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Abstract

Hallucination, the generation of factually in-001
correct information, remains a significant chal-002
lenge for large language models (LLMs), es-003
pecially in open-domain long-form generation.004
Existing approaches for detecting hallucination005
in long-form tasks either focus on limited do-006
mains or rely heavily on external fact-checking007
tools, which may not always be available.008

In this work, we systematically investigate009
reference-free hallucination detection in open-010
domain long-form responses. Our findings re-011
veal that internal states (e.g., model’s output012
probability and entropy) alone are insufficient013
for reliably (i.e., better than random guessing)014
distinguishing between factual and hallucinated015
content. To enhance detection, we explore vari-016
ous existing approaches, including prompting-017
based methods, probing, and fine-tuning, with018
fine-tuning proving the most effective. To fur-019
ther improve the accuracy, we introduce a new020
paradigm, named RATE-FT, that augments fine-021
tuning with an auxiliary task for the model to022
jointly learn with the main task of hallucina-023
tion detection. With extensive experiments and024
analysis using a variety of model families &025
datasets, we demonstrate the effectiveness and026
generalizability of our method, e.g., +3% over027
general fine-tuning methods on LongFact.028

1 Introduction029

With the recent advancements in model scale and030

pretraining data, large language models (LLMs)031

have demonstrated remarkable capabilities in var-032

ious natural language processing (NLP) tasks033

(Brown et al., 2020). Despite these successes, hal-034

lucination, where models tend to produce content035

that conflicts with real-world facts, remains a sig-036

nificant challenge (Zhang et al., 2023). Most ex-037

isting research on hallucination detection has fo-038

cused on short-form tasks, where the output con-039

sists of one or a few tokens. While these meth-040

ods are effective for short-form content (Manakul041
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Figure 1: Comparison between Fine-Tuning and RATE-
FT for hallucination detection. RATE-FT improves
Fine-Tuning by incorporating rationales and an auxiliary
task (question answering) into the training process.

et al., 2023; Mahaut et al., 2024; Yehuda et al., 042

2024; Zhang et al., 2024a), extending them to open- 043

domain long-form generation presents additional 044

complexities and new challenges. Unlike short- 045

form tasks, long-form responses can span hundreds 046

or even thousands of tokens, requiring models to 047

generate detailed and nuanced answers to broad 048

fact-seeking prompts (Wei et al., 2024). This ne- 049

cessitates that LLMs synthesize information across 050

multiple knowledge domains, increasing the risk 051

of generating content that sounds plausible yet is 052

factually incorrect. For example, when answering 053

‘What is the significance of Amber Room?’, LLMs 054

may generate responses that mix accurate historical 055

information with fabricated details, complicating 056

the task of distinguishing fact from hallucination. 057

Recent efforts have sought to address hallucina- 058

tion detection in long-form tasks. However, they 059

either focus on limited domains, e.g., biography 060

generation (Min et al., 2023; Fadeeva et al., 2024) 061

or rely heavily on external fact-checking tools or 062

knowledge bases, e.g., Google Search (Wei et al., 063

2024). While these tools offer valuable support, 064

they are not always available or scalable. This 065

raises an important question: can we develop hal- 066

lucination detectors that rely solely on the model 067

itself, without the need for external fact-checking 068
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resources? So far, little attention has been given069

to systematically exploring how the model’s own070

mechanisms can be used for detecting hallucina-071

tions in open-domain long-form generation.072

To address this gap, we start by investigating073

hallucination detection in open-domain long-form074

responses using the model’s internal states, e.g.,075

output probability and entropy. Specifically, we de-076

compose long-form responses into atomized claims077

using the model and verify each claim’s correctness078

using Google Search to construct benchmark data079

following Wei et al. (2024). Our analysis reveals080

that these internal states alone are insufficient for081

reliably (i.e., better than random guessing) distin-082

guishing between correct and incorrect claims, indi-083

cating that the mechanisms for detecting hallucina-084

tions in long-form outputs differ significantly from085

those in short-form tasks. To enhance detection, we086

explore several existing methods, including prompt-087

ing, probing, and fine-tuning LLMs. Our experi-088

mental results show that fine-tuning LLMs is the089

most effective method to detect hallucinations.090

Building on this, we introduce a novel method091

Rationale and Auxiliary Task Enhanced Fine-092

Tuning (RATE-FT) (Figure 1). Specifically, we093

convert the original claims into auxiliary question094

answering (QA) examples for augmentation, pro-095

viding a complementary learning perspective for096

the model, which enables better generalization. Ad-097

ditionally, we incorporate collected rationales into098

the training process for better reasoning. Extensive099

experiments and analysis using different models100

demonstrate the effectiveness and generalizability101

of our approach. Furthermore, we investigate the102

integration of model uncertainty into hallucination103

detection in Appendix A.11.104

2 Are LLMs’ Internal States Sufficient for105

Open-Domain Long-Form Generation?106

The internal states of LLMs, such as output prob-107

ability and entropy, have been shown to be ef-108

fective in detecting hallucinations in short-form109

tasks, where outputs are typically limited to only110

a few tokens. By analyzing these signals, models111

can often differentiate between factual and hallu-112

cinated information. However, their applicability113

in open-domain long-form generation remains un-114

derexplored. A key question is whether LLMs115

can depend solely on their internal states to iden-116

tify hallucinations in long-form generation, without117

using external fact-checking tools. To answer it,118
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Figure 2: Detection results based on token probability.

we conduct some pilot experiments on LongFact 119

(Wei et al., 2024), a long-form generation dataset 120

spanning 38 different domains. Specifically, for 121

each prompt in the sampled subset (200 prompts), 122

we obtain a long-form response from Llama-3-8B- 123

Instruct with greedy decoding. Following Wei et al. 124

(2024), we employ the model to decompose long- 125

form responses into atomized claims and label them 126

as ‘factual’ or ‘hallucinated’ together with the rea- 127

sons (see Appendix A.3 for construction details). 128

For each claim, we mainly focus on two types 129

of internal states to estimate factual confidence fol- 130

lowing SelfCheckGPT (Manakul et al., 2023): the 131

probability or the entropy (uncertainty) of output 132

tokens. Specifically, we examine the arithmetic and 133

geometric 1 averages of all tokens, the average of 134

tokens with the top-K lowest probability or highest 135

entropy (K = 1, 3, 5), and the average of tokens 136

with the top-P% lowest probability or highest en- 137

tropy (P = 5, 10, 15). The results in Figure 2 and 138

Appendix A.4 suggest that neither internal state 139

reliably, i.e., better than random guessing, predicts 140

the correctness of a given claim, which may be due 141

to the presence of numerous insignificant tokens 142

within the claim, such as stop words. To address 143

this, we consider variants that focus only on output 144

tokens related to entities. The results, shown in Ap- 145

pendix A.4, reveal similar patterns (see Appendix 146

A.5 for a detailed comparison with the findings in 147

Manakul et al. (2023)). We analyze the underly- 148

ing reasons as follows. In open-domain long-form 149

generation, claims are not limited to a few tokens, 150

which introduces multiple sources of uncertainty. 151

Specifically, the probability or entropy reflects the 152

model’s confidence in how a claim is expressed, i.e., 153

its confidence in the claim as a sequence of output 154

tokens, rather than in the correctness of the claim. 155

Different surface forms of the claim yield different 156

confidence levels, leading to unreliable estimates. 157

Considering the unreliability of LLMs’ inter- 158

nal states in hallucination detection, there are sev- 159

1Commonly known as perplexity
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eral promising alternative approaches, including160

prompting, probing and fine-tuning LLMs, which161

we explore in the next section.162

3 Prompting, Probing and Fine-Tuning163

Based on a review of the research area, we iden-164

tify three groups of existing hallucination detection165

methods, which we discuss below.166

Prompting Prompting-based approaches involve167

directly prompting LLMs to assess the correctness168

of a given claim without additional training. We169

investigate the following three different methods:170

(i) Prompting the model to output ‘True’ or ‘False’171

for a given claim, referred to as PromptTF. The172

probability assigned to the token ‘True’ represents173

Pfactual, while the probability assigned to ‘False’174

represents Phallucinated. (ii) Prompting the model to175

output the probability that it considers the given176

claim to be correct, referred to as PromptProb. This177

number directly represents Pfactual. (iii) SelfCheck-178

GPT, which detects hallucinations by sampling ad-179

ditional responses from the model and assessing180

inconsistencies between each response and the tar-181

get claim. The proportion of responses that support182

the claim is taken as Pfactual. Following Manakul183

et al. (2023), we sample 20 responses for detection.184

Probing Following Su et al. (2024a), we train a185

multilayer perceptron (MLP) on the contextualized186

embeddings of LLMs to perform binary classifica-187

tion for hallucination detection, while keeping the188

base LLM frozen. The trained MLP outputs Pfactual189

as an indicator for classification.190

Fine-Tuning We fine-tune the base LLM with191

LoRA to enhance its ability to output ‘True’ or192

‘False’ for a given claim (Kapoor et al., 2024).193

Similar to PromptTF, the probabilities assigned to194

the tokens ‘True’ and ‘False’ correspond to Pfactual195

and Phallucinated, respectively. Note that LoRA fine-196

tuning allows us to easily use the original model197

for general tasks while applying the trained LoRA198

specifically for hallucination detection.199

Following the data construction process outlined200

in Appendix A.3, we conduct experiments on the201

full set of LongFact using Llama-3-8B-Instruct.202

This process yields 2,711 factual and hallucinated203

claims, which are subsequently split into training204

(70%), validation (20%), and test (10%) sets. For205

all three types of methods, we use Pfactual as the206

classification indicator. Specifically, a claim is207

classified as ‘factual’ if Pfactual exceeds a prede-208

fined threshold; otherwise, it is classified as ‘hal-209

Dataset Method

PromptTF PromptProb SelfCheckGPT Probing Fine-Tuning

LongFact 69.9 53.4 69.1 74.4 76.1
Biography 72.3 56.3 71.9 77.0 78.2

Table 1: BAcc (%) of existing hallucination detection
methods on LongFact and biography generation.

lucinated’. The optimal threshold is determined 210

through a search on the validation set. Consistent 211

with Tang et al. (2024); Chen et al. (2024b), we em- 212

ploy balanced accuracy (BAcc) as the evaluation 213

metric: BAcc = 1
2(

TP
TP+FN + TN

TN+FP), where TP, TN, 214

FP, and FN stand for true/false positives/negatives. 215

The results of different methods on the test set, as 216

shown in Table 1, indicate that fine-tuning LLMs is 217

the most effective among all existing methods (see 218

Appendix A.6 for an analysis of fine-tuning effec- 219

tiveness in Out-of-Distribution (OOD) scenarios). 220

While both PromptTF and SelfCheckGPT achieve 221

decent performance, Probing yields notable im- 222

provements by incorporating additional training 223

with labels obtained from external search. Fine- 224

Tuning further enhances performance by updating 225

the internal features of LLMs, enabling more ef- 226

fective learning. In contrast, PromptProb performs 227

significantly worse, likely due to LLMs’ tendency 228

to output high probabilities for hallucinated claims, 229

leading to overconfidence. Additionally, we extend 230

the experiments to biography generation (Min et al., 231

2023). The results presented in Table 1 demon- 232

strate that the observations and conclusions can be 233

generalized to different datasets. 234

Building on these findings, a natural question 235

arises: can Fine-Tuning be further improved to 236

develop more effective hallucination detectors? We 237

answer this question by incorporating rationales 238

and an auxiliary task into the training process. 239

4 Rationale and Auxiliary Task Enhanced 240

Fine-Tuning (RATE-FT) 241

While hallucination detection is not regarded as a 242

reasoning task in the conventional sense, incorpo- 243

rating Chain-of-Thought (CoT) (Wei et al., 2022) 244

explaining the judgment can still be beneficial for 245

distinguishing factual content from hallucinated in- 246

formation as it enables LLMs to better evaluate the 247

correctness of claims by systematically analyzing 248

underlying components. To examine the impact 249

of rationales, we prompt the model to generate 250

a reasoning path before making a judgment (i.e., 251

‘True’ or ‘False’), referred to as PromptCoT-TF. This 252

approach improves performance from 69.9 (using 253
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Dataset Method

PromptTF PromptCoT-TF Probing Fine-Tuning RATE-FT

LongFact 69.9 74.9 74.4 76.1 79.6
Biography 72.3 74.8 77.0 78.2 80.9

Table 2: BAcc (%) of RATE-FT and baseline methods.

PromptTF) to 74.9, highlighting the effectiveness254

of incorporating CoT reasoning.255

Augmenting Fine-Tuning with Rationales256

Building on the above observation, we augment257

the fine-tuning dataset with rationales generated258

by the model during data construction, explaining259

whether the search results support the claims.260

Notably, we adopt the ‘label-rationale’ format to261

maintain the same inference cost as the baseline262

Fine-Tuning. This allows us to directly derive263

Pfactual from the first output token without requiring264

the generation of the complete reasoning path.265

Consolidating knowledge through repetition in266

diverse contexts is a fundamental principle of ef-267

fective human learning (Ausubel, 2012). For exam-268

ple, medical students deepen their understanding269

of anatomy by studying diagrams, practicing in270

simulations, and engaging in hands-on dissections,271

each offering a unique perspective on the same272

foundational knowledge. Drawing inspiration from273

this paradigm, we introduce an auxiliary question274

answering (QA) task into the fine-tuning process275

to further strengthen the model’s understanding276

and enhance its generalization capabilities. This277

auxiliary QA task serves as a complementary com-278

ponent to the primary hallucination detection task,279

offering the model an alternative but closely related280

perspective on the problem (see Appendix A.7 for281

more analysis on the auxiliary task).282

Augmenting Fine-Tuning with QA Task Specif-283

ically, for each claim, we first prompt the model284

to generate a question about the key information285

within it. If the claim is factual, we ask the model286

to extract the correct answer directly from the claim287

and provide an explanation, forming a QA exam-288

ple. For hallucinated claims, we leverage the aug-289

mented rationale to guide the model in generating290

an appropriate correct answer along with an expla-291

nation. After constructing these QA examples, they292

are combined with the original data for fine-tuning.293

By integrating these two strategies, we pro-294

pose Rationale and Auxiliary Task Enhanced Fine-295

Tuning (RATE-FT) (Figure 1). RATE-FT requires296

the model to systematically analyze and explain its297

judgments and allows the model to benefit from298

complementary learning perspectives, reinforcing299

Model Method

PromptTF PromptCoT-TF Probing Fine-Tuning RATE-FT

Llama-3.1-70B-Instruct 73.2 76.8 79.4 80.6 83.8
Mistral-7B-Instruct 61.8 64.1 68.4 70.8 73.4
Qwen2.5-7B-Instruct 72.8 75.5 77.0 78.4 81.1

Table 3: Results using different models.

its understanding of claims through diverse yet in- 300

terconnected tasks. Following the experimental 301

setup described in Section 3, we show the compar- 302

ison between RATE-FT and baseline approaches 303

in Table 2, which demonstrates the superiority of 304

RATE-FT across different datasets (see Appendix 305

A.8 for an analysis of the effect of additional data 306

augmentation compared to the auxiliary QA task). 307

4.1 Further Analysis 308

Generalization to Different Models Our experi- 309

ments and analysis so far use Llama-3-8B-Instruct 310

as the backbone model. To verify whether the per- 311

formance gain of RATE-FT is consistent across 312

different backbone models, we extend the exper- 313

iments to Llama-3.1-70B-Instruct (Dubey et al., 314

2024), Mistral-7B-Instruct (Jiang et al., 2023), and 315

Qwen2.5-7B-Instruct (Yang et al., 2024) on Long- 316

Fact (see Appendix A.9 for details on data collec- 317

tion). From the results shown in Table 3, we can 318

observe that RATE-FT consistently outperforms 319

baseline approaches across all models, demonstrat- 320

ing its robustness and generalizability to diverse 321

model architectures and scales. 322

In addition, we provide a summary of the main 323

contributions, related work, ablation studies, re- 324

sults of incorporating uncertainty for hallucination 325

detection, all prompts used in our experiments, and 326

implementation details in Appendix A.1 ∼ A.2, 327

A.10 ∼ A.15, respectively. 328

5 Conclusion 329

In this work, we systematically investigate 330

reference-free hallucination detection in open- 331

domain long-form generation. Our study begins 332

with an analysis of the model’s internal states, 333

demonstrating that these states alone cannot reli- 334

ably detect hallucinations. We then evaluate several 335

existing approaches, including prompting, probing, 336

and fine-tuning, with fine-tuning emerging as the 337

most effective method. Building on these findings, 338

we introduce Rationale and Auxiliary Task En- 339

hanced Fine-Tuning (RATE-FT), a novel approach 340

that leverages rationales and an auxiliary task to 341

achieve significant improvements in detection per- 342

formance across two datasets and various LLMs. 343
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Limitations344

One limitation of our work is its focus solely on345

improving the performance of the hallucination346

detector. A potential improvement could be to ex-347

plore leveraging the detector’s feedback as a reward348

signal to guide LLMs to generate more factual re-349

sponses. Additionally, developing a more compre-350

hensive benchmark for hallucination detection in351

open-domain long-form generation that covers a352

broader range of domains would further enhance353

its applicability.354
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A Appendix568

A.1 Main Contributions569

The main contributions of our work are twofold.570

• We are the first to systematically investigate571

reference-free hallucination detection in open-572

domain long-form generation by analyzing a rep-573

resentative set of existing methods.574

• We introduce a novel approach that incorporates575

rationales and an auxiliary question answering576

task into fine-tuning, achieving significant perfor-577

mance improvements.578

A.2 Related Work579

Large Language Models (LLMs) often generate580

content that appears plausible but is factually un-581

supported, a phenomenon commonly known as hal-582

lucination (Zhang et al., 2023). Based on whether583

the hallucinated content contradicts read-world584

facts or the input context, hallucination can be cat-585

egorized into two main groups: factuality halluci-586

nation and faithfulness hallucination (Huang et al.,587

2023). Extensive research has been conducted on588

exploring the causes (Onoe et al., 2022; Kang and589

Choi, 2023; Wei et al., 2023; Liu et al., 2024), de-590

tection (Min et al., 2023; Zhao et al., 2023; Chen591

et al., 2024a; Fadeeva et al., 2024; Wei et al., 2024),592

and mitigation (Gao et al., 2023; Ji et al., 2023; Tian593

et al., 2024; Zhang et al., 2024b; Kang et al., 2024;594

Lin et al., 2024) of hallucination in LLMs. How-595

ever, most existing hallucination detection methods596

have primarily focused on short-form tasks, where597

the output consists of one or a few tokens. In this598

work, we shift the focus to the more challenging599

problem of reference-free hallucination detection600

in open-domain long-form generation, where out-601

puts are substantially longer and require a more602

nuanced evaluation of actuality.603

A.3 Benchmark Construction Details604

For each prompt in the sampled subset (200605

prompts), we obtain a long-form response from606

Llama-3-8B-Instruct with greedy decoding. Fol-607

lowing Wei et al. (2024), we employ the model608

to decompose long-form responses into atomized609

claims and assess whether each claim is relevant to610

answering the corresponding prompt. For each rele-611

vant claim, we use the model to generate multi-step612

Google Search queries and reason about whether613

the search results support the claim. Claims sup-614

ported by the search results are labeled as “factual”,615

while those contradicted by the results are cate- 616

gorized as “hallucinated”. After construction, we 617

obtain 2394 factual claims and 223 hallucinated 618

claims, respectively. We then randomly selected 619

an equal number (223) of factual and hallucinated 620

claims for experiments. 621

A.4 Hallucination Detection Results using 622

Internal States 623

We show the hallucination detection results using 624

different internal states in Figure 3 ∼ 5 625

A.5 Detailed Comparison with Findings in 626

SelfCheckGPT 627

(i) While SelfCheckGPT (Manakul et al., 2023) 628

explores several internal states of LLMs, our work 629

covers a broader range of variants. As illustrated in 630

Section 2, we examine the arithmetic and geometric 631

averages (perplexity) of all tokens, the average of 632

tokens with the top-K lowest probability or highest 633

entropy (K = 1, 3, 5), and the average of tokens 634

with the top-P% lowest probability or highest en- 635

tropy (P = 5, 10, 15). In contrast, SelfCheckGPT 636

only examines the arithmetic average of all tokens 637

and the average of tokens with the top-1 lowest 638

probability or highest entropy. 639

(ii) Our findings differ significantly from those re- 640

ported in SelfCheckGPT. While SelfCheckGPT 641

suggests that LLM probabilities correlate well with 642

factuality, our experiments demonstrate that nei- 643

ther internal state reliably, i.e., better than random 644

guessing, predicts the correctness of a given claim. 645

One possible explanation for this is the presence 646

of many insignificant tokens, such as stop words, 647

within the claim. To address this, we further in- 648

vestigate variants that focus only on output tokens 649

related to entities (Appendix A.4), and the results 650

exhibit similar patterns. Importantly, our findings 651

are consistent with those in Kapoor et al. (2024). 652

A.6 Out-of-Distribution Results 653

We verify the effectiveness of fine-tuning in Out- 654

of-Distribution (OOD) scenarios by training the 655

model on LongFact and evaluating its performance 656

on Biography. The results reported in Table 4 657

demonstrate that fine-tuning effectively generalizes 658

to OOD scenarios. 659

A.7 More Analysis on Auxiliary Task 660

Comparison with F2 F2 (Hu et al., 2024) also 661

integrates rationales and auxiliary tasks into the 662
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training process. However, its main goal is to en-663

hance the faithfulness of model responses while we664

focus on improving the accuracy of hallucination665

detection.666

Further Clarification on Motivation The un-667

derlying motivation for introducing the auxiliary668

question answering (QA) task into fine-tuning is669

that hallucination detection and mitigation are com-670

plementary and closely related tasks. This auxiliary671

QA task—where a question about the key informa-672

tion in the claim is posed, and the model is trained673

to provide the correct answer—helps improve the674

factuality of the model’s responses through super-675

vised fine-tuning. It acts as a complementary com-676

ponent to the primary hallucination detection task,677

offering the model an alternative yet closely related678

perspective, thereby enhancing its generalization679

capabilities.680

A.8 Additional Data Augmentation versus681

Auxiliary QA Task682

To isolate the effect of additional data augmenta-683

tion versus the auxiliary QA task, we design two684

variants: (i) we paraphrase the original claim us-685

ing GPT-4 for data augmentation and fine-tune686

the model on the combined data, referred to687

as Fine-Tuningpara, which has roughly the same688

amount of training data as RATE-FT; and (ii) we689

reduce the training data for RATE-FT by half (ap-690

proximately the same amount as Fine-Tuning),691

referred to as RATE-FThalf. We conduct experi-692

ments on LongFact using Llama-3-8B-Instruct and693

present the results in Table 5 and 6, which demon-694

strate that the performance improvement primarily695

comes from our designed auxiliary task, rather than696

from additional data augmentation.697

A.9 Data Collection Process for Other Models698

When conducting experiments using other models,699

we follow the exact same settings as those used for700

Llama-3-8B-Instruct. Specifically, for each prompt,701

we obtain a long-form response from the model un-702

der investigation with greedy decoding. Following703

Wei et al. (2024), we employ the model to decom-704

pose long-form responses into atomized claims and705

assess whether each claim is relevant to answering706

the corresponding prompt. For each relevant claim,707

we use the model to generate multi-step Google708

Search queries and reason about whether the search709

results support the claim. Claims supported by the710

search results are labeled as “factual”, while those711
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Figure 3: Hallucination detection results based on token
entropy (uncertainty).

PromptTF PromptProb SelfCheckGPT Probing Fine-Tuning

72.3 56.3 71.9 71.1 74.7

Table 4: Results of different methods in OOD scenarios.

contradicted by the results are categorized as “hal- 712

lucinated”. 713

Our constructed benchmarks align well with Su 714

et al. (2024b), as both include responses and in- 715

ternal states from various LLMs. The key dif- 716

ference is that the LLMs we investigate are all 717

modern models (Llama-3-8B-Instruct, Llama-3.1- 718

70B-Instruct, Mistral-7B-Instruct, and Qwen2.5- 719

7B-Instruct), whereas the models used in Su et al. 720

(2024b) are relatively outdated (such as LLaMA-2 721

and GPT-J). 722

A.10 Ablation Study 723

We analyze the contribution of different compo- 724

nents of RATE-FT by investigating the variant of 725

RATE-FT without the auxiliary task (w.o. aux). Ta- 726

ble 7 presents the performance of different methods, 727

highlighting that each component plays an impor- 728

tant role in achieving the overall performance. 729

A.11 Incorporating Uncertainty for 730

Hallucination Detection 731

To enhance hallucination detection, we propose 732

incorporating model uncertainty into the detec- 733

tion process, enabling a hybrid pipeline that com- 734

bines the strengths of the model and external tools. 735

Specifically, when the model is uncertain about 736

whether a claim is factual or hallucinated, we lever- 737

age external tools to handle ambiguous cases, im- 738

proving overall performance. The process involves 739

setting two thresholds, αlow and αhigh, for classifi- 740

cation. A claim is classified as ‘factual’ if Pfactual > 741

αhigh and ‘hallucinated’ if Pfactual < αlow. Claims 742

falling between these thresholds are classified as 743

8
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Figure 4: Hallucination detection results based on
the probability of entity-related tokens.
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Figure 5: Hallucination detection results based on
the entropy of entity-related tokens.

Fine-Tuningpara RATE-FT

76.8 79.6

Table 5: Comparison between Fine-Tuningpara and
RATE-FT.

Fine-Tuning RATE-FThalf

76.1 78.5

Table 6: Comparison between Fine-Tuning and
RATE-FThalf.

‘unknown’ and delegated to external tools for fur-744

ther evaluation. Assuming the external tools’ out-745

put is the ground truth, predictions classified as746

‘unknown’ are treated as correct. To evaluate the747

hybrid pipeline, we define the BAcc-unknown met-748

ric as follows:749

BAcc-unknown =
1

2
(

# Correct Factual Predictions
# Total Factual Claims

+
# Correct Hallucinated Predictions

# Total Hallucinated Claims
)

(1)750

The optimal thresholds, αlow and αhigh, are deter-751

mined through a search on the validation set. This752

process ensures that BAcc on the validation set ex-753

ceeds 70%, while also maximizing BAcc-unknown.754

The goal is to strike a balance between performance755

and efficiency by achieving high BAcc-unknown756

without generating an excessive number of ‘un-757

known’ predictions, which could substantially in-758

crease detection costs. We conduct experiments759

on LongFact using Llama-3-8B-Instruct and report760

the results in Table 8, which demonstrate that in-761

corporating model uncertainty greatly enhances762

hallucination detection, as evidenced by the BAcc-763

unknown metric’s superior performance compared764

to standard BAcc in resolving ambiguous cases.765

Moreover, RATE-FT continues to outperform all766

Dataset Method

Fine-Tuning w.o. aux RATE-FT

LongFact 76.1 77.5 79.6
Biography 78.2 79.4 80.9

Table 7: Results of different ablations.

PromptCoT-TF Probing Fine-Tuning RATE-FT

80.4 81.1 82.4 85.0

Table 8: BAcc-unknown (%) of different methods on
Longfact with Llama-3-8B-Instruct.

other methods with respect to the BAcc-unknown 767

metric, highlighting its robustness and effective- 768

ness. 769

A.12 Prompt for Output Extraction 770

After decomposition, the atomized claims may dif- 771

fer from the original expression in the response. To 772

address this, we use the prompt shown in Figure 6 773

to retrieve the original output corresponding to a 774

given atomized claim. 775

A.13 Prompts for Baseline Approaches 776

Figure 7 illustrates the prompts used for different 777

prompting methods. The prompt used for construct- 778

ing training data in Probing and Fine-Tuning is the 779

same as the prompt employed by the PromptTF 780

method. 781

A.14 Prompts Used in RATE-FT 782

Figure 8 presents all the prompts used in RATE-FT. 783

A.15 Implementation Details 784

For PromptTF and PromptProb, we obtain the re- 785

sponse from the model with greedy decoding. Fol- 786

lowing Manakul et al. (2023), we set the tempera- 787

ture to 1.0 and generate 20 additional responses for 788
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Prompt
Your task is to extract the original text corresponding to the given claim from the original response. When presented with an original response and a claim, 
reply with the original text. Make sure that your response is exactly the same as the original text and enclosed in \boxed{}.

Original response: {response}
Claim: {claim}

Figure 6: Prompt for extracting the original output given
an atomized claim.

PromptCoT-TF
Your task is to determine the correctness of the given claim. When presented with a claim, first explain the solution and then enclose the ultimate answer 
('True' or 'False') in \boxed{}.

Claim: {claim}
Response: 

PromptProb
Your task is to provide the probability that the given claim is correct. When presented with a claim, reply with a number between 0.0 and 1.0. Make sure that 
your response is exactly a number between 0.0 and 1.0 without any extra commentary whatsoever.

Claim: The sun rises in the east and sets in the west.
Response: 1.0

Claim: Humans have four arms and three heads.
Response: 0.0

Claim: The human nose can detect over 1 trillion different scents.
Response: 0.82

Claim: The next president of South Korea will be a woman.
Response: 0.29

Claim: {claim}
Response: 

SelfCheckGPT
Context: {context}

Sentence: {sentence}

Is the sentence supported by the context above? Answer Yes or No.

Answer: 

PromptTF
Your task is to determine the correctness of the given claim. When presented with a claim, reply with 'True' or 'False'. Make sure that your response is 
exactly 'True' or 'False' without any extra commentary whatsoever.

Claim: {claim}
Response: 

Figure 7: Prompts for different prompting methods.

SelfCheckGPT.789

We evaluate 4 different types of contextualized790

embeddings for Probing: (1) the final token from791

the last layer (type1), (2) the average of all tokens792

in the last layer (type2), (3) the average of the final793

token across all layers (type3), and (4) the average794

of type1 and type2 (type4). The optimal embed-795

ding type, along with other hyperparameters, e.g.,796

learning rate, is selected through a search on the797

validation set. For Fine-Tuning and RATE-FT, we798

leverage the LLaMA-Factory library (Zheng et al.,799

2024) and perform a search on the validation set800

for important hyperparameters.801

Prompt for 'label-rationale' Format
Your task is to determine the correctness of the given claim. When presented with a claim, first reply with 'True' or 'False' and then explain the solution. 
Make sure that your response starts with 'True' or 'False'.

Claim: {claim}
Response: {True/False}. {explanation}

Prompt for Question Generation (Correct Claim)
Given a correct claim and why it is correct, first identity the key information in the claim, then transform it into a question and a correct answer (keep the 
answer as concise as possible) about the key information, finally give the explanation (keep it different from the given reason). Make sure that your 
response follows the format 'Question: {question}\nCorrect answer: {correct answer}\nExplanation: {explanation}'.

Correct claim: {correct claim}
Reason: {reason}
Response: 

Prompt for Question Generation (Wrong Claim)
Given a wrong claim and why it is wrong, first identity the key information in the claim, then transform it into a question and a correct answer (keep the 
answer as concise as possible) about the key information, finally give the explanation (keep it different from the given reason). Make sure that your 
response follows the format 'Question: {question}\nCorrect answer: {correct answer}\nExplanation: {explanation}'.

Wrong claim: {wrong claim}
Reason: {reason}
Response: 

Prompt for Question Answering
Answer the following question and provide the explanation.

Question: {question}
Answer: {answer}
Explanation: {explanation}

Figure 8: Prompts for different components of RATE-
FT.
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