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Fig. 1: We present DexWrist, a robotic wrist that allows for con-
strained and dynamic manipulation and speeds up teleoperated data
collection and makes teleoperation more intuitive.

Abstract—We present the DexWrist, a compliant robotic wrist
designed to advance robotic manipulation in highly-constrained
environments, enable dynamic tasks, and speed up data collec-
tion. DexWrist is designed to be close to the functional capabilities
of the human wrist and achieves mechanical compliance and a
greater workspace as compared to existing robotic wrist designs.
The DexWrist can supercharge policy learning by (i) enabling
faster teleoperation and therefore making data collection more
scalable; (ii) completing tasks in fewer steps which reduces
trajectory lengths and therefore can ease policy learning; (iii)
DexWrist is designed to be torque transparent with easily
simulateable kinematics for simulated data collection; and (iv)
most importantly expands the workspace of manipulation for
approaching highly cluttered scenes and tasks. More details about
the wrist can be found at: dexwrist.csail.mit.edu.

I. INTRODUCTION

Significant progress has been made in robotic manipula-
tion with large-scale data from bimanual systems such as
ALOHA [5] and the Franka Panda Dual Arm Setup [4].
However, most robotic manipulation still operates under sim-
plified conditions, unsuitable for real-world tasks in cluttered
spaces, such as retrieving items from crowded refrigerators or
plugging cables into obstructed outlets. Conventional robotic
arms struggle to perform tasks in these environments, and tele-
operation is often tedious due to the need to avoid collisions
and maneuver through tight spaces.

Humans navigate such environments with ease largely due
to joint co-location of degrees of freedom and high dexterity
in the wrist and hand. This paper focuses on addressing two
major challenges in robotic manipulation: limited motion in
constrained spaces, and slow data collection. Current robotic
wrists, such as those on UR and Franka arms, rely on serial
joint arrangements designed for open workspaces. These de-
signs limit their reachability and reduce the number of viable

motion solutions [10, 16, 35]. Moreover, common differential
joints are difficult to model [24], and high-torque gear systems
reduce compliance, leading to poor adaptability to external
forces [10].

We introduce DexWrist, a parallel-actuated, compliant
robotic wrist that addresses these limitations. It supports
activities of daily living (ADLs), meeting strict requirements
for torque, compliance, speed, bandwidth, precision, and range
of motion. DexWrist is designed to handle high loads and
environmental disturbances while enabling rapid, intuitive tele-
operation. Combined with a low-cost Agile-X arm, DexWrist
enables efficient data collection in cluttered settings and im-
proves task execution in constrained environments. Our results
show significant improvement in manipulation capabilities and
data collection efficiency, making DexWrist a valuable tool for
advancing robot learning in real-world scenarios.

II. PRIOR WORKS

A. Serial Wrists.

Most commercially available robotic arms have an inte-
grated serial wrist, such as the UR5e [7], Franka Panda [4], and
AgileX PiPER [6]. There is also a variety of standalone serial
wrists like the Montagnani switchable stiffness wrist [25] and
the Chirikjian spherical stepper motor [14]. The main issue
with many serial wrists is that they are not only large and
non-back-driveable, but their kinematic differences from the
human wrist complicate constrained manipulation and limit the
number of feasible solving methods for teleoperation demos.

B. Coupled Parallel Wrists.

The Omni-Wrist [30], Carpal Robotic wrist [8], and
Damerla prosthetic wrist [15] have made significant size im-
provements. However, modeling and simulation complexities
are still pertinent due to their coupled nature.

C. Decoupled Parallel Wrists.

The Agile Eye [18] and Negrello soft wrists [26] are two
examples of decoupled parallel wrists. While their kinematics
closely emulate human wrist function, sizing presents itself
as a limitation with this kinematic structure. The DexWrist
aims to minimize the size gap while maintaining a decoupled
kinematic configuration.

https://dexwrist.csail.mit.edu


D. U-Joint Style Wrists.

Robotic wrists on commercial platforms such as the Unitree
H1-2 and the GALAXEA R1 have their first motor stationary
relative to the base of the wrist, and the second motor in its
entirety rotated by the first motor. The end effector is mounted
to the output of the second motor. This has the downside of
a higher moment of inertia due to the first motor moving the
weight of the second motor, limiting the range of dynamic
tasks. DexWrist, however, has both motors mounted stationary
relative to the base of the wrist, greatly reducing the inertia
of the end effector and allowing for more dynamic tasks.

TABLE I: Comparison of Desired and Achieved Functional Require-
ments

Functional Requirement Desired Range Ours Pass

Rated Active Torque (Nm) 3 ≥ 3 3.75± 0.05 ✓
Back-driveability Torque (Nm) 0.4 < 0.4 0.33± 0.06 ✓

Load Capacity X/Y/Z (kg) 5 ≥ 5 5 ✓
Rated Active Speed (RPM) 50 10–53.3 96.6± 9.4 ✓
Bandwidth (Hz) @ 3.75Nm 20 10–20 10.15± 1.34 ✓

Angular Precision (°) 3.5 0–3.5 1.65 ✓
F/E ROM (°) 80 –40–40 –40–40 ✓
R/U ROM (°) 40 –10–30 –40–40 ✓
Width (mm) 61.4 51.5–61.4 64 ∼
Height (mm) 61.4 51.5–61.4 66.5 ✗
Length (mm) 174.5 ±5 178.2 ✓
Weight (kg) 1 0–1 0.97 ✓

III. WRIST DESIGN

A 2-DOF robotic wrist was designed according to the
functional requirements outlined in D. Two custom stepped
planet compound planetary gearboxes separately drive each
independent DOF of a decoupled parallel kinematic mecha-
nism (PKM).

A. Quasi-Direct-Drive Stepped-Planet Gearbox

To meet the 3 Nm, 50 rpm, and back-driveability targets
within a 61 mm cube, we pair a high-density BLDC (Cube-
Mars GL40, 1.50 W cm−3) with a custom 13:1 stepped-planet
compound gearbox (Fig. 2). Commercial units (e.g. Maxon,
31.7 mm long) were too large, so we designed a quasi-direct-
drive stage whose reflected inertia is <10−5 of the load. Gear
tooth bending stress is checked with the Lewis equation, using
Kd factors and a 1045-steel rim to keep FOS ≥3. An AS5047P
encoder and Moteus-n1 controller close the 1 kHz torque loop
over CAN.

B. 2-(R, RR) Parallel Kinematic Mechanism

The decoupled 2-DOF PKM (Fig. 4) mirrors human F/E
and R/U axes while localising inertia at the hand. Simulated
reach inside a deep, angled cabinet (PyBullet) shows an 88 %
increase in collision-free targets over the AgileX serial wrist
(Fig. 3). Four load cases—5 kg in ±X,Y, Z and 3 Nm active
torque—set a 6 mm shaft and 9 mm bushing minimum; 17-4
PH stainless links give FOS = 3.3 without exceeding the 64
mm envelope.

Fig. 2: QDD Stepped Planetary Compound Gearbox with 13:1
transmission.

Fig. 3: Left: DexWrist wrist simulation. Middle: Serial wrist simu-
lation. Right: Workspace comparison plot illustrating reachability of
each arm configuration within the deep angled cabinet. The DexWrist
improved constrained workspace reachability by 88% when compared
to the AgileX wrist.

IV. TELEOPERATION FRAMEWORK AND SYSTEM
INTEGRATION

A. Integration Setup

We use the AgileX PiPER as an experimental platform to
evaluate the overall dexterity and performance of our wrist
design for manipulation. The PiPER is a robotic arm with
highly back-driveable joints and six degrees of freedom, but it
lacks orthogonal roll-pitch movement for the last two degrees
of freedom, making human-like wrist circumduction difficult.
In light of this limitation, we remove the last two joints of
the AgileX and replace them with our 2-DOF wrist design,
maintaining a total of six degrees of freedom. The AgileX
PiPER gripper, an ALOHA-style gripper, is mounted onto the
wrist as the end effector.

B. Controller and Pipeline Details

We developed a comprehensive policy learning pipeline
that enables seamless demonstration collection, training, and
deployment across diverse teleoperation controllers, wrist
configurations, and end-of-arm tooling. During teleoperation,
absolute end-effector pose targets T ee

w ∈ SE(3) are obtained
from a teleoperation controller. Using this pose target, a
differential inverse kinematics problem, formulated as a con-
strained quadratic program (QP) is solved to obtain the desired
joint velocities q̇d. The resulting velocities are then Euler-
integrated to generate joint position setpoints for a low-level
joint stiffness PD controller operating at 1kHz. More details
on the policy learning pipeline can be found in Appendix B.



Fig. 4: Left: 2-(R, RR) PKM isometric view with red dotted lines
depicting DOF rotational axes and pivot point. Middle: Side view
highlighting kinematic chain in dark blue (RR). Right: Front view
highlighting kinematic chain in gray (R).

Fig. 5: The three tasks shown to evaluate the performance of the wrist
as compared to the stock AgileX arm.

C. User Study Task Descriptions

A user study is conducted to measure the performance at
recording demonstrations on three separate tasks using both
the original AgileX PiPER arm and the modified arm with
DexWrist. Images are shown in Figure 5.

1) Picking from a Cluttered Refrigerator: Pickup a highly
occluded cup from deep inside a fridge while ensuring
surrounding objects are not knocked over.

2) Unplugging: Reach through the narrow gap between a
monitor and a desktop computer to unplug a USB cable.

3) Picking from a drawer: Pick up a cup from deep inside
a drawer.

V. EXPERIMENTAL RESULTS

A. Characterization Experiments
1) Torque and Bandwidth: We placed a Vernier Go Direct

Force and Acceleration Sensor 70 mm away from the pivot
point to measure the force the DexWrist could exert. The
rated torque output was calculated to be 3.75±0.05 Nm (10
trials were collected for all experiments). We simultaneously
calculated the bandwidth using the rising time (tr), the
time taken to reach 90% torque from 10% torque, with the
B(Hz) = 0.35/tr(s) relationship. The resulting bandwidth
is 10.15±1.34 Hz, which is on the lower end of the desired
range.

2) Back-driveability Torque: In a similar setup as before,
the Vernier Go Direct Force and Acceleration Sensor was used
to measure the force required to back-drive the DexWrist as
the wrist was lowered onto the sensor. The torque necessary
to back-drive the robotic wrist is 0.33±0.06 Nm.

Fig. 6: Teleoperation demonstrations recorded from successful trajec-
tories. Resets were performed in the event of a severe robot collision,
surrounding objects being knocked over, or a failed grasp. For each
configuration, N ≥ 40.

3) Load Capacity: To validate the strength of the DexWrist,
the Vernier Go Direct Force and Acceleration Sensor was used
to push against the wrist hard stops with force equivalent to
5 kg. The structural skeleton of the wrist was able to sustain
the required load capacity without damage.

4) Speed, Angular Precision, and Range of Motion: We
recorded the end effector motion of the DexWrist when moved
between its motion limits. The Vernier Video Analysis soft-
ware was used to track the end effector and calculate its speed,
final position, and range of motion. The resulting rated speed
greatly surpassed our requirements at 96.6 ± 9.4 RPM, the
angular precision was 1.65 degrees, and the range of motion
for both F/E and R/U were confirmed to be -40 to 40 degrees.

5) Size and Weight: The DexWrist length fits within the
designated requirements. Due to the spherical bearings neces-
sary for the driving links, the height and width were above the
required size. However, the width is only 4% larger than the
target value. The assembly weighs 0.97 kg.

B. Teleoperation in Constrained Environments

The robot was teleoperated to perform the task both with
DexWrist and the stock PiPER wrist in the three constrained
spaces outlined in IV-C. The results in Table III show that
trajectories collected in constrained spaces using DexWrist
required significantly less timesteps and environment resets
per successful trajectory compared to the stock PiPER Arm
with the default wrist.

C. Behavioral Cloning

1) Method: To evaluate the impact of wrist design on ma-
nipulation performance, we trained diffusion policies [12] on
141 demonstrations recorded separately on the AgileX PiPER
equipped with both the default wrist and the DexWrist (282
demonstrations total). For both system configurations, we train
CNN-based diffusion policies with identical hyperparameters,
operating at 20Hz using a DDIM sampler [31] to perform the
task. Refer to Appendix A for the implementation details.

2) Task Specification: Retrieve an occluded flattened soda
can from deep within a cluttered refrigerator and place it on
the table. Failure occurs if any object is knocked over, the



camera disconnects, or the refrigerator is displaced. The target
requires challenging end-effector positioning: the gripper must
reach the back of the refrigerator with fingers parallel to the
rear wall (opening axis nearly orthogonal to the back wall).
This awkward orientation complicates collision avoidance with
nearby objects. Limited vertical clearance between shelves,
dividing rack, and bottom tray creates minimal tolerance for
arm movement. Initial target occlusion further increases task
difficulty.

Fig. 7: For each system, we report the highest success rate among all
evaluated checkpoints. Error bars show the binomial standard error
based on 15 trials of the best checkpoint only. Evaluation details in
appendix.

The checkpoint with the best success rate trained for the
AgileX + DexWrist combination exhibited a 50% relative
improvement in success rate compared to the policy trained
for the AgileX + default wrist system. On successful trials,

TABLE III: Autonomous task completion time statistics for suc-
cessful trials using the best checkpoint for each respective system.
N = 15 for both configurations.

System Policy Task Completion Time (s)

Mean Min Max

AgileX + Default Wrist 91.0 ± 7.9 55.2 134.2
AgileX + DexWrist (Ours) 28.1 ± 2.2 20.5 49.0

the DexWrist was observed to be 3.24x faster than the default
configuration, on average.

VI. DISCUSSION AND FUTURE WORK

We empirically show that DexWrist reduces both the total
time required (i.e., more intuitive teleoperation) and the av-
erage trajectory length of successful demonstrations provided
by human teleoperators in constrained spaces. Reduction in
the number of environment resets and total teleoperation time
leads to a more efficient and therefore more scalable data
collection process in constrained spaces, which is critical for
scaling up data collection in consumer settings. The increased
workspace of the robot with DexWrist enables completion
of tasks that were not previously possible with the default
wrist configuration in constrained environments. Lastly, torque
transparency and backdrivability makes DexWrist capable
of performing dynamic tasks via torque control. Videos of

DexWrist performing highly dynamic tasks with human-level
wrist dexterity can be found here.

The behavioral cloning experiments conducted in the clut-
tered refrigerator setting demonstrate the advantage of using
the DexWrist for policy learning in confined spaces where
traditional top-down manipulation approaches are infeasible
or require task-specific robot integration. As shown in Fig-
ure 7, the DexWrist demonstrated a modest but consistent
improvement in policy success rate compared to the default
wrist configuration in the cluttered refrigerator. Furthermore,
the DexWrist policies completed the task 3.24x faster than the
default wrist configuration. While this performance improve-
ment can be partially attributed to the observed reduction in
trajectory length during teleoperation, we attribute much of
this performance improvement to the human-like kinematics
of DexWrist.

The DexWrist’s performance advantage in constrained en-
vironments stems from its anthropomorphic kinematic design
creating solutions that are inherently more robust and natural.
In human-designed spaces like kitchens and refrigerators, the
DexWrist’s human-like joint constraints naturally generate
inverse kinematics solutions that closely match the control
envelope of human wrist configurations, leading to a structured
action space that aligns with human demonstration patterns,
and environments making it a natural choice for task space
control in constrained spaces. On the other hand, the serial
kinematic chain of the AgileX with the default wrist forces
the policy to more carefully plan points in the task space as it
must orchestrate all the DoFs of the robot in a manner which
does not knock over objects in the vicinity of the end effector,
causing a failure.

Unlike conventional robotic wrists, such as the AgileX,
each DoF of the DexWrist is independently controlled by
one actuator. The DexWrist’s decoupled parallel kinematic
chain eliminates the need for complex joint coordination.
Consequently, in policy rollout, we observe that the DexWrist
takes more direct actions towards the can without needing to
coordinate a serial kinematic chain through inverse kinematics;
this is in contrast to the original arm, which tends to pause
and get stuck during this pre-approach step. Finally, since
large-scale human behavior data is more readily available and
scalable than collecting hardware-platform-specific demon-
strations, improving a robotic arm’s ability to successfully
complete tasks using an end-effector action space is critical
for scaling up policy learning in human-centric environments.

Directions for future work includes investigating reinforce-
ment learning approaches for performing dynamic tasks and
transferring policies trained on demonstrations from the UMI
[13] to systematically investigate whether the Dexwrist more
effectively closes the human-robot wrist embodiment gap
compared to traditional wrists.
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APPENDIX A
POLICY LEARNING DETAILS AND HYPERPARAMETERS

In this appendix, we provide the background, implemen-
tation details and complete set of hyperparameters used to
training both diffusion policies. Detailed hyperparamters can
be found in Table IV.

Behavioral cloning (BC) is a direct, supervised learning ap-
proach in which a policy is trained on expert demonstrations to
learn a mapping from observations to actions. More precisely,
BC optimizes the parameters of the policy by maximizing the
likelihood of expert demonstrations:

θ∗ = argmax
θ

Eot∼D [log πθ(at|ot)]

D denotes a dataset of expert demonstrations. Sequences of
predicted actions (at, . . . , at+Tp

) and sequences of observed
states (ot−T0

, . . . , ot) at a given timestep t are denoted by
at and ot, respectively, for brevity, with observation horizon
To and prediction horizon Tp. Identical parameters were used
for diffusion policies trained for both platforms. Both policies
take RGB images from a wrist-mounted camera in addition
to the proprioceptive state as input to generate predicted
action sequences over a horizon of Tp timesteps. We use
absolute end-effector position control and a discrete gripper
action gaction ∈ {open, close, no-op} as our action space where
rotations are represented using the continuous 6D rotation rep-
resentation proposed by [36]. With the exception of the gripper
state which is represented continuously, the proprioceptive
state of the robot is represented as absolute end-effector pose
with the same SE(3) representation used for action targets.
A circular ring buffer is updated with proprioceptive state at
200Hz and used to synchronize RGB frames from the wrist
camera with the robot’s proprioceptive state using hardware
timestamps.

1) Evaluation Details: We evaluated the diffusion policies
trained for each respective system at the same six epochs
(75, 150, 225, 300, 375, 750). For each checkpoint, we
collect 15 rollouts in the real environment (90 trials per
system), randomly resetting the objects in the scene before
each iteration. More details can be found in Appendix C

APPENDIX B
PIPELINE DETAILS

Our teleoperation framework supports multiple input modal-
ities to accommodate different user preferences and opera-
tional contexts. We support the 3DConnexion SpaceMouse
for precise desktop control, iPhone ARKit for mobile spatial
tracking, direct manual jogging with gravity compensation for
intuitive physical interaction, and immersive control through
the Apple Vision Pro [28]. The system leverages the stan-
dardized LeRobot dataset format [11] paired with Hugging
Face Hub’s cloud infrastructure, providing robust data storage,
version control, and visualization capabilities that facilitate
collaborative development and reproducible research.

TABLE IV: Hyperparameters used for all diffusion policies.

Parameter Value
Architecture
Vision encoder ResNet18 [19]
Input image size (N, H, W, C) (1, 240, 320, 3)
Kernel size 5
U-Net down dims (256, 512, 1024)
N group norm groups 8
Diffusion step embedding dim 128
Action dim 10
Observation dim 10
Prediction horizon, Tp 16
Observation horizon, To 2
Action horizon, Ta 8
Diffusion Process
DDIM training steps 100
DDIM inference steps 16
βstart 1e-4
βend 0.02
Training
Batch size 128
Learning rate 1e-4
Learning rate scheduler Cosine
Warmup steps 500
Optimizer Adam [23]
β1, β2 0.95, 0.999
Weight decay 1e-6
Training iterations 500K
Gradient clipping 10.0
Loss MSE
Normalization
Proprioceptive State Min/Max
Action Min/Max
Wrist RGB [0, 1], Z-Score
Image Augmentations
Random crop (H, W) (216, 288)
Brightness jitter (0.9, 1.1)
Contrast jitter (0.9, 1.1)
Saturation jitter (0.9, 1.1)
Sharpness adjustment factor 1.5
Sharpness adjustment probability 0.5
Noise N (0, 0.1)
Max no. augmentations 3

APPENDIX C
SCENE RANDOMIZATION: CLUTTERED REFRIGERATOR

SETTING

The scene and robot configuration are systematically varied
during both teleoperation and evaluation. Initial position of the
robot end-effector is fixed across all trajectories. All objects
inside the fridge were subject to relatively small amounts
of randomization every reset with the target object being
subject to slightly more variation in initial position and rotation
relative to the other objects.

APPENDIX D
FUNCTIONAL REQUIREMENTS

Our first goal is to characterize functional requirements
and the form factor of a robotic wrist that can perform
small workspace manipulation while retaining daily dynamic
task capabilities. Identifying average human exertion attributes
for these characteristics, which are summarized in Table I,
provides a path for developing hardware that can achieve ADL
manipulation.



Fig. 8: Left: Human wrists have 3 degrees of freedom: flex-
ion/extension (F/E), radial/ulnar (R/U) deviation, and prona-
tion/supination (P/S). Anatomically, the F/E and R/U degrees of
freedom are in parallel and are preceded by P/S in series. Right:
DexWrist DOFs mirroring human wrist.

A. Torque, Load Capacity, and Compliance
Two similar studies indicated that the maximum wrist flex-

ion/extension (F/E) and radial/ulnar (R/U) deviation (Figure
8) torques are 4.6-11.9 Nm and 4.7-10.8 Nm, respectively
[34, 33]. The F/E and R/U torques cover the same range of
values, allowing the critical assumption that these degrees of
freedom may be designated similar desired torque require-
ments. However, while both studies provide relevant insight
into human wrist maximum performance, we aim to focus
on average human wrist torque outputs required for ADLs.
Another study indicates that a torque of 3 Nm was sufficient
to complete 93% of ADL tasks [27, 9], and already takes into
account the inertial torques of the human hand and the object
of manipulation. We will be using objects of manipulation
and an end effector (AgileX PiPER Gripper [2]) with similar
inertial torques, allowing us to use the same final value of at
least 3 Nm for both F/E and R/U. Torques for P/S were not
investigated as it will be in series with F/E and R/U, and most
traditional robot arms include this DOF.

Static strength is especially important for tasks requiring
a locked wrist during full arm motion, such as lifting full
grocery bags or a gallon of milk, each weighing roughly 4 kg.
Including a maximum 1 kg end effector, a robotic wrist must
sustain 5 kg of load in each axial direction.

Compliance integration may be accomplished by minimiz-
ing the torque needed to back-drive the actuators. At rest,
human wrists require low forces to reorient the hand. For
this, the robotic wrist must also allow the end effector to be
reoriented with ease, warranting no more than 5 N of force.
This translates to a back-driveability torque of at most 0.4 Nm.

B. Speed, Bandwidth, Kinematics, and Precision
To properly characterize wrist speed, past work designed a

game where human subjects use isolated wrist motion to ac-
complish tasks [32]. The study revealed peak wrist movement
speeds were 10-53.3 RPM, providing a target range for robotic
wrist speed quantities.

Studies examining human wrist responses to force pertur-
bations and visual position targets provide useful information
for characterizing bandwidth [22, 17]. Specifically, the long-
latency reflex refers to a conscious wrist response to external

stimuli. These findings indicate that the long-latency reflex
occurs within a range of 50-100 ms, correlating to bandwidth
frequencies of 10-20 Hz.

A study recorded human F/E and R/U angles using an
electrogoniometer during ADL completion [29]. For tasks
involving personal hygiene and food preparation, it was found
that 40° each of flexion and extension, 10° of radial deviation,
and 30° of ulnar deviation is a reasonable representation of
the range necessary for ADL completion as it was sufficient
to complete 22 of the 24 tasks.

To get wrist angular precision: [21] and [20] both indicated
minimum wrist angular precisions of 3.47° and 4.58°, respec-
tively.

C. Size and Weight

The benefits of human wrist compactness are maintained in
our size constraints defined by anthropometric data conducted
by NASA [3]. The 95th percentile value of male human wrist
measurements provides a wrist width and height of 61.4 mm.
The actuators and power sources of our design are to be
located within the forearm as it typically is unoccupied space
in commercially available humanoid robots. Thus, the length
of this robotic wrist is dictated by the maximum expected male
forearm length of 349 mm [3]. To allow space for the elbow
joint, wrist length is limited to 174.5 mm.

This robotic wrist would be attached to a robot arm in
the same fashion any end effector would. We would like to
model our desired weight using a typical example of a smaller
gripper, such as the Robotiq gripper [1]. This allows us to
arrive to a final desired weight of approximately 1 kg. This is
a standard weight that typical robot arms, such as the UR5e
[7], can handle.
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