} J_{\mu_{\theta}}(\mu_{\theta})\|.
$$
\n(19)

⁴⁵¹ For the first term of the r.h.s we have

$$
\begin{split} & \left\| \nabla_{\theta} J_{\pi_{\theta,\sigma_n}}(\pi_{\theta,\sigma_n}) - \nabla_{\theta} J_{\pi_{\theta,\sigma_n}}(\mu_{\theta}) \right\| \\ & \leq \sum_{s \in \mathcal{S}} \left\| \nabla_{\theta} d^{\pi_{\theta,\sigma_n}}(s) \right\| \left| \int_{\mathcal{A}} \nu_{\sigma_n}(\mu_{\theta}(s),a) \bar{R}(s,a) da - \bar{R}(s,\mu_{\theta}(s)) \right| \\ & + \sum_{s \in \mathcal{S}} d^{\pi_{\theta,\sigma_n}}(s) \left\| \nabla_{\theta} \mu_{\theta}(s) \right\|_{\text{op}} \left\| \int_{\mathcal{A}} \nu_{\sigma_n}(\mu_{\theta}(s),a) \nabla_a \bar{R}(s,a) da - \nabla_a \bar{R}(s,a) \right\|_{a = \mu_{\theta}(s)} \right\| . \end{split}
$$

Applying the first assumption in Condition [1](#page-13-0) with $f : a \mapsto \overline{R}(s, a)$ and $f : a \mapsto \nabla_a \overline{R}(s, a)$ belonging 453 to F we have, for each $s \in \mathcal{S}$:

$$
\left\| \int_{\mathcal{A}} \nu_{\sigma_n}(\mu_{\theta}(s), a) \bar{R}(s, a) da - \bar{R}(s, \mu_{\theta}(s)) \right\| \underset{n \to \infty}{\longrightarrow} 0 \quad \text{and}
$$

$$
\left\| \int_{\mathcal{A}} \nu_{\sigma_n}(\mu_{\theta}(s), a) \nabla_a \bar{R}(s, a) da - \nabla_a \bar{R}(s, a) \right\|_{a = \mu_{\theta}(s)} \right\| \underset{n \to \infty}{\longrightarrow} 0.
$$

454 Moreover, for each $s \in S$, $d^{\pi_{\theta,\sigma_n}}(s) \longrightarrow_{n \to \infty} d^{\mu_\theta}(s)$ and $\nabla_\theta d^{\pi_{\theta,\sigma_n}}(s) \longrightarrow_{n \to \infty} \nabla_\theta d^{\mu_\theta}(s)$ (by Lemma [2\)](#page-13-1), 455 and $\|\nabla_{\theta}\mu_{\theta}(s)\|_{\text{op}}<\infty$, so

$$
\left\|\nabla_{\theta} J_{\pi_{\theta,\sigma_n}}(\pi_{\theta,\sigma_n}) - \nabla_{\theta} J_{\pi_{\theta,\sigma_n}}(\mu_{\theta})\right\| \underset{n \to \infty}{\longrightarrow} 0.
$$

⁴⁵⁶ For the second term of the r.h.s of [\(19\)](#page-16-0), we have

$$
\left\| \nabla_{\theta} J_{\pi_{\theta,\sigma_n}}(\mu_{\theta}) - \nabla_{\theta} J_{\mu_{\theta}}(\mu_{\theta}) \right\| \leq \sum_{s \in \mathcal{S}} \left\| \nabla_{\theta} d^{\pi_{\theta,\sigma_n}}(s) - \nabla_{\theta} d^{\mu_{\theta}}(s) \right\| \left| \bar{R}(s,\mu_{\theta}(s)) \right|
$$

+
$$
\sum_{s \in \mathcal{S}} \left| d^{\pi_{\theta,\sigma_n}}(s) - d^{\mu_{\theta}}(s) \right| \left\| \nabla_{\theta} \mu_{\theta}(s) \right\|_{\text{op}} \left\| \nabla_{a} \bar{R}(s,a) \right\|_{a = \mu_{\theta}(s)} \right\|.
$$

457 Continuity at 0 of $\sigma \mapsto d^{\pi_{\theta,\sigma}}(s)$ and $\sigma \mapsto \nabla_{\theta}d^{\pi_{\theta,\sigma}}(s)$ for each $s \in \mathcal{S}$, boundedness of $\bar{R}(s, \cdot)$, 458 $\nabla_a \overline{R}(s, \cdot)$ and $\nabla_\theta(s) \mu_\theta(s)$ implies that

$$
\left\|\nabla_{\theta} J_{\pi_{\theta,\sigma_n}}(\mu_{\theta}) - \nabla_{\theta} J_{\mu_{\theta}}(\mu_{\theta})\right\| \underset{n \to \infty}{\longrightarrow} 0.
$$

⁴⁵⁹ Hence,

$$
\left\|\nabla_{\theta} J_{\pi_{\theta,\sigma_n}}(\pi_{\theta,\sigma_n}) - \nabla_{\theta} J_{\pi_{\theta,0}}(\pi_{\theta,0})\right\| \underset{n \to \infty}{\longrightarrow} 0.
$$

460 So, $\sigma \mapsto \nabla_{\theta} J_{\pi_{\theta,\sigma}}(\pi_{\theta,\sigma})$ and $\nabla_{\theta} J_{\pi_{\theta,\sigma}}(\mu_{\theta})$ are continuous at 0:

$$
\lim_{\sigma \downarrow 0} \nabla_{\theta} J_{\pi_{\theta,\sigma}}(\pi_{\theta,\sigma}) = \lim_{\sigma \downarrow 0} \nabla_{\theta} J_{\pi_{\theta,\sigma}}(\mu_{\theta}) = \nabla_{\theta} J_{\mu_{\theta}}(\mu_{\theta}).
$$

⁴⁶¹ Proof of Theorem [4](#page-6-2)

462 We will use the two-time-scale stochastic approximation analysis. We let the policy parameter θ_t 463 fixed as $\theta_t \equiv \theta$ when analysing the convergence of the critic step. Thus we can show the convergence 464 of ω_t towards an ω_θ depending on θ , which will then be used to prove the convergence for the slow ⁴⁶⁵ time-scale.

166 Lemma [3](#page-5-1). *Under Assumptions* $3 - 5$ *, the sequence* ω_t^i generated from [\(2\)](#page-4-0) is bounded a.s., i.e., 467 $\sup_t ||\omega_t^i|| < \infty$ *a.s., for any* $i \in \mathcal{N}$ *.*

⁴⁶⁸ The proof follows the same steps as that of Lemma B.1 in the PMLR version of [Zhang et al.](#page-10-0) [\[2018\]](#page-10-0).

 $\bf 469$ **Lemma 4.** Under Assumption [5,](#page-6-0) the sequence $\{\hat{J}_t^i\}$ generated as in [2](#page-4-0) is bounded a.s, i.e., $\sup_t|\hat{J}_t^i|$ $<$ 470 ∞ *a.s., for any* $i \in \mathcal{N}$ *.*

⁴⁷¹ The proof follows the same steps as that of Lemma B.2 in the PMLR version of [Zhang et al.](#page-10-0) [\[2018\]](#page-10-0).

472 The desired result holds since **Step 1** and **Step 2** of the proof of Theorem 4.6 in [Zhang et al.](#page-10-0) [\[2018\]](#page-10-0) ⁴⁷³ can both be repeated in the setting of deterministic policies.

⁴⁷⁴ Proof of Theorem [5](#page-7-1)

475 Let $\mathcal{F}_{t,2} = \sigma(\theta_{\tau}, s_{\tau}, \tau \leq t)$ a filtration. In addition, we define

$$
H(\theta, s, \omega) = \nabla_{\theta} \mu_{\theta}(s) \cdot \nabla_{a} Q_{\omega}(s, a)|_{a = \mu_{\theta}(s)}
$$

\n
$$
H(\theta, s) = H(\theta, s, \omega_{\theta}),
$$

\n
$$
h(\theta) = \mathbb{E}_{s \sim d^{\theta}} [H(\theta, s)].
$$

,

476 Then, for each $\theta \in \Theta$, we can introduce $\nu_{\theta}: \mathcal{S} \to \mathbb{R}^n$ the solution to the Poisson equation:

$$
(I - P^{\theta}) \nu_{\theta}(\cdot) = H(\theta, \cdot) - h(\theta)
$$

477 that is given by $\nu_\theta(s) = \sum_{k \geq 0} \mathbb{E}_{s_{k+1} \sim P^\theta(\cdot | s_k)} [H(\theta, s_k) - h(\theta)|s_0 = s]$ which is properly defined 478 (similar to the differential value function V).

⁴⁷⁹ With projection, actor update [\(5\)](#page-4-1) becomes

$$
\theta_{t+1} = \Gamma[\theta_t + \beta_{\theta,t}H(\theta_t, s_t, \omega_t)]
$$
\n
$$
= \Gamma[\theta_t + \beta_{\theta,t}h(\theta_t) - \beta_{\theta,t}(h(\theta_t) - H(\theta_t, s_t)) - \beta_{\theta,t}(H(\theta_t, s_t) - H(\theta_t, s_t, \omega_t))]
$$
\n
$$
= \Gamma[\theta_t + \beta_{\theta,t}h(\theta_t) + \beta_{\theta,t}((I - P^{\theta_t})\nu_{\theta_t}(s_t)) + \beta_{\theta,t}A_t^1]
$$
\n
$$
= \Gamma[\theta_t + \beta_{\theta,t}h(\theta_t) + \beta_{\theta,t}(\nu_{\theta_t}(s_t) - \nu_{\theta_t}(s_{t+1})) + \beta_{\theta,t}(\nu_{\theta_t}(s_{t+1}) - P^{\theta_t}\nu_{\theta_t}(s_t)) + \beta_{\theta,t}A_t^1]
$$
\n
$$
= \Gamma[\theta_t + \beta_{\theta,t}(h(\theta_t) + A_t^1 + A_t^2 + A_t^3)]
$$
\n(20)

⁴⁸⁰ where

$$
A_t^1 = H(\theta_t, s_t, \omega_t) - H(\theta_t, s_t),
$$

\n
$$
A_t^2 = \nu_{\theta_t}(s_t) - \nu_{\theta_t}(s_{t+1}),
$$

\n
$$
A_t^3 = \nu_{\theta_t}(s_{t+1}) - P^{\theta_t} \nu_{\theta_t}(s_t).
$$

481 For $r < t$ we have

$$
\sum_{k=r}^{t-1} \beta_{\theta,k} A_k^2 = \sum_{k=r}^{t-1} \beta_{\theta,k} (\nu_{\theta_k}(s_k) - \nu_{\theta_k}(s_{k+1}))
$$
\n
$$
= \sum_{k=r}^{t-1} \beta_{\theta,k} (\nu_{\theta_k}(s_k) - \nu_{\theta_{k+1}}(s_{k+1})) + \sum_{k=r}^{t-1} \beta_{\theta,k} (\nu_{\theta_{k+1}}(s_{k+1}) - \nu_{\theta_k}(s_{k+1}))
$$
\n
$$
= \sum_{k=r}^{t-1} (\beta_{\theta,k+1} - \beta_{\theta,k}) \nu_{\theta_{k+1}}(s_{k+1}) + \beta_{\theta_r} \nu_{\theta_r}(s_r) - \beta_{\theta_t} \nu_{\theta_t}(s_t) + \sum_{k=r}^{t-1} \epsilon_k^{(2)}
$$
\n
$$
= \sum_{k=r}^{t-1} \epsilon_k^{(1)} + \sum_{k=r}^{t-1} \epsilon_k^{(2)} + \eta_{r,t}
$$

⁴⁸² where

$$
\begin{aligned} \epsilon_k^{(1)} &= \left(\beta_{\theta,k+1} - \beta_{\theta,k}\right)\nu_{\theta_{k+1}}(s_{k+1}),\\ \epsilon_k^{(2)} &= \beta_{\theta,k}\left(\nu_{\theta_{k+1}}(s_{k+1}) - \nu_{\theta_k}(s_{k+1})\right),\\ \eta_{r,t} &= \beta_{\theta_r}\nu_{\theta_r}(s_r) - \beta_{\theta_t}\nu_{\theta_t}(s_t). \end{aligned}
$$

483 **Lemma 5.** $\sum_{k=0}^{t-1} \beta_{\theta,k} A_k^2$ converges a.s. for $t \to \infty$

484 *Proof of Lemma* [5.](#page-18-0) Since $\nu_{\theta}(s)$ is uniformly bounded for $\theta \in \Theta$, $s \in \mathcal{S}$, we have for some $K > 0$ $t-1$

$$
\sum_{k=0}^{t-1} \left\| \epsilon_k^{(1)} \right\| \le K \sum_{k=0}^{t-1} |\beta_{\theta,k+1} - \beta_{\theta,k}|
$$

- ⁴⁸⁵ which converges given Assumption [5.](#page-6-0)
- 486 Moreover, since $\mu_{\theta}(s)$ is twice continuously differentiable, $\theta \mapsto \nu_{\theta}(s)$ is Lipschitz for each s, and so ⁴⁸⁷ we have

$$
\sum_{k=0}^{t-1} \left\| \epsilon_k^{(2)} \right\| \le \sum_{k=0}^{t-1} \beta_{\theta,k} \left\| \nu_{\theta_k}(s_{k+1}) - \nu_{\theta_{k+1}}(s_{k+1}) \right\|
$$

$$
\le K^2 \sum_{k=0}^{t-1} \beta_{\theta,k} \left\| \theta_k - \theta_{k+1} \right\|
$$

$$
\le K^3 \sum_{k=0}^{t-1} \beta_{\theta,k}^2.
$$

488 Finally, $\lim_{t \to \infty} ||\eta_{0,t}|| = \beta_{\theta,0} ||\nu_{\theta_0}(s_0)|| < \infty$ a.s.

$$
\text{Thus, } \sum_{k=0}^{t-1} \left\| \beta_{\theta,k} A_k^2 \right\| \le \sum_{k=0}^{t-1} \left\| \epsilon_k^{(1)} \right\| + \sum_{k=0}^{t-1} \left\| \epsilon_k^{(2)} \right\| + \left\| \eta_{0,t} \right\| \text{ converges a.s.}
$$

- 490 **Lemma 6.** $\sum_{k=0}^{t-1} \beta_{\theta,k} A_k^3$ converges a.s. for $t \to \infty$.
- ⁴⁹¹ *Proof of Lemma [6.](#page-19-0)* We set

$$
Z_t = \sum_{k=0}^{t-1} \beta_{\theta,k} A_k^3 = \sum_{k=0}^{t-1} \beta_{\theta,k} \left(\nu_{\theta_k}(s_{k+1}) - P^{\theta_k} \nu_{\theta_k}(s_k) \right).
$$

 \Box

492 Since Z_t is \mathcal{F}_t -adapted and $\mathbb{E}[\nu_{\theta_t}(s_{t+1}) | \mathcal{F}_t] = P^{\theta_t} \nu_{\theta_t}(s_t)$, Z_t is a martingale. The remaining of the ⁴⁹³ proof is now similar to the proof of Lemma 2 on page 224 of [Benveniste et al.](#page-9-17) [\[1990\]](#page-9-17). П

Let
$$
g^{i}(\theta_{t}) = \mathbb{E}_{s_{t} \sim d^{\theta_{t}}} [\psi_{t}^{i} \cdot \xi_{t, \theta_{t}}^{i} | \mathcal{F}_{t, 2}]
$$
 and $g(\theta) = [g^{1}(\theta), \dots, g^{N}(\theta)]$. We have
\n
$$
g^{i}(\theta_{t}) = \sum_{s_{t} \in S} d^{\theta_{t}}(s_{t}) \cdot \psi_{t}^{i} \cdot \xi_{t, \theta_{t}}^{i}.
$$

494 Given [\(10\)](#page-6-3), $\theta \mapsto \omega_\theta$ is continuously differentiable and $\theta \mapsto \nabla_\theta \omega_\theta$ is bounded so $\theta \mapsto \omega_\theta$ is 495 Lipschitz-continuous. Thus $\theta \mapsto \xi_{t,\theta}^i$ is Lipschitz-continuous for each $s_t \in \mathcal{S}$. Due to our regularity assumptions, $\theta \mapsto \psi_{t,\theta_t}^i$ is also continuous for each $i \in \mathcal{N}, s_t \in \mathcal{S}$. Moreover, $\theta \mapsto d^{\theta}(s)$ is also 497 Lipschitz continuous for each $s \in S$. Hence, $\theta \mapsto g(\theta)$ is Lipschitz-continuous in θ and the ODE ⁴⁹⁸ [\(12\)](#page-7-2) is well-posed. This holds even when using compatible features.

499 By critic faster convergence, we have $\lim_{t\to\infty} ||\xi_t^i - \xi_{t,\theta_t}^i|| = 0$ so $\lim_{t\to\infty} A_t^1 = 0$.

⁵⁰⁰ Hence, by Kushner-Clark lemma [Kushner and Clark](#page-9-11) [\[1978\]](#page-9-11) (pp 191-196) we have that the update in ⁵⁰¹ [\(20\)](#page-18-1) converges a.s. to the set of asymptotically stable equilibria of the ODE [\(12\)](#page-7-2).

⁵⁰² Proof of Theorem [6](#page-7-3)

- ⁵⁰³ We use the two-time scale technique: since critic updates at a faster rate than the actor, we let the 504 policy parameter θ_t to be fixed as θ when analysing the convergence of the critic update.
- 505 **Lemma 7.** *Under Assumptions [4,](#page-5-2) [1](#page-5-4) and [6,](#page-6-1) for any* $i \in \mathcal{N}$ *, sequence* $\{\lambda_t^i\}$ *generated from [\(7\)](#page-4-2) is* ⁵⁰⁶ *bounded almost surely.*

⁵⁰⁷ To prove this lemma we verify the conditions for Theorem A.2 of [Zhang et al.](#page-10-0) [\[2018\]](#page-10-0) to hold. 508 We use $\{\mathcal{F}_{t,1}\}\$ to denote the filtration with $\mathcal{F}_{t,1} = \sigma(s_\tau, C_{\tau-1}, a_{\tau-1}, r_\tau, \lambda_\tau, \tau \leq t)$. With $\lambda_t =$ 509 $\left[(\lambda_t^1)^\top, \ldots, (\lambda_t^N)^\top \right]^\top$, critic step [\(7\)](#page-4-2) has the form:

$$
\lambda_{t+1} = (C_t \otimes I) \left(\lambda_t + \beta_{\lambda, t} \cdot y_{t+1} \right) \tag{21}
$$

510 with $y_{t+1} = (\delta_t^1 w(s_t, a_t)^\top, \dots, \delta_t^N w(s_t, a_t)^\top)^\top \in \mathbb{R}^{KN}$, \otimes denotes Kronecker product and I is ⁵¹¹ the identity matrix. Using the same notation as in Assumption A.1 from [Zhang et al.](#page-10-0) [\[2018\]](#page-10-0), we ⁵¹² have:

$$
h^{i}(\lambda_{t}^{i}, s_{t}) = \mathbb{E}_{a \sim \pi} \left[\delta_{t}^{i} w(s_{t}, a)^{\top} | \mathcal{F}_{t, 1} \right] = \int_{\mathcal{A}} \pi(a|s_{t}) (R^{i}(s_{t}, a) - w(s_{t}, a) \cdot \lambda_{t}^{i}) w(s_{t}, a)^{\top} da,
$$

\n
$$
M_{t+1}^{i} = \delta_{t}^{i} w(s_{t}, a_{t})^{\top} - \mathbb{E}_{a \sim \pi} \left[\delta_{t}^{i} w(s_{t}, a)^{\top} | \mathcal{F}_{t, 1} \right],
$$

\n
$$
\bar{h}^{i}(\lambda_{t}) = A_{\pi, \theta}^{i} \cdot d_{\pi}^{s} - B_{\pi, \theta} \cdot \lambda_{t}, \qquad \text{where } A_{\pi, \theta}^{i} = \left[\int_{\mathcal{A}} \pi(a|s) R^{i}(s, a) w(s, a)^{\top} da, s \in \mathcal{S} \right].
$$

513 Since feature vectors are uniformly bounded for any $s \in S$ and $a \in A$, h^i is Lipschitz continuous in 514 its first argument. Since, for $i \in \mathcal{N}$, the r^i are also uniformly bounded, $\mathbb{E} \left[\|M_{t+1}\|^2 | \mathcal{F}_{t,1} \right] \leq K \cdot (1 +$ 515 $\|\lambda_t\|^2$) for some $K > 0$. Furthermore, finiteness of $|S|$ ensures that, a.s., $\|\bar{h}(\lambda_t) - \bar{h}(\lambda_t, s_t)\|^2 \leq$ 516 $K' \cdot (1 + ||\lambda_t||^2)$. Finally, $h_{\infty}(y)$ exists and has the form

$$
h_{\infty}(y) = -B_{\pi,\theta} \cdot y.
$$

517 From Assumption [1,](#page-5-4) we have that $-B_{\pi,\theta}$ is a Hurwitcz matrix, thus the origin is a globally asymptot-518 ically stable attractor of the ODE $\dot{y} = h_{\infty}(y)$. Hence **Theorem A.2** of [Zhang et al.](#page-10-0) [\[2018\]](#page-10-0) applies, ⁵¹⁹ which concludes the proof of Lemma [7.](#page-19-1)

⁵²⁰ We introduce the following operators as in [Zhang et al.](#page-10-0) [\[2018\]](#page-10-0):

$$
\begin{aligned} \mathsf{521} \qquad \qquad \bullet \ \langle \cdot \rangle : \mathbb{R}^{KN} \to \mathbb{R}^K \\ \langle \lambda \rangle &= \frac{1}{N} (\mathbf{1}^\top \otimes I) \lambda = \frac{1}{N} \sum_{i \in \mathcal{N}} \end{aligned}
$$

$$
\mathbf{522} \qquad \bullet \ \mathcal{J} = \left(\frac{1}{N}\mathbf{11}^{\top} \otimes I\right) : \mathbb{R}^{KN} \to \mathbb{R}^{KN} \text{ such that } \mathcal{J}\lambda = \mathbf{1} \otimes \langle \lambda \rangle.
$$

$$
\bullet \ \mathcal{J}_{\perp} = I - \mathcal{J} : \mathbb{R}^{KN} \to \mathbb{R}^{KN} \text{ and we note } \lambda_{\perp} = \mathcal{J}_{\perp} \lambda = \lambda - \mathbf{1} \otimes \langle \lambda \rangle.
$$

⁵²⁴ We then proceed in two steps as in [Zhang et al.](#page-10-0) [\[2018\]](#page-10-0), firstly by showing the convergence a.s. of the

- 525 disagreement vector sequence $\{\lambda_{\perp,t}\}$ to zero, secondly showing that the consensus vector sequence
- 526 $\{\langle \lambda_t \rangle\}$ converges to the equilibrium such that $\langle \lambda_t \rangle$ is solution to [\(13\)](#page-7-4).

527 **Lemma 8.** *Under Assumptions [4,](#page-5-2) [1](#page-5-4) and [6,](#page-6-1) for any* $M > 0$ *, we have*

$$
\sup_{t} \mathbb{E}\Big[\|\beta_{\lambda,t}^{-1}\lambda_{\perp,t}\|^2 1_{\{\sup_{t}\|\lambda_t\|\leq M\}}\Big] < \infty.
$$

528 Since dynamic of $\{\lambda_t\}$ described by [\(21\)](#page-19-2) is similar to (5.2) in [Zhang et al.](#page-10-0) [\[2018\]](#page-10-0) we have

$$
\mathbb{E}\Big[\|\beta_{\lambda,t+1}^{-1}\lambda_{\perp,t+1}\|^2|\mathcal{F}_{t,1}\Big] = \frac{\beta_{\lambda,t}^2}{\beta_{\lambda,t+1}^2}\rho\left(\|\beta_{\lambda,t}^{-1}\lambda_{\perp,t}\|^2+2\cdot\|\beta_{\lambda,t}^{-1}\lambda_{\perp,t}\|\cdot\mathbb{E}(\|y_{t+1}\|^2|\mathcal{F}_{t,1})^{\frac{1}{2}} + \mathbb{E}(\|y_{t+1}\|^2|\mathcal{F}_{t,1})\right) \tag{22}
$$

529 where *ρ* represents the spectral norm of $\mathbb{E}\left[C_t^\top \cdot (I - \mathbf{1} \mathbf{1}^\top / N) \cdot C_t\right]$, with $\rho \in [0, 1)$ by Assumption 530 [4.](#page-5-2) Since $y_{t+1}^i = \delta_t^i \cdot w(s_t, a_t)^\top$ we have

$$
\mathbb{E}\Big[\|y_{t+1}\|^2|\mathcal{F}_{t,1}\Big] = \mathbb{E}\Big[\sum_{i\in\mathcal{N}}\|(r^i(s_t,a_t)-w(s_t,a_t)\lambda_t^i)\cdot w(s_t,a_t)^\top\|^2|\mathcal{F}_{t,1}\Big] \leq 2\cdot\mathbb{E}\Big[\sum_{i\in\mathcal{N}}\|r^i(s_t,a_t)w(s_t,a_t)^\top\|^2 + \|w(s_t,a_t)^\top\|^4\cdot\|\lambda_t^i\|^2|\mathcal{F}_{t,1}\Big].
$$

531 By uniform boundedness of $r(s, \cdot)$ and $w(s, \cdot)$ (Assumptions [1\)](#page-5-4) and finiteness of S, there exists 532 $K_1 > 0$ such that

$$
\mathbb{E}\Big[\|y_{t+1}\|^2|\mathcal{F}_{t,1}\Big]\leq K_1(1+\|\lambda_t\|^2).
$$

533 Thus, for any $M > 0$ there exists $K_2 > 0$ such that, on the set $\{\sup_{\tau \leq t} ||\lambda_{\tau}|| < M\}$,

$$
\mathbb{E}\Big[\|y_{t+1}\|^2 1_{\{\sup_{\tau\leq t} \|\lambda_{\tau}\| < M\}}|\mathcal{F}_{t,1}\Big] \leq K_2. \tag{23}
$$

 $\lambda^i.$

534 We let $v_t = ||\beta_{\lambda,t}^{-1} \lambda_{\perp,t}||^2 \mathbb{1}_{\{\sup_{\tau \leq t} ||\lambda_{\tau}|| < M\}}$. Taking expectation over [\(22\)](#page-20-0), noting that 535 $\mathbb{1}_{\{\sup_{\tau\leq t+1}||\lambda_{\tau}||\leq M\}} \leq \mathbb{1}_{\{\sup_{\tau\leq t}||\lambda_{\tau}||\leq M\}}$ we get

$$
\mathbb{E}(v_{t+1}) \leq \frac{\beta_{\lambda,t}^2}{\beta_{\lambda,t+1}^2} \rho \left(\mathbb{E}(v_t) + 2\sqrt{\mathbb{E}(v_t)} \cdot \sqrt{K_2} + K_2 \right)
$$

⁵³⁶ which is the same expression as (5.10) in [Zhang et al.](#page-10-0) [\[2018\]](#page-10-0). So similar conclusions to the ones of ⁵³⁷ Step 1 of [Zhang et al.](#page-10-0) [\[2018\]](#page-10-0) holds:

$$
\sup_{t} \mathbb{E}\Big[\|\beta_{\lambda,t}^{-1}\lambda_{\perp,t}\|^2 \mathbb{1}_{\{\sup_{t} \|\lambda_t\| \le M\}}\Big] < \infty \tag{24}
$$

and
$$
\lim_{t} \lambda_{\perp,t} = 0 \text{ a.s.}
$$
 (25)

538 We now show convergence of the consensus vector $\mathbf{1} \otimes \langle \lambda_t \rangle$. Based on [\(21\)](#page-19-2) we have

$$
\langle \lambda_{t+1} \rangle = \langle (C_t \otimes I)(\mathbf{1} \otimes \langle \lambda_t \rangle + \lambda_{\perp, t} + \beta_{\lambda, t} y_{t+1}) \rangle
$$

= $\langle \lambda_t \rangle + \langle \lambda_{\perp, t} \rangle + \beta_{\lambda, t} \langle (C_t \otimes I)(y_{t+1} + \beta_{\lambda, t}^{-1} \lambda_{\perp, t}) \rangle$
= $\langle \lambda_t \rangle + \beta_{\lambda, t} (h(\lambda_t, s_t) + M_{t+1})$

539 where $h(\lambda_t, s_t) = \mathbb{E}_{a_t \sim \pi} \left[\langle y_{t+1} \rangle | \mathcal{F}_t \right]$ and $M_{t+1} = \langle (C_t \otimes I)(y_{t+1} + \beta_{\lambda, t}^{-1} \lambda_{\perp, t}) \rangle - \mathbb{E}_{a_t \sim \pi} \left[\langle y_{t+1} \rangle | \mathcal{F}_t \right]$. 540 Since $\langle \delta_t \rangle = \bar{r}(s_t, a_t) - w(s_t, a_t)\langle \lambda_t \rangle$, we have

$$
h(\lambda_t, s_t) = \mathbb{E}_{a_t \sim \pi}(\bar{r}(s_t, a_t)w(s_t, a_t)^{\top}|\mathcal{F}_t) + \mathbb{E}_{a_t \sim \pi}(w(s_t, a_t)\langle \lambda_t \rangle \cdot w(s_t, a_t)^{\top}|\mathcal{F}_{t,1})
$$

541 so h is Lipschitz-continuous in its first argument. Moreover, since $\langle \lambda_{\perp,t} \rangle = 0$ and $\mathbf{1}^\top \mathbb{E}(C_t|\mathcal{F}_{t,1}) =$ 542 **1**^{\top} a.s.:

$$
\mathbb{E}_{a_t \sim \pi} \left[\langle (C_t \otimes I)(y_{t+1} + \beta_{\lambda, t}^{-1} \lambda_{\perp, t}) \rangle | \mathcal{F}_{t,1} \right] = \mathbb{E}_{a_t \sim \pi} \left[\frac{1}{N} (\mathbf{1}^\top \otimes I)(C_t \otimes I)(y_{t+1} + \beta_{\lambda, t}^{-1} \lambda_{\perp, t}) | \mathcal{F}_{t,1} \right]
$$

\n
$$
= \frac{1}{N} (\mathbf{1}^\top \otimes I)(\mathbb{E}(C_t | \mathcal{F}_{t,1}) \otimes I) \mathbb{E}_{a_t \sim \pi} \left[y_{t+1} + \beta_{\lambda, t}^{-1} \lambda_{\perp, t} | \mathcal{F}_{t,1} \right]
$$

\n
$$
= \frac{1}{N} (\mathbf{1}^\top \mathbb{E}(C_t | \mathcal{F}_{t,1}) \otimes I) \mathbb{E}_{a_t \sim \pi} \left[y_{t+1} + \beta_{\lambda, t}^{-1} \lambda_{\perp, t} | \mathcal{F}_{t,1} \right]
$$

\n
$$
= \mathbb{E}_{a_t \sim \pi} \left[\langle y_{t+1} \rangle | \mathcal{F}_{t,1} \right] \text{ a.s.}
$$

543 So $\{M_t\}$ is a martingale difference sequence. Additionally we have

$$
\mathbb{E}[||M_{t+1}||^2|\mathcal{F}_{t,1}] \leq 2 \cdot \mathbb{E}[||y_{t+1} + \beta_{\lambda,t}^{-1}\lambda_{\perp,t}||_{G_t}^2|\mathcal{F}_{t,1}] + 2 \cdot ||\mathbb{E}[\langle y_{t+1}||\mathcal{F}_{t,1}]||^2
$$

544 with $G_t = N^{-2} \cdot C_t^\top \mathbf{1} \mathbf{1}^\top C_t \otimes I$ whose spectral norm is bounded for C_t is stochastic. From [\(23\)](#page-20-1) and 545 [\(24\)](#page-20-2) we have that, for any $M > 0$, over the set $\{\sup_t \|\lambda_t\| \le M\}$, there exists $K_3, K_4 < \infty$ such that

$$
\mathbb{E}\big[\|y_{t+1}+\beta_{\lambda,t}^{-1}\lambda_{\perp,t}\|_{G_t}^2|\mathcal{F}_{t,1}\big]\mathbb{1}_{\{\sup_t\|\lambda_t\|\leq M\}}\leq K_3\cdot\mathbb{E}\big[\|y_{t+1}\|^2+\|\beta_{\lambda,t}^{-1}\lambda_{\perp,t}\|^2|\mathcal{F}_{t,1}\big]\mathbb{1}_{\{\sup_t\|\lambda_t\|\leq M\}}\leq K_4.
$$

546 Besides, since r_{t+1}^i and w are uniformly bounded, there exists $K_5 < \infty$ such that 547 $\|\mathbb{E}[\langle y_{t+1} \rangle | \mathcal{F}_{t,1}] \|^{2} \leq K_5 \cdot (1 + \| \langle \lambda_t \rangle \|^{2})$. Thus, for any $M > 0$, there exists some $K_6 < \infty$ 548 such that over the set $\{\sup_t \|\lambda_t\| \leq M\}$

$$
\mathbb{E}\big[\|M_{t+1}\|^2|\mathcal{F}_{t,1}\big]\leq K_6\cdot(1+\|\langle\lambda_t\rangle\|^2).
$$

549 Hence, for any $M > 0$, assumptions (a.1) - (a.5) of B.1. from [Zhang et al.](#page-10-0) [\[2018\]](#page-10-0) are verified on the 550 set $\{\sup_t \|\lambda_t\| \leq M\}$. Finally, we consider the ODE asymptotically followed by $\langle \lambda_t \rangle$:

$$
\langle \dot{\lambda_t} \rangle = -B_{\pi,\theta} \cdot \langle \lambda_t \rangle + A_{\pi,\theta} \cdot d^{\pi}
$$

551 which has a single globally asymptotically stable equilibrium $\lambda^* \in \mathbb{R}^K$, since $B_{\pi,\theta}$ is positive 552 definite: $\lambda^* = B_{\pi,\theta}^{-1} \cdot A_{\pi,\theta} \cdot d^{\pi}$. By Lemma [7,](#page-19-1) sup_t $\|\langle \lambda_t \rangle \| < \infty$ a.s., all conditions to apply **Theorem** 553 **B.2.** of [Zhang et al.](#page-10-0) [\[2018\]](#page-10-0) hold a.s., which means that $\langle \lambda_t \rangle \longrightarrow \lambda^*$ a.s. As $\lambda_t = \mathbf{1} \otimes \langle \lambda_t \rangle + \lambda_{\perp, t}$ 554 and $\lambda_{\perp,t} \longrightarrow 0$ a.s., we have for each $i \in \mathcal{N}$, a.s.,

$$
\lambda_t^i \underset{t \to \infty}{\longrightarrow} B_{\pi,\theta}^{-1} \cdot A_{\pi,\theta} \cdot d^{\pi}.
$$

⁵⁵⁵ Proof of Theorem [7](#page-8-0)

556 Let $\mathcal{F}_{t,2} = \sigma(\theta_{\tau}, \tau \leq t)$ be the σ -field generated by $\{\theta_{\tau}, \tau \leq t\}$, and let

$$
\zeta_{t,1}^i = \psi_t^i \cdot \xi_t^i - \mathbb{E}_{s_t \sim d^\pi} \left[\psi_t^i \cdot \xi_t^i | \mathcal{F}_{t,2} \right], \qquad \zeta_{t,2}^i = \mathbb{E}_{s_t \sim d^\pi} \left[\psi_t^i \cdot (\xi_t^i - \xi_{t,\theta_t}^i) | \mathcal{F}_{t,2} \right].
$$

⁵⁵⁷ With local projection, actor update [\(6\)](#page-4-3) becomes

$$
\theta_{t+1}^i = \Gamma^i \left[\theta_t^i + \beta_{\theta,t} \mathbb{E}_{s_t \sim d^\pi} \left[\psi_t^i \cdot \xi_{t,\theta_t}^i | \mathcal{F}_{t,2} \right] + \beta_{\theta,t} \zeta_{t,1}^i + \beta_{\theta,t} \zeta_{t,2}^i \right]. \tag{26}
$$

So with
$$
h^{i}(\theta_{t}) = \mathbb{E}_{s_{t} \sim d^{\pi}} \left[\psi_{t}^{i} \cdot \xi_{t, \theta_{t}}^{i} | \mathcal{F}_{t, 2} \right]
$$
 and $h(\theta) = \left[h^{1}(\theta), \dots, h^{N}(\theta) \right]$, we have
\n
$$
h^{i}(\theta_{t}) = \sum_{s_{t} \in S} d^{\pi}(s_{t}) \cdot \psi_{t}^{i} \cdot \xi_{t, \theta_{t}}^{i}.
$$

558 Given [\(10\)](#page-6-3), $\theta \mapsto \omega_{\theta}$ is continuously differentiable and $\theta \mapsto \nabla_{\theta} \omega_{\theta}$ is bounded so $\theta \mapsto \omega_{\theta}$ is Lipschitzthe state state of thus $\theta \mapsto \xi_{t,\theta}^i$ is Lipschitz-continuous for each $s_t \in S$. Our regularity assumptions

- 560 ensure that $\theta \mapsto \psi_{t,\theta_t}^i$ is continuous for each $i \in \mathcal{N}, s_t \in \mathcal{S}$. Moreover, $\theta \mapsto d^{\theta}(s)$ is also Lipschitz 561 continuous for each $s \in S$. Hence, $\theta \mapsto g(\theta)$ is Lipschitz-continuous in θ and the ODE [\(12\)](#page-7-2) is ⁵⁶² well-posed. This holds even when using compatible features.
- 563 By critic faster convergence, we have $\lim_{t\to\infty} ||\xi_t^i \xi_{t,\theta_t}^i|| = 0$.
- 564 Let $M_t^i = \sum_{\tau=0}^{t-1} \beta_{\theta,\tau} \zeta_{\tau,1}^i$. M_t^i is a martingale sequence with respect to $\mathcal{F}_{t,2}$. Since 565 $\{\omega_t\}_t, \{\nabla_a \phi_k(s, a)\}_{s,k}$, and $\{\nabla_\theta \mu_\theta(s)\}_s$ are bounded (Lemma [3,](#page-17-0) Assumption [2\)](#page-5-3), it follows
- that the sequence $\left\{ \zeta_{t,1}^i \right\}$ is bounded. Thus, by Assumption [5,](#page-6-0) $\sum_t \mathbb{E}\left[\left\| M_{t+1}^i M_t^i \right\| \right]$ 566 that the sequence $\left\{\zeta_{t,1}^i\right\}$ is bounded. Thus, by Assumption 5, $\sum_t \mathbb{E}\left[\left\|M_{t+1}^i - M_t^i\right\|^2|\mathcal{F}_{t,2}\right] =$
- $\sum_{t} ||\beta_{\theta,t} \zeta_{t,1}^i||$ 567 $\sum_{t} ||\beta_{\theta,t} \zeta_{t,1}^i||^2 < \infty$ a.s. The martingale convergence theorem ensures that $\{M_t^i\}$ converges a.s. 568 Thus, for any $\epsilon > 0$,

$$
\lim_{t} \mathbb{P}\left(\sup_{n\geq t} \left\|\sum_{\tau=t}^{n} \beta_{\theta,\tau} \zeta_{\tau,1}^{i}\right\| \geq \epsilon\right) = 0.
$$

- ⁵⁶⁹ Hence, by Kushner-Clark lemma [Kushner and Clark](#page-9-11) [\[1978\]](#page-9-11) (pp 191-196) we have that the update in
- ⁵⁷⁰ [\(26\)](#page-21-0) converges a.s. to the set of asymptotically stable equilibria of the ODE [\(12\)](#page-7-2).