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Abstract

Reliable automatic evaluation of summariza-
tion systems is challenging due to the mul-
tifaceted and subjective nature of the task.
This is especially the case for languages other
than English, where human evaluations are
scarce. In this work, we introduce SEAHORSE,
a dataset for multilingual, multifaceted sum-
marization evaluation. SEAHORSE consists
of 96K summaries with human ratings along
6 dimensions of text quality: comprehensi-
bility, repetition, grammar, attribution, main
ideas, and conciseness. SEAHORSE covers 6
languages, 9 systems (including the reference
text), and 4 summarization datasets. As a re-
sult of its size and scope, SEAHORSE can serve
both as a benchmark to evaluate learnt metrics,
as well as a large-scale resource for training
such metrics. We show that metrics trained
with SEAHORSE achieve strong performance
on two out-of-domain meta-evaluation bench-
marks: TRUE (Honovich et al., 2022) and
mFACE (Aharoni et al., 2023). We make the
SEAHORSE dataset and metrics publicly avail-
able for future research on multilingual and
multifaceted summarization evaluation.1

1 Introduction

Evaluating the quality of generated text is an in-
creasingly difficult problem as large language mod-
els produce text of rapidly improving quality (Rad-
ford et al., 2019; Ouyang et al., 2022; Chowdhery
et al., 2022). In spite of the improvements, such
models often generate text that includes hallucina-
tions and other subtle errors (Wiseman et al., 2017;
Maynez et al., 2020; Parikh et al., 2020; Ji et al.,
2023; Borji, 2023), making reliable evaluation es-
sential for driving progress.

Common n-gram metrics such as BLEU (Pap-
ineni et al., 2002) and ROUGE (Lin, 2004) are
often not well correlated with human judgments

1Data and metrics are available at https://goo.gle/
seahorse

Figure 1: Two summaries from the SEAHORSE dataset
paired with human ratings for 6 dimensions of quality.
In the second summary, the word in bold has a gram-
matical error in Russian; it uses the wrong aspect. The
rater has noted this error, along with several others.

for many natural language generation (NLG) tasks
such as machine translation (Kocmi et al., 2021;
Freitag et al., 2021a), summarization (Kryscinski
et al., 2020), and dialogue (Dziri et al., 2022). Con-
sequently, human evaluation is often necessary to
reliably evaluate NLG systems. However, design-
ing human annotation pipelines and obtaining anno-
tations is resource-intensive, time-consuming, and
not easily reproducible. Developing more reliable
automatic evaluation metrics would make model
development faster and more efficient. With this in
mind, much recent work has focused on learnt met-
rics, i.e., neural classification or regression models
that aim to directly predict scores that evaluate the
quality of generated text (Zhang* et al., 2020; Sel-
lam et al., 2020; Rei et al., 2020; Liu et al., 2023),
often trained with human ratings.

As a result, large-scale collections of human
evaluations serve two critical roles in NLG met-
ric development: (1) a source of training data for
learnt metrics and (2) a meta-evaluation benchmark
for the performance of these learnt metrics. The

https://goo.gle/seahorse
https://goo.gle/seahorse


large potential of such datasets is exemplified by
the WMT metrics shared task,2 which has enabled
rapid development of learnt metrics for machine
translation that exhibit considerably higher correla-
tion to human judgment than BLEU (Bojar et al.,
2016; Freitag et al., 2021b).

However, outside of machine translation, the ex-
istence of such collections of human judgments is
limited. Human annotations collected in NLG eval-
uations are rarely released (Gehrmann et al., 2022),
and even when they are, they tend to cover a single
language (typically English) and are from a single
dataset or task, limiting the robustness of models
and metrics trained on these annotations. More-
over, such annotations are often based on the test
split of existing datasets (e.g., Fabbri et al., 2021;
Aharoni et al., 2023), which can be problematic
for training learnt metrics. This is because the pri-
mary advantage of reliable automatic evaluation is
to help model development, e.g., hyperparameter
selection on the validation set; therefore a neural
metric trained on test set annotations would, in
general, lead to overfitting.

In this work, we propose SEAHORSE,3 a large-
scale dataset for multilingual summarization eval-
uation. Our dataset consists of 96K summaries
with ratings along 6 quality dimensions: compre-
hensibility, repetition, grammar, attribution, main
ideas, and conciseness, in 6 languages, for 9 sys-
tems (8 models plus the human-authored reference
summaries) across 4 summarization datasets (see
examples in Figure 1). The training and validation
splits of the dataset come from the validation sets
of the original summarization corpora to prevent
test set contamination when training metrics. This
permits us to train a learnt metric for each qual-
ity dimension that can be used for offline model
evaluation.

We evaluate the metrics learned from SEA-
HORSE on the SEAHORSE test set, as well as
other existing meta-evaluation benchmarks, such
as mFACE (Aharoni et al., 2023) and TRUE (Hon-
ovich et al., 2022). Our experiments show that
the metrics generalize across datasets, tasks, and
languages. For example, we demonstrate that al-
though SEAHORSE includes data in 6 languages,
the resulting learnt metrics achieve strong perfor-
mance on the mFACE benchmark, which consists
of 45 languages, exhibiting their zero-shot multi-

2https://wmt-metrics-task.github.io/
3SEAHORSE stands for SummariEs Annotated with Human

Ratings in Six languagEs.

lingual generalization potential. To summarize, the
contributions of this paper are:

• We conduct a comprehensive, large-scale hu-
man evaluation for summarization across six
languages, six quality facets, nine systems and
four datasets, resulting in over 96K human-
rated summaries. To the best of our knowl-
edge, this is the largest multilingual, multi-
faceted summarization evaluation resource.

• We train a learnt metric for each of the eval-
uated quality facets, and show that the met-
rics outperform strong baselines across our
in-domain test set and previously published
out-of-domain benchmarks, highlighting the
quality of the human annotations we collect
and the broad utility of our learnt metrics.

• We release our dataset and metrics to foster
future work on multilingual, multifaceted sum-
marization.

2 The SEAHORSE dataset

The SEAHORSE dataset consists of 96,645 sum-
maries annotated with human ratings along 6 qual-
ity dimensions. In this section, we describe the
SEAHORSE dataset, how we generated the sum-
maries, and how we collected the annotations.

2.1 The summaries
The examples in SEAHORSE are in 6 languages:
German (de), English (en), Spanish (es), Russian
(ru), Turkish (tr), and Vietnamese (vi). We chose
these languages by considering geographic and ty-
pological diversity and the availability of summa-
rization datasets in those languages.

The summaries are based on articles from 4 dif-
ferent datasets in the GEM benchmark (Gehrmann
et al., 2021):

• XSum (Narayan et al., 2018): An English
dataset where the task is to generate a one-
sentence summary of a BBC News article.

• XL-Sum (Hasan et al., 2021): Similar to
XSum, the goal of this dataset is to generate
a single-sentence summary of a BBC news
article, but it covers 44 languages excluding
English.

• MLSum (Scialom et al., 2020): A summariza-
tion dataset obtained from online newspapers
in 5 languages.

https://wmt-metrics-task.github.io/


language dataset articles annotations

de
mlsum 3359 7506
wikilingua 2999 7085

en
xsum 894 6651
xlsum 2433 7884
wikilingua 2383 7804

es
xlsum 2231 4890
mlsum 2235 4857
wikilingua 2183 5002

ru
xlsum 3298 7254
wikilingua 2948 7288

tr
xlsum 2186 10627
wikilingua 770 4791

vi
xlsum 2497 7522
wikilingua 1951 7484

Table 1: The number of unique articles and the number
of annotated summaries collected from each dataset to
create SEAHORSE. Each article is summarized by sev-
eral different summarization systems, which were eval-
uated by human annotators.

• WikiLingua (Ladhak et al., 2020): A dataset
in 18 languages where the goal is to summa-
rize how-to guides from WikiHow.

A breakdown of SEAHORSE across languages
and datasets is in Table 1.

For each dataset, we randomly selected articles
from their validation splits to comprise the SEA-
HORSE training and validation sets, and articles
from the test splits to make up the SEAHORSE test
set. This distinction is important when using the
dataset for training evaluation metrics (discussed
in §4), because learnt metrics are typically used
for model development, and hyperparameter selec-
tion is done on the validation set. Using a metric
that was trained on test data would lead to overfit-
ting. Our dataset construction ensures that a learnt
metric can be trained on SEAHORSE data without
concerns of test set leakage.

Next, we generate summaries for each article in
the dataset. The summaries come from a subset
of 9 different systems, which we will denote as
follows:

• reference: The human-authored summaries
associated with each article from the original
datasets.

• t5_base: The 220M-parameter version of the
T5 model (Raffel et al., 2020). (This model
is English-only, so we only use it to generate
summaries with our en datasets.)

• t5_base_250: The t5_base model with an
under-trained checkpoint, trained for only 250
steps (en only).

• t5_xxl: The 11B-parameter version of T5 (en
only).

• mt5_small: The 300M-parameter version of
mT5 (Xue et al., 2021).

• mt5_small_250: The same mt5_small model
but using the checkpoint after training 250
steps.

• mt5_xxl: The 13B-parameter mT5 model.

• palm_1shot: 540B-parameter PaLM
model (Chowdhery et al., 2022) prompted
with one in-domain example.

• palm_finetuned: 540B-parameter PaLM
model (Chowdhery et al., 2022) finetuned on
training data for the respective dataset.

Our choice of systems covers a range of ex-
pected system performances in order to capture
a large diversity of system outputs and model er-
ror types. For instance, an under-trained small
model (mt5_small_250) would likely have dif-
ferent errors than a 1-shot large language model
(palm_1shot). Details about how the summaries
are generated from these models are in Appendix
A.

2.2 Annotation methodology
For each summary, we collect annotations along 6
dimensions, also referred to as Q1–6:

Q1 comprehensible: The summary can be read
and understood by the rater. (If “No,” the rest
of the questions will be skipped.)

Q2 repetition: The summary is free of unneces-
sarily repeated information.

Q3 grammar: The summary is grammatically
correct.

Q4 attribution: All the information in the sum-
mary is fully attributable to the source article,
as defined in Rashkin et al. (2021).



Q5 main ideas: The summary captures the main
idea(s) of the source article.

Q6 conciseness: The summary concisely repre-
sents the information in the source article.

For the first 3 questions, annotators see only the
summary. The article is revealed when the raters
are answering questions 4–6. They can answer
“Yes,” “No,” or “Unsure” to each question and have
the option to leave comments or flag any issues
they see in the article. The annotation interface is
shown in Figure 2.

Note that our annotation process is reference-
less, i.e., the annotator is never comparing a model-
generated summary with the reference summary.
They evaluate each summary on its own. Given the
subjectivity of summarization, we believe this ap-
proach allows us to adequately reward models that
generate relevant summaries that may be different
than the reference. Moreover, this enables us to
train reference-less metrics in §4, which have an
added benefit of being able to be used at inference
time for re-ranking.

The raters are paid, full-time annotators who
were trained for this specific task and worked un-
der the supervision of a project manager. For the
non-English languages, the raters are bilingual, pro-
ficient in both the annotation language and English.
They received a detailed set of instructions in En-
glish describing the 6 dimensions of quality and
positive and negative examples of each in the target
language. We created a set of 109 summaries with
gold ratings, which we used to train the raters. Each
annotator rated 20–30 summaries from this gold
set. If the rater performed well on this subset, they
were qualified to move forward with the annotation
task. Otherwise, the annotator received feedback
and were asked to complete another 10–20 ratings.
This training process was repeated as needed.

A small number of approved annotators were
removed during the annotation process, due to is-
sues flagged by the annotation team and the authors.
The ratings from the removed annotators are not
included in the dataset.

3 Dataset analysis

We first analyze the dataset’s composition and the
quality of the collected annotations. Table 2 con-
tains the median length of summaries produced by
each model, along with two measures of the over-
lap between the summaries and the source articles.

model length rouge 20% copy

reference 227 20.26 0.00
t5_base_250 92 20.95 0.00
t5_base 101 22.02 0.02
t5_xxl 115 21.65 0.01
mt5_small_250 128 21.33 0.02
mt5_small 171 21.81 0.04
mt5_xxl 194 20.77 0.01
palm_1shot 254 27.34 0.14
palm_finetuned 194 20.97 0.01

Table 2: The median number of characters (length),
ROUGE-L between the summary and article (rouge),
and the proportion of summaries where the first 20%
of the summary exactly matches the beginning of the
source article (20% copy) for all the summaries gener-
ated by each model.

Model Q1 Q2 Q3 Q4 Q5 Q6
reference 0.97 0.97 0.91 0.54 0.68 0.43
t5_base_250 0.97 0.79 0.91 0.41 0.42 0.25
t5_base 0.98 0.92 0.93 0.59 0.59 0.43
t5_xxl 0.99 0.97 0.95 0.65 0.67 0.51
mt5_small_250 0.71 0.43 0.59 0.27 0.19 0.1
mt5_small 0.86 0.57 0.73 0.36 0.35 0.19
mt5_xxl 0.96 0.94 0.88 0.55 0.65 0.43
palm_1shot 0.88 0.85 0.79 0.71 0.57 0.47
palm_finetuned 0.98 0.98 0.9 0.69 0.71 0.56

Table 3: The percent of “Yes” responses, broken down
by model and question.

The 1-shot PaLM model is particularly likely to
copy from the article as its output, obtaining the
highest ROUGE-L4 (Lin, 2004) scores between the
summary and the article. In 14% of cases, the be-
ginning of the 1-shot summaries (the first 20% of
the summary) exactly matched the beginning of the
reference article.

Table 3 shows the percent of summaries from
each summarization system that received a positive
(i.e., “Yes”) rating from annotators. While there
is variation across models and datasets, most sum-
maries are rated positively for questions 1–3 (com-
prehensibility, repetition, and grammar). The rate
of positive responses drops for questions 4–6 (at-
tribution, main ideas, and conciseness), indicating
that these areas remain a challenge for summariza-
tion models. A more detailed break down of the
positive response rates is in Appendix B.

Note that the reference summaries do not always
receive the highest rate of positive responses. The

4All ROUGE scores in this paper are calculated
with SentencePiece tokens: https://github.com/google/
sentencepiece

https://github.com/google/sentencepiece
https://github.com/google/sentencepiece


Figure 2: The annotation interface used to collect SEAHORSE. First, Question 1 and the summary are shown to the
evaluator. Once they confirm that the summary is comprehensible, Questions 2–3 are shown. Finally, the article
and Questions 4–6 are displayed (as pictured above).

way in which reference texts are collected may
limit their quality along some dimensions. For
example, the text that was collected as a reference
summary may not have been intended to be read
as a standalone replacement for the article, and
therefore may not be fully attributable to the article,
as Rashkin et al. (2021) point out.

We can use the positive response rates to inspect
the quality of the dataset by verifying the presence
of 3 patterns we expect to see in the data: 1) higher
positive response rates for better summarization
models, 2) high correlation between the responses
to Q4&6 and Q5&6, and 3) annotator agreement
across the 6 dimensions.

Order of model quality Our first expectation
is that summaries generated by better summariza-
tion models should receive more positive responses
from raters. We have 3 types of model pairs where
we can expect one model to generate better sum-
maries than the other: 1) a larger model should
outperform a smaller model (the xxl vs. the small
model), 2) a fully trained model should outper-
form an under-trained model (the small vs. the
small_250 model), and 3) a finetuned model should
outperform a 1-shot prompted model (the finetuned
vs. 1-shot PaLM models).

We compare how often these model pairs pro-

duce low-quality summaries, i.e., summaries that
are unintelligible to readers. In Table 3, we see that
mt5_xxl produces fewer incomprehensible (Q1)
summaries than mt5_small, which produces fewer
than mt5_small_250. The same holds true for the
T5 models, and palm_finetuned produces fewer in-
comprehensible summaries than palm_1shot, re-
flecting the expected relationship in quality be-
tween model pairs. While these results are aver-
aged over the entire dataset, we see the same result
when controlling for the source article and only
considering items that have summaries generated
by all 9 systems (see Appendix B).

This pattern generally holds across the other
dimensions of quality as well. There is one no-
table exception: PaLM’s perfomance on attribution
(Q4). For 4 languages, palm_1shot is more of-
ten rated as being faithful to the input article than
palm_finetuned, which is likely due to its tendency
to copy the article directly.

Generally, however, the SEAHORSE ratings cap-
ture the relative differences in model quality we
expect to see when evaluating two models with
known differences.

Correlation between dimensions Conciseness
(Q6) is related to two other dimensions in our an-
notation: attribution (Q4) and main ideas (Q5). A



Figure 3: The Pearson correlation between responses
for questions 2-6.

Lang Avg Q1 Q2 Q3 Q4 Q5 Q6

de 0.84 0.97 0.98 0.95 0.81 0.67 0.66
es 0.82 0.92 0.97 0.83 0.74 0.7 0.74
en 0.81 0.97 0.94 0.95 0.69 0.61 0.69
ru 0.82 0.86 0.97 0.88 0.71 0.73 0.76
tr 0.82 0.93 0.96 0.86 0.74 0.7 0.74
vi 0.81 0.95 0.98 0.88 0.68 0.66 0.69

avg 0.82 0.93 0.97 0.89 0.73 0.68 0.72

Table 4: The average pairwise agreement, broken down
by language and question.

summary cannot be considered a “concise repre-
sentation of the information in the article” if it has
information that is not in the article (i.e., a “No”
response for Q4) or if does not represent the main
points in the article (i.e., a “No” response for Q5),
which was a detail pointed out to evaluators in the
task instructions. Therefore, we expect Q6 to be
positively correlated with both of these dimensions
if the annotators understood the task and the rela-
tionship between the dimensions of quality.

In > 99% of cases when the annotator says a
summary is not attributable (Q4) or they say it
lacks the main ideas from the article (Q5), they also
say it is not concise (Q6). This is also reflected in
Figure 3, which shows that the strongest correlation
between questions is between questions 4&6 and
questions 5&6. These results show the pattern we
expect to see in the data given the task definition
and instructions, and it demonstrates the annotators’
ability to understand and execute the annotation
task.

Q1 Q2 Q3 Q4 Q5 Q6

0.49 0.87 0.35 0.47 0.4 0.41

Table 5: Krippendorff’s α by question.

Annotator agreement While most items in the
dataset were annotated once, we collected 2 addi-
tional ratings for a subset of the data to compare
annotators’ scores. Out of 8,920 duplicated anno-
tations, the overall pairwise agreement between
raters was 82%. Table 4 breaks down the pairwise
accuracy across all languages and questions. Ques-
tions 1–3 have higher agreement, while questions
4–6 (which depend on more context and have a
higher degree of subjectivity) have lower agree-
ment. A similar trend is reflected in the Krippen-
dorff’s α values (Krippendorff, 1980, shown in Ta-
ble 5), which correct for the probability of random
agreement, except grammar (Q3) scores lowest.

These patterns in the annotators’ responses are
positive indicators about the overall quality of the
SEAHORSE ratings. However, the more important
test of the dataset’s quality is its usefulness for
developing evaluation metrics, which we discuss
in the next section.

4 Learning and evaluating metrics with
SEAHORSE

The SEAHORSE dataset is meant to serve both as
a source of training data for learnt metrics as well
as a meta-evaluation benchmark for these metrics.
In this section, we evaluate SEAHORSE on these as-
pects by looking at how well metrics finetuned with
our collected annotations can predict human ratings
of generated summaries, both from the SEAHORSE

test set and other existing datasets. When training
metrics, we use a filtered version of the dataset that
removes all duplicates and non-Yes or No ratings
(88,280 total items). We divide the annotations into
train/dev/test splits, where the summaries in the
train and dev sets are based on articles from the
original datasets’ validation sets. The test set of
SEAHORSE contains summaries of the articles in
the original datasets’ test sets.

4.1 Metrics

One way to train a metric using SEAHORSE is to
finetune a text-to-text generation model, where the
model is trained to take an article and summary
as its input and to output the string ‘0’ or ‘1’ as a
prediction of the human rating. We finetune mT5-
_xxl (Xue et al., 2021) with the SEAHORSE train-
ing set to do this task, finetuning a separate metric
for each dimension of quality. We call this model



mt5SEAHORSE
5. More details are in Appendix A.

Note that our goal is not to train a state-of-the-art
metric but rather to evaluate the utility of SEA-
HORSE as a resource to train and evaluate such
metrics.

We compare the performance of mt5SEAHORSE
to several baselines:

• majority_class A majority class baseline (i.e.,
picking the most frequent class).

• ROUGE-L The ROUGE-L score between the
article and the summary.

Specifically for the attribution (Q4) task, we
consider a third baseline approach; attribution
is closely related to natural language inference
(NLI) (Fyodorov et al., 2000; Dagan et al., 2006),
and Honovich et al. (2022) show that models fine-
tuned on NLI data perform well as faithfulness
metrics. Therefore we consider two variants of an
NLI-based baseline:

• t5NLI: An English NLI model proposed
by Honovich et al. (2022).6 T5_xxl is fine-
tuned on the following datasets: SNLI (Bow-
man et al., 2015), MNLI (Williams et al.,
2018), Fever (Thorne et al., 2018), Sci-
tail (Khot et al., 2018), PAWS (Zhang et al.,
2019), and VitaminC (Schuster et al., 2021).

• mt5XNLI: A multilingual version, where
mT5_xxl is finetuned on XNLI (Conneau
et al., 2018).

We note that since we are operating in
the reference-free setting, other learnt metrics
such as BLEURT (Sellam et al., 2020) or
BERTScore (Zhang* et al., 2020) are not appli-
cable since they measure the similarity between the
prediction and reference.

We evaluate the SEAHORSE and baseline metrics
in two ways: the area under the ROC curve and the
correlation (Pearson’s ρ) between the metric and
human scores. These measures are not sensitive to
a thresholding value and are also used in the work
we compare with (Honovich et al., 2022; Aharoni
et al., 2023).

4.2 Evaluation on the SEAHORSE test set
We first evaluate mt5SEAHORSE on the SEAHORSE

test set to confirm that a model is able to learn
5There are actually 6 different models, one for each ques-

tion, but we use the notation mt5SEAHORSE for simplicity.
6https://huggingface.co/google/t5_xxl_true_

nli_mixture

to predict the different dimensions of quality in
SEAHORSE. The results are shown in Table 6. As
expected, we see that the mt5SEAHORSE model
is able to predict SEAHORSE ratings better than
the baselines according to both our metrics. The
repetition (Q2) metric performs the best out of the
6 dimensions, which is also the dimension with the
highest pairwise annotator agreement. Examples
of summaries paired with human, SEAHORSE, and
ROUGE-L ratings can be found in Appendix C.

Reducing the size of the base mT5 model from
XXL (13B parameters) to Large (1.2B) drops
the performance of the metric, but shows similar
trends and still outperforms all baseline approaches.
More mt5_LSEAHORSE results can be found in Ap-
pendix D.

4.3 Evaluation on the mFACE dataset

In addition to achieving good performance on the
SEAHORSE test set, we would like to evaluate how
well models trained on SEAHORSE generalize to
other multilingual summarization human evalu-
ation datasets without any further tuning. This
would give evidence that improving on SEAHORSE

would lead to better evaluation metrics in general.
For this purpose, we choose the mFACE

dataset7 (Aharoni et al., 2023). mFACE contains
human evaluations of the XL-Sum test set, which
consists of 45 languages on 3 dimensions: qual-
ity, attribution, and informativeness. While their
definition of attribution is the same as ours (i.e.,
following AIS (Rashkin et al., 2021)), their defini-
tions of quality (Is the summary comprehensible?)
and informativeness (Is the summary a good sum-
mary of the article?) do not line up exactly with a
single one of our questions, a misalignment that we
expect to occur in practice given the lack of stan-
dardization of summarization human evaluation.

As a result, for each mFACE dimension, we use
the SEAHORSE metric for the question that is most
similar; attribution clearly aligns with Q4, and for
quality and informativeness, we consider Q1 and
Q6 to be the closest fit, respectively.

We evaluate on both the full mFACE dataset (all
languages), as well as the 5-language subset that
is common to both mFACE and SEAHORSE (en,
es, ru, tr, vi). In addition to our baseline models,
we also compare to an “upper-bound” mT5_xxl
model that has been directly trained on mFACE
data (mt5MFACE).

7We obtained the dataset by contacting the authors.

https://huggingface.co/google/t5_xxl_true_nli_mixture
https://huggingface.co/google/t5_xxl_true_nli_mixture


Q1 Q2 Q3 Q4 Q5 Q6
Metric ρ roc ρ roc ρ roc ρ roc ρ roc ρ roc
majority_class - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5
ROUGE-L 0.04 0.54 0.06 0.54 -0.03 0.43 0.13 0.55 0.03 0.53 0.02 0.54
mt5XNLI - - - - - - 0.43 0.78 - - - -
mt5_LSEAHORSE 0.44 0.88 0.74 0.97 0.37 0.81 0.55 0.82 0.46 0.78 0.45 0.77
mt5SEAHORSE 0.52 0.90 0.86 0.98 0.45 0.84 0.59 0.85 0.50 0.80 0.52 0.81

Table 6: Metrics’ ability to predict SEAHORSE ratings, measured with Pearson’s coefficient (ρ) and the area under
the ROC curve (roc). mt5_LSEAHORSE is a finetuned version of mT5_large; the other mt5 metrics finetune
mT5_xxl.

mFACE - 5 languages mFACE - all languages
Quality Attribution Informativeness Quality Attribution Informativeness

Metric ρ roc ρ roc ρ roc ρ roc ρ roc ρ roc

Not trained
on mFACE

majority_class - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5
ROUGE-L 0.02 0.51 0.14 0.58 0.06 0.56 0.06 0.52 0.09 0.52 0.09 0.52
mt5XNLI - - 0.45 0.82 - - - - 0.34 0.74 - -
mt5SEAHORSE 0.09 0.73 0.50 0.79 0.50 0.81 0.15 0.70 0.52 0.81 0.40 0.74

Trained on
mFACE mt5MFACE 0.25* 0.68 0.51* 0.81 0.47 0.79 0.35* 0.61 0.52* 0.82* 0.47* 0.80*

Table 7: Metrics’ ability to predict mFACE ratings, measured with Pearson’s coefficient (ρ) and the area under
the ROC curve (roc). The asterisk indicates that the associated model was trained on the training portion of the
mFACE dataset.

Results are shown in Table 7. In all but one col-
umn, mt5SEAHORSE outperforms the other meth-
ods that were not trained on the mFACE data and
also performs well on the languages it was not
finetuned on. mt5SEAHORSE even performs com-
parably to mt5MFACE on the 5 language subset on
all dimensions, and the attribution dimension on
the all-language set. mt5MFACE performs better on
quality and informativeness on the all-language set,
as one would expect, since it has seen supervised
data from those languages and dimensions whereas
mt5SEAHORSE is applied in a zero-shot setting.

4.4 Evaluation on the TRUE Benchmark

Finally, we focus on the attribution dimension of
quality, since issues of faithfulness in generated
text are increasingly important (Wiseman et al.,
2017; Tian et al., 2019; Zhou et al., 2021; Dziri
et al., 2022; Ji et al., 2023). The TRUE bench-
mark (Honovich et al., 2022) consists of several
English datasets across summarization, dialogue,
verification, and paraphrasing: FRANK (Pagnoni
et al., 2021), SummEval (Fabbri et al., 2021),
MNBM (Maynez et al., 2020), QAGS (Wang
et al., 2020), BEGIN (Dziri et al., 2022), Q2 (Hon-
ovich et al., 2021), DialFact (Gupta et al., 2022),
FEVER (Thorne et al., 2018), VitaminC (Schuster
et al., 2021), and PAWS (Zhang et al., 2019).

As in the prior section, we apply mt5SEAHORSE
without any further finetuning to these datasets to
assess its ability to evaluate attribution to other

datasets and tasks beyond summarization. In ad-
dition to comparing to the majority class and
ROUGE-L baselines, we also compare with t5NLI.

Results are shown in Table 8. mt5SEAHORSE
achieves the best results across the summariza-
tion datasets, which is expected as many of these
datasets consist of XSum and CNN/DailyMail (Her-
mann et al., 2015), the first of which is also a source
of the SEAHORSE summaries and the second is a
different news summarization dataset. Interestingly,
despite only being trained on summarization data,
mt5SEAHORSE performs competitively to t5NLI
on the dialogue datasets (BEGIN, Q2, and Dial-
Fact), indicating its suitability for evaluating tasks
outside of summarization. t5NLI performs best on
the Fever, VitaminC, and PAWS tasks, which is
expected given that the t5NLI model was trained
on these datasets.

5 Related work

We briefly review other large-scale datasets of hu-
man evaluations of summaries that have been re-
leased and compare them to SEAHORSE, but note
that most focus on annotating the test data, which
would lead to test data contamination when training
metrics.

SummEval (Fabbri et al., 2021) and Real-
Summ (Bhandari et al., 2020) are summariza-
tion meta-evaluation benchmarks with 12,800 and
7,742 annotations respectively. These benchmarks
focus on a single language and single dataset: the



FRANK SummEval MNBN QAGS-C QAGS-X BEGIN Q2 DialFact Fever VitaminC PAWS
majority_class 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
ROUGE-L 0.55 0.57 0.53 0.44 0.55 0.63 0.54 0.49 0.48 0.50 0.60
mT5SEAHORSE 0.94 0.87 0.83 0.91 0.87 0.84 0.82 0.87 0.91 0.78 0.82
T5NLI 0.90 0.79 0.76 0.77 0.85 0.85 0.83 0.92 0.95* 0.98* 0.99*

Table 8: Metrics’ performance on the TRUE benchmark, measured with area under the ROC curve. t5NLI is a
T5-xxl model trained on a mixture of NLI datasets that includes the FEVER, VitaminC, and PAWS training sets
(and thus those numbers are indicated with an asterisk).

CNN/DailyMail English summarization dataset.
The RoSE benchmark (Liu et al., 2022) contains
22K summary-level annotations across 3 sum-
marization datasets, including a subset from the
CNN/DailyMail validation set, and Stiennon et al.
(2020) released 65K summary comparisons on
the TL;DR dataset (Völske et al., 2017); however,
both only consider English summarization tasks.
Rashkin et al. (2021) focus on attribution, releasing
∼4.5K annotations from English summarization,
table-to-text, and dialogue datasets; Gekhman et al.
(2023) also release attribution annotations for 1.4M
summaries, but the labels are machine-generated
rather than human-annotated. GENIE (Khashabi
et al., 2022) released 17K human evaluations across
5 tasks that includes one English summarization
task (XSum).

The only other multilingual summarization eval-
uation dataset, to the best of our knowledge, is
mFACE (Aharoni et al., 2023), which has annota-
tions for 31,500 summaries covering a broader set
of languages (45 languages). mFACE focuses on
one dataset (XL-Sum) and a smaller set of models
than SEAHORSE. In §4 we use mFACE as a com-
prehensive out-of-domain evaluation set, and view
it as complementary to SEAHORSE, which aims to
provide large-scale and diverse training data for
metrics.

6 Conclusion

In this work, we present SEAHORSE, a large-scale
multilingual, multifaceted dataset for summariza-
tion consisting of 96K human annotations of sum-
maries. Due to its size and scope, SEAHORSE en-
ables the training and evaluation of learnt metrics
across several quality dimensions. Our results show
that SEAHORSE-trained metrics not only achieve
strong performance on our own test set but also gen-
eralize to other external and out-of-domain bench-
marks: mFACE and TRUE. In the future, we are
interested in exploring how SEAHORSE can be used
more directly to improve the quality of summariza-
tion models and metrics, and hope this paper and

the public release of SEAHORSE enables further
research on these topics.

Limitations

The summaries in this work are in 6 languages, and
the selection of these languages was based on the
number of datasets and articles available for each
language. We would like future work to explore the
incorporation of low-resource languages, perhaps
with the use of crosslingual and fewshot summa-
rization systems. While the raters we worked with
in this project went through several rounds of in-
structions and training, there is a degree of subjec-
tivity inherent in the 6 text quality evaluation tasks
and human ratings are noisy, as each individual
rater may interpret and rate qualities slightly dif-
ferently. Finally, the mT5-based metrics presented
in this work primarily serve as a demonstration of
the potential of the SEAHORSE data for developing
summarization metrics; they have not optimized
via thorough hyperparameter search, comparing
different modeling architectures or approaches, etc.
We hope the dataset and experimental results will
provide a starting point for this type of exploration
in the future.

Ethics Statement

This work relies on the efforts of human evalua-
tors, who were compensated for their work. The
summaries in this work are machine-generated and
should not be treated as truth; they may contain
misleading or incorrect information. None of the
human ratings capture this dimension of the text,
as our quality dimensions focus on the relationship
between the summary and the source article, not
a broader set of information or perspectives. For
example, if an article contains a factual error, a
summary that contains the same error should be
rated as “Yes” for Q4 (attribution) because it is
consistent with the article. We used summarization
models of varying quality in this work, but all are
imperfect and their output should be treated with
caution.
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A Training details

The summarization models were trained on the
training split of each summarization dataset, with
the exception of palm_1shot, which generated a
summary given a single example from the dataset
and the input article. The checkpoint for each
model was selected using performance on the val-
idation set of each respective dataset, except for
t5_base_250 and mt5_small_250, which were only
trained for 250 steps. The input length for the T5
and mT5 models was set to 1024, and 2048 for
PaLM. The target length was 512.

The SEAHORSE metrics were trained on the SEA-
HORSE training split, and the best checkpoint was
selected based on performance on the validation set.
A separate metric was trained for each of the 6 di-
mensions of quality. We used only “Yes” and “No”
ratings for training and testing the SEAHORSE met-
rics. The input length for the learnt metrics model
is 2048. The article and summary are separated
with “premise:” and “hypothesis:” tags, respec-
tively, to be consistent with Honovich et al. (2022).

All training and inference was done with the t5x
framework (Roberts et al., 2022) and run with TPU
accelerators.

B Rate of positive responses

Table 9 shows a detailed breakdown of the propor-
tion of responses that were positive (i.e., “Yes”),
divided by language, dataset, model, and question.
Summaries in languages other than English and
produced by smaller models tend to have lower
scores, indicating good directions for improving
our summarization systems.

While most articles in the dataset were assigned
to a subset of the summarization models, some
articles were summarized by all 9 summarization
systems (or 6 systems for the non-en languages that
did not use the T5 models). Specifically in the test
set, there were 543 articles that were summarized
by all summarization systems. Table 10 shows the
positive response rate across those summaries.
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C SEAHORSE example summaries and
scores

Figure 4 shows 3 summaries from the SEAHORSE

dataset, along with ratings for the attribution (Q4)
dimension from the human raters, mt5SEAHORSE,
and ROUGE-L.

D Comparison between mT5_large and
mT5_xxl

Table 11 compares the results of two versions of
mT5 finetuned on SEAHORSE data, mT5_large and
mT5_xxl, on the SEAHORSE and mFACE test sets.
Scores are generally close between the two models,
but mT5_xxl outperforms the large metric in all
cases except one.



Figure 4: Example summaries and ratings from the human raters, mt5SEAHORSE, and ROUGE-L for attribution
(Q4).



DE “YES” RATE
Dataset Model Q1 Q2 Q3 Q4 Q5 Q6

mlsum

reference 0.99 0.99 0.98 0.82 0.64 0.55
mt5_small_250 0.83 0.58 0.59 0.68 0.41 0.29
mt5_small 0.93 0.85 0.87 0.68 0.47 0.38
mt5_xxl 0.98 0.97 0.95 0.8 0.59 0.5
palm_1shot 0.93 0.93 0.9 0.83 0.73 0.66
palm_finetuned 0.99 0.99 0.99 0.88 0.82 0.73
total 0.94 0.89 0.88 0.79 0.62 0.53

wikilingua

reference 0.97 0.96 0.94 0.65 0.63 0.49
mt5_small_250 0.82 0.75 0.75 0.08 0.07 0.03
mt5_small 0.91 0.35 0.84 0.4 0.26 0.16
mt5_xxl 0.97 0.91 0.93 0.69 0.62 0.49
palm_1shot 0.76 0.72 0.73 0.63 0.53 0.42
palm_finetuned 0.98 0.97 0.95 0.74 0.79 0.65
total 0.9 0.78 0.85 0.53 0.48 0.37

total 0.92 0.84 0.87 0.66 0.55 0.45

EN “YES” RATE
Dataset Model Q1 Q2 Q3 Q4 Q5 Q6

xsum

reference 1.0 1.0 0.96 0.54 0.68 0.47
t5_base_250 0.96 0.88 0.89 0.32 0.43 0.24
t5_base 0.96 0.91 0.91 0.42 0.5 0.32
t5_xxl 0.99 0.98 0.97 0.58 0.64 0.47
mt5_small_250 0.7 0.47 0.57 0.17 0.2 0.09
mt5_small 0.84 0.68 0.75 0.17 0.24 0.12
mt5_xxl 0.97 0.95 0.93 0.46 0.58 0.37
palm_1shot 0.97 0.96 0.91 0.48 0.55 0.39
palm_finetuned 0.99 0.99 0.99 0.6 0.65 0.51
total 0.93 0.87 0.87 0.42 0.5 0.33

xlsum

reference 1.0 1.0 0.97 0.6 0.74 0.51
t5_base_250 0.98 0.93 0.92 0.59 0.59 0.43
t5_base 0.99 0.96 0.96 0.65 0.68 0.52
t5_xxl 1.0 0.99 0.97 0.68 0.72 0.54
mt5_small_250 0.74 0.53 0.59 0.29 0.24 0.15
mt5_small 0.89 0.78 0.79 0.4 0.44 0.29
mt5_xxl 0.99 0.98 0.94 0.62 0.73 0.52
palm_1shot 0.95 0.95 0.92 0.73 0.68 0.58
palm_finetuned 1.0 1.0 1.0 0.62 0.59 0.45
total 0.95 0.9 0.9 0.57 0.6 0.44

wikilingua

reference 0.99 0.99 0.93 0.55 0.59 0.42
t5_base_250 0.98 0.59 0.93 0.31 0.26 0.09
t5_base 0.98 0.89 0.93 0.67 0.57 0.45
t5_xxl 0.98 0.95 0.92 0.68 0.63 0.51
mt5_small_250 0.96 0.27 0.91 0.45 0.09 0.02
mt5_small 0.95 0.65 0.88 0.52 0.37 0.19
mt5_xxl 1.0 0.96 0.92 0.62 0.64 0.49
palm_1shot 0.98 0.95 0.94 0.8 0.58 0.49
palm_finetuned 0.99 0.98 0.95 0.6 0.63 0.54
total 0.98 0.8 0.92 0.58 0.48 0.35

total 0.95 0.86 0.9 0.53 0.53 0.38

ES “YES” RATE
Dataset Model Q1 Q2 Q3 Q4 Q5 Q6

mlsum

reference 0.99 0.99 0.88 0.69 0.49 0.33
mt5_small_250 0.78 0.69 0.63 0.38 0.2 0.11
mt5_small 0.94 0.88 0.8 0.61 0.38 0.25
mt5_xxl 0.98 0.97 0.86 0.76 0.53 0.39
palm_1shot 0.73 0.72 0.27 0.41 0.45 0.32
palm_finetuned 0.99 0.99 0.02 0.92 0.78 0.75
total 0.9 0.87 0.57 0.63 0.47 0.36

xlsum

reference 0.99 0.99 0.96 0.31 0.49 0.21
mt5_small_250 0.64 0.44 0.55 0.17 0.16 0.07
mt5_small 0.8 0.63 0.71 0.23 0.28 0.12
mt5_xxl 0.98 0.96 0.94 0.39 0.43 0.23
palm_1shot 0.9 0.89 0.85 0.76 0.7 0.64
palm_finetuned 0.99 0.99 0.98 0.5 0.66 0.41
total 0.88 0.81 0.83 0.39 0.45 0.28

wikilingua

reference 0.99 0.97 0.96 0.5 0.62 0.35
mt5_small_250 0.75 0.61 0.73 0.16 0.08 0.03
mt5_small 0.95 0.37 0.92 0.42 0.28 0.11
mt5_xxl 0.98 0.93 0.95 0.57 0.64 0.4
palm_1shot 0.96 0.91 0.93 0.85 0.62 0.46
palm_finetuned 0.99 0.97 0.94 0.84 0.84 0.74
total 0.93 0.79 0.9 0.55 0.51 0.34

total 0.91 0.83 0.77 0.52 0.48 0.33

RU “YES” RATE
Dataset Model Q1 Q2 Q3 Q4 Q5 Q6

xlsum

reference 0.99 0.98 0.94 0.48 0.82 0.44
mt5_small_250 0.4 0.21 0.29 0.2 0.25 0.1
mt5_small 0.73 0.58 0.57 0.27 0.47 0.19
mt5_xxl 0.95 0.93 0.83 0.44 0.76 0.4
palm_1shot 0.89 0.89 0.82 0.78 0.66 0.6
palm_finetuned 1.0 1.0 0.98 0.68 0.83 0.6
total 0.83 0.77 0.74 0.48 0.64 0.39

wikilingua

reference 0.97 0.95 0.9 0.56 0.65 0.46
mt5_small_250 0.73 0.22 0.66 0.31 0.05 0.04
mt5_small 0.83 0.26 0.75 0.39 0.17 0.09
mt5_xxl 0.96 0.92 0.85 0.54 0.61 0.45
palm_1shot 0.92 0.86 0.86 0.74 0.48 0.36
palm_finetuned 0.93 0.93 0.89 0.66 0.59 0.51
total 0.89 0.69 0.82 0.53 0.42 0.32

total 0.86 0.73 0.78 0.5 0.53 0.35

TR “YES” RATE
Dataset Model Q1 Q2 Q3 Q4 Q5 Q6

xlsum

reference 1.0 1.0 0.88 0.46 0.82 0.43
mt5_small_250 0.59 0.41 0.34 0.23 0.33 0.17
mt5_small 0.85 0.72 0.57 0.35 0.49 0.29
mt5_xxl 0.99 0.98 0.83 0.54 0.78 0.49
palm_1shot 0.83 0.8 0.73 0.77 0.72 0.66
palm_finetuned 1.0 0.99 0.9 0.62 0.83 0.57
total 0.87 0.81 0.7 0.48 0.65 0.42

wikilingua

reference 0.94 0.92 0.83 0.5 0.73 0.46
mt5_small_250 0.9 0.34 0.79 0.35 0.2 0.12
mt5_small 0.82 0.53 0.57 0.1 0.18 0.05
mt5_xxl 0.93 0.89 0.77 0.44 0.61 0.35
palm_1shot 0.84 0.77 0.76 0.7 0.63 0.49
palm_finetuned 0.94 0.93 0.87 0.69 0.74 0.62
total 0.89 0.72 0.76 0.44 0.5 0.33

total 0.88 0.78 0.72 0.47 0.61 0.39

VI “YES” RATE
Dataset Model Q1 Q2 Q3 Q4 Q5 Q6

xlsum

reference 0.86 0.85 0.81 0.37 0.65 0.35
mt5_small_250 0.49 0.33 0.39 0.09 0.17 0.06
mt5_small 0.7 0.57 0.59 0.2 0.41 0.15
mt5_xxl 0.84 0.83 0.8 0.38 0.67 0.36
palm_1shot 0.92 0.9 0.83 0.69 0.43 0.3
palm_finetuned 0.99 0.99 0.93 0.52 0.67 0.42
total 0.8 0.75 0.73 0.37 0.51 0.28

wikilingua

reference 0.98 0.97 0.94 0.57 0.71 0.51
mt5_small_250 0.82 0.28 0.78 0.25 0.1 0.06
mt5_small 0.91 0.28 0.87 0.31 0.25 0.13
mt5_xxl 0.97 0.95 0.93 0.49 0.65 0.42
palm_1shot 0.78 0.76 0.63 0.64 0.22 0.16
palm_finetuned 0.99 0.98 0.96 0.73 0.39 0.33
total 0.91 0.7 0.86 0.49 0.39 0.27

total 0.85 0.72 0.79 0.43 0.45 0.27

Table 9: The percent of “Yes” responses, broken down by language, dataset, model, and question number.



Model Q1 Q2 Q3 Q4 Q5 Q6
reference 0.97 0.96 0.91 0.46 0.66 0.39
t5_base_250 0.96 0.9 0.9 0.44 0.48 0.31
t5_base 0.98 0.95 0.94 0.51 0.58 0.38
t5_xxl 0.99 0.98 0.95 0.67 0.72 0.58
mt5_small_250 0.64 0.45 0.5 0.26 0.24 0.12
mt5_small 0.81 0.67 0.68 0.34 0.37 0.2
mt5_xxl 0.95 0.94 0.89 0.5 0.66 0.37
palm_1shot 0.93 0.88 0.86 0.75 0.56 0.44
palm_finetuned 0.98 0.97 0.91 0.66 0.73 0.56

Table 10: The percent of “Yes” responses for the set of articles that have summaries generated by all systems,
broken down by model and question.

Q1 Q2 Q3 Q4 Q5 Q6
Dataset Metric ρ roc ρ roc ρ roc ρ roc ρ roc ρ roc
SEAHORSE mt5_L 0.44 0.88 0.74 0.97 0.37 0.81 0.55 0.82 0.46 0.78 0.45 0.77

mt5_XXL 0.52 0.90 0.86 0.98 0.45 0.84 0.59 0.85 0.50 0.80 0.52 0.81
mFACE - mt5_L 0.14 0.77 - - - - 0.48 0.78 - - 0.32 0.70
5 langs mt5_XXL 0.09 0.73 - - - - 0.50 0.79 - - 0.50 0.81
mFACE - mt5_L 0.13 0.68 - - - - 0.46 0.77 - - 0.36 0.71
all langs mt5_XXL 0.15 0.70 - - - - 0.52 0.81 - - 0.40 0.74

Table 11: Metrics’ ability to predict SEAHORSE and mFACE ratings, measured with Pearson’s coefficient (ρ) and
the area under the ROC curve (roc). Q1 maps to “Quality” in the mFACE dataset, Q4 to “Attribution,” and Q6 to
“Informativeness.” mt5_L is a SEAHORSE-finetuned version of mT5_large; mt5_XXL is a SEAHORSE-finetuned
version of mT5_xxl.


