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ABSTRACT

Knowledge Distillation (KD) is a widely adopted framework for compressing
large models into compact student models by transferring knowledge from a high-
capacity teacher. Despite its success, KD presents two persistent challenges: (1)
the trade-off between optimizing for the primary task loss and mimicking the
teacher’s outputs, and (2) the gradient disparity arising from architectural and rep-
resentational mismatches between teacher and student models. In this work, we
propose Dynamic Trade-off Optimization for Knowledge Distillation (DTO-KD),
a principled multi-objective optimization formulation of KD that dynamically bal-
ances task and distillation losses at the gradient level. Specifically, DTO-KD re-
solves two critical issues in gradient-based KD optimization: (i) gradient conflict,
where task and distillation gradients are directionally misaligned, and (ii) gradi-
ent dominance, where one objective suppresses learning progress on the other.
Our method adapts per-iteration trade-offs by leveraging gradient projection tech-
niques to ensure balanced and constructive updates. We evaluate DTO-KD on
large-scale benchmarks including ImageNet-1K for classification and COCO for
object detection. Across both tasks, DTO-KD outperforms prior KD methods,
yielding state-of-the-art accuracy and improved convergence behavior. Further-
more, student models trained with DTO-KD exceed the performance of their non-
distilled counterparts, demonstrating the efficacy of our multi-objective formula-
tion for KD. The source code and models will be released upon acceptance.

1 INTRODUCTION

Large deep learning models have achieved remarkable success in computer vision tasks, but their
adoption is often limited by high computational costs, making it challenging to deploy on resource-
constrained systems like edge devices and mobile phones. To address this, there has been a growing
interest in reducing model size while maintaining performance. One effective approach achieving
this is so called knowledge distillation (KD) (Yim, 2017; Gao et al., 2018; Qiu et al., 2023; Zhou
et al., 2020), where a smaller model, called the student, is trained to mimic the outputs of a larger,
pre-trained model, known as the teacher. This technique allows the student model to learn from the
teacher’s knowledge, enabling it to achieve competitive performance with fewer parameters, making
it more suitable for deployment on devices with limited resources. In a typical KD pipeline, this
process involves a task-specific loss function, such as classification or object detection, alongside a
mechanism to transfer knowledge from the teacher to the student.

Earlier works in KD (Hinton et al., 2015; Zhang et al., 2018) focused on using the teacher’s pre-
dictions as the ground-truth for the student model. However, this approach has limitations, as the
teacher’s output is often overly compressed, and distilling knowledge solely from the final logits
restricts the amount of useful information that can be transferred. To address this, later KD tech-
niques (Romero et al., 2015; Chen et al., 2020; Heo et al., 2019a) shifted toward distilling knowledge
from the teacher’s feature space, enabling a more flexible and informative transfer process. This is
typically achieved by heuristic design choices and additional hyperparameters that need task-specific
tuning. Despite advancements, feature-based KD approaches (Chen et al., 2022; 2021; Roy Miles &
Deng, 2024) still struggle with effectively transferring knowledge from complex teacher models to
simpler student models due to the inconsistency between the optimization objectives of ground-truth
supervision and the distillation targets.
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Figure 1: Gradient Dynamics analysis, comparing the conflict and dominance behavior of the
distillation and task gradients. Left) Conflict score is computed as ⟨gdist, gtask⟩, where more negative
values indicate stronger disagreement. Right) Dominance score is calculated as |gdist|

|gtask| and shown
in log-scale, with lower values indicating stronger dominance. DTO-KD achieves lower gradient
conflict and more balanced gradient dominance compared to the baseline.

The optimization inconsistency is a key factor limiting the efficiency of teacher mimicking (Wang
et al., 2024; Chen et al., 2022; Wang et al., 2024; Lin, 1976) approaches. The primary issue limiting
the performance of these approaches is two-fold. First, Gradient Conflicts (GrC) arise when the
gradients of the task-specific objective and the distillation process are misaligned. Second, Gradient
Dominance (GrD) occurs when the gradient magnitude of one objective (e.g., either distillation
or task-specific) dominates the learning process, causing an imbalance. Figure 1 illustrates these
issues by plotting gradient conflict (GrC) and gradient dominance (GrD) for our method and that
of Roy Miles & Deng (2024) over 500 iterations on the object detection task.

To address all of these issues, we propose a novel distillation optimization strategy. Specifically, we
frame the problem as a dynamic trade-off optimization, which not only efficiently resolves gradient
conflicts during training but also ensures a Pareto optimal (Lin, 1976) solution. This results in
a training strategy that eliminates the need for manually tuning hyperparameters to balance the
contributions of each loss function. Instead, it dynamically learns the contribution of each loss
function, adapting between task-specific and distillation-specific objectives throughout the training.

To be more specific, in this paper we propose a closed-form method for determining how to
weight the distillation and task-specific losses during training. Unlike the prior work of (Liu et al.,
2023), our approach provides an explicit solution that can be computed efficiently at each step. In
teacher–student architectures, where the distillation and task losses evolve rapidly, existing task-
weighting methods (Hu et al., 2024; Zheng & Yang, 2024) can struggle to adapt, causing weights
to oscillate or lag behind the changing dynamics. In contrast, our closed-form solution produces
an update direction that is jointly aligned with both objectives, ensuring that neither the distillation
nor the task loss dominates or interferes with the other. As a result, our method naturally mitigates
gradient conflict and yields a more stable and effective multi-objective learning process.

In this paper, we introduce DTO-KD (Dynamic Trade-off Optimization for Knowledge Distillation),
a novel multi-objective learning framework that formulates knowledge distillation as a gradient-level
optimization problem. DTO-KD improves the efficiency and effectiveness of knowledge transfer by
dynamically modulating the contribution of task-specific and distillation-specific objectives during
training, removing the need for manual loss weighting or extensive hyperparameter tuning. DTO-
KD is trained end to end and demonstrates faster convergence, requiring fewer epochs to reach or
exceed the performance of state-of-the-art distillation methods.

In summary, the contributions of this paper are as follows:

• We propose DTO-KD, a dynamic trade-off optimization framework that balances task and
distillation losses at the gradient level. This principled approach eliminates the need for
fixed loss weighting, enabling adaptive trade-offs during training.

• DTO-KD resolves gradient conflict (GrC) and dominance (GrD) via per-iteration gradient
balancing approach, leading to aligned, balanced updates and improved convergence.
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• We conduct extensive experiments on both classification and detection benchmarks, achiev-
ing state-of-the-art performance. Ablation studies confirm the robustness of DTO-KD
across diverse distillation setups.

2 RELATED WORK

This section explores KD techniques, focusing on the use of logits, CNN features, and transformer
features (or tokens). Additionally, it examines multi-objective approaches relevant to the DTO-KD.

Logit-based knowledge distillation: Logit-based techniques have traditionally emphasized the dis-
tillation process by utilizing solely the output logits. For instance, Zhang et al. (2018) uses an en-
semble of students who learn collaboratively, while Mirzadeh et al. (2020) employs a multi-stage
distillation with a teacher assistant network. Additionally, Zhao et al. (2022a) introduces a decou-
pling strategy, applying distillation to different branches of the teacher’s output individually. Most
logit-based methods use forward KL-divergence to align student and teacher distributions, which can
over-smooth, whereas reverse KL-divergence (Wang et al., 2025a) focuses on the teacher’s domi-
nant modes. Recently, Wang et al. (2025b) generalizes this with an α–β-divergence that interpolates
between the two. However, the logit-based distillation has key limitations: it transfers only the final
layer’s outputs, missing rich feature representations from earlier layers, and limits the student’s abil-
ity to generalize and learn deeper knowledge. The student model also struggles to align the teacher’s
context-specific predictions with the task-specific objectives, leading to suboptimal learning.

Feature-based knowledge distillation: Feature-based KD focuses on utilizing intermediate layer
features to relay knowledge from the teacher to the student model (Yang et al., 2021; Xu et al., 2020).
Firstly, introduced in Romero et al. (2015), as a stage-wise training approach, where the student
network is first trained up to a specific layer and then gradually distills the knowledge from the
teacher. Building on this, Heo et al. (2019a) uses margin ReLU to filter redundant features, aligning
transformed features, positions, and distances between teacher and student to improve knowledge
transfer efficiency. Chen et al. (2021) investigates the connection paths between different levels
of the teacher and student networks, highlighting their crucial role in enhancing the distillation
process. Additionally, a diffusion model-based method (Huang et al., 2024) reduces the noise in
student models before distilling the knowledge from a teacher. Furthermore, Wang et al (2024)
introduces a new norm and direction loss function alongside the KD loss. However, feature-based
distillation approaches are limited in transferring knowledge as they struggle to capture long-range
dependencies and global context, which are crucial for understanding the teacher’s latent space.

Token-based knowledge distillation: Touvron et al. (2022) introduced the first convolution-free
transformer for object classification, using token distillation for the student to learn from the teacher
via attention. Song et al. (2021; 2022) proposed token-matching distillation for detection, where the
student mimics the teacher’s tokens, but simple token-mimicking is suboptimal. To improve this,
Ren et al. (2022) formulated multi-teacher distillation with lightweight teachers co-advising the stu-
dent, and Hao et al. (2022) adapted a manifold-based approach for fine-grained token alignment.
Recently, Wen et al. (2023) formulates distillation using generalized f-divergences, emphasizing
dominant teacher predictions while allowing flexible weighting across tokens. Despite these, trans-
ferring dark knowledge remains challenging. Yang et al. (2023) applied normalization to non-target
logits and explored self-distillation, while Chen et al. (2022) proposed a two-stage method with
early-layer distillation followed by standard training. These methods are ad hoc; in this paper, we
propose an end-to-end strategy using dynamic trade-off optimization.

Multi-objective optimization: Multi-objective optimization (MOO) enables simultaneous opti-
mization of conflicting objectives by seeking Pareto-optimal trade-offs. A simple approach re-
weights loss functions based on manually designed criteria (Chen et al., 2018; Kendall et al., 2018),
but these methods are often heuristic, ignore dynamic gradient interactions, and lack strong theoret-
ical foundations. Gradient manipulation methods (Sener & Koltun, 2018; Yu et al., 2020; Liu et al.,
2021b;a; 2023) instead combine gradients from different tasks at each step. For example, Sener
& Koltun (2018) uses an upper bound for efficiency, Yu et al. (2020) projects gradients to avoid
conflicts, Liu et al. (2021b;a) provide a closed-form solution minimizing average loss, and Liu et al.
(2023) introduces a fast dynamic weighting method. Although MOO is explored in multi-task learn-
ing, DTO-KD uniquely applies it to knowledge distillation, formulating it as a dynamic trade-off
optimization problem to resolve conflicts between task and distillation objectives.
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Figure 2: In DTO-KD, the teacher and student models simultaneously process the input image x.
Each network consists of a Swin Transformer with a lightweight decoder. The teacher’s features (zt),
and the student’s (zs), are aligned using multiple lightweight projectors (P) at different scales. We
formulate training as a multi-objective optimization (MOO) problem and propose a Dynamic Trade-
off Optimization module that jointly minimizes the distillation loss Ldistill and the task-specific loss
Ltask, guiding them toward Pareto optimality.

3 METHOD

We introduce a Dynamic Trade-off Optimization for Knowledge Distillation (DTO-KD), with a
specific focus on resolving the conflicting objectives in the KD process.

Problem formulation. We aim to transfer knowledge from a high-capacity teacher model with pa-
rameters ϕ, to a more compact model student, with parameters θ, focusing mainly on classification
and detection tasks in visual recognition. We show the training data with S = {(xi,yi)}Ni=1, with
xi ∈ Rd being the i-th input instance and yi the corresponding target (e.g. a class label, bounding
box). Our goal is to train the student model to effectively mimic the behavior of the teacher model
over the dataset S. Figure 2 shows an illustration of our proposed framework.

Effectively performing knowledge distillation requires balancing two objectives: the student must
learn from two supervisory signals (e.g., one from the teacher and one from the task). We represent
the teacher’s loss as Ldistill and the task’s loss as Ltask. While we will define these more specifically
for image classification and object detection in the appendix, we provide their general forms here:

Ldistill(θ) ≜ E(x,y)∼S ℓdistill
(
fs(x;θ), ft(x;ϕ)

)
(1)

Ltask(θ) ≜ E(x,y)∼S ℓtask
(
fs(x;θ), ft(x;ϕ)

)
(2)

The conventional KD approaches (e.g., (Hu et al., 2024; Zheng & Yang, 2024)) train the student
model by optimizing the loss as

Ltot(θ) ≜ α1Ldistill(θ) + α2Ltask(θ) , (3)

where α1, α2 ∈ R+ are the combination weights and hyperparameters of the model. The gradient
of Ltot(θ) is

gtot = ∇Ltot(θ) = α1gdist + α2gtask (4)

where gdist = ∇Ldistill(θ) and gtask = ∇Ltask(θ) are the gradients of the distillation and task losses,
respectively. Minimizing loss in Equation (3) for joint training introduces the following challenges:

Gradient Conflict (GrC). This occurs when the gradients of the distillation loss and the task loss
conflict with each other. Mathematically, GrC happens when ⟨gdist, gtask⟩ < 0. During the optimiza-
tion of the total loss Ltot(θ), the occurrence of GrC leads to conflicting gradient updates. Specifically,
the total gradient gtot may contradict either gdist or gtask, causing detrimental effects on one or both
objectives. This conflict can exacerbate the learning dynamics, particularly in complex vision tasks
such as object detection, by introducing unnecessary complexity into the training process.

4
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Gradient Dominance (GrD). It arises when the gradients have significantly different magnitudes,
leading one to dominate the update. When minimizing Ltot(θ), this imbalance may cause one ob-
jective to be completely neglected, as the update direction is primarily determined by the larger
gradient, which can be estimated as ∥gdist∥

∥gtask∥ . Lastly, tuning the hyperparameters α1 and α2 might
become extremely tricky as the norm of gradients varies throughout optimization.

To address the aforementioned challenges, we advocate for the use of multi-objective optimization
in KD. Specifically, we formulate the training process as optimizing the objective vector Ltot(θ) =

(Ldistill(θ),Ltask(θ))
⊤. The goal is to find a solution θ∗ on the Pareto front, i.e., a solution that is not

dominated by any other parameter vector θ̃. Formally, θ∗ is Pareto optimal if is no θ̃ such that(
Ldistill(θ̃)

Ltask(θ̃)

)
⪯

(
Ldistill(θ

∗)
Ltask(θ

∗)

)
(5)

The notation a ⪯ b here means that vector a achieves a lower value for all its elements simultane-
ously over b. As we will discuss in the next section, formulating KD using the proposed algorithm
addresses both GrC and GrD by aligning the gradients. Furthermore, the use of MOO mitigates the
difficulty of hyperparameter tuning, as it eliminates the need to manually define α1 and α2.

3.1 KD AS A DYNAMIC TRADE-OFF OPTIMIZATION

Inspired by Liu et al. (2023), we followed a two stage approach for learning the optimal trade-off
between conflicting objectives during the model training.

Stage 1: In stage 1 and at time t, we update the student model via θt+1 = θt− ηgt, where η ∈ R+

is the learning step size. We define the rate of improvement for the distillation and task losses as:

rdist(gt) =
Ldistill(θt)− Ldistill(θt+1)

Ldistill(θt)
,

rtask(gt) =
Ltask(θt)− Ltask(θt+1)

Ltask(θt)
. (6)

In essence, rdist(gt) and rdist(gt) measure how much each loss can be improved by moving the
parameters with −ηgt. A larger value of rdist or rtask implies the associated task has been improved
more.

Stage 2: In stage 2, our goal is to determine an update gt that maximizes the improvement over the
worst-case rate. This can be achieved using a min-max optimization as:

max
gt∈Rn

min
i∈{dist,task}

1

γ
ri(gt)−

1

2
∥gt∥2 . (7)

Here, γ ∈ R+ is a weighting hyperparameter. As shown in Liu et al. (2023), the solution of Equa-
tion (7) can be obtained via solving its dual problem as (see proposition 3.1 in Liu et al. (2023)).
Define π = (π1, π2)

⊤ on the simplex ∆ (i.e., π1 + π2 = 1, π1, π2 ≥ 0), and let Jt ∈ Rn×2 be

Jt =
[
∇ log

(
Ldistill(θt)

)
| ∇ log

(
Ltask(θt)

)]⊤
(8)

Then
π∗
t ∈ arg min

π∈∆

1

2
∥Jtπ∥2 , (9)

and gt = Jtπ
∗ = π1∇ log

(
Ldistill(θt)

)
+ π2∇ log

(
Ltask(θt)

)
.

Theoretical Properties. The problem formulation in Equation (9) admits an analytical solution,
unlike the general case studied in Liu et al. (2023). In this part, we establish key theoretical proper-
ties of the obtained update direction g∗.
Theorem 3.1 (Closed Form Solution). Let Jt = [∇ log

(
Ldistill(θt)

)
,∇ log

(
Ltask(θt)

)
] ∈ Rn×2.

The closed-form solution to the optimization problem

π∗ ∈ argmin
π

1

2

∥∥Jtπ
∥∥2

s.t. π1 + π2 = 1 (10)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

is given by
π∗
1 =

g22 − g12
g11 + g22 − 2g12

, (11)

π∗
2 =

g11 − g12
g11 + g22 − 2g12

, (12)

where G = J⊤
t Jt is the Gram matrix:

G =

[
g11 g12
g21 g22

]
,

with elements

g11 =
∥∥∇ log

(
Ldistill(θt)

)∥∥2 , (13)

g12 = g21 =
〈
∇ log

(
Ldistill(θt)

)
,∇ log

(
Ltask(θt)

)〉
, (14)

g22 =
∥∥∇ log

(
Ltask(θt)

)∥∥2 . (15)

The closed-form nature of this solution allows for efficient computation of the optimal weighting
factors. One key property of the derived solution is that the update direction aligns with both ob-
jectives, ensuring that both the distillation and task losses are reduced simultaneously. This directly
addresses GrC by preventing destructive interference between the two gradients.
Corollary 3.2 (Alignment of g∗). Define g1 = ∇ log

(
Ldistill(θt)

)
and g2 = ∇ log

(
Ltask(θt)

)
. Then

the update direction g∗ = π1g1 + π2g2 for π∗ defined in 11 is aligned with both g1 and g2.

Another key property of the proposed solution is that it enforces equal contribution of the update
direction to both gradients, effectively addressing GrD.
Corollary 3.3 (Equal Contribution of g∗ to Both Losses). In Corollary 3.2, we showed that

⟨g∗, g1⟩ = ⟨g∗, g2⟩ =
g11g22 − g212
∥g1 − g2∥2

.

This implies that the update direction contributes equally to the descent of both the distillation and
task losses, effectively mitigating gradient dominance.

An important aspect of any gradient-based optimization method is ensuring that update magnitudes
remain within a controlled range to prevent vanishing or exploding gradients. Our solution satisfies
both a lower and an upper bound on ∥g∗∥, ensuring stability during training.
Corollary 3.4 (Lower Bound on ∥g∗∥). The norm of the optimal update direction g∗ satisfies the
lower bound:

∥g∗∥ ≥ 1√
2
min(∥g1∥, ∥g2∥) . (16)

This implies that the update magnitude remains controlled and does not collapse under gradient
imbalance.

Corollary 3.5 (Upper Bound on ∥g∗∥). The norm of the optimal update direction g∗ satisfies the
upper bound:

∥g∗∥ ≤ ∥g1∥∥g2∥∣∣∥g1∥ − ∥g2∥∣∣ . (17)

As such, the magnitude of the updates does not grow excessively with different gradient scales.

Finally, we observe that the algorithm’s convergence is ensured by the general theoretical frame-
work outlined in Liu et al. (2023). As our formulation aligns with it, the proposed optimization is
guaranteed to converge to a Pareto optimal front.

Practical Implementation. The detailed algorithm for the proposed DTO-KD approach is de-
tailed in Algorithm 1. The distillation and task weights π are initialized to 0.5. The algorithm
begins by initializing the teacher as a frozen model and the student as a trainable model, and then
extracts latent features from both for each training batch. The DistillHead and TaskHead refer to
specific heads learning distillation and the task, respectively. It computes the distillation and task

6
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Algorithm 1 Dynamic Trade-off Optimisation for KD

1: Inputs: Dataset S = {(xi,yi), ...}; Teacher ft
2: Initialise: Student fs with θ; Task weight πdistill = πtask ← 1

2
3: for t = 1 : T do (iterations)
4: xτ ,yτ = {(xb,yb)}Bb=1 ∼ S (batch)
5: zt, zs ← ft(xτ ), fs(xτ ) (latent features)
6: ẑt, ẑs ← z⊤

t Pzs (projection)

7: L(θt) =
[

Ldistill
Ltask

]
=

[
ℓdistill(DistillHead(ẑs, ẑt))
ℓtask(TaskHead(zs), yτ )

]
(loss vector)

8: gt = πdistill∇ log
(
Ldistill(θt)

)
+ πtask∇ log

(
Ltask(θt)

)
9: θt+1 = θt − γ gt (student model learning)

10: L(θt+1)← fs(xτ ) (frozen model inference)

11: r(gt) =

[
rdistill(gt)
rtask(gt)

]
=

[
Ldistill(θt)−Ldistill(θt+1)

Ldistill(θt)
Ltask(θt)−Ltask(θt+1)

Ltask(θt)

]
(update direction)

12: π(t+ 1) = π(t)− ηπ∇π
1
2

∥∥∥πdistill(t) log
(
Ldistill(θt)

)
+ πtask(t) log

(
Ltask(θt)

)∥∥∥2
(optimize task weights)

losses, combines their gradients according to the current task weights, and updates the student model
accordingly. After each update, the task weights are recalculated in closed form based on the rel-
ative improvement of each loss, ensuring a balanced optimization that aligns both the distillation
and task objectives. Despite having strong theoretical properties, MTL algorithms (Liu et al., 2023),
including the one we have developed above, require access to per task gradient, in our case access
to J = [∇ log

(
Ldistill(θt)

)
,∇ log

(
Ltask(θt)

)
]. This incurs performing two backpropagation per it-

eration, which is not desired. Instead, one can advocate to amortizing the training. This leads to an
approximation to the algorithm while ensuring that an extra backprop step is not required. In short,
the parameters π = (πdistill, πtask) are updated via

π(t+ 1) = π(t)− ηπ∇π
1

2

∥∥∥πdistill(t) log
(
Ldistill(θt)

)
+ πtask(t) log

(
Ltask(θt)

)∥∥∥2 . (18)

The update in Equation (18) does not guarantee π ∈ ∆, one should renormalize it via a softmax
function. We have empirically observed that the amortized algorithm comfortably outperforms state-
of-the-art KD algorithms with significant improvement over training speed. Specifically, the DTO-
KD reaches the top performance of Roy Miles & Deng (2024) with 300 epochs in just 240 epochs.

4 EXPERIMENTS

We evaluate DTO-KD on two distinct vision tasks: image classification and object detection. For im-
age classification, we adopt a CNN-based teacher model, RegNetY-160 (Radosavovic et al., 2020),
and use transformer-based DeiT (Touvron et al., 2022) Small and Tiny as student models. For object
detection, we employ transformer-based ViDT-Base (Song et al., 2021) as the teacher model, with
ViDT-Small, ViDT-Tiny, and ViDT-Nano serving as the student models. Additionally, to assess the
robustness of our method, we conduct distillation experiments using Vidt-Small as the teacher.

Implementation details: In DTO-KD, we reformulate model training as a gradient-based dy-
namic trade-off optimization problem. For the overall optimization across both classification and
detection tasks, we use AdamW with a learning rate of 0.025 and a weight decay of 0.01. For
classification, we adopt the training strategy and parameters from DeiT (Touvron et al., 2021a). Ad-
ditionally, for data augmentation, we follow the method outlined in Roy Miles & Deng (2024). For
learning, we employ AdamW (Loshchilov & Hutter, 2019) with a learning rate of 0.001 and a weight
decay of 0.05. For object detection, we adhere to the training methodology from ViDT (Song et al.,
2021). DTO-KD is trained using AdamW (Loshchilov & Hutter, 2019) with an initial learning rate
of 10-4 for the body, neck, and head. We use the same hyperparameters as those in the ViDT (Song
et al., 2021) transformer encoder and decoder. All experiments are conducted using PyTorch (Paszke
et al., 2017) framework and executed on four NVIDIA H100 GPUs.
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Method Venue Top@1 Teacher #Param.
RegNetY-160 (Radosavovic et al., 2020) CVPR20 82.6 None 84M

CaiT-S24 (Touvron et al., 2021b) ICCV21 83.4 None 47M
DeiT3-B (Touvron et al., 2022) ECCV22 83.8 None 87M

DeiT-Ti (Touvron et al., 2021a) ICML21 72.2 None 5M
DeiT-Ti (KD) (Touvron et al., 2021a) ICML21 74.5 Regnety-160 6M↰

1000 epochs ICML21 76.6 Regnety-160 6M
CivT-Ti (Ren et al., 2022) CVPR22 74.9 Regnety-600m 6M

Manifold (Hao et al., 2022) NeurIPS22 76.5 CaiT-S24 6M
DearKD (Chen et al., 2022) CVPR22 74.8 Regnety-160 6M↰

1000 epochs CVPR22 77.0 Regnety-160 6M
USKD (Yang et al., 2023) ICCV23 75.0 Regnety-160 6M

MaskedKD (Son et al., 2024) ECCV24 75.4 CaiT-S24 6M
SRD (Miles & Mikolajczyk, 2024) AAAI24 77.2 Regnety-160 6M
VkD-Ti (Roy Miles & Deng, 2024) CVPR24 78.3 Regnety-160 6M

DTO-KD (Ti) 79.7 Regnety-160 6M

DeiT-S (Touvron et al., 2021a) ICML21 79.8 None 22M
DeiT-S (KD) (Touvron et al., 2021a) ICML21 81.2 Regnety-160 22M↰

1000 epochs ICML21 82.6 Regnety-160 22M
CivT-S (Ren et al., 2022) CVPR22 82.0 Regnety-4gf 22M

DearKD (Chen et al., 2022) CVPR22 81.5 Regnety-160 22M↰

1000 epochs CVPR22 82.8 Regnety-160 22M
USKD (Yang et al., 2023) ICCV23 80.8 Regnety-160 22M

MaskedKD (Son et al., 2024) ECCV24 81.4 Deit3-B 22M
SRD (Miles & Mikolajczyk, 2024) AAAI24 82.1 Regnety-160 22M
VkD-S (Roy Miles & Deng, 2024) CVPR24 82.3 Regnety-160 22M

DTO-KD (S) 83.1 Regnety-160 22M

Table 1: Object Classification task: DTO-KD on the ImageNet-1K dataset. Unless specified, each
model is only trained for 300 epochs.

4.1 OBJECT CLASSIFICATION USING IMAGENET-1K DATASET

We conducted extensive experiments on the ImageNet-1K dataset, using the RegNetY-160 (Ra-
dosavovic et al., 2020) model, pre-trained on the larger ImageNet-21K dataset, as the teacher to
facilitate robust knowledge transfer. Two student models, DeiT-tiny and DeiT-small, were trained
for 300 epochs on ImageNet-1K, and their performance was compared against existing state-of-the-
art methods. As shown in Table 1, our approach demonstrates significant improvements in accuracy
for both student models. Specifically, DTO-KD outperforms the baseline Touvron et al. (2021a) by
5.2 percentage points (pp) for the tiny model and 1.9 pp for the small model. Additionally, DeiT-
tiny surpasses the previous state-of-the-art method Roy Miles & Deng (2024) by 1.4 pp, indicating
a substantial enhancement in classification accuracy. For DeiT-small, our approach achieves a 0.8
pp accuracy improvement over Roy Miles & Deng (2024).

Additionally, compared to the baseline (Touvron et al., 2021a), which was trained for 1000 epochs,
DTO-KD achieves a 3.1 percentage point (pp) improvement for the tiny model and a 0.5 pp im-
provement for the small model with just 300 epochs. This highlights the efficiency of our approach,
demonstrating its ability to deliver competitive performance in significantly less training time, mak-
ing it both effective and scalable.

4.2 OBJECT CLASSIFICATION USING CIFAR-100 DATASET

Conventional knowledge distillation methods are typically evaluated on both homogeneous and het-
erogeneous CNN architectures using the CIFAR-100 dataset. To position DTO-KD against these ap-
proaches, we benchmarked it following the protocols of prior KD works (Chen et al, 2021; Wang et
al, 2024). Table 2 shows that DTO-KD also achieves superior results and reinforces its superiority,
establishing a new SOTA by outperforming previous works in both small- and large-dataset settings.

4.3 OBJECT DETECTION

Table 3 demonstrates that our proposed method, DTO-KD, achieves state-of-the-art object detec-
tion performance on the MS-COCO benchmark (Lin et al., 2014), leveraging the ViDT transformer
architecture (Song et al., 2022) for its strong performance and efficiency on consumer hardware.
DTO-KD consistently improves upon various ViDT variants, enhancing the Swin-nano backbone

8
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Homogeneous Heterogeneous
Methods ResNet-56 WRN-40-2 ResNet-32×4 ResNet-50 ResNet-32×4 ResNet-32×4

ResNet-20 WRN-40-1 ResNet-8×4 MobileNet-V2 ShuffleNet-V1 ShuffleNet-V2

Teacher 72.34 75.61 79.42 79.34 79.42 79.42
Student 69.06 71.98 72.50 64.60 70.50 71.82

FitNet (Romero et al., 2015) 69.21 72.24 73.50 63.16 73.59 73.54
RKD (Park et al., 2019) 69.61 72.22 71.90 64.43 72.28 73.21

PKT (Passalis et al., 2020) 70.34 73.45 73.64 66.52 74.10 74.69
KD (Hinton et al., 2015) 70.66 73.54 73.33 67.65 74.07 74.45
OFD (Heo et al., 2019b) 70.98 74.33 74.95 69.04 75.98 76.82
CRD (Tian et al., 2019) 71.16 74.14 75.51 69.11 75.11 75.65

DIST (Huang et al., 2022) 71.78 74.42 75.79 69.17 75.23 76.08
ReviewKD (Chen et al, 2021) 71.89 75.09 75.63 69.89 77.45 77.78

DKD (Zhao et al., 2022b) 71.97 74.81 75.44 70.35 76.45 77.07
ReviewKD++ (Wang et al, 2024) 72.05 75.66 76.07 70.45 77.68 77.93

DTO-KD (ours) 72.29 75.70 76.34 70.87 77.92 78.11

Table 2: Object Classification task: DTO-KD evaluated on both homogeneous and heterogeneous
CNN architectures using the CIFAR-100 dataset.

ViDT Model Epochs AP AP50 AP75 APS APM APL #Params FPS

Teacher Swin-base (Song et al., 2021) 50 49.4 69.6 53.4 31.6 52.4 66.8 0.1B 9.0

Student

Swin-nano (Song et al., 2021) 50 40.4 59.6 43.3 23.2 42.5 55.8
16M 20.0Token-Matching (Song et al., 2022) 50 41.9 61.2 44.7 23.6 44.1 58.7

VkD-nano (Roy Miles & Deng, 2024) 50 43.0 62.3 46.2 24.8 45.3 60.1
DTO-KD (nano) 50 43.7 63.1 46.8 25.1 46.2 61.9

Swin-tiny (Song et al., 2021) 50 44.8 64.5 48.7 25.9 47.6 62.1
38M 17.2Token-Matching (Song et al., 2022) 50 46.6 66.3 50.4 28.0 49.5 64.3

VkD-tiny (Roy Miles & Deng, 2024) 50 46.9 66.6 50.9 27.8 49.8 64.6
DTO-KD (tiny) 50 47.4 67.2 51.3 28.0 50.7 65.8

Swin-small (Song et al., 2021) 50 47.5 67.7 51.4 29.2 50.7 64.8
61M 12.1Token-Matching (Song et al., 2022) 50 49.2 69.2 53.6 30.7 52.3 66.8

VkD-small (Roy Miles & Deng, 2024) 50 48.5 68.4 52.4 30.8 52.2 66.0
DTO-KD (small) 50 49.6 69.4 53.9 31.6 53.1 67.1

Table 3: Object Detection task: Comparison with other detectors on COCO, with student models
distilled from a pre-trained ViDT-base. Note that DTO-KD consistently outpeforms all challenging
knowledge distillation baseline approaches.

by 0.7 percentage points (pp), Swin-tiny by 0.5pp, and Swin-small by 1.1pp. Notably, DTO-KD-
small, with just 61M parameters, outperforms Swin-base (0.1B parameters) when both are trained
from scratch. Additionally, DTO-KD-tiny, with 38M parameters, achieves nearly the same perfor-
mance as Swin-small (61M parameters).

4.4 ABLATION STUDIES

Impact of different components in DTO-KD: We conduct a thorough evaluation of the impact
of each primary component in DTO-KD, specifically assessing both stages of dynamic trade-off op-
timization, and post processing using gradient clipping. These components were introduced to en-
hance the knowledge distillation process, and their individual contributions are analyzed in Table 4.
The results demonstrate that each stage significantly contributes to the performance of DTO-KD,
with all showing a positive effect on the overall effectiveness of the model. Dynamic Trade-off opti-

Dynamic Trade-off Optimization S:DTO-KD-nano / T:ViDT-base
Proj Optimization Grad. Clip AP AP50 AP75

41.0 59.2 42.8
✓ 41.8 61.2 44.7

✓ 43.1 61.7 46.4
✓ ✓ 43.6 62.9 46.6
✓ ✓ ✓ 43.7 63.1 46.8

Table 4: Component’s Impact Assessment: An
ablation study showing the impact of projector
and optimisation. We also applied gradient clip-
ping as a pre-processing step to both objectives
to see its impact with and without DTO.

Student ViDT-nano ViDT-tiny

Teacher ViDT
(small)

ViDT
(base)

ViDT
(small)

ViDT
(base)

No Distillation (Song et al., 2021) 40.4 44.8
Token Matching (Song et al., 2022) 41.5 41.9 45.8 46.5

VkD (Roy Miles & Deng, 2024) 42.2 43.0 45.9 46.9
DTO-KD (ours) 43.2 43.7 46.9 47.4

Table 5: Distillation from different teachers
for the Object Detection task: Comparison of
ViDT on COCO2017 val set. We report AP
for the student models distilled from different
teacher models.
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Figure 3: Effectiveness of the Dynamic Bal-
ancing Strategy on the object detection and the
classification tasks.

Figure 4: Error analysis: Our dynamic trade-
off optimisation approach consistently lowers
the classification and localisation errors.

mization enables the model to handle diverse objectives, and alignment between teacher and student
models to facilitate smoother knowledge transfer.

Dynamic Balancing Strategy and π values: To better illustrate our approach, the figure below
shows the varying weighting ratios of the distillation loss (πdistill) and the task losses (πtask) during
training. As illustrated in (a), we evaluate DTO-KD on a classification task using three distinct loss
terms, demonstrating its ability to dynamically balance these objectives through adaptive weight-
ing. In (b), we extend this analysis to object detection with two loss terms, where DTO-KD’s
gradient-based vector optimization initially prioritizes the distillation loss and progressively shifts
focus toward the task-specific loss.

Subtask error analysis: We conduct a thorough analysis of both classification and localization
errors (Bolya et al., 2020) in the object detection task. DTO-KD outperforms other methods, achiev-
ing fewer errors in both areas while maintaining a strong balance between them. Notably, other KD
techniques (Roy Miles & Deng, 2024; Song et al., 2022) underperform in the classification subtask
compared to the baseline (Song et al., 2021), highlighting the superior effectiveness of our approach.
See Figure 4 for more details.

Distillation from different teachers: Table 5 demonstrates DTO-KD’s strong performance, even
with smaller teachers like ViDT-small. This highlights its robustness, adaptability, and efficiency in
resource-constrained settings, making it a versatile and effective distillation method across different
teacher model scales.

5 LIMITATIONS

Like other KD methods, data availability is a bottleneck. DTO-KD is designed for distillation with
available data, and extending it to data-free settings, especially for distilling from large pre-trained
models, remains an open challenge. Extending DTO-KD to a data-free regime through sample
synthesis may be more difficult due to its min-max optimization, which requires data for the training.

6 CONCLUSION

DTO-KD introduces a principled and effective solution to longstanding challenges in knowledge
distillation, particularly for transformer-based architectures. By dynamically balancing task-specific
and distillation objectives at the gradient level, DTO-KD mitigates supervision conflicts and gradi-
ent imbalances that arise from architectural mismatches between teacher and student models. This
multi-objective formulation enables more stable and efficient training, resulting in student models
that not only match but often exceed the performance of their non-distilled counterparts. Exten-
sive evaluations on image classification and object detection benchmarks demonstrate that DTO-KD
consistently achieves state-of-the-art results, setting a new standard for gradient-aware distillation
methods. These improvements come with minimal computational overhead, making DTO-KD prac-
tical for real-world deployment.
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Hugo Touvron, Matthieu Cord, and Hervé Jégou. Deit iii: Revenge of the vit. In ECCV, 2022.

Bichen Wang, Yuzhe Zi, Yixin Sun, Yanyan Zhao, and Bing Qin. Balancing forget quality and
model utility: A reverse kl-divergence knowledge distillation approach for better unlearning in
llms. In Proceedings of the 2025 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics (NAACL 2025, Long Papers), pp. 1306–1321. Association for
Computational Linguistics, 2025a. doi: 10.18653/v1/2025.naacllong.60.

Guanghui Wang, Zhiyong Yang, Zitai Wang, Shi Wang, Qianqian Xu, and Qingming Huang. Abkd:
Pursuing a proper allocation of the probability mass in knowledge distillation via α–β-divergence.
In Aarti Singh, Maryam Fazel, Daniel Hsu, Simon Lacoste-Julien, Felix Berkenkamp, Tegan
Maharaj, Kiri Wagstaff, and Jerry Zhu (eds.), Proceedings of the 42nd International Conference
on Machine Learning (ICML 2025), volume 267 of Proceedings of Machine Learning Research,
pp. 65167–65212. PMLR, Jul 2025b. URL https://proceedings.mlr.press/v267/
wang25dz.html.

Jiabao Wang, Yuming Chen, Zhaohui Zheng, Xiang Li, Ming-Ming Cheng, and Qibin Hou. Crosskd:
Cross-head knowledge distillation for object detection. In CVPR, 2024.

Yuzhu Wang et al. Improving knowledge distillation via regularizing feature direction and norm.
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