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This note provides learning guarantees for sample-splitting-based estimators, which include
double/debiased machine learning (DML) (Chernozhukov et al., 2018) estimators. We prove
consistency and Gaussian approximation of estimators using finite-sample arguments, ex-
tending the general asymptotic theory. Our work extends previous research (Chernozhukov
et al., 2023; Quintas-Martinez, 2022) that studied learning guarantees for the expected linear
functional in general sample-splitting-based estimators.

Contents

1. Introduction 2
1.1. Related Works . . . . . o o o e e e e e e e e e e e 2

2. Problem Setup 2
2.1, Notations . . . . . . o o e e e e e e e 2
2.2, Setup . .. e e 2

3. Finite Sample Learning Guarantees 4

4. Conclusion 5

A. Proof 7
A.1. Proof of Theorem 1. . . . . . . . . . e e 7
A.2. Proof of Theorem 2. . . . . . . . . . . 8
A.3. Proof of Theorem 3. . . . . . . . . . . 11



1. Introduction

This paper aims to explore and provide a thorough understanding of sample-splitting-based estimators.
This class of estimators utilizes sample-splitting to improve the accuracy of estimation. Our research
endeavors to establish learning guarantees for this class of estimators, with a specific focus on dou-
ble/debiased machine learning (DML) estimators. Our results are based on finite-sample arguments and
demonstrate consistency and Gaussian approximation.

1.1. Related Works

In the realm of related work, studies such as Chernozhukov et al. (2023) and Quintas-Martinez (2022)
both focused on providing learning guarantees for the expected linear functional (also known as Riesz
representer) as the main focus in (Chernozhukov et al., 2022b). While our research also delves into
learning guarantees, we provide general results that apply to any sample-splitting-based estimators. By
doing so, we hope to contribute to the current understanding of this class of estimators and provide
researchers and practitioners with a solid foundation upon which to build future work.

2. Problem Setup

2.1. Notations

Each variable is represented with a capital letter (X), and its realized value with a small letter (z).
We use P as a probability distribution over a random vector V € R%, and D := {V(;)}7, as a set of
n identically and independently distributed samples drawn from Py(V). For a function f, we define
the mean of f(V) with respect to P as Ep,[f(V)] == [f d[P]. We use Ep[f(V)] = 237", f(V(y)) to
denote the sample average over D. We will use ®(z) as the cumulative distribution function (CDF) of

the standard normal distribution at « and ¢(z) to denote the corresponding density function.

2.2. Setup

An inference framework considered in this paper is to find a solution parameter ¢y € Lo(P) satisfying
an equation Ep, [¢(V;n0,1)] = 0 where n € La(P) is a set of nuisance parameters for the true nuisances
1o = n(Py). Here, Py is a true distribution such that D ud Py where D := {V{;)}j, are independently
and identically distributed samples. We will use 03 := Ep, [{#(V;10,10)}?]. We assume that the score
is differentiable and the derivative is bounded.

m

4 iLq, the map Oj —
&' (Vind)|| < ¢ for ¢'(Vin) =

Assumption 1 (Bounded First Derivative). For a set of nuisances n = {n’}

o(V;n) is uniformly differentiable with respect to n?. Additionally,
527 0(Vim).

In this paper, we consider a special but practically important case where the score function is affine to
the target parameter ¢. The linearity of the score is formally stated as follows:

Assumption 2 (Linear Score). The score function ¢ is linear; i.e., it satisfies the following:

d(Vim, ) = o(Vin) — . (1)

We focus on analyzing the finite-sample properties of estimators that use the cross-fitting (i.e., sample-
splitting) technique (Klaassen, 1987; Robins and Ritov, 1997; Zheng and van der Laan, 2011; Cher-
nozhukov et al., 2018; Newey and Robins, 2018). We refer to these estimators as cross-fit estimators,
following Newey and Robins (2018). The cross-fit estimator and its confidence interval is formally defined
as follows:



Definition 1 (Cross-Fit Estimator and its Confidence Interval). An estimator is called a cross-fit
estimator based on a score function ¢ if it is constructed using the following step: Given n-size samples
D = {Vi3y}i—y, randomly partition the samples into L folds; i.e., D = UL Dy where ny = |Dy|.

1. For each fold ¢, estimate the nuisance fjy using D§ := D\D,.
2. Estimate v as ¢ == (1/L) Zngl Uy where 1y = Ep, [o(V; 1))

3. Estimate (1 — a)100% confidence interval of v as 1 + ﬁ%ﬁ where qq, is the 1 — /2 quantile of
the standard Gaussian distribution and 62 = (1/L) Zle 62 where 62 == Ep, [{6(V;7,10)}?].

We note that the double/debiased machine learning (DML) estimator (Chernozhukov et al., 2018) is a
special case of the cross-fit estimator where the score function ¢ is orthogonal with respect to nuisances.

Definition 2 (Double/Debiased Machine Learning (DML) Estimator(Chernozhukov et al., 2018,
2022a)). A cross-fit estimator based on a score function ¢(V'; n, ¢) is said to be a double/debiased machine
learning (DML) estimator if the score function is orthogonal with respect to its nuisance; i.e.,

prERVinP)¥)| =0 2

A general method for deriving a score function that satisfies the orthogonal property (orthogonal score
function) in Eq. 2 was recently provided in (Chernozhukov et al., 2022a, Section 2.1). One implication
of this is that an efficient influence function of a target parameter ¢(P) is an orthogonal score function.
Specifically, Jung et al. (2021) derived an influence function for any identifiable causal effects given a
causal graph, and shown that such influence functions is an orthogonal score satisfying Assumption 2
Therefore, any one-step estimator based on an influence function equipped with the cross-fitting technique
described in Def. 1 is a DML estimator. We collect an example of orthogonal score functions in Section xx.

To provide a clear example, we will describe a specific case in which we apply our general framework to
the problem of treatment effect estimation.

Example 1. Covariate Adjustment. Let V = (Z, X,Y), where X is the binary treatment variable, Z
is a set of covariates, and Y is an outcome. The true parameter 1) is an identification expression of the
treatment effect E[Y (x)] under the ignorability assumption Y (z) 1L X|Z and a positivity assumption
mo(X,Z) > 0, where mo(X|Z) = 1,(X)/P(X|Z). Under these assumptions, the true parameter is
specified as ¥y = Ep[ug(z, Z)], where puo(X,Z) = Ep[Y|X,Z]. An orthogonal score function is an
influence function of v, which is given by: (Robins and Rotnitzky, 1995; Chernozhukov et al., 2017)

(Vi =A{p,7},¢) = n(X|Z{Y — (X, 2)} + p(z, Z) — 4, (3)

where 7(X, Z) and pu(X, Z) are nuisance functions. Eq. (3) is a linear score satisfying Assumption 2.

Example 2. g-formula Let V = {Z1, X1, 75, X2, + , Zim, Xm, Y} be an ordered set, where Vi € [m)],
X represents binary treatments, Z; represents a set of covariates, and Y represents an outcome. Define
X = {X1,--+,X;} and 7' = {Z1,---,Z;}. The true parameter v is an identification expression of
the treatment effect E[Y'(x)] for x := (21, -+, ;) under ignorability absumpmons Y(x) 1 X; |Xl 1,7i
and the positivity condition Wé(Xi|Yi71,7i) > 0 where 71'0()(,|X2 1,71) = 1,,(X;)/P(X; |XZ 1,7i).
Under these assumptions the true parameter is defined as 1 == Ep[ud (21, Zl)], where (X 7)) =
Ep[uf ™ (w1, X\ 20 X", Z  for k=1,2,- ,m—1, and p (X", Z") == Ep[Y|X™,Z"] (Robins,
1986; Bang and Robins, 2005; Rotnitzky et al., 2017). An orthogonal score function is an influence
function of vy, which is given by:

o(Vin={n* u* ke [m]}v) = 3 7 {phH (X 20— ub (X1, Z0)) (4)
k=1



Example 3. Front-door Adjustment Let V = (C,X,Z,Y), where X is the binary treatment vari-
able, Z is a binary mediator variable, C' is a set of covariates, and Y is an outcome. The true
parameter v is an identification expression of the treatment effect E[Y (x)] under the front-door ad-
justment identification assumption Z(z) 1 X|C, Y(z,z) 1 Z(x)|X,W and a positivity assump-
tion mo(X,C) > 0 and &(Z,X,C) > 0 for np(X,C) = P(X|C) and &(Z,X,C) = P(Z]|X,C)
(Pearl, 2000; Fulcher et al., 2019). Assuming these conditions hold, the true parameter is defined as
Yo =2, pezx Eplpo(z,2",C)mo(2', C)6o (2, z, O)], where po(Z, X,C) == Ep[Y[Z, X,C]. An orthogo-
nal score function is an influence function of 1y, which is given as (Fulcher et al., 2019):

o(Vin={w &}, ) = 5((?;’?){1/ —uw(Z,X,0)}
1.(X ) ) o
+ F()E-C?){;M(Z’x ’C)ﬂ-(x 70) _Q;M(Z , T 70)5(2’ X, W) (J,‘ O)
+> X, 0N, C) — o, (5)

Pl

where p, m, € are nuisance functions. Eq. (5) is a linear score satisfying Assumption 2

3. Finite Sample Learning Guarantees

In this section, we provide finite sample learning guarantees for the cross-fit estimator in Def. 1, which
subsumes the DML estimators in Def. 2. We first provide an upper bound of the error of the estimator.

Theorem 1 (Finite-Sample Learning Guarantee). Suppose Assumptions (1,2) hold. Let ¥ be the

cross-fit estimator of 1o, which is based on the score function ¢. Let € € (0, L%rl) Then, with probability
1—(L+1)e,
L
[ — 1o < e ZZ%HW mll + oo Z (Vi) — o(Vimo)l| - (6)

=1 j=1 =1

Theorem 1 implies that the estimator 1/3 is consistent and converges at a rate of \/n, provided that
each nuisance parameter 7, converges to 1) in the Ly(P) norm and the term Ep[p(V;5) — o(Vino)]
converges at a rate of /n. The analysis of the term Ep[p(V;%°) — »(V;n0)], which is often called the
drift-term in many literatures, including (Rotnitzky et al., 2017), is particularly crucial in studying the
convergence behavior of the estimator. Since the behavior of the drift term depends on the specification
of the function ¢, we provide the analysis of the drift term for each working example in the next section.

We now provide a finite-sample learning guarantee for the confidence interval estimates. Note that the
confidence interval estimation in Definition 1 is based on a Gaussian approximation of the estimator 1/3
This approximation is justified by the asymptotic behavior of the estimator, which exhibits asymptotic
normality under certain conditions where each nuisance and the drift term converge quickly. The follow-
ing result validates this approximation by providing an upper bound on the difference between the true
distribution of the estimates and the standard Gaussian distribution.

Theorem 2 (Finite-Sample Gaussian Approximation). Suppose Assumptions (1,2) hold. Let U be
the cross-fit estimator of 1y, which is based on the score function ¢. Let € € (0,1/L). With probability
of 1 — Le,

‘P (f“ﬂ ) < x) e < 1 0.4748k3 )

A+ ,
~ ooV2m og\/n




where of = Ep[{p(Vino) —vo}?] and x§ = Ep[le(V3m0) — %ol’], and

Aiﬁzyj zva<mm (8)
=1 j=1

Theorem 2 sheds light on how closely the Gaussian approximation of confidence intervals approximates
the true confidence intervals of the cross-fit estimator. The drift term Eplp(V;7) — o(Vino)] is of
particular importance as it determines the rate of convergence to limiting distribution. Specifically,
the Gaussian approx1mat10n of the confidence interval converges to the true distribution only when each
nuisance parameter 1), converges to 1, in the Lo(P) norm and the term Ep[p(V; /%) — (V3 n0)] converges
at a rate of \/n.

Note that finite-sample Gaussian approximation in Theorem 2 is expressed in terms of the true asymp-
totic variance o3. We will now provide an estimator for o2, denoted as 62, to ensure the accuracy of the
approximation.

Theorem 3 (Variance Estimation) Suppose Assumptions (1,2) hold. Let £* == Ep[{o(V;n0,%0)}]
for € >0. Let ?:=>"" c%. Lete€ (0,1/4L). With probability 1 — 4Le,

Jj=1 ]
62—0'8 S A1+2\/ Al (\/ A2+0'0) +A2, (9)

where

2 c 2\ ™
&:MW+( ) 2 Iy %W+f2mpvwn e(Vim)ly’  (10)
(=

ne2 ne2
17=1

and Ao = LE?/\/ne.

4. Conclusion

This note is only a succinct and non-exhaustive discussion of finite sample guarantees of double/debiased
machine (DML) learning-based inference framework. This work is a mild generalization of (Chernozhukov
et al., 2023). We note that our work is actually not confined to the DML inference framework. As long as
assumptions (1,2) are satisfied, our finite sample analysis is applicable. Finally, we note that statistically
appealing properties such as doubly robustness can be claimed if the form ¢(V';7) is more specified. We
hope that this work serves as a template for analyzing finite sample
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Supplement of A Short Note on Finite Sample Analysis on
Double/Debiased Machine Learning

A. Proof

A.1l. Proof of Theorem 1

For D = {V(z')}?=1 and an sample index set {1,2,--- ,n}, let I, denote an index set for a set of samples
in Dy; ie., Dy = {V(3 }icr,. We first note that

Y=o = %Ziﬁe—dJo
1 @zl

=3 Z Ep,[o(V;1e)] = Eplp(Vino)]

=1

L L

- %ZEDe—P[SD(Va m)l+ DB ple(Viin) = ¢(Vim)] + %ZEP[MW fe) = ¢(Vim)]

=1 =1 =

L
= Ep_plp(Vim)]l + 1 3 Ep,ple(Vii) — o(Vim)l + 7 > Eple(Vie) — o(Vim)
— =1

(=1 z =1
1 & 1 o
< [Ep—ro(Vimo, vo)ll + 7 D [Eo,—ple(Viie) — o(Vimo)ll + 7 D [Erle(Viae) — ¢(Vim)]l-
=1 =1

We first study |[Ep_p[p(V;n0,%0)]|. We first note that

VelE-pl6(Vim0,v0)]] = ~Vplp(Vim, vo)] = 2.

By Chebyshev’s inequality,

P (Eo-plotViml > 172 ) <

Choosing t = 1/4/€, we have, with probability 1 — €,

wp 1l—e€ o)

Ep—p[e(V;no, o)l < N

(A1)

Now we will examine the second term |Ep,_p[p(V;7e) — ©(V;n0)]|. According to (Kennedy et al., 2020,
Lemma 2), the following statement holds true: for any ¢ > 0 and the usage of sample-splitting, and by
Chebyshev’s inequality, for each ¢ € {1,2,--- | L}.

1

P (1B, —rle(Viie) = o(Vim))l 2 tv/VelEp,—plo(Vind) — o(Vim)l]) < 5.

Note

Vp[Ep,—ple(Vife) — o(Vino)l] = Ve[Ep, [p(Vife) — (Vimno)]]



Therefore,

By choosing t = 1/+/€, we have the following: With probability 1 — e,

[Ep,—ple(Vide) — @(Vino)]| < \/VP (Vi11e) — o(Vimo)].

Since

VVp[e(Vine) — o(Vino)] < (Vi) — o(Vino)ll,

we have the following: With probability 1 — €,

Ep,—ple(Viie) —o(Vino)]| < (Viiie) = o(Vimo) |l

F

Finally, by applying the Mean-value theorem with Assumption 1, we have,

m
SZCJ

in —77(]) 770”

le(Vsie) = o(Vimo)ll =Y llg' (Vi)
j=1

Combining, with probability 1 — e, for each ¢ € {1,2,--- , L}, we have

m

Ep,—ple(Vine) — o(Vino)]

—Tio

By applying Boole’s inequality, with probability 1 — Le, we have

L L m
Z“EDg e(Vine) —o(Vimo)]| < ZZ eslla — -
L= FLg: =

Since 1/y/n¢L < 1/y/n¢L = 1/+/n, we have the following: with probability 1 — Le,

L m
*ZIED/ e(Vife) — (Vo)) ZZ cjlli —mdl-
g: j=1

(A.2)

(A4)

Finally, we note that Eqs. (A.1 and A.4) hold in probability 1 — (L 4+ 1)e. This completes the proof.

A.2. Proof of Theorem 2

Lemma A.1. Suppose Assumptions (1,2) hold. Let ¢ :== Ep[p(V;no)]. At least with probability 1 — Le,

. \/ﬁ L
it =]+ 25 S IEele(Vii) — e(Vim)]l
(=1



Sl
M=

L
Ep,—ple(Vife) — o(Vino)] Z (Vi) — (Vo))

1 =

1
L

M=t
Mh

< |Ep,—ple(Viie) — o(Vino)]

=1 E:

o(Viie) —o(Vimo)l| -

(\

By (Kennedy et al., 2020, Lemma 2), the following holds: for any ¢t > 0 and each £ € {1,2,---, L},

[Ep,—ple(V;he) — o (Vino)ll 1
P ( To(V:20) — oV o) /e >t> <

By choosing t = 1/+/€, we have

1
Pl |Ep,_ Vife) — o(V; > Vine) — o(V; <
(o—rliotViin = Vil = Z= etV i) = oVim)l) <
That is,
1
[Ep,—plp(Vife) —o(Vino)]l < e (Vi) = o(Vimo) | with probability (w.p) 1 —e

Finally, by applying the Mean-value theorem with Assumption 1, we have

. m
| < e |

(V5 79e) — o(Vino)ll = Z " (V' 71e)

That is,

|Ep,—ple(Viie) — o(Vino)]

—770 w.pl—e

By applying Boole’s inequality and the fact that L\/ng > v/Lny = \/n, we have

L L m
ZZ“EDg e(Vine) — o(Vimo)] \/%ZZCj urt
—1

(=1 j=1

fnéH w.p1l— Le.

In conclusion, with probability 1 — Le,

Rl

—noH+£Z|Ep (Vi) — o(Vim)l

O

Proposition A.1 (Berry—Esseen Inequality (Berry, 1941; Esseen, 1942; Shevtsova, 2014)). Sup-
pose D = {Xy,---, X, } are independent and identically dzstmbuted random variables with Ep[X;] = 0,
Ep[X?] = 0% and EPHXA | = k3. Then, for all z and n,

‘P (\fED[X] < g;) — ()| < OU“Z“%&

Let ¢ :== Ep[p(V;10)]. By Berry-Esseen Inequality in Prop. A.1,

N 0.4748x3
P (Uo(w — 1) < x> —®(x) < N



We recap that, by Lemma A.1, with a probability 1 — Le,
v ‘z/? - 1&‘ < A.
0o

Then, with a probability 1 — Le,

Also,
P<f(¢_’¢0) <x+A> <I>(:E)—P<\§?(7,/;1/Jo) <x+A) —®(z+A)+ Pz +A) — B(2)

| 0.4748+7
NG
0.4748x3
= 5 /m oA
0.4748k3 4 1 A
o3y/n Vor

since ®(z + A) — ®(z) = ¢(2')A by Mean value theorem, where ¢(z) is a standard Gaussian density.

+o(z+A) — O(z)

Now, we are proving for ®(x) — P (\;—f(d; — 1) < I) Note

where the last inequality holds since ‘({—f(ﬁ) — ) < A. Then,
0(0) - P (L2~ o) <) = 8(0) - 0l = &) + 8~ &) = P (L0 - o) <)
T V27

<1A+<I>(x—A)—P(‘f(1ﬁ—¢o)<a:)

<1A+¢(m—A)—P(f(w—wo)<x—A)

T V27
P At 0.4748k3
RN
Therefore,
Vn, - > 1 0.4748k3
Pl—(— <z|—-—x) < A+ .
’ (0_0 (1/1 1/}0) ( ) = m 03\/ﬁ

10



A.3. Proof of Theorem 3

Lemma S.2. Suppose Assumptions (1,2,) hold. With a probability 1 — 2e,

e — ZCJHW il + oo | + Eple(Viae) — o(Vino)ll-

Yo < F 2

Proof for Lemma S.2. By Assumption 2,

e — o = Ep,—p[o(Vimo)] + Ep,—ple(Viie) — o(Vino)l + Eple(Viie) — o(Vimo)]
=Ep,_p[o(Vin0,%0)] + Ep,—plp(Viie) —o(Vino)] + Eple(Vine) — w(V;no)]
< |Ep,—p[o(V;n0,%0)]| + [Ep,— pl(Viie) — o (Vino)ll + [Ep[e(V;e) — o(Vino)]l -

By Chevyshev’s inequality,

P <ED4P[¢(V§UOawO)]| > \2\/VP[ED,5P[¢<V§770;¢0)H> <,

which implies that

|Ep,—ple(Vino)]| < %\/VP[EDZ—PM(V;%,%)H wpl—e
Since
Vp(Ep,—p6(Vino, o)l] = Vp[Ep, [6(V:n0, do)]] = n%VP[Gﬁ(V;Uo,%)] - ni/’g’

we note that

[Ep,—plp(V;m0)]| <

1
WJO wpl—e (A.5)

By (Kennedy et al., 2020, Lemma 2), we note that

[Ep,—ple(V;iie) —o(Vino)ll <

(Vi) — (Vo) || wpl—e

1
Ve
By Assumption 1, we have

m

le(V37ie) = o(Vimo)| Z i =l

Therefore,
[Ep,—ple(Vie) — ¢(Vimo)] Z 77/ — | w.pl-—e (A.6)

By applying Boole’s inequality, we note that Eqs. (A.5,A.6) hold with probability 1 — 2e. This completes

the proof. 0
Lemma S.3. Suppose Assumptions (1,2,) hold. Let c? Z;nzl c?. With a probability 1 — 2e,
2
~ O' ] ~
e - < 2% 4. 2 Z 197~ )1 + 3{E (Vi) — o(Vimo)]}

11



Proof of Lemma S.3. By Lemma 5.2, it suffices to show

2
1 S j A : 12
{W (Z cillag —mll + 00) + [Ep[e(Vine) — SD(VJIO)H} s n7€ E Z 15 = 3|

j=1
+{Ep[p(V; m) — o(Vino)]}2.

Using the inequality (a + b+ ¢)? < 3a? + 3b% + 3¢? by Cauchy-Schwartz inequality, we can see that the
L.h.s of the above is upper bounded by

nge (Z ejllig — ) + 370 +3{Ep[p(V3ie) — o(Vino)l}>.

By Cauchy-Schwartz inequality,

2
3 [N~ yai
. — <
Tt (E CJ”W 770” >

Jj=1

3‘03

m
Z 77@ - UOHQ

This completes the proof. O

Theorem 3 (Variance Estimation). Suppose Assumptions (1,2) hold. Let &* :== Ep[{o(V;n0,%0)}]
for € >0. Let > =" 2. Lete€ (0,1/4L). With probability 1 — 4Le,

j=16j-
5’2 —0'(2) S Al —|—2\/ Al (\/ AQ —|—O’0> +A2, (())

where

L

3Lo2 [ 37 o= 2, 2
Aq = ne? + <L€+n€2>22|77e7]0 Z V 776 SD(V»UO)]} ’ (l(])

(=1 j=1 €=

and Ay = L& /\/ne.
Proof of Theorem 3. To simplify notations, we will use Q/Sg = ¢(V; 1, 1&) and ¢o = &(V;n0,%0). Note

6’3 = ED@[{QZ)E}Z]
= Ep, [{d;é — o + do}?]
=Ep,[{¢¢ — ¢0}*] + Ep, [{$0}*] + 2Ep, [{de — d0} 0,

which implies that
— Ep, [{¢0}’] = Ep, [{de — ¢0}*] + 2En, [{¢r — do} o).
Then,

67 —og =67 — Ep,[{¢0}’] + Ep,[{¢0}*] — 0f
=Ep, [{¢¢ — d0}?] + 2Ep, [{de — ¢0}¢0] + Ep,[{¢0}?] — o3

Note

2Ep, [{¢e — do}¢0] < 2v/Ep, [{de — ¢0}2]vEp, [{¢0}?]

= 2\/]EDg {e - ¢0}2}\/ED5[{¢0}2] —of +0p
< 2B, {61 o012/ [E,{o0}] a5l + 00
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Therefore,

0% - o} < B, {61 60)") + 2y/En s — 0nl?] (B ionl]— 0Bl + 0 ) + [Bo, {60} - o]

The r.h.s. composed of two terms: Ep, [{¢¢—do}?] and |Ep,[{¢0}?] — 08|. The first term can be bounded
as follow: By Markov inequality,

R Ep[Ep,[{dr — ¢0}?]]  Ep[{dr— o} 1, 2
P (B, [{30 — o0)?] > 1) < ErEoloem 0ol Beltocm@ol]_ 15, o)
and by choosing t = lée—¢ol* ¢°” , the following holds:
({6 - on)?] < 12 =0l wpl-e (A7)
By Assumption 2 and the triangle inequality,
R 2 . ) R 2
B = 60| < lle(Viiie) = o (Vim)II® + e = v
By Assumption 1 and Cauchy-Schwartz inequality,
le(Vinie) = o(Vimo)l ZC Z 177 = m||* = ¢ Z [ (A.8)
By Lemma 5.3, we have
~ 2 30’% 302 i ~j 7112 A~ 2
~tof| <04 TS —mI + 3ERl(Vi) —e(Vim)Y wpl-2e (A9)
j=1

Combining Egs. (A.7, A.8, A.9) using Boole’s inequality, we have the following with probability 1 — 3e:

N ; 3 3
o, (30— 60} < Z i =l + n";; Z 19 = w1 + Z{Eple(Viie) = (Vimo)]y
3
- % + ( - ) D11 il + EPLo(Vie) — o(Vimo)lY (A.10)
Let
302 c g 3 . 9
M= (242 ) >+ L EeVi) — Vil

The second term ‘EDZ {po}?] — U%‘ = ‘Epz_p[{%}Q]) can be bounded as follow: By Chevyshev’s in-
equality,

P (‘EDZ—P[{QSO}Q]‘ > \2\/VP[]ED@—P[{¢O}2H) <e

where

54

Ty

VeEo,—p[{60}l] = VelEn,[{60)7]) = - Vel{6o}] <

13



Then,
VVrlEo, rlion)?l] < —=—.

Sl

Ep,-pl{g0}’]] <

Let
2
Aoy = .
2,0 e

A.11), we have, with probability 1 — 4e

67 — 08 < A1g+2v/Ary (\/ Agp+ Jo) + Agy.

Combining Egs. (A.10,

Finally, let

1
Api=2> A
=1
L L m L
1 308 1 c 2, 3
L nge2+LZ(e ’I’L€2>Z” 1"+ e
=1 =1 j=1 =1

Also, because

1 L¢? Le?
- Z A2,€ < )
L — Ly/mge = /ne
let
L 2
Ay = EE
ne
Then,

6% — 05 < AL+ 2v/A (\/A2+Uo>+A2

14

(A.11)

w.p 1 —4Le.
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