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Abstract

[Zhang, ICML 2018] provided the first decentralized actor-critic algorithm for1

multi-agent reinforcement learning (MARL) that offers convergence guarantees. In2

that work, policies are stochastic and are defined on finite action spaces. We extend3

those results to offer a provably-convergent decentralized actor-critic algorithm for4

learning deterministic policies on continuous action spaces. Deterministic policies5

are important in real-world settings. To handle the lack of exploration inherent in de-6

terministic policies, we consider both off-policy and on-policy settings. We provide7

the expression of a local deterministic policy gradient, decentralized deterministic8

actor-critic algorithms and convergence guarantees for linearly-approximated value9

functions. This work will help enable decentralized MARL in high-dimensional10

action spaces and pave the way for more widespread use of MARL.11

1 Introduction12

Cooperative multi-agent reinforcement learning (MARL) has seen considerably less use than its13

single-agent analog, in part because often no central agent exists to coordinate the cooperative agents.14

As a result, decentralized architectures have been advocated for MARL. Recently, decentralized15

architectures have been shown to admit convergence guarantees comparable to their centralized16

counterparts under mild network-specific assumptions (see Zhang et al. [2018], Suttle et al. [2019]).17

In this work, we develop a decentralized actor-critic algorithm with deterministic policies for multi-18

agent reinforcement learning. Specifically, we extend results for actor-critic with stochastic policies19

(Bhatnagar et al. [2009], Degris et al. [2012], Maei [2018], Suttle et al. [2019]) to handle deterministic20

policies. Indeed, theoretical and empirical work has shown that deterministic algorithms outperform21

their stochastic counterparts in high-dimensional continuous action settings (Silver et al. [January22

2014b], Lillicrap et al. [2015], Fujimoto et al. [2018]). Deterministic policies further avoid estimating23

the complex integral over the action space. Empirically this allows for lower variance of the critic24

estimates and faster convergence. On the other hand, deterministic policy gradient methods suffer25

from reduced exploration. For this reason, we provide both off-policy and on-policy versions of our26

results, the off-policy version allowing for significant improvements in exploration. The contributions27

of this paper are three-fold: (1) we derive the expression of the gradient in terms of the long-term28

average reward, which is needed in the undiscounted multi-agent setting with deterministic policies;29

(2) we show that the deterministic policy gradient is the limiting case, as policy variance tends to30

zero, of the stochastic policy gradient; and (3) we provide a decentralized deterministic multi-agent31

actor critic algorithm and prove its convergence under linear function approximation.32
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2 Background33

Consider a system of N agents denoted by N = [N ] in a decentralized setting. Agents determine34

their decisions independently based on observations of their own rewards. Agents may however com-35

municate via a possibly time-varying communication network, characterized by an undirected graph36

Gt = (N , Et), where Et is the set of communication links connecting the agents at time t ∈ N. The37

networked multi-agent MDP is thus characterized by a tuple (S,
{
Ai
}
i∈N , P,

{
Ri
}
i∈N , {Gt}t≥0)38

where S is a finite global state space shared by all agents in N , Ai is the action space of agent i, and39

{Gt}t≥0 is a time-varying communication network. In addition, let A =
∏
i∈N Ai denote the joint40

action space of all agents. Then, P : S × A × S → [0, 1] is the state transition probability of the41

MDP, and Ri : S ×A → R is the local reward function of agent i. States and actions are assumed42

globally observable whereas rewards are only locally observable. At time t, each agent i chooses its43

action ait ∈ Ai given state st ∈ S, according to a local parameterized policy πiθi : S ×Ai → [0, 1],44

where πiθi(s, a
i) is the probability of agent i choosing action ai at state s, and θi ∈ Θi ⊆ Rmi is45

the policy parameter. We pack the parameters together as θ = [(θ1)>, · · · , (θN )>]> ∈ Θ where46

Θ =
∏
i∈N Θi. We denote the joint policy by πθ : S×A → [0, 1] where πθ(s, a) =

∏
i∈N π

i
θi(s, a

i).47

Note that decisions are decentralized in that rewards are observed locally, policies are evaluated48

locally, and actions are executed locally. We assume that for any i ∈ N , s ∈ S, ai ∈ Ai, the49

policy function πiθi(s, a
i) > 0 for any θi ∈ Θi and that πiθi(s, a

i) is continuously differentiable with50

respect to the parameters θi over Θi. In addition, for any θ ∈ Θ, let P θ : S × S → [0, 1] denote51

the transition matrix of the Markov chain {st}t≥0 induced by policy πθ, that is, for any s, s′ ∈ S,52

P θ(s′|s) =
∑
a∈A πθ(s, a) · P (s′|s, a). We make the standard assumption that the Markov chain53

{st}t≥0 is irreducible and aperiodic under any πθ and denote its stationary distribution by dθ.54

Our objective is to find a policy πθ that maximizes the long-term average reward over the network.55

Let rit+1 denote the reward received by agent i as a result of taking action ait. Then, we wish to solve:56

max
θ
J(πθ) = lim

T→∞

1

T
E

[
T−1∑
t=0

1

N

∑
i∈N

rit+1

]
=

∑
s∈S,a∈A

dθ(s)πθ(s, a)R̄(s, a),

where R̄(s, a) = (1/N) ·
∑
i∈N R

i(s, a) is the globally averaged reward function. Let r̄t =57

(1/N) ·
∑
i∈N r

i
t, then R̄(s, a) = E [r̄t+1|st = s, at = a], and therefore, the global relative action-58

value function is: Qθ(s, a) =
∑
t≥0 E [r̄t+1 − J(θ)|s0 = s, a0 = a, πθ] , and the global relative59

state-value function is: Vθ(s) =
∑
a∈A πθ(s, a)Qθ(s, a). For simplicity, we refer to Vθ and Qθ60

as simply the state-value function and action-value function. We define the advantage function as61

Aθ(s, a) = Qθ(s, a)− Vθ(s).62

Zhang et al. [2018] provided the first provably convergent MARL algorithm in the context of the63

above model. The fundamental result underlying their algorithm is a local policy gradient theorem:64

∇θiJ(µθ) = Es∼dθ,a∼πθ
[
∇θi log πiθi(s, a

i) ·Aiθ(s, a)
]
,

where Aiθ(s, a) = Qθ(s, a) − Ṽ iθ (s, a−i) is a local advantage function and Ṽ iθ (s, a−i) =65 ∑
ai∈Ai π

i
θi(s, a

i)Qθ(s, a
i, a−i). This theorem has important practical value as it shows that the66

policy gradient with respect to each local parameter θi can be obtained locally using the corresponding67

score function ∇θi log πiθi provided that agent i has an unbiased estimate of the advantage functions68

Aiθ or Aθ. With only local information, the advantage functions Aiθ or Aθ cannot be well estimated69

since the estimation requires the rewards
{
rit
}
i∈N of all agents. Therefore, they proposed a consensus70

based actor-critic that leverages the communication network to share information between agents71

by placing a weight ct(i, j) on the message transmitted from agent j to agent i at time t. Their72

action-value function Qθ was approximated by a parameterized function Q̂ω : S ×A → R, and each73

agent i maintains its own parameter ωi, which it uses to form a local estimate Q̂ωi of the global Qθ.74

At each time step t, each agent i shares its local parameter ωit with its neighbors on the network, and75

the shared parameters are used to arrive at a consensual estimate of Qθ over time.76
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3 Local Gradients of Deterministic Policies77

While the use of a stochastic policy facilitates the derivations of convergence proofs, most real-world78

control tasks require a deterministic policy to be implementable. In addition, the quantities estimated79

in the deterministic critic do not involve estimation of the complex integral over the action space found80

in the stochastic version. This offers lower variance of the critic estimates and faster convergence. To81

address the lack of exploration that comes with deterministic policies, we provide both off-policy82

and on-policy versions of our results. Our first requirement is a local deterministic policy gradient83

theorem.84

We assume that Ai = Rni . We make standard regularity assumptions on our MDP. That is, we85

assume that for any s, s′ ∈ S, P (s′|s, a) and Ri(s, a) are bounded and have bounded first and86

second derivatives. We consider local deterministic policies µiθi : S → Ai with parameter vector87

θi ∈ Θi, and denote the joint policy by µθ : S → A, where µθ(s) = (µ1
θ1(s), . . . , µNθN (s)) and88

θ = [(θ1)>, . . . , (θN )>]>. We assume that for any s ∈ S, the deterministic policy function µiθi(s)89

is twice continuously differentiable with respect to the parameter θi over Θi. Let P θ denote the90

transition matrix of the Markov chain {st}t≥0 induced by policy µθ, that is, for any s, s′ ∈ S,91

P θ(s′|s) = P (s′|s, µθ(s)). We assume that the Markov chain {st}t≥0 is irreducible and aperiodic92

under any µθ and denote its stationary distribution by dµθ .93

Our objective is to find a policy µθ that maximizes the long-run average reward:94

max
θ
J(µθ) = Es∼dµθ [R̄(s, µθ(s))] =

∑
s∈S

dµθ (s)R̄(s, µθ(s)).

Analogous to the stochastic policy case, we denote the action-value function by Qθ(s, a) =95 ∑
t≥0 E[r̄t+1 − J(µθ)|s0 = s, a0 = a, µθ], and the state-value function by Vθ(s) = Qθ(s, µθ(s)).96

When there is no ambiguity, we will denote J(µθ) and dµθ by simply J(θ) and dθ, respectively. We97

present three results for the long-run average reward: (1) an expression for the local deterministic98

policy gradient in the on-policy setting ∇θiJ(µθ), (2) an expression for the gradient in the off-policy99

setting, and (3) we show that the deterministic policy gradient can be seen as the limit of the stochastic100

one.101

On-Policy Setting102

Theorem 1 (Local Deterministic Policy Gradient Theorem - On Policy). For any θ ∈ Θ, i ∈ N ,103

∇θiJ(µθ) exists and is given by104

∇θiJ(µθ) = Es∼dµθ
[
∇θiµiθi(s)∇ai Qθ(s, µ

−i
θ−i(s), a

i)
∣∣
ai=µi

θi
(s)

]
.

The first step of the proof consists in showing that ∇θJ(µθ) =105

Es∼dθ
[
∇θµθ(s)∇a Qθ(s, a)|a=µθ(s)

]
. This is an extension of the well-known stochastic106

case, for which we have∇θJ(πθ) = Es∼dθ [∇θ log(πθ(a|s))Qθ(s, a)], which holds for a long-term107

averaged return with stochastic policy (e.g Theorem 1 of Sutton et al. [2000a]). See the Appendix for108

the details.109

Off-Policy Setting In the off-policy setting, we are given a behavior policy π : S → P(A), and110

our goal is to maximize the long-run average reward under state distribution dπ:111

Jπ(µθ) = Es∼dπ
[
R̄(s, µθ(s))

]
=
∑
s∈S

dπ(s)R̄(s, µθ(s)). (1)

Note that we consider here an excursion objective (Sutton et al. [2009], Silver et al. [January 2014a],112

Sutton et al. [2016]) since we take the average over the state distribution of the behaviour policy π of113

the state-action reward when selecting action given by the target policy µθ. We thus have:114

Theorem 2 (Local Deterministic Policy Gradient Theorem - Off Policy). For any θ ∈ Θ, i ∈ N ,115

π : S → P(A) a fixed stochastic policy,∇θiJπ(µθ) exists and is given by116

∇θiJπ(µθ) = Es∼dπ
[
∇θiµiθi(s)∇ai R̄(s, µ−iθ−i(s), a

i)
∣∣
ai=µi

θi
(s)

]
.
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Proof. Since dπ is independent of θ we can take the gradient on both sides of (1)117

∇θJπ(µθ) = Es∼dπ
[
∇θµθ(s) ∇aR̄(s, µθ(s))

∣∣
a=µθ(s)

]
.

Given that∇θiµjθ(s) = 0 if i 6= j, we have∇θµθ(s) = Diag(∇θ1µ1
θ1

(s), . . . ,∇θNµNθN (s)) and the118

result follows.119

This result implies that, off-policy, each agent needs access to µ−i
θ−it

(st) for every t .120

Limit Theorem As noted by Silver et al. [January 2014b], the fact that the deterministic gradient121

is a limit case of the stochastic gradient enables the standard machinery of policy gradient, such as122

compatible-function approximation (Sutton et al. [2000b]), natural gradients (Kakade [2001]), on-line123

feature adaptation (Prabuchandran et al. [2016],) and actor-critic (Konda [2002]) to be used with124

deterministic policies. We show that it holds in our setting. The proof can be found in the Appendix.125

Theorem 3 (Limit of the Stochastic Policy Gradient for MARL). Let πθ,σ be a stochastic policy126

such that πθ,σ(a|s) = νσ(µθ(s), a), where σ is a parameter controlling the variance, and νσ satisfy127

Condition 1 in the Appendix. Then,128

lim
σ↓0
∇θJπθ,σ (πθ,σ) = ∇θJµθ (µθ)

where on the l.h.s the gradient is the standard stochastic policy gradient and on the r.h.s. the gradient129

is the deterministic policy gradient.130

4 Algorithms131

We provide two decentralized deterministic actor-critic algorithms, one on-policy and the other132

off-policy and demonstrate their convergence in the next section; assumptions and proofs are provided133

in the Appendix.134

On-Policy Deterministic Actor-Critic135

Algorithm 1 Networked deterministic on-policy actor-critic

Initialize: step t = 0; parameters Ĵ i0, ω
i
0, ω̃

i
0, θ

i
0,∀i ∈ N ; state s0; stepsizes {βω,t}t≥0, {βθ,t}t≥0

Draw ai0 = µi
θi0

(s0) and compute ãi0 = ∇θiµiθi0(s0)

Observe joint action a0 = (a1
0, . . . , a

N
0 ) and ã0 =

(
ã1

0, . . . , ã
N
0

)
repeat

for i ∈ N do
Observe st+1 and reward rit+1 = ri(st, at)

Update Ĵ it+1 ← (1− βω,t) · Ĵ it + βω,t · rit+1

Draw action at+1 = µi
θit

(st+1) and compute ãit+1 = ∇θiµiθit(st+1)

end for
Observe joint action at+1 = (a1

t+1, . . . , a
N
t+1) and ãt+1 =

(
ã1
t+1, . . . , ã

N
t+1

)
for i ∈ N do

Update: δit ← rit+1 − Ĵ it + Q̂ωit(st+1, at+1)− Q̂ωit(st, at)
Critic step: ω̃it ← ωit + βω,t · δit · ∇ωQ̂ωi(st, at)

∣∣∣
ω=ωit

Actor step: θit+1 = θit + βθ,t · ∇θiµiθit(st) ∇aiQ̂ωit(st, a
−i
t , ai)

∣∣∣
ai=ait

Send ω̃it to the neighbors {j ∈ N : (i, j) ∈ Et} over Gt
Consensus step: ωit+1 ←

∑
j∈N c

ij
t · ω̃

j
t

end for
Update t← t+ 1

until end
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Consider the following on-policy algorithm. The actor step is based on an expression for∇θiJ(µθ)136

in terms of∇aiQθ(see Equation (15) in the Appendix). We approximate the action-value function Qθ137

using a family of functions Q̂ω : S×A → R parameterized by ω, a column vector in RK . Each agent138

i maintains its own parameter ωi and uses Q̂ωi as its local estimate of Qθ. The parameters ωi are139

updated in the critic step using consensus updates through a weight matrix Ct =
(
cijt

)
i,j
∈ RN×N140

where cijt is the weight on the message transmitted from i to j at time t, namely:141

Ĵ it+1 = (1− βω,t) · Ĵ it + βω,t · rit+1 (2)

ω̃it = ωit + βω,t · δit · ∇ωQ̂ωi(st, at)
∣∣∣
ω=ωit

(3)

ωit+1 =
∑
j∈N

cijt · ω̃
j
t (4)

with142

δit = rit+1 − Ĵ it + Q̂ωit(st+1, at+1)− Q̂ωit(st, at).
For the actor step, each agent i improves its policy via:143

θit+1 = θit + βθ,t · ∇θiµiθit(st) · ∇aiQ̂ωit(st, a
−i
t , ai)

∣∣∣
ai=ait

. (5)

Since Algorithm 1 is an on-policy algorithm, each agent updates the critic using only (st, at, st+1), at144

time t knowing that at+1 = µθt(st+1). The terms in blue are additional terms that need to be shared145

when using compatible features (this is explained further in the next section).146

Off-Policy Deterministic Actor-Critic We further propose an off-policy actor-critic algorithm,147

defined in Algorithm 2 to enable better exploration capability. Here, the goal is to maximize148

Jπ(µθ) where π is the behavior policy. To do so, the globally averaged reward function R̄(s, a) is149

approximated using a family of functions ˆ̄Rλ : S ×A → R that are parameterized by λ, a column150

vector in RK . Each agent i maintains its own parameter λi and uses ˆ̄Rλi as its local estimate of R̄.151

Based on (1), the actor update is152

θit+1 = θit + βθ,t · ∇θiµiθit(st) · ∇ai
ˆ̄Rλit(st, µ

−i
θ−it

(st), a
i)
∣∣∣
ai=µ

θit
(st)

, (6)

which requires each agent i to have access to µj
θjt

(st) for j ∈ N .153

The critic update is154

λ̃it = λit + βλ,t · δit · ∇λ ˆ̄Rλi(st, at)
∣∣∣
λ=λit

(7)

λit+1 =
∑
j∈N

cijt λ̃
j
t , (8)

with155

δit = ri(st, at)− ˆ̄Rλit(st, at). (9)

In this case, δit was motivated by distributed optimization results, and is not related to the local156

TD-error (as there is no "temporal" relationship for R). Rather, it is simply the difference between157

the sample reward and the bootstrap estimate. The terms in blue are additional terms that need to be158

shared when using compatible features (this is explained further in the next section).159

5 Convergence160

To show convergence, we use a two-timescale technique where in the actor, updating deterministic161

policy parameter θi occurs more slowly than that of ωi and Ĵ i in the critic. We study the asymptotic162

behaviour of the critic by freezing the joint policy µθ, then study the behaviour of θt under convergence163

of the critic. To ensure stability, projection is often assumed since it is not clear how boundedness of164
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Algorithm 2 Networked deterministic off-policy actor-critic

Initialize: step t = 0; parameters λi0, λ̃
i
0, θ

i
0,∀i ∈ N ; state s0; stepsizes {βλ,t}t≥0, {βθ,t}t≥0

Draw ai0 ∼ πi(s0) , compute ȧi0 = µi
θi0

(s0) and ãi0 = ∇θiµiθi0(s0)

Observe joint action a0 = (a1
0, . . . , a

N
0 ), ȧ0 = (ȧ1

0, . . . , ȧ
N
0 ) and ã0 =

(
ã1

0, . . . , ã
N
0

)
repeat

for i ∈ N do
Observe st+1 and reward rit+1 = ri(st, at)

end for
for i ∈ N do

Update: δit ← rit+1 − ˆ̄Rλit(st, at)

Critic step: λ̃it ← λit + βλ,t · δit · ∇λ ˆ̄Rλi(st, at)
∣∣∣
λ=λit

Actor step: θit+1 = θit + βθ,t · ∇θiµiθit(st) · ∇ai
ˆ̄Rλit(st, µ

−i
θ−it

(st), a
i)
∣∣∣
ai=µ

θit
(st)

Send λ̃it to the neighbors {j ∈ N : (i, j) ∈ Et} over Gt
end for
for i ∈ N do

Consensus step: λit+1 ←
∑
j∈N c

ij
t · λ̃

j
t

Draw action at+1 ∼ π(st+1), compute ȧit+1 = µi
θit+1

(st+1) and compute ãit+1 =

∇θiµiθit+1
(st+1)

end for
Observe joint action at+1 = (a1

t+1, . . . , a
N
t+1), ȧt+1 = (ȧ1

t+1, . . . , ȧ
N
t+1) and ãt+1 =(

ã1
t+1, . . . , ã

N
t+1

)
Update t← t+ 1

until end

{
θit
}

can otherwise be ensured (see Bhatnagar et al. [2009]). However, in practice, convergence is165

typically observed even without the projection step (see Bhatnagar et al. [2009], Degris et al. [2012],166

Prabuchandran et al. [2016], Zhang et al. [2018], Suttle et al. [2019]). We also introduce the following167

technical assumptions which will be needed in the statement of the convergence results.168

Assumption 1 (Linear approximation, average-reward). For each agent i, the average-reward function169

R̄ is parameterized by the class of linear functions, i.e., ˆ̄Rλi,θ(s, a) = wθ(s, a) ·λi where wθ(s, a) =170 [
wθ,1(s, a), . . . , wθ,K(s, a)

]
∈ RK is the feature associated with the state-action pair (s, a). The171

feature vectors wθ(s, a), as well as ∇awθ,k(s, a) are uniformly bounded for any s ∈ S, a ∈ A, k ∈172

J1,KK. Furthermore, we assume that the feature matrix Wπ ∈ R|S|×K has full column rank, where173

the k-th column of Wπ,θ is
[ ∫
A π(a|s)wθ,k(s, a)da, s ∈ S

]
for any k ∈ J1,KK.174

Assumption 2 (Linear approximation, action-value). For each agent i, the action-value function175

is parameterized by the class of linear functions, i.e., Q̂ωi(s, a) = φ(s, a) · ωi where φ(s, a) =176 [
φ1(s, a), . . . , φK(s, a)

]
∈ RK is the feature associated with the state-action pair (s, a). The feature177

vectors φ(s, a), as well as∇aφk(s, a) are uniformly bounded for any s ∈ S , a ∈ A, k ∈ {1, . . . ,K}.178

Furthermore, we assume that for any θ ∈ Θ, the feature matrix Φθ ∈ R|S|×K has full column rank,179

where the k-th column of Φθ is
[
φk(s, µθ(s)), s ∈ S

]
for any k ∈ J1,KK. Also, for any u ∈ RK ,180

Φθu 6= 1.181

Assumption 3 (Bounding θ). The update of the policy parameter θi includes a local projection by182

Γi : Rmi → Θi that projects any θit onto a compact set Θi that can be expressed as {θi|qij(θi) ≤183

0, j = 1, . . . , si} ⊂ Rmi , for some real-valued, continuously differentiable functions {qij}1≤j≤si184

defined on Rmi . We also assume that Θ =
∏N
i=1 Θi is large enough to include at least one local185

minimum of J(θ).186

We use {Ft} to denote the filtration with Ft = σ(sτ , Cτ−1, aτ−1, rτ−1, τ ≤ t).187

Assumption 4 (Random matrices). The sequence of non-negative random matrices {Ct = (cijt )ij}188

satisfies:189
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1. Ct is row stochastic and E(Ct|Ft) is a.s. column stochastic for each t, i.e., Ct1 = 1 and190

1>E(Ct|Ft) = 1> a.s. Furthermore, there exists a constant η ∈ (0, 1) such that, for any191

cijt > 0, we have cijt ≥ η.192

2. Ct respects the communication graph Gt, i.e., cijt = 0 if (i, j) /∈ Et.193

3. The spectral norm of E
[
C>t · (I − 11>/N) · Ct

]
is smaller than one.194

4. Given the σ-algebra generated by the random variables before time t, Ct, is conditionally195

independent of st, at and rit+1 for any i ∈ N .196

Assumption 5 (Step size rules, on-policy). The stepsizes βω,t, βθ,t satisfy:197 ∑
t

βω,t =
∑
t

βθ,t =∞∑
t

(β2
ω,t + β2

θ,t) <∞∑
t

|βθ,t+1 − βθ,t| <∞.

In addition, βθ,t = o(βω,t) and limt→∞βω,t+1/βω,t = 1.198

Assumption 6 (Step size rules, off-policy). The step-sizes βλ,t, βθ,t satisfy:199 ∑
t

βλ,t =
∑
t

βθ,t =∞,
∑
t

β2
λ,t + β2

θ,t <∞

βθ,t = o(βλ,t), lim
t→∞

βλ,t+1/βλ,t = 1.

On-Policy Convergence To state convergence of the critic step, we define Ds
θ = Diag

[
dθ(s), s ∈

S
]
, R̄θ =

[
R̄(s, µθ(s)), s ∈ S

]> ∈ R|S| and the operator TQθ : R|S| → R|S| for any action-value
vector Q ∈ R|S| (and not R|S|·|A| since there is a mapping associating an action to each state) as:

TQθ (Q′) = R̄θ − J(µθ) · 1 + P θQ′.

Theorem 4. Under Assumptions 3, 4, and 5, for any given deterministic policy µθ, with {Ĵt} and
{ωt} generated from (2), we have limt→∞

1
N

∑
i∈N Ĵ

i
t = J(µθ) and limt→∞ω

i
t = ωθ a.s. for any

i ∈ N , where
J(µθ) =

∑
s∈S

dθ(s)R̄(s, µθ(s))

is the long-term average return under µθ, and ωθ is the unique solution to200

Φθ
>Ds

θ

[
TQθ (Φθωθ)− Φθωθ

]
= 0. (10)

Moreover, ωθ is the minimizer of the Mean Square Projected Bellman Error (MSPBE), i.e., the
solution to

minimize
ω

‖Φθω −ΠTQθ (Φθω)‖2Dsθ ,

where Π is the operator that projects a vector to the space spanned by the columns of Φθ, and ‖·‖2Dsθ201

denotes the euclidean norm weighted by the matrix Ds
θ.202

To state convergence of the actor step, we define quantities ψit,θ, ξit and ξit,θ as203

ψit,θ = ∇θiµiθi(st) and ψit = ψit,θt = ∇θiµiθit(st),

ξit,θ = ∇aiQ̂ωθ (st, a
−i
t , ai)

∣∣∣
ai=ai=µi

θit

(st)
= ∇aiφ(st, a

−i
t , ai)

∣∣
ai=ai=µi

θit

(st)
ωθ,

ξit = ∇aiQ̂ωit(st, a
−i
t , ai)

∣∣∣
ai=µi

θi
(st)

= ∇aiφ(st, a
−i
t , ai)

∣∣
ai=µi

θi
(st)

ωit.
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Additionally, we introduce the operator Γ̂(·) as204

Γ̂i [g(θ)] = lim
0<η→0

Γi
[
θi + η · g(θ)

]
− θi

η
(11)

for any θ ∈ Θ and g : Θ→ Rmi a continuous function. In case the limit above is not unique we take205

Γ̂i [g(θ)] to be the set of all possible limit points of (11).206

Theorem 5. Under Assumptions 2, 3, 4, and 5, the policy parameter θit obtained from (5) converges207

a.s. to a point in the set of asymptotically stable equilibria of208

θ̇i = Γ̂i
[
Est∼dθ,µθ

[
ψit,θ · ξit,θ

]]
, for any i ∈ N . (12)

In the case of multiple limit points, the above is treated as a differential inclusion rather than an209

ODE.210

The convergence of the critic step can be proved by taking similar steps as that in Zhang et al. [2018].211

For the convergence of the actor step, difficulties arise from the projection (which is handled using212

Kushner-Clark Lemma Kushner and Clark [1978]) and the state-dependent noise (that is handled by213

“natural” timescale averaging Crowder [2009]). Details are provided in the Appendix.214

Remark. Note that that with a linear function approximator Qθ, ψt,θ · ξt,θ =215

∇θµθ(st) ∇aQ̂ωθ (st, a)
∣∣∣
a=µθ(st)

may not be an unbiased estimate of∇θJ(θ):216

Es∼dθ
[
ψt,θ·ξt,θ

]
= ∇θJ(θ)+Es∼dθ

[
∇θµθ(s) ·

(
∇aQ̂ωθ (s, a)

∣∣∣
a=µθ(s)

− ∇aQωθ (s, a)|a=µθ(s)

)]
.

A standard approach to overcome this approximation issue is via compatible features (see, for217

example, Silver et al. [January 2014a] and Zhang and Zavlanos [2019]), i.e. φ(s, a) = a · ∇θµθ(s)>,218

giving, for ω ∈ Rm,219

Q̂ω(s, a) = a · ∇θµθ(s)>ω = (a− µθ(s)) · ∇θµθ(s)>ω + V̂ω(s),

with V̂ω(s) = Q̂ω(s, µθ(s)) and ∇aQ̂ω(s, a)
∣∣∣
a=µθ(s)

= ∇θµθ(s)>ω.

We thus expect that the convergent point of (5) corresponds to a small neighborhood of a local220

optimum of J(µθ), i.e., ∇θiJ(µθ) = 0, provided that the error for the gradient of the action-221

value function ∇aQ̂ω(s, a)
∣∣∣
a=µθ(s)

− ∇aQθ(s, a)|a=µθ(s) is small. However, note that using222

compatible features requires computing, at each step t, φ(st, at) = at · ∇θµθ(st)>. Thus, in223

Algorithm 1, each agent observes not only the joint action at+1 = (a1
t+1, . . . , a

N
t+1) but also224

(∇θ1µ1
θ1t

(st+1), . . . ,∇θNµNθNt (st+1)) (see the parts in blue in Algorithm 1).225

Off-Policy Convergence226

Theorem 6. Under Assumptions 1, 4, and 6, for any given behavior policy π and any θ ∈ Θ, with227

{λit} generated from (7), we have limt→∞λ
i
t = λθ a.s. for any i ∈ N , where λθ is the unique228

solution to229

Bπ,θ · λθ = Aπ,θ · dsπ (13)

where dsπ =
[
dπ(s), s ∈ S

]>
, Aπ,θ =

[ ∫
A π(a|s)R̄(s, a)w(s, a)>da, s ∈ S

]
∈ RK×|S| and230

Bπ,θ =
[∑

s∈S d
π(s)

∫
A π(a|s)wi(s, a) · w(s, a)>da, 1 ≤ i ≤ K

]
∈ RK×K .231

From here on we let232

ξit,θ = ∇ai ˆ̄Rλθ (st, µ
−i
θ−it

(st), ai)
∣∣∣
ai=µi

θit

(st)
= ∇aiw(st, µ

−i
θ−it

(st), ai)
∣∣∣
ai=µi

θit

(st)
λθ

ξit = ∇ai ˆ̄Rλit(st, µ
−i
θ−it

(st), ai)
∣∣∣
ai=µi

θit

(st)
= ∇aiw(st, µ

−i
θ−i(st), ai)

∣∣
ai=µi

θi
(st)

λit

and we keep233

ψit,θ = ∇θiµiθi(st), and ψit = ψit,θt = ∇θiµiθit(st).
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Theorem 7. Under Assumptions 1, 3, 4, and 6, the policy parameter θit obtained from (6) converges234

a.s. to a point in the asymptotically stable equilibria of235

θ̇i = Γi
[
Es∼dπ

[
ψit,θ · ξit,θ

]]
. (14)

We define compatible features for the action-value and the average-reward function in an analogous236

manner: wθ(s, a) = (a− µθ(s)) · ∇θµθ(s)>. For λ ∈ Rm,237

ˆ̄Rλ,θ(s, a) = (a− µθ(s)) · ∇θµθ(s)> · λ

∇a ˆ̄Rλ,θ(s, a) = ∇θµθ(s)> · λ

and we have that, for λ∗ = argmin
λ

Es∼dπ
[
‖∇a ˆ̄Rλ,θ(s, µθ(s))−∇aR̄(s, µθ(s))‖2

]
:

∇θJπ(µθ) = Es∼dπ
[
∇θµθ(s) · ∇aR̄(s, a)

∣∣
a=µθ(s)

]
= Es∼dπ

[
∇θµθ(s) · ∇a ˆ̄Rλ∗,θ(s, a)

∣∣∣
a=µθ(s)

]
.

The use of compatible features requires each agent to observe not only the joint action taken238

at+1 = (a1
t+1, . . . , a

N
t+1) and the “on-policy action” ȧt+1 = (ȧ1

t+1, . . . , ȧ
N
t+1), but also ãt+1 =239

(∇θ1µ1
θ1t

(st+1), . . . ,∇θNµNθNt (st+1)) (see the parts in blue in Algorithm 2).240

We illustrate algorithm convergence on multi-agent extension of a continuous bandit problem from241

Sec. 5.1 of Silver et al. [January 2014b]. Details are in the Appendix. Figure 2 shows the convergence242

of Algorithms 1 and 2 averaged over 5 runs. In all cases, the system converges and the agents are243

able to coordinate their actions to minimize system cost.

Figure 1: Convergence of Algorithms 1 and 2 on the multi-agent continuous bandit problem.

244

6 Conclusion245

We have provided the tools needed to implement decentralized, deterministic actor-critic algorithms246

for cooperative multi-agent reinforcement learning. We provide the expressions for the policy247

gradients, the algorithms themselves, and prove their convergence in on-policy and off-policy settings.248

We also provide numerical results for a continuous multi-agent bandit problem that demonstrates249

the convergence of our algorithms. Our work differs from Zhang and Zavlanos [2019] as the latter250

was based on policy consensus whereas ours is based on critic consensus. Our approach represents251

agreement between agents on every participants’ contributions to the global reward, and as such,252

provides a consensus scoring function with which to evaluate agents. Our approach may be used253

in compensation schemes to incentivize participation. An interesting extension of this work would254

be to prove convergence of our actor-critic algorithm for continuous state spaces, as it may hold255

with assumptions on the geometric ergodicity of the stationary state distribution induced by the256

deterministic policies (see Crowder [2009]). The expected policy gradient (EPG) of Ciosek and257

Whiteson [2018], a hybrid between stochastic and deterministic policy gradient, would also be258

interesting to leverage. The Multi-Agent Deep Deterministic Policy Gradient algorithm (MADDPG)259

of Lowe et al. [2017] assumes partial observability for each agent and would be a useful extension,260

but it is likely difficult to extend our convergence guarantees to the partially observed setting.261
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Numerical experiment details329

We demonstrate the convergence of our algorithm in a continuous bandit problem that is a multi-330

agent extension of the experiment in Section 5.1 of Silver et al. (2014). Each agent chooses331

an action ai ∈ Rm. We assume all agents have the same reward function given by Ri(a) =332

−
(∑

i a
i − a∗

)T
C
(∑

i a
i − a∗

)
. The matrix C is positive definite with eigenvalues chosen from333

{0.1, 1}, and a∗ = [4, . . . , 4]T. We consider 10 agents and action dimensions m = 10, 20, 50. Note334

that there are multiple possible solutions for this problem, requiring the agents to coordinate their335

actions to sum to a∗. We assume a target policy of the form µθi = θi for each agent i and a Gaussian336

behaviour policy β(·) ∼ N (θi, σ2
β) where σβ = 0.1. We use the Gaussian behaviour policy for both337

Algorithms 1 and 2. Strictly speaking, Algorithm 1 is on-policy, but in this simplified setting where338

the target policy is constant, the on-policy version would be degenerate such that the Q estimate does339

not affect the TD-error. Therefore, we add a Gaussian behaviour policy to Algorithm 1. Each agent340

maintains an estimate Qω
i

(a) of the critic using a linear function of the compatible features a− θ341

and a bias feature. The critic is recomputed from each successive batch of 2m steps and the actor342

is updated once per batch. The critic step size is 0.1 and the actor step size is 0.01. Performance343

is evaluated by measuring the cost of the target policy (without exploration). Figure 2 shows the344

convergence of Algorithms 1 and 2 averaged over 5 runs. In all cases, the system converges and the345

agents are able to coordinate their actions to minimize system cost. The jupyter notebook will be346

made available for others to use. In fact, in this simple experiment, we also observe convergence347

under discounted rewards.348

Figure 2: Convergence of Algorithms 1 and 2 on the multi-agent continuous bandit problem.

Proof of Theorem 1349

The proof follows the same scheme as Sutton et al. [2000a], naturally extending their results for a350

deterministic policy µθ and a continuous action space A.351

Note that our regularity assumptions ensure that, for any s ∈ S, Vθ(s), ∇θVθ(s), J(θ), ∇θJ(θ),352

dθ(s) are Lipschitz-continuous functions of θ (since µθ is twice continuously differentiable and Θ is353

compact), and that Qθ(s, a) and ∇aQθ(s, a) are Lipschitz-continuous functions of a (Marbach and354

Tsitsiklis [2001]).355

We first show that∇θJ(θ) = Es∼dθ
[
∇θµθ(s)∇a Qθ(s, a)|a=µθ(s)].356

The Poisson equation under policy µθ is given by Puterman [1994]357

Qθ(s, a) = R̄(s, a)− J(θ) +
∑
s′∈S

P (s′|s, a)Vθ(s
′).
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So,358

∇θVθ(s) = ∇θQθ(s, µθ(s))

= ∇θ
[
R̄(s, µθ(s))− J(θ) +

∑
s′∈S

P (s′|s, µθ(s))Vθ(s′)
]

= ∇θµθ(s) ∇aR̄(s, a)
∣∣
a=µθ(s)

−∇θJ(θ) +∇θ
∑
s′∈S

P (s′|s, µθ(s))Vθ(s′)

= ∇θµθ(s) ∇aR̄(s, a)
∣∣
a=µθ(s)

−∇θJ(θ)

+
∑
s′∈S
∇θµθ(s) ∇aP (s′|s, a)|a=µθ(s) Vθ(s

′) +
∑
s′∈S

P (s′|s, µθ(s))∇θVθ(s′)

= ∇θµθ(s)∇a
[
R̄(s, a) +

∑
s′∈S

P (s|s′, a)Vθ(s
′)
]∣∣∣∣∣
a=µθ(s)

−∇θJ(θ) +
∑
s′∈S

P (s′|s, µθ(s))∇θVθ(s′)

= ∇θµθ(s)∇a Qθ(s, a)|a=µθ(s) +
∑
s′∈S

P (s′|s, µθ(s))∇θVθ(s′)−∇θJ(θ)

Hence,359

∇θJ(θ) = ∇θµθ(s)∇a Qθ(s, a)|a=µθ(s) +
∑
s′∈S

P (s′|s, µθ(s))∇θVθ(s′)−∇θVθ(s)∑
s∈S

dθ(s)∇θJ(θ) =
∑
s∈S

dθ(s)∇θµθ(s)∇a Qθ(s, a)|a=µθ(s)

+
∑
s∈S

dθ(s)
∑
s′∈S

P (s′|s, µθ(s))∇θVθ(s′)−
∑
s∈S

dθ(s)∇θVθ(s).

Using stationarity property of dθ, we get∑
s∈S

∑
s′∈S

dθ(s)P (s′|s, µθ(s))∇θVθ(s′) =
∑
s′∈S

dθ(s′)∇θVθ(s′).

Therefore, we get

∇θJ(θ) =
∑
s∈S

dθ(s)∇θµθ(s) ∇aQθ(s, a)|a=µθ(s) = Es∼dθ
[
∇θµθ(s) ∇aQθ(s, a)|a=µθ(s)].

Given that ∇θiµjθ(s) = 0 if i 6= j, we have ∇θµθ(s) = Diag(∇θ1µ1
θ1

(s), . . . ,∇θNµNθN (s)), which360

implies361

∇θiJ(θ) = Es∼dθ
[
∇θiµiθi(s)∇ai Qθ(s, µ

−i
θ−i(s), a

i)
∣∣
ai=µi

θi
(s)

]. (15)

Proof of Theorem 3362

We extend the notation for off-policy reward function to stochastic policies as follows. Let β be a363

behavior policy under which {st}t≥0 is irreducible and aperiodic, with stationary distribution dβ . For364

a stochastic policy π : S → P(A), we define365

Jβ(π) =
∑
s∈S

dβ(s)

∫
A
π(a|s)R̄(s, a)da.

Recall that for a deterministic policy µ : S → A, we have366

Jβ(µ) =
∑
s∈S

dβ(s)R̄(s, µ(s)).

We introduce the following conditions which are identical to Conditions B1 from Silver et al.367

[January 2014a].368
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Conditions 1. Functions νσ parametrized by σ are said to be regular delta-approximation onR ⊂ A369

if they satisfy the following conditions:370

1. The distributions νσ converge to a delta distribution: limσ↓0
∫
A νσ(a′, a)f(a)da = f(a′)371

for a′ ∈ R and suitably smooth f . Specifically we require that this convergence is uniform372

in a′ and over any class F of L-Lipschitz and bounded functions, ‖∇af(a)‖< L < ∞,373

supaf(a) < b <∞, i.e.:374

lim
σ↓0

sup
f∈F,a′∈R

∣∣∣∣∫
A
νσ(a′, a)f(a)da− f(a′)

∣∣∣∣ = 0.

2. For each a′ ∈ R, νσ(a′, ·) is supported on some compact Ca′ ⊆ A with Lipschitz boundary375

bd(Ca′), vanishes on the boundary and is continuously differentiable on Ca′ .376

3. For each a′ ∈ R, for each a ∈ A, the gradient∇a′νσ(a′, a) exists.377

4. Translation invariance: for all a ∈ A, a′ ∈ R, and any δ ∈ Rn such that a + δ ∈ A,378

a′ + δ ∈ A, νσ(a′, a) = νσ(a′ + δ, a+ δ).379

The following lemma is an immediate corollary of Lemma 1 from Silver et al. [January 2014a].380

Lemma 1. Let νσ be a regular delta-approximation onR ⊆ A. Then, wherever the gradients exist

∇a′ν(a′, a) = −∇aν(a′, a).

Theorem 3 is a less technical restatement of the following result.381

Theorem 8. Let µθ : S → A. Denote the range of µθ by Rθ ⊆ A, and R = ∪θRθ. For382

each θ, consider πθ,σ a stochastic policy such that πθ,σ(a|s) = νσ(µθ(s), a), where νσ satisfy383

Conditions 1 on R. Then, there exists r > 0 such that, for each θ ∈ Θ, σ 7→ Jπθ,σ (πθ,σ),384

σ 7→ Jπθ,σ (µθ), σ 7→ ∇θJπθ,σ (πθ,σ), and σ 7→ ∇θJπθ,σ (µθ) are properly defined on
[
0, r
]

(with385

Jπθ,0(πθ,0) = Jπθ,0(µθ) = Jµθ (µθ) and ∇θJπθ,0(πθ,0) = ∇θJπθ,0(µθ) = ∇θJµθ (µθ)), and we386

have:387

lim
σ↓0
∇θJπθ,σ (πθ,σ) = lim

σ↓0
∇θJπθ,σ (µθ) = ∇θJµθ (µθ).

To prove this result, we first state and prove the following Lemma.388

Lemma 2. There exists r > 0 such that, for all θ ∈ Θ and σ ∈
[
0, r
]
, stationary distribution dπθ,σ389

exists and is unique. Moreover, for each θ ∈ Θ, σ 7→ dπθ,σ and σ 7→ ∇θdπθ,σ are properly defined390

on
[
0, r
]

and both are continuous at 0.391

Proof of Lemma 2. For any policy β, we let
(
P βs,s′

)
s,s′∈S

be the transition matrix associated to the392

Markov Chain {st}t≥0 induced by β. In particular, for each θ ∈ Θ, σ > 0, s, s′ ∈ S, we have393

Pµθs,s′ = P (s′|s, µθ(s)),

P
πθ,σ
s,s′ =

∫
A
πθ,σ(a|s)P (s′|s, a)da =

∫
A
νσ(µθ(s), a)P (s′|s, a)da.

Let θ ∈ Θ, s, s′ ∈ S, (θn) ∈ ΘN such that θn → θ and (σn)n∈N ∈ R+N, σn ↓ 0:394 ∣∣∣Pπθn,σns,s′ − Pµθs,s′
∣∣∣ ≤ ∣∣∣Pπθn,σns,s′ − Pµθns,s′

∣∣∣+
∣∣∣Pµθns,s′ − P

µθ
s,s′

∣∣∣ .
Applying the first condition of Conditions 1 with f : a 7→ P (s′|s, a) belonging to F :395 ∣∣∣Pπθn,σns,s′ − Pµθns,s′

∣∣∣ =

∣∣∣∣∫
A
νσn(µθn(s), a)P (s′|s, a)da− P (s′|s, µθn(s))

∣∣∣∣
≤ sup
f∈F,a′∈R

∣∣∣∣∫
A
νσn(a′, a)f(a)da− f(a′)

∣∣∣∣ −→n→∞ 0.

By regularity assumptions on θ 7→ µθ(s) and P (s′|s, ·), we have396 ∣∣∣Pµθns,s′ − P
µθ
s,s′

∣∣∣ = |P (s′|s, µθn(s))− P (s′|s, µθ(s))| −→
n→∞

0.
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Hence,397 ∣∣∣Pπθn,σns,s′ − Pµθs,s′
∣∣∣ −→
n→∞

0.

Therefore, for each s, s′ ∈ S, (θ, σ) 7→ P
πθ,σ
s,s′ , with Pπθ,0s,s′ = Pµθs,s′ , is continuous on Θ× {0}. Note398

that, for each n ∈ N, P 7→
∏
s,s′ (P

n)s,s′ is a polynomial function of the entries of P . Thus, for399

each n ∈ N, fn : (θ, σ) 7→
∏
s,s′ (P

πθ,σn)s,s′ , with fn(θ, 0) =
∏
s,s′ (P

µθn)s,s′ is continuous on400

Θ × {0}. Moreover, for each θ ∈ Θ, σ ≥ 0, from the structure of Pπθ,σ , if there is some n∗ ∈ N401

such that fn∗(θ, σ) > 0 then, for all n ≥ n∗, fn(θ, σ) > 0.402

Now let us suppose that there exists (θn) ∈ ΘN∗ such that, for each n > 0 there is a σn ≤ n−1 such403

that fn(θn, σn) = 0. By compacity of Θ, we can take (θn) converging to some θ ∈ Θ. For each404

n∗ ∈ N, by continuity we have fn∗(θ, 0) = lim
n→∞

fn∗(θn, σn) = 0. Since Pµθ is irreducible and405

aperiodic, there is some n ∈ N such that for all s, s′ ∈ S and for all n∗ ≥ n,
(
Pµθn

∗
)
s,s′

> 0, i.e.406

fn∗(θ, 0) > 0. This leads to a contradiction.407

Hence, there exists n∗ > 0 such that for all θ ∈ Θ and σ ≤ n∗−1, fn(θ, σ) > 0. We let r = n∗−1. It408

follows that, for all θ ∈ Θ and σ ∈
[
0, r
]
, Pπθ,σ is a transition matrix associated to an irreducible and409

aperiodic Markov Chain, thus dπθ,σ is well defined as the unique stationary probability distribution410

associated to Pπθ,σ . We fix θ ∈ Θ in the remaining of the proof.411

Let β a policy for which the Markov Chain corresponding to P β is irreducible and aperiodic. Let412

s∗ ∈ S, as asserted in Marbach and Tsitsiklis [2001], considering stationary distribution dβ as a413

vector
(
dβs
)
s∈S ∈ R|S|, dβ is the unique solution of the balance equations:414 ∑

s∈S
dβsP

β
s,s′ = dβs′ s′ ∈ S\{s∗},∑

s∈S
dβs = 1.

Hence, we have Aβ an |S| × |S| matrix and a 6= 0 a constant vector of R|S| such that the balance415

equations is of the form416

Aβdβ = a (16)

with Aβs,s′ depending on P βs′,s in an affine way, for each s, s′ ∈ S. Moreover, Aβ is invertible, thus417

dβ is given by418

dβ =
1

det(Aβ)
adj(Aβ)>a.

Entries of adj(Aβ) and det(Aβ) are polynomial functions of the entries of P β .419

Thus, σ 7→ dπθ,σ = 1
det(Aπθ,σ )

adj(Aπθ,σ )>a is defined on
[
0, r
]

and is continuous at 0.420

Lemma 1 and integration by parts imply that, for s, s′ ∈ S, σ ∈
[
0, r
]
:421 ∫

A
∇a′νσ(a′, a)|a′=µθ(s) P (s′|s, a)da = −

∫
A
∇aνσ(µθ(s), a)P (s′|s, a)da

=

∫
Cµθ(s)

νσ(µθ(s), a)∇aP (s′|s, a)da+ boundary terms

=

∫
Cµθ(s)

νσ(µθ(s), a)∇aP (s′|s, a)da

where the boundary terms are zero since νσ vanishes on the boundary due to Conditions 1.422
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Thus, for s, s′ ∈ S, σ ∈
[
0, r
]
:423

∇θP
πθ,σ
s,s′ = ∇θ

∫
A
πθ,σ(a|s)P (s′|s, a)da

=

∫
A
∇θπθ,σ(a|s)P (s′|s, a)da (17)

=

∫
A
∇θµθ(s) ∇a′νσ(a′, a)|a′=µθ(s) P (s′|s, a)da

= ∇θµθ(s)
∫
Cµθ(s)

νσ(µθ(s), a)∇aP (s′|s, a)da

where exchange of derivation and integral in (17) follows by application of Leibniz rule with:424

• ∀a ∈ A, θ 7→ πθ,σ(a|s)P (s′|s, a) is differentiable, and ∇θπθ,σ(a|s)P (s′|s, a) =425

∇θµθ(s) ∇a′νσ(a′, a)|a′=µθ(s).426

427

• Let a∗ ∈ R, ∀θ ∈ Θ,428

‖∇θπθ,σ(a|s)P (s′|s, a)‖ =
∥∥∥∇θµθ(s) ∇a′νσ(a′, a)|a′=µθ(s)

∥∥∥
≤ ‖∇θµθ(s)‖op

∥∥∥∇a′νσ(a′, a)|a′=µθ(s)

∥∥∥
≤ sup
θ∈Θ
‖∇θµθ(s)‖op ‖∇aνσ(µθ(s), a)‖

= sup
θ∈Θ
‖∇θµθ(s)‖op ‖∇aνσ(a∗, a− µθ(s) + a∗)‖ (18)

≤ sup
θ∈Θ
‖∇θµθ(s)‖op sup

a∈Ca∗
‖∇aνσ(a∗, a)‖ 1a∈Ca∗

where ‖·‖op denotes the operator norm, and (18) comes from translation invariance (we take429

∇aνσ(a∗, a) = 0 for a ∈ Rn\Ca∗ ). a 7→ sup
θ∈Θ
‖∇θµθ(s)‖op sup

a∈Ca∗
‖∇aνσ(a∗, a)‖ 1a∈Ca∗ is430

measurable, bounded and supported on Ca∗ , so it is integrable on A.431

• Dominated convergence ensures that, for each k ∈ J1,mK, partial derivative gk(θ) =432

∂θk
∫
A∇θπθ,σ(a|s)P (s′|s, a)da is continuous: let θn ↓ θ, then433

gk(θn) = ∂θk

∫
A
∇θπθn,σ(a|s)P (s′|s, a)da

= ∂θkµθn(s)

∫
Ca∗

νσ(a∗, a− µθn(s) + a∗)∇aP (s′|s, a)da

−→
n→∞

∂θkµθ(s)

∫
Ca∗

νσ(a∗, a− µθ(s) + a∗)∇aP (s′|s, a)da = gk(θ)

with the dominating function a 7→ sup
a∈Ca∗

|νσ(a∗, a)|sup
a∈A
‖∇aP (s′|s, a)‖ 1a∈Ca∗ .434

Thus σ 7→ ∇θP
πθ,σ
s,s′ is defined for σ ∈

[
0, r
]

and is continuous at 0, with ∇θP
πθ,0
s,s′ =435

∇θµθ(s) ∇aP (s′|s, a)|a=µθ(s). Indeed, let (σn)n∈N ∈
[
0, r
]+N

, σn ↓ 0, then, applying the first436

condition of Conditions 1 with f : a 7→ ∇aP (s′|s, a) belonging to F , we get437 ∥∥∥∇θPπθ,σns,s′ −∇θP
µθ
s,s′

∥∥∥
= ‖∇θµθ(s)‖op

∥∥∥∥∥
∫
Cµθ(s)

νσn(µθ(s), a)∇aP (s′|s, a)da− ∇aP (s′|s, a)|a=µθ(s)

∥∥∥∥∥ −→n→∞ 0.

Since dπθ,σ = 1
det(Aπθ,σ )

adj (Aπθ,σ )
>
a with |det (Aπθ,σ ) | > 0 for all σ ∈

[
0, r
]

and since entries438

of adj (Aπθ,σ ) and det (Aπθ,σ ) are polynomial functions of the entries of Pπθ,σ , it follows that439
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σ 7→ ∇θdπθ,σ is properly defined on
[
0, r
]

and is continuous at 0, which concludes the proof of440

Lemma 2.441

We now proceed to prove Theorem 8.442

Let θ ∈ Θ, πθ as in Theorem 3, and r > 0 such that σ 7→ dπθ,σ , σ 7→ ∇θdπθ,σ are well defined on443 [
0, r
]

and are continuous at 0. Then, the following two functions444

σ 7→ Jπθ,σ (πθ,σ) =
∑
s∈S

dπθ,σ (s)

∫
A
πθ,σ(a|s)R̄(s, a)da,

σ 7→ Jπθ,σ (µθ) =
∑
s∈S

dπθ,σ (s)R̄(s, µθ(s)),

are properly defined on
[
0, r
]

(with Jπθ,0(πθ,0) = Jπθ,0(µθ) = Jµθ (µθ)). Let s ∈ S, by taking445

similar arguments as in the proof of Lemma 2, we have446

∇θ
∫
A
πθ,σ(a|s)R̄(s, a)da =

∫
A
∇θπθ,σ(a, s)R̄(s, a)da,

= ∇θµθ(s)
∫
Cµθ(s)

νσ(µθ(s), a)∇aR̄(s, a)da.

Thus, σ 7→ ∇θJπθ,σ (πθ,σ) is properly defined on
[
0, r
]

and447

∇θJπθ,σ (πθ,σ) =
∑
s∈S
∇θdπθ,σ (s)

∫
A
πθ,σ(a|s)R̄(s, a)da

+
∑
s∈S

dπθ,σ (s)∇θ
∫
A
πθ,σ(a|s)R̄(s, a)da

=
∑
s∈S
∇θdπθ,σ (s)

∫
A
νσ(µθ(s), a)R̄(s, a)da

+
∑
s∈S

dπθ,σ (s)∇θµθ(s)
∫
Cµθ(s)

νσ(µθ(s), a)∇aR̄(s, a)da.

Similarly, σ 7→ ∇θJπθ,σ (µθ) is properly defined on
[
0, r
]

and448

∇θJπθ,σ (µθ) =
∑
s∈S
∇θdπθ,σ (s)R̄(s, µθ(s)) +

∑
s∈S

dπθ,σ (s)∇θµθ(s) ∇aR̄(s, a)
∣∣
a=µθ(s)

To prove continuity at 0 of both σ 7→ ∇θJπθ,σ (πθ,σ) and σ 7→ ∇θJπθ,σ (µθ) (with ∇θJπθ,0(πθ,0) =449

∇θJπθ,0(µθ) = ∇θJµθ (µθ)), let (σn)n≥0 ↓ 0:450

∥∥∇θJπθ,σn (πθ,σn)−∇θJπθ,0(πθ,0)
∥∥

≤
∥∥∇θJπθ,σn (πθ,σn)−∇θJπθ,σn (µθ)

∥∥+
∥∥∇θJπθ,σn (µθ)−∇θJµθ (µθ)

∥∥ . (19)

For the first term of the r.h.s we have451

∥∥∇θJπθ,σn (πθ,σn)−∇θJπθ,σn (µθ)
∥∥

≤
∑
s∈S
‖∇θdπθ,σn (s)‖

∣∣∣∣∫
A
νσn(µθ(s), a)R̄(s, a)da− R̄(s, µθ(s))

∣∣∣∣
+
∑
s∈S

dπθ,σn (s)‖∇θµθ(s)‖op

∥∥∥∥∫
A
νσn(µθ(s), a)∇aR̄(s, a)da− ∇aR̄(s, a)

∣∣
a=µθ(s)

∥∥∥∥ .
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Applying the first assumption in Condition 1 with f : a 7→ R̄(s, a) and f : a 7→ ∇aR̄(s, a) belonging452

to F we have, for each s ∈ S:453 ∣∣∣∣∫
A
νσn(µθ(s), a)R̄(s, a)da− R̄(s, µθ(s))

∣∣∣∣ −→n→∞ 0 and∥∥∥∥∫
A
νσn(µθ(s), a)∇aR̄(s, a)da− ∇aR̄(s, a)

∣∣
a=µθ(s)

∥∥∥∥ −→n→∞ 0.

Moreover, for each s ∈ S, dπθ,σn (s) −→
n→∞

dµθ (s) and∇θdπθ,σn (s) −→
n→∞

∇θdµθ (s) (by Lemma 2),454

and ‖∇θµθ(s)‖op<∞, so455 ∥∥∇θJπθ,σn (πθ,σn)−∇θJπθ,σn (µθ)
∥∥ −→
n→∞

0.

For the second term of the r.h.s of (19), we have456 ∥∥∇θJπθ,σn (µθ)−∇θJµθ (µθ)
∥∥ ≤∑

s∈S
‖∇θdπθ,σn (s)−∇θdµθ (s)‖

∣∣R̄(s, µθ(s))
∣∣

+
∑
s∈S
|dπθ,σn (s)− dµθ (s)| ‖∇θµθ(s)‖op

∥∥∥∇aR̄(s, a)
∣∣
a=µθ(s)

∥∥∥ .
Continuity at 0 of σ 7→ dπθ,σ (s) and σ 7→ ∇θdπθ,σ (s) for each s ∈ S, boundedness of R̄(s, ·),457

∇aR̄(s, ·) and ∇θ(s)µθ(s) implies that458 ∥∥∇θJπθ,σn (µθ)−∇θJµθ (µθ)
∥∥ −→
n→∞

0.

Hence,459 ∥∥∇θJπθ,σn (πθ,σn)−∇θJπθ,0(πθ,0)
∥∥ −→
n→∞

0.

So, σ 7→ ∇θJπθ,σ (πθ,σ) and ∇θJπθ,σ (µθ) are continuous at 0:460

lim
σ↓0
∇θJπθ,σ (πθ,σ) = lim

σ↓0
∇θJπθ,σ (µθ) = ∇θJµθ (µθ).

Proof of Theorem 4461

We will use the two-time-scale stochastic approximation analysis . We let the policy parameter θt462

fixed as θt ≡ θ when analysing the convergence of the critic step. Thus we can show the convergence463

of ωt towards an ωθ depending on θ, which will then be used to prove the convergence for the slow464

time-scale.465

Lemma 3. Under Assumptions 3 – 5, the sequence ωit generated from (2) is bounded a.s., i.e.,466

supt‖ωit‖<∞ a.s., for any i ∈ N .467

The proof follows the same steps as that of Lemma B.1 in the PMLR version of Zhang et al. [2018].468

Lemma 4. Under Assumption 5, the sequence {Ĵ it} generated as in 2 is bounded a.s, i.e., supt|Ĵ it | <469

∞ a.s., for any i ∈ N .470

The proof follows the same steps as that of Lemma B.2 in the PMLR version of Zhang et al. [2018].471

The desired result holds since Step 1 and Step 2 of the proof of Theorem 4.6 in Zhang et al. [2018]472

can both be repeated in the setting of deterministic policies.473

Proof of Theorem 5474

Let Ft,2 = σ(θτ , sτ , τ ≤ t) a filtration. In addition, we define475

H(θ, s, ω) = ∇θµθ(s) · ∇aQω(s, a)|a=µθ(s) ,

H(θ, s) = H(θ, s, ωθ),

h(θ) = Es∼dθ [H(θ, s)] .
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Then, for each θ ∈ Θ, we can introduce νθ : S → Rn the solution to the Poisson equation:476 (
I − P θ

)
νθ(·) = H(θ, ·)− h(θ)

that is given by νθ(s) =
∑
k≥0 Esk+1∼P θ(·|sk) [H(θ, sk)− h(θ)|s0 = s] which is properly defined477

(similar to the differential value function V ).478

With projection, actor update (5) becomes479

θt+1 = Γ [θt + βθ,tH(θt, st, ωt)] (20)
= Γ [θt + βθ,th(θt)− βθ,t (h(θt)−H(θt, st))− βθ,t (H(θt, st)−H(θt, st, ωt))]

= Γ
[
θt + βθ,th(θt) + βθ,t

(
(I − P θt)νθt(st)

)
+ βθ,tA

1
t

]
= Γ

[
θt + βθ,th(θt) + βθ,t (νθt(st)− νθt(st+1)) + βθ,t

(
νθt(st+1)− P θtνθt(st)

)
+ βθ,tA

1
t

]
= Γ

[
θt + βθ,t

(
h(θt) +A1

t +A2
t +A3

t

)]
where480

A1
t = H(θt, st, ωt)−H(θt, st),

A2
t = νθt(st)− νθt(st+1),

A3
t = νθt(st+1)− P θtνθt(st).

For r < t we have481

t−1∑
k=r

βθ,kA
2
k =

t−1∑
k=r

βθ,k (νθk(sk)− νθk(sk+1))

=

t−1∑
k=r

βθ,k
(
νθk(sk)− νθk+1

(sk+1)
)

+

t−1∑
k=r

βθ,k
(
νθk+1

(sk+1)− νθk(sk+1)
)

=

t−1∑
k=r

(βθ,k+1 − βθ,k) νθk+1
(sk+1) + βθrνθr (sr)− βθtνθt(st) +

t−1∑
k=r

ε
(2)
k

=

t−1∑
k=r

ε
(1)
k +

t−1∑
k=r

ε
(2)
k + ηr,t

where482

ε
(1)
k = (βθ,k+1 − βθ,k) νθk+1

(sk+1),

ε
(2)
k = βθ,k

(
νθk+1

(sk+1)− νθk(sk+1)
)
,

ηr,t = βθrνθr (sr)− βθtνθt(st).

Lemma 5.
∑t−1
k=0 βθ,kA

2
k converges a.s. for t→∞483

Proof of Lemma 5. Since νθ(s) is uniformly bounded for θ ∈ Θ, s ∈ S, we have for some K > 0484

t−1∑
k=0

∥∥∥ε(1)
k

∥∥∥ ≤ K t−1∑
k=0

|βθ,k+1 − βθ,k|

which converges given Assumption 5.485

Moreover, since µθ(s) is twice continuously differentiable, θ 7→ νθ(s) is Lipschitz for each s, and so486

we have487

t−1∑
k=0

∥∥∥ε(2)
k

∥∥∥ ≤ t−1∑
k=0

βθ,k
∥∥νθk(sk+1)− νθk+1

(sk+1)
∥∥

≤ K2
t−1∑
k=0

βθ,k ‖θk − θk+1‖

≤ K3
t−1∑
k=0

β2
θ,k.
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Finally, lim
t→∞

‖η0,t‖ = βθ,0 ‖νθ0(s0)‖ <∞ a.s.488

Thus,
∑t−1
k=0

∥∥βθ,kA2
k

∥∥ ≤∑t−1
k=0

∥∥∥ε(1)
k

∥∥∥+
∑t−1
k=0

∥∥∥ε(2)
k

∥∥∥+ ‖η0,t‖ converges a.s.489

Lemma 6.
∑t−1
k=0 βθ,kA

3
k converges a.s. for t→∞.490

Proof of Lemma 6. We set491

Zt =

t−1∑
k=0

βθ,kA
3
k =

t−1∑
k=0

βθ,k
(
νθk(sk+1)− P θkνθk(sk)

)
.

Since Zt is Ft-adapted and E [νθt(st+1)|Ft] = P θtνθt(st), Zt is a martingale. The remaining of the492

proof is now similar to the proof of Lemma 2 on page 224 of Benveniste et al. [1990].493

Let gi(θt) = Est∼dθt
[
ψit · ξit,θt |Ft,2

]
and g(θ) =

[
g1(θ), . . . , gN (θ)

]
. We have

gi(θt) =
∑
st∈S

dθt(st) · ψit · ξit,θt .

Given (10), θ 7→ ωθ is continuously differentiable and θ 7→ ∇θωθ is bounded so θ 7→ ωθ is494

Lipschitz-continuous. Thus θ 7→ ξit,θ is Lipschitz-continuous for each st ∈ S . Due to our regularity495

assumptions, θ 7→ ψit,θt is also continuous for each i ∈ N , st ∈ S. Moreover, θ 7→ dθ(s) is also496

Lipschitz continuous for each s ∈ S. Hence, θ 7→ g(θ) is Lipschitz-continuous in θ and the ODE497

(12) is well-posed. This holds even when using compatible features.498

By critic faster convergence, we have limt→∞‖ξit − ξit,θt‖= 0 so limt→∞A
1
t = 0.499

Hence, by Kushner-Clark lemma Kushner and Clark [1978] (pp 191-196) we have that the update in500

(20) converges a.s. to the set of asymptotically stable equilibria of the ODE (12).501

Proof of Theorem 6502

We use the two-time scale technique: since critic updates at a faster rate than the actor, we let the503

policy parameter θt to be fixed as θ when analysing the convergence of the critic update.504

Lemma 7. Under Assumptions 4, 1 and 6, for any i ∈ N , sequence {λit} generated from (7) is505

bounded almost surely.506

To prove this lemma we verify the conditions for Theorem A.2 of Zhang et al. [2018] to hold.507

We use {Ft,1} to denote the filtration with Ft,1 = σ(sτ , Cτ−1, aτ−1, rτ , λτ , τ ≤ t). With λt =508 [
(λ1
t )
>, . . . , (λNt )>

]>
, critic step (7) has the form:509

λt+1 = (Ct ⊗ I) (λt + βλ,t · yt+1) (21)

with yt+1 =
(
δ1
tw(st, at)

>, . . . , δNt w(st, at)
>)> ∈ RKN , ⊗ denotes Kronecker product and I is510

the identity matrix. Using the same notation as in Assumption A.1 from Zhang et al. [2018], we511

have:512

hi(λit, st) = Ea∼π
[
δitw(st, a)>|Ft,1

]
=

∫
A
π(a|st)(Ri(st, a)− w(st, a) · λit)w(st, a)>da,

M i
t+1 = δitw(st, at)

> − Ea∼π
[
δitw(st, a)>|Ft,1

]
,

h̄i(λt) = Aiπ,θ · dsπ −Bπ,θ · λt, where Aiπ,θ =

[∫
A
π(a|s)Ri(s, a)w(s, a)>da, s ∈ S

]
.

Since feature vectors are uniformly bounded for any s ∈ S and a ∈ A, hi is Lipschitz continuous in513

its first argument. Since, for i ∈ N , the ri are also uniformly bounded, E
[
‖Mt+1‖2|Ft,1

]
≤ K · (1 +514

‖λt‖2) for some K > 0. Furthermore, finiteness of |S| ensures that, a.s., ‖h̄(λt) − h(λt, st)‖2≤515

K ′ · (1 + ‖λt‖2). Finally, h∞(y) exists and has the form516

h∞(y) = −Bπ,θ · y.
From Assumption 1, we have that −Bπ,θ is a Hurwitcz matrix, thus the origin is a globally asymptot-517

ically stable attractor of the ODE ẏ = h∞(y). Hence Theorem A.2 of Zhang et al. [2018] applies,518

which concludes the proof of Lemma 7.519
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We introduce the following operators as in Zhang et al. [2018]:520

• 〈·〉 : RKN → RK521

〈λ〉 =
1

N
(1> ⊗ I)λ =

1

N

∑
i∈N

λi.

• J =
(

1
N 11> ⊗ I

)
: RKN → RKN such that J λ = 1⊗ 〈λ〉.522

• J⊥ = I − J : RKN → RKN and we note λ⊥ = J⊥λ = λ− 1⊗ 〈λ〉.523

We then proceed in two steps as in Zhang et al. [2018], firstly by showing the convergence a.s. of the524

disagreement vector sequence {λ⊥,t} to zero, secondly showing that the consensus vector sequence525

{〈λt〉} converges to the equilibrium such that 〈λt〉 is solution to (13).526

Lemma 8. Under Assumptions 4, 1 and 6, for any M > 0, we have527

sup
t
E
[
‖β−1

λ,tλ⊥,t‖
2
1{supt‖λt‖≤M}

]
<∞.

Since dynamic of {λt} described by (21) is similar to (5.2) in Zhang et al. [2018] we have528

E
[
‖β−1

λ,t+1λ⊥,t+1‖2|Ft,1
]

=
β2
λ,t

β2
λ,t+1

ρ
(
‖β−1

λ,tλ⊥,t‖
2+2 · ‖β−1

λ,tλ⊥,t‖·E(‖yt+1‖2|Ft,1)
1
2 + E(‖yt+1‖2|Ft,1)

)
(22)

where ρ represents the spectral norm of E
[
C>t · (I − 11>/N) · Ct

]
, with ρ ∈ [0, 1) by Assumption529

4. Since yit+1 = δit · w(st, at)
> we have530

E
[
‖yt+1‖2|Ft,1

]
= E

[∑
i∈N
‖(ri(st, at)− w(st, at)λ

i
t) · w(st, at)

>‖2|Ft,1
]

≤ 2 · E
[∑
i∈N
‖ri(st, at)w(st, at)

>‖2+‖w(st, at)
>‖4·‖λit‖2|Ft,1

]
.

By uniform boundedness of r(s, ·) and w(s, ·) (Assumptions 1) and finiteness of S, there exists531

K1 > 0 such that532

E
[
‖yt+1‖2|Ft,1

]
≤ K1(1 + ‖λt‖2).

Thus, for any M > 0 there exists K2 > 0 such that, on the set {supτ≤t‖λτ‖< M},533

E
[
‖yt+1‖21{supτ≤t‖λτ‖<M}|Ft,1

]
≤ K2. (23)

We let vt = ‖β−1
λ,tλ⊥,t‖21{supτ≤t‖λτ‖<M}. Taking expectation over (22), noting that534

1{supτ≤t+1‖λτ‖<M} ≤ 1{supτ≤t‖λτ‖<M} we get535

E(vt+1) ≤
β2
λ,t

β2
λ,t+1

ρ
(
E(vt) + 2

√
E(vt) ·

√
K2 +K2

)
which is the same expression as (5.10) in Zhang et al. [2018]. So similar conclusions to the ones of536

Step 1 of Zhang et al. [2018] holds:537

sup
t
E
[
‖β−1

λ,tλ⊥,t‖
2
1{supt‖λt‖≤M}

]
<∞ (24)

and lim
t
λ⊥,t = 0 a.s. (25)

We now show convergence of the consensus vector 1⊗ 〈λt〉. Based on (21) we have538

〈λt+1〉 = 〈(Ct ⊗ I)(1⊗ 〈λt〉+ λ⊥,t + βλ,tyt+1)〉
= 〈λt〉+ 〈λ⊥,t〉+ βλ,t〈(Ct ⊗ I)(yt+1 + β−1

λ,tλ⊥,t)〉
= 〈λt〉+ βλ,t(h(λt, st) +Mt+1)
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where h(λt, st) = Eat∼π
[
〈yt+1〉|Ft

]
andMt+1 = 〈(Ct⊗I)(yt+1+β−1

λ,tλ⊥,t)〉−Eat∼π
[
〈yt+1〉|Ft

]
.539

Since 〈δt〉 = r̄(st, at)− w(st, at)〈λt〉, we have540

h(λt, st) = Eat∼π(r̄(st, at)w(st, at)
>|Ft) + Eat∼π(w(st, at)〈λt〉 · w(st, at)

>|Ft,1)

so h is Lipschitz-continuous in its first argument. Moreover, since 〈λ⊥,t〉 = 0 and 1>E(Ct|Ft,1) =541

1> a.s.:542

Eat∼π
[
〈(Ct ⊗ I)(yt+1 + β−1

λ,tλ⊥,t)〉|Ft,1
]

= Eat∼π
[ 1

N
(1> ⊗ I)(Ct ⊗ I)(yt+1 + β−1

λ,tλ⊥,t)|Ft,1
]

=
1

N
(1> ⊗ I)(E(Ct|Ft,1)⊗ I)Eat∼π

[
yt+1 + β−1

λ,tλ⊥,t|Ft,1
]

=
1

N
(1>E(Ct|Ft,1)⊗ I)Eat∼π

[
yt+1 + β−1

λ,tλ⊥,t|Ft,1
]

= Eat∼π
[
〈yt+1〉|Ft,1

]
a.s.

So {Mt} is a martingale difference sequence. Additionally we have543

E
[
‖Mt+1‖2|Ft,1

]
≤ 2 · E

[
‖yt+1 + β−1

λ,tλ⊥,t‖
2
Gt |Ft,1

]
+ 2 · ‖E

[
〈yt+1〉|Ft,1

]
‖2

with Gt = N−2 ·C>t 11>Ct ⊗ I whose spectral norm is bounded for Ct is stochastic. From (23) and544

(24) we have that, for any M > 0, over the set {supt‖λt‖≤M}, there exists K3,K4 <∞ such that545

E
[
‖yt+1+β−1

λ,tλ⊥,t‖
2
Gt |Ft,1

]
1{supt‖λt‖≤M} ≤ K3·E

[
‖yt+1‖2+‖β−1

λ,tλ⊥,t‖
2|Ft,1

]
1{supt‖λt‖≤M} ≤ K4.

Besides, since rit+1 and w are uniformly bounded, there exists K5 < ∞ such that546

‖E
[
〈yt+1〉|Ft,1

]
‖2≤ K5 · (1 + ‖〈λt〉‖2). Thus, for any M > 0, there exists some K6 < ∞547

such that over the set {supt‖λt‖≤M}548

E
[
‖Mt+1‖2|Ft,1

]
≤ K6 · (1 + ‖〈λt〉‖2).

Hence, for any M > 0, assumptions (a.1) - (a.5) of B.1. from Zhang et al. [2018] are verified on the549

set {supt‖λt‖≤M}. Finally, we consider the ODE asymptotically followed by 〈λt〉:550

˙〈λt〉 = −Bπ,θ · 〈λt〉+Aπ,θ · dπ

which has a single globally asymptotically stable equilibrium λ∗ ∈ RK , since Bπ,θ is positive551

definite: λ∗ = B−1
π,θ ·Aπ,θ · dπ . By Lemma 7, supt‖〈λt〉‖<∞ a.s., all conditions to apply Theorem552

B.2. of Zhang et al. [2018] hold a.s., which means that 〈λt〉 −→
t→∞

λ∗ a.s. As λt = 1⊗ 〈λt〉+ λ⊥,t553

and λ⊥,t −→
t→∞

0 a.s., we have for each i ∈ N , a.s.,554

λit −→
t→∞

B−1
π,θ ·Aπ,θ · d

π.

Proof of Theorem 7555

Let Ft,2 = σ(θτ , τ ≤ t) be the σ-field generated by {θτ , τ ≤ t}, and let556

ζit,1 = ψit · ξit − Est∼dπ
[
ψit · ξit|Ft,2

]
, ζit,2 = Est∼dπ

[
ψit · (ξit − ξit,θt)|Ft,2

]
.

With local projection, actor update (6) becomes557

θit+1 = Γi
[
θit + βθ,tEst∼dπ

[
ψit · ξit,θt |Ft,2

]
+ βθ,tζ

i
t,1 + βθ,tζ

i
t,2

]
. (26)

So with hi(θt) = Est∼dπ
[
ψit · ξit,θt |Ft,2

]
and h(θ) =

[
h1(θ), . . . , hN (θ)

]
, we have

hi(θt) =
∑
st∈S

dπ(st) · ψit · ξit,θt .

Given (10), θ 7→ ωθ is continuously differentiable and θ 7→ ∇θωθ is bounded so θ 7→ ωθ is Lipschitz-558

continuous. Thus θ 7→ ξit,θ is Lipschitz-continuous for each st ∈ S. Our regularity assumptions559
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ensure that θ 7→ ψit,θt is continuous for each i ∈ N , st ∈ S. Moreover, θ 7→ dθ(s) is also Lipschitz560

continuous for each s ∈ S. Hence, θ 7→ g(θ) is Lipschitz-continuous in θ and the ODE (12) is561

well-posed. This holds even when using compatible features.562

By critic faster convergence, we have limt→∞‖ξit − ξit,θt‖= 0.563

Let M i
t =

∑t−1
τ=0 βθ,τζ

i
τ,1. M i

t is a martingale sequence with respect to Ft,2. Since564

{ωt}t, {∇aφk(s, a)}s,k, and {∇θµθ(s)}s are bounded (Lemma 3, Assumption 2), it follows565

that the sequence
{
ζit,1
}

is bounded. Thus, by Assumption 5,
∑
t E
[∥∥M i

t+1 −M i
t

∥∥2 |Ft,2
]

=566 ∑
t

∥∥βθ,tζit,1∥∥2
< ∞ a.s. The martingale convergence theorem ensures that

{
M i
t

}
converges a.s.567

Thus, for any ε > 0,568

lim
t
P

(
sup
n≥t

∥∥∥∥∥
n∑
τ=t

βθ,τζ
i
τ,1

∥∥∥∥∥ ≥ ε
)

= 0.

Hence, by Kushner-Clark lemma Kushner and Clark [1978] (pp 191-196) we have that the update in569

(26) converges a.s. to the set of asymptotically stable equilibria of the ODE (12).570
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