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ABSTRACT

Latent Action Models (LAMSs) have rapidly gained traction as an important com-
ponent in the pre-training pipelines of leading Vision-Language-Action models.
However, they fail when observations contain action-correlated distractors, often
encoding noise instead of meaningful latent actions. Humans, on the other hand,
can effortlessly distinguish task-relevant motions from irrelevant details in any
video given only a brief task description. In this work, we propose to utilize the
common-sense reasoning abilities of Vision-Language Models (VLMs) to provide
promptable representations, effectively separating controllable changes from the
noise in unsupervised way. We use these representations as targets during LAM
training and benchmark a wide variety of popular VLMs, revealing substantial
variation in the quality of promptable representations as well as their robustness
to different prompts and hyperparameters. Interestingly, we find that more recent
VLMs may perform worse than older ones. Finally, we show that simply asking
VLM:s to ignore distractors can substantially improve latent action quality, yielding
up to a six-fold increase in downstream success rates on Distracting MetaWorld.

1 INTRODUCTION

Latent action models [41} 52]] have quickly become integral to the pre-training pipelines of leading
Vision—Language—Action (VLA) systems [5} [7, 57, 16, 25]. By inferring compact, semantically
meaningful latent action representations at scale, Latent Action Models (LAM) mitigate the scarcity
of high-quality action-labeled data, giving a promise to unlock vast amounts of unlabeled videos [33]].
Removing the data bottleneck facilitates further scaling in embodied Al and robotics; consequently,
any improvements to LAMs can have outsized downstream impacts.

Unfortunately, most LAMs [41} (52} [10} [18] to date have been trained on relatively clean datasets,
where changes between observations can be explained almost entirely by ground-truth actions—such
as in static scenes with a single manipulator. In contrast, real-world data often contains numerous
action-correlated distractors, including background human movement or other spurious correlations.
As shown by Nikulin et al. [36], Zhang et al. [S5], without explicit supervision, LAMs struggle to
disentangle controllable changes from noise, completely failing to produce meaningful latent actions
in the presence of action-correlated distractors. While providing supervision via true actions can be
effective [36]], it is not scalable — especially in domains where these actions are impossible to obtain,
such as egocentric human videos.

Humans, however, interpret the world through semantics rather than raw pixels, and with only a
brief task description can easily separate task-relevant features from irrelevant details in any video.
Wouldn’t it also be convenient to simply ask LAM to focus on the relevant features, e.g. robotic
arm, and ignore any other details? Inspired by the work of Chen et al. [9], Huang et al. [24] on
promptable representations, we propose to utilize the common-sense reasoning abilities of modern
Vision-Language Models (VLMs) as an unsupervised approach for effectively separating controllable
changes from noise, thereby restoring the LAM’s ability to recover ground-truth actions even in the
presence of distractors.

In this work, we present our investigation on whether promptable representations produced by prompt-
ing VLMs to focus on task-specific details can serve as an effective target for latent action learning in
the presence of distractors. Using Distracting MetaWorld as our main environment (Section [3), we
begin from a simple demonstration experiment, showing that limitations of LAM can be mitigated
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with the right target (Section[d). We then conduct large-scale benchmarking of different VLMs, com-
prising over 29k+ experiments, to assess their effectiveness at providing promptable representations
(Section [3), revealing substantial variation in quality and robustness to hyperparameters. Finally,
using the best setup found, we demonstrate that without any supervision, promptable representations
can significantly improve latent action quality and downstream performance, increasing the success
rate six-fold (Section|[6).

2 BACKGROUND

Problem setting. We consider a setting of offline imitation learning from observation [32} [45]],
which closely matches the regime increasingly utilized by the field of embodied AI [33] [7, [3]]
(e.g. robotics). Our goal is to pre-train a policy 7(o|a), given a large dataset of expert trajectories
D := {(o}") }1_,, containing observations but not actions (e.g. videos), and a limited number of real
action labels. Ideally, the pre-trained agent should achieve maximum performance (e.g. success rate)
in the environment after fine-tuning with a minimum amount of action-labeled data. The commonly
considered ratio of labeled to unlabeled data is around 2 — 10% in the existing work [56] [36]], while
in our experiments, we consider a ratio as low as < 1%.

Latent action models. Given the dataset of observations D = {(o}')}7_;, latent action models
(LAM) [40, [17, 41] try to infer latent actions z; such that they are maximally predictive of observed
transitions (og, 0;1) while being minimal [41]], i.e. describe changes only relevant to control. After
pre-training, LAM is used to supply latent actions for imitation learning on unlabeled dataset to obtain
useful behavioral priors. As a final stage, small decoder is trained to map from latent to ground-truth
actions on a small number of labels.

Modern LAMs [6}, 52| 12|, [11] mostly follow the same high-level architecture introduced by
LAPO [41]], which uses a combination of inverse (IDM) and forward (FDM) dynamics models to
infer latent actions. Given a transition (o0¢, 0¢11), IDM first infers latent action z; ~ fipm(-|0t, 0r+1),
which FDM further uses to predict the next observation 6;11 ~ frpm(+|0t, 2¢). Both models are

trained jointly to minimize the loss Lysg = ]E(OL,OHI)ND Il fepm (fipm (0, 0641), 01) — 0141 ||2]

Limitations of latent action models. Recent studies highlighted LAM failure when action-correlated
distractors are present [36), 28| [53]]. While they can recover ground-truth actions when only control-
lable changes are present, real-world videos typically involve both controllable factors and exogenous
noise (e.g., people moving in the background). In such cases, LAMs cannot disentangle the dynamics,
leading latent actions to primarily capture noise, which makes them useless for imitation learning.
Both Nikulin et al. [36], Zhang et al. [33] proposed providing supervision with a small number of true
actions during LAM training to help identify controllable changes. While this solution is effective, it
is not generalizable, as in many domains, such as egocentric human videos [31]], it is not possible to
obtain true actions in a reasonable way.

3 EXPERIMENTAL SETUP

Environments and datasets. In contrast to Nikulin et al.
[36]], we use MetaWorld Multi-Task 10 [33]] as our primary
benchmark, as it provides greater realism than Distract-
ing Control [43], while being lightweight enough to allow
experimentation with VLMs under limited resources. We
modify MetaWorld to include distracting dynamics videos
in the background, using the same DAVIS videos as in
Nikulin et al. [36]. We also move the default camera po-
sition farther back and remove borders around the table Figure 1: Visualization of observations
to include more of the background video in the observa- with and without distractors in our modi-
tion, making latent action learning more challenging. See fication of MetaWorld environment.
Figure|[I]for a visualization.

We follow the standard three-stage pipeline [41},[52] 36]]: (1) pre-train the LAM, (2) train BC on
latent actions, and (3) train a decoder head on a small number of true-action labels. For each task,
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we collect 5k trajectories from the scripted experts provided by MetaWorld and up to 16 additional
labeled trajectories for the final stage, which is less than 1% of the full datasets.

Evaluation. For evaluation, we follow standard metrics similar to Nikulin et al. [36]: linear probing
and success rate. Specifically, we train linear probes to predict real actions from the latent ones
during LAM training, while stopping the gradient through the latent actions. The final MSE serves as
our quality metric, as it indicates whether the latent actions encode the real ones. This metric is also
used for hyperparameter tuning, which may be impractical in real-world settings but allows us to
estimate the upper-bound performance of each method for fair comparison.

However, as Nikulin et al. [36]] notes, linear probing has a key limitation: it can reveal whether true
actions are present in the latent space, but it does not guarantee minimality, meaning that exogenous
noise may still be encoded. To preserve this guarantee, we fix the latent action dimensionality to 128
for all methods, which at least allows us to rank quality under equal information bottleneck. Finally,
to measure the true usefulness of latent actions, we evaluate the success rate in the environments after
fine-tuning on true action labels.

Promptable representations. We follow the Chen et al. [9] and define promptable representations
simply as a process of obtaining observation embeddings from the VLMs given a task-specific prompt
and some extraction and aggregation strategy. We obtain such representations from the last and
next-to-last layers [9]]. In contrast to the Chen et al. [9], Huang et al. [24] we cannot learn pooling
from the data to better predict true actions or obtain better reward. Thus, we experiment only with
simple fixed strategies, such as taking the mean over all embeddings or taking only the embedding of
the last token from either prompt or the generated answer.

Latent action model architecture. We use the architecture proposed by Schmidt & Jiang [41]],
omitting action quantization, due to its harmful effect [36] 31} 50]. We use frame stacking, but only
in IDM, while FDM uses only the current frame to predict the next, as in Chen et al. [10]. Other
than that, in our main experiments, we do not use any improvements upon LAPO (if not explicitly
stated otherwise), such as augmentations or multi-step predictions in FDM [36} (10} 52} [12]], to remove
possible confounders on latent action quality. When predicting in the latent space instead of images,
we follow Nikulin et al. [36] and use multiple MLP blocks similar to those used in Transformers [46].
For action decoder head, we use a small three-layer MLP. See Section [C] for hyperparameters used.

4 THE IMPORTANCE OF RIGHT TARGET

We begin with a demonstration experiment to show that the ResNet
limitation of LAMs in the presence of distractors arises en- 3]
tirely from the poor target used in the forward dynamics model

(FDM), rather than from any flaw in the overall idea or archi- 9 l\./l’.’_.:“_::::::
tecture. By LAM construction, latent actions are optimized =B~ w/ distractors
to maximally explain the dynamics. Therefore, the root of 11 \g

the failure to recover true actions lies in the dynamics we

predict, which is directly determined by the target in FDM: 01234506789
6141 ~ from(-|os, 2z¢). What would be the ideal target for Trans

FDM? And if it exists, what would be the final performance? 3

Could LAM recover the ground-truth actions despite distractors e a g
in the input observations to IDM and FDM? If not, the idea
with promptable representations would be impractical.

Action probe

Action probe

Setup. To answer these questions we construct a special dataset
with twin observations for each task: during data collection we
render and save same observation with and without distractors.
Next, during training we feed observations with distractors as
inputs to IDM and FDM, but as the target for FDM we use ) )
next observation without distractors. As the actual controllable Figure 2: Baseline LAPO action
changes are preserved (the underlying state is the true next Probes on MTI10. Averaged over 3
state), it serves as a target with ideal disentanglement of con- random seeds.

trollable features from exogenous noise (see Figure[I). To show that existing limitations are agnostic

01 23456 789
Epoch
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Figure 3: Demonstration that quality of latent actions learned by LAPO completely degrades in the
presence of distractors, which results in almost zero success rate. We show that with the ideal target
for FDM, which perfectly disentangles controllable features from the noise, performance may be
restored, serving as a main motivation for us to explore promptable representations. We use three
random seeds and report IQM and 95%-CI based on stratified bootstrapping, following the Agarwal
et al. [1]]. See Section|§|f0r details.

to the architecture of FDM and IDM, we explore both ResNet [41] and spatio-temporal transformer
[6152]] backbones.

Results. First of all, as can be seen in Figure 2] we confirm that in our domain simply adding
distractors results in complete degradation of latent actions quality regardless of backbone used. This
subsequently leads to almost zero success rate after fine-tuning on true actions (see Figure [3¢)), which
does not happen without distractors. Ideally, probes should be close to each other, as real underlying
actions are identical between both settings.

Next, in Figures [3a]and [3b] we show the effect of using perfect targets during LAPO training (with
-Twin postfix). To better illustrate the trend, in Figure [3a we report the ratio of probes with and
without distractors for each method. With the ideal target probes immediately drop to the level of
LAPO without distractors, and ratio converges to one. To our surprise, it is in fact possible to get even
better result, as LAPO-ResNet achieves ratio below one, i.e. outperforming LAPO-ResNet without
distrators. We attribute this to the implicit augmentation effect of distractors. Finally, improvement in
latent action quality directly results in leveling success rates (see Figure 3c).

Overall, this result supports that the right target is the key to unlock latent action learning in the
presence of distractors. Although these experiments may seem obvious in hindsight, they allow us to
convey a key empirical observation about latent action learning, one that provides the same intuition
that originally led us to explore promptable representations.

5 THE PROMISE OF PROMPTABLE REPRESENTATIONS

Our main hypothesis is that VLMs, due to their common-sense reasoning abilities, can serve as an
effective unsupervised way of obtaining clean observation representations, which would disentangle
controllable features from the noise. As we demonstrated in the previous section, it would be enough
to unlock latent action learning in the presence of distractors.

We have no doubt that most modern VLMs would easily identify the robotic arm location in the image
(like Figure[T) and describe it in detail, even in the presence of background noise. However, the ability
to generate valid text does not necessarily imply that the underlying embeddings are suitable for our
purposes. For a representation to serve as an effective target for LAM, it should (1) contain task-
centric visual information, (2) be minimal by filtering out visual details irrelevant to the prompt, and
(3) remain consistent across dynamics to mimic changes caused by real actions. Unfortunately, current
VLMs are known to struggle with visual focus [39,42] and pixel-level understanding [[19} 13} 30].
Given these limitations, we begin by benchmarking a wide variety of modern VLMs to assess their
viability, conducting ~ 29k experiments in total. Based on this benchmark, we then select the most
effective VLM along with the best hyperparameters (e.g., prompt, aggregation strategy, and others).
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(b) Aggregation over the best hyperparameters.

Figure 4: Benchmarking the effectiveness of promptable representations provided by different VLMs
for latent action learning on all tasks from MT10. Results aggregated over ~ 29k experiments.
Overall, all VLMs provide some improvement over LAPO, with Molmo performing the best and
Gemma-3 the worst. For details and exact experimental protocol see Section [5] We additionally
provide the ranking for each combination of hyperparameters in the Figurelﬂ

Proper way to evaluate VLMs via small scale experiments. Conducting large scale VLMs
evaluation on the full datasets would be prohibitively expensive. Chen et al. [9] proposed assessing
prompts via linear probing on small datasets, for example by asking whether task-relevant entities
are present in the image and measuring probe accuracy. While feasible, this approach is suboptimal
in our setting. Probing representations to predict real actions may help rank prompts for a single
VLM, but it cannot reliably compare across multiple VLMs or hyperparameters, since probing
does not capture the minimality of representations, an essential property for LAMs. Instead, we
directly train LAPO+VLM on a small subset of trajectories, e.g. 64 instead of full 5k, and measure
the resulting latent action quality. We validated that hyperparameter rankings obtained in this way
transfer reasonably well to the full dataset, although probes can have different values.

Bechmarking general VLMs. We summarize our main benchmarking results in Figure d and provide
full per-hyperparameter rankings in Figure [5| For each VLM, we evaluated eight prompt variants
designed in different styles to exploit diverse VLM capabilities (e.g., CLIP-style captions, pointing,
segmentation; see Table [I]in Section [B). We further varied the source of representations (last vs.
next-to-last layer, prompt vs. generated embeddings) and the aggregation strategy (averaging vs. last
non-padding token). This yields 64 runs per VLM, per task, per dataset, amounting to roughly 29k
experiments in total (including VLMs which we will explore later). The full list of VLMs, including
exact model names, sizes, and prompt templates, is provided in Section |B|

As can be seen in Figure fa] overall all VLMs provide some degree of improvement over LAPO in
terms of the median action probe. However, some of them, especially Molmo [16]], are generally



Under review as a conference paper at ICLR 2026

(Robot [doing task] on a tabl

TScgment a robo

(Do not describe background features. Focus on the robot arm and the [task-ob
Segment a robo

(The robot task is to [task]. Briefl

l action for the robotic arn
oing task] on
(Do not duunb( backg xuund fe sl
(The robot task is to [M~Hl iefl ion for the otic
(l oint to where I >l\o\\ld gl a>p lo ACCO)I‘I_P]hh th 10110\\ ing task - [task
botic arm grippe

tie robotic arm Eyippa
(Point to where I should grgup to Auomé;h;h e following task ~Trask]
e of in the imag

(The rabot task is to [task]. Briofly, what i
(D6 not describe background feature

ou 366 a 1o %
(The sabot task i to skl c next logical action for the Tobotic A
e ot ek amoin entases, e on T Tobet and e Hask b
egment a robol

o8

(Do

(Point o whore 1 hould grasp o accomplish mc‘fouo
¢ (o the 1o
(ighor | momg sl
obot gripp
(Point to where I should grasp to accomplish the following task - [to
o'Vou sea o obet. ripE
(1 there taseoby) d ' robot i Che b
%o the robotic arm grip
(s there [La~k b and a robot in the ma
Is there [task.obj| and a robot in the jmage
18 there frasteobi] and 2 1ehet n e image
o' oot
(Do gripper
(Point o the robotic artn grippe
6 you see a Tobot gripper
(Point o the robotic armn grippe
bt ficing fasid o & B

(Point to where I should grasp to accomplish the following task - Itask
nent a rob

Robot, [dos
The robot task is to [task]. Briefly, what is the next lom(cal !
The rebot task is to [task umm what s the next lo
# describe backg

(Point to Where I should grasp to aA.cmu{zhah the following tas!

It )
Jdoing task) on o
(Do ot deseribe background features. Focus on the robot arm and the [task ob;

gm\.n a

(Is there [task_obj| and a rol bot in the

(Point to where I should grasp to accomplish le'lollo?mg task -

oint to the robotic arm

(Do not dcacubc background features. Focus on the robot arm ane

(The robot task is task]. Briefly, what is the next logical action for the

Do you sm1vnhn V

& o

(1s there [tagleobi] and a rd o The o
(Point to the robotic arm grip]
Ro ot [doing task] on
(The xobot task is to [1ask], Bricfly what is the next logical action for the roboti
{Potnt to where 1 should grasp to accomplish the following task -

[tas

Jou see a robot gripp

(Do ot describe background features. Focus on the robot arm and the [taskeobil-, -2, mean,

i s
ound Teatures, Focus on the robot arm and. ﬂw}:'\sk obj|.. -2, last,

EEEF]

EE

]

o
E

9
EE

1

9
.
EEEE)

?

%

X

3
EE

o2
EEE

%

X

EEEEE
EEEEEES

EEE

?g

1 2 3 1 5 6 7 8
Action probe

Figure 5: Action probe rankings across all explored hyperparameter combinations. Smaller probe
is better. Hyperparameters in order: prompt, layer, reduction type and source of the embeddings.
Reported values are averaged over all VLMs, tasks, and settings (with and without distractors). Feel

free to zoom in!

—— LAPO wo/ distractors
LAPO+VLM wo/ distractors
6 | = LAPO-+VLM w/ distractors

Action probe

E=jSSjuTjul

et

VLM2Vec Gemma-3  UniME E5-V

Molmo

Figure 6: Benchmarking the effectiveness of
promptable representations provided by recent
embedding VLMs for latent action learning on
all tasks from MT10. Overall, embedding VLMs,
despite their promise, do not deliver any substan-
tial gains compared to traditional VLMs, such as
Molmo. We include Gemma-3 and Molmo results

here for convineince.

Action probe
=3
@
A

0.62
0.6 0.53 LAPO+VLM wo/ distractors
. B LAPO+VLM w/ distractors
0.5 0-48 ¢ 46
0.41 .
0.4 0.37 0.38 0.36
0.33 0.33

0.2

0.1

0.0 -

CLIP Qwen2-VL Moondream-2 Molmo-O Molmo

Figure 7: Molmo good performance investigation,
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We benchmark both Molmo versions, which both
use CLIP but differ in LLM backbones (OLMo
vs Qwen?2), as well as Qwen2-VL. Since both
Molmo share the pre-training data but differ in
architecture, we conclude that the likely source of
their superior performance lies in the data.

preferable and have lower variance, indicating higher robustness to different hyperparameters. In
Figure b we visualize ranking by aggregating best scores for each task. While this changes ranking a
bit, we still observe that Gemma-3 [44]] is the worst and Molmo [16]] is consistently the best. Based on
Figure[5] we observe that in general, promptable representations aggregated by averaging next-to-last
layer prompt embeddings perform the best. From a practical standpoint, this is beneficial, as it
eliminates the additional time spent on answer generation. Ironically, the best prompt is Do not
describe background features. Focus on the robot arm and the [task-obj], which explicitly asks VLM

to filter out distractors.

This brings us to a striking conclusion that state-of-the-art VLMs do not necessarily provide better
promptable representations. For example, InstructBLIP [[14] outperforms both Gemma-3 [44]] and
Pixtral [2]], despite being considerably older. Furthermore, Cosmos-Reason [4]] results indicate that
explicit fine-tuning on robotics data is not sufficient to guarantee improved representations. We
believe that our results, besides relevance to LAMs, reveal a large blind spot in how VLMs are
currently evaluated, with critical implications for robotics and VLA models.
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Benchmarking embedding VLMs. In our main benchmark (see Figure[d)), we evaluated conventional
VLMs, which were not explicitly trained to produce strong unified representations and therefore
required heuristics such as embedding averaging. Recently, a new class of embedding VLMs has
emerged [27, 34]. These models are designed specifically to learn high-quality, promptable, and
multimodal embeddings for zero-shot retrieval. Given the similarity of their objective to ours, one
might expect them to perform better. To test this, we evaluated three recent state-of-the-art models
(34123 126] using the same protocol as earlier, but separately as they require different prompt formats.
As can be seen in Figure[6] such models do not deliver any substantial gains. In fact, VLM2Vec-V2
[34]], best model in its class, performed worse than Gemma-3, which was the weakest model in the
main benchmark, and none of the models surpassed Molmo. Our results indicate that embedding
VLMs do not actually encode only prompt-specific visual information into the embeddings and fail
to deliver the anticipated benefits.

Why does Molmo perform so well? Given Molmo’s strong performance, it is natural to ask
what drives its improved representations. Directly answering this is difficult, but we can gather
indirect evidence suggesting that the gains stem primarily from pre-training data rather than from the
specific LLM or vision encoder architecture. Fortunately, Molmo provides two variants: Molmo-D,
which uses Qwen?2 as its backbone [49], and Molmo-O, which uses OLMo [22], while both employ
CLIP [38]] as the vision encoder. In contrast, Qwen2-VL [48] does not use CLIP, offering a useful
comparison point to disentangle architectural effects. We therefore benchmarked and compared
these models, as shown in Figure [/l For CLIP, we followed the approach of Huang et al. [24] to
obtain language-conditioned representations. The results show that CLIP alone performs the worst,
Molmo-O ranks second after Molmo-D, and Qwen2-VL performs worse still. Since the Molmo
variants share the same pre-training data but differ in backbone architecture, we conclude that the
likely source of their superior performance lies in the data rather than the architecture. A further
hypothesis is that Molmo’s advantage may come from its visual pointing abilities, but this seems
unlikely since Moondream-2 also has this ability yet performs worse.

6 PROMPTABLE REPRESENTATIONS UNLOCK TASK-CENTRIC LATENT
ACTIONS

Based on the benchmark results (see Figure ), 104
we selected multiple VLMs from worst to o with distractors
best for further experiments: Gemma-3, Phi- 084 o3

' 0.72
0.69
| 0.67 0.64 ) 1

4, Molmo and GraspMolmo. Although all of
them achieved improvements in latent action
quality upon LAPO on small datasets, it remains
necessary to validate whether this performance
transfers to the full 5k datasets and yields im-
proved success rates, as this is not guaranteed
[36]. We chose the best hyperparameters for
each VLM and trained LAPO+VLM on the full

Success rate (IQM)

datasets, using three random seeds. As specified " LAPO LAPO+ LAPO+ LAPO+ LAPO+

in Section[3|we used 16 labeled trajectories with Gemma3 GraspMolmo — Phid — Molmo
ground-truth actions for final fine-tuning. See

Section@for comp]ete hyperparameters_ Figure 8: Success rate on MT10 for LAPO and

LAPO+VLMs, which uses promptable representa-
tions. We use three random seeds and report IQM
and 95%-CI based on stratified bootstrapping, fol-
lowing the Agarwal et al. [1].

Results. We present the resulting action probes
for each task in Figure[9]and final success rates
after fine-tuning on 16 trajectories with real ac-
tions in Figure[8] As can be seen in Figure [9]
LAPO+VLMs achieve a substantial improvement in latent action quality, both with and without
distractors. With distractors, they nearly close the gap to LAPO trained without distractors, and
without distractors, they slightly outperform it (e.g., Molmo). Note that we used the best hyperparam-
eters, which can be hard to find without ground-truth actions in real-world scenarios. Thus, the high
robustness of Molmo to different hyperparameter choices (see Figure[d) is an important property for
practical scenarios.
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Figure 9: Action probes comparison for LAPO and LAPO+VLMs on full datasets for all tasks in
MT10. Results are averaged over three random seeds. As can be seen, LAPO+VLMs significantly
improves upon LAPO in terms of the latent actions quality, and without any supervision closes the
gap with LAPO without distractors. While all VLMs with bring improvements, Molmo achieve best
results overall, especially given it high robustness to hyperparameter choices (see Figure #a)). For
resulting success rates see Figure (8| We provide per-environment probes in Figure Section @

Crucially, the improvement in action probes on full datasets carries over to downstream performance
(see Figure[8): success rates increase by a factor of six at max in the presence of distractors, while
remaining almost unchanged without them. Interestingly, we found Phi-4 to outperform GraspMolmo,
despite having worse probes on small datasets. On full datasets (Figure[9), however, Phi-4 is better.
This indicates, that while results from a small dataset may carry over to a larger one with some
error, probes on the full dataset predict the final success rate with high accuracy. Overall our results
confirm the viability of promptable representations as a clean target for latent action modeling under
distracting conditions.

7  DISCUSSION AND LIMITATIONS

Segmentation, while simple, is not enough. The concept of extracting VLM embeddings with the
hope that they will filter out distractors may initially seem strange. If the goal is to filter out distractors,
would not it be more straightforward to simply segment the relevant parts and train LAPO directly in
image space using masks? In fact, our benchmark includes VLMs capable of segmentation, such as
Sa2VA [54]], and we even utilize such prompts (see Table[I), yet we still rely on embeddings instead
of masks. While segmentation is appealing, it does not address the fundamental problem. Consider a
scenario with a robotic arm and varying lighting conditions. Even if we segment the arm, we will
still get changes in our observations that are not related to the actual actions, such as color shifts and
reflections on the arm. The same issue arises with camera movement and changes in perspective. The
key, therefore, is to work in a semantic latent space, which is where the common-sense reasoning
capabilities of VLMs become crucial.

On the choice of MetaWorld benchmark. One notable limitation of our study is its small scale,
as we rely on MetaWorld as our primary benchmark and do not extend our analysis to large VLAs
and datasets, such as Open-X [37]. However, this choice is deliberate for two reasons. First, while
MetaWorld is simple, with distractors, it is difficult enough to completely break traditional LAMs and
to distinguish different VLMs in terms of the promptable representations’ quality (as we demonstrate
in Section[5). As an early exploration, it was crucial to expand in variety (e.g., exploring more VLMs)
within our limited resources. We hope that our analysis provides practitioners with valuable insights
into the available options. Second, encoding entire datasets is both expensive and time-consuming,
as it involves inference with large VLMs (e.g., 8B parameters) and generating answers. For our 5k
trajectory datasets, the process can quickly exceed 24 hours, let alone for truly large datasets. Since
this is purely inference and gradients are not required, the process can be significantly accelerated,
for example, using vLLM [29]. However, we have left this as future work.

8 RELATED WORK

Latent action learning. Imitating policy given only observations is the problem that latent action
learning tries to tackle. Edwards et al. [17] suggested extracting latent actions from consecutive
states with the help of some amount of true actions present. LAPO [41]] scales up the approach
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by introducing a bottleneck between forward and backward dynamics. Building on LAPO, other
approaches emerged that continued to scale latent action extraction for pre-training action models
[S, 17,157,164 125]. However, most of the above methods imply the presence of either noise-free datasets
or an abundance of ground-truth action labels, which in general is not true for in-the-wild video data
Grauman et al. [20; 21]].

Some of the previous works Nikulin et al. [36], Zhang et al. [S5] show that, with noise, the quality of
latent actions degrades promptly, and the only proposed remedy was to increase the number of action
labels. In our work, we propose a way to extract latent actions that is robust to exogenous noise and,
at the same time, does not require true action labels.

Promptable representations. In contrast to state augmentation techniques, code generation, or
reward modeling [3}477,|15]], the approach of promptable representations uses the internal embeddings
of large models for performing a downstream task. Chen et al. [9] use VLM embeddings generated
with a task-specific prompt to extract better state representations. Using them as input, it enhances the
performance of an RL model both in Minecraft and Habitat environments. Similar work by Huang
et al. [24] also employs semantic extraction by using a dot product of text and visual features from
CLIP, which allows for claiming superior performance of an action model on robotic benchmarks.
The important difference must be emphasized: both aforementioned works use VLM to enhance the
performance of downstream algorithms. In contrast, when exogenous noise is present in the data, the
quality of latent actions is exponentially worse [35] (than without the noise). Thus, filtering the noise
with the common-sense abilities of VLMs is a way to make Latent Action Models show reasonable
performance.

There exists another approach, UniVLA [8]], aimed at task-specific latent action filtering. However,
it is important to note that UniVLA requires fine-grained language action labels and a two-stage
training pipeline. In our work, we only use a single task description for a trajectory alongside a frozen
VLM, and a single training stage, following the LAPO training scheme.

9 CONCLUSION

In this work, we demonstrated that promptable representations provided by Vision-Language Models
can effectively filter out action-correlated distractors, enabling task-centric latent actions. Our ex-
periments on the Distracting MetaWorld benchmark confirmed that using task-centric promptable
representations as targets for LAPO substantially improves both latent action quality and down-
stream success rates. We hope that our results will inspire the community to explore promptable
representations at scale for the next generation of Vision-Language-Action models.

REFERENCES

[1] Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Belle-
mare. Deep reinforcement learning at the edge of the statistical precipice. Advances in neural
information processing systems, 34:29304-29320, 2021.

[2] Pravesh Agrawal, Szymon Antoniak, Emma Bou Hanna, Baptiste Bout, Devendra Chaplot,
Jessica Chudnovsky, Diogo Costa, Baudouin De Monicault, Saurabh Garg, Theophile Gervet,
et al. Pixtral 12b. arXiv preprint arXiv:2410.07073, 2024.

[3] Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David,
Chelsea Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as i can, not
as i say: Grounding language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022.

[4] Alisson Azzolini, Junjie Bai, Hannah Brandon, Jiaxin Cao, Prithvijit Chattopadhyay, Huayu
Chen, Jinju Chu, Yin Cui, Jenna Diamond, Yifan Ding, et al. Cosmos-reasonl: From physical
common sense to embodied reasoning. arXiv preprint arXiv:2503.15558, 2025.

[5] Johan Bjorck, Fernando Castafieda, Nikita Cherniadev, Xingye Da, Runyu Ding, Linxi Fan,
Yu Fang, Dieter Fox, Fengyuan Hu, Spencer Huang, et al. Gr0Ot n1: An open foundation model
for generalist humanoid robots. arXiv preprint arXiv:2503.14734, 2025.



Under review as a conference paper at ICLR 2026

[6] Jake Bruce, Michael D Dennis, Ashley Edwards, Jack Parker-Holder, Yuge Shi, Edward Hughes,
Matthew Lai, Aditi Mavalankar, Richie Steigerwald, Chris Apps, et al. Genie: Generative
interactive environments. In Forty-first International Conference on Machine Learning, 2024.

[7] Qingwen Bu, Jisong Cai, Li Chen, Xiuqgi Cui, Yan Ding, Siyuan Feng, Shenyuan Gao, Xindong
He, Xuan Hu, Xu Huang, et al. Agibot world colosseo: A large-scale manipulation platform for
scalable and intelligent embodied systems. arXiv preprint arXiv:2503.06669, 2025.

[8] Qingwen Bu, Yanting Yang, Jisong Cai, Shenyuan Gao, Guanghui Ren, Maoqing Yao, Ping
Luo, and Hongyang Li. Univla: Learning to act anywhere with task-centric latent actions, 2025.
URLhttps://arxiv.org/abs/2505.06111.

[9] William Chen, Oier Mees, Aviral Kumar, and Sergey Levine. Vision-language models provide
promptable representations for reinforcement learning. arXiv preprint arXiv:2402.02651, 2024.

[10] Xiaoyu Chen, Junliang Guo, Tianyu He, Chuheng Zhang, Pushi Zhang, Derek Cathera Yang,
Li Zhao, and Jiang Bian. Igor: Image-goal representations are the atomic control units for
foundation models in embodied ai. arXiv preprint arXiv:2411.00785, 2024.

[11] Yi Chen, Yuying Ge, Yizhuo Li, Yixiao Ge, Mingyu Ding, Ying Shan, and Xihui Liu.
Moto: Latent motion token as the bridging language for robot manipulation. arXiv preprint
arXiv:2412.04445, 2024.

[12] Zichen Jeff Cui, Hengkai Pan, Aadhithya Iyer, Siddhant Haldar, and Lerrel Pinto. Dynamo:
In-domain dynamics pretraining for visuo-motor control. arXiv preprint arXiv:2409.12192,
2024.

[13] Yasser Dahou, Ngoc Dung Huynh, Phuc H Le-Khac, Wamiq Reyaz Para, Ankit Singh,
and Sanath Narayan. Vision-language models can’t see the obvious. arXiv preprint
arXiv:2507.04741, 2025.

[14] Wenliang Dai, Junnan Li, Dongxu Li, Anthony Tiong, Junqgi Zhao, Weisheng Wang, Boyang Li,
Pascale N Fung, and Steven Hoi. Instructblip: Towards general-purpose vision-language models
with instruction tuning. Advances in neural information processing systems, 36:49250-49267,
2023.

[15] Nitish Dashora, Dibya Ghosh, and Sergey Levine. Viva: Video-trained value functions for guid-
ing online rl from diverse data, 2025. URL https://arxiv.org/abs/2503.18210.

[16] Matt Deitke, Christopher Clark, Sangho Lee, Rohun Tripathi, Yue Yang, Jae Sung Park,
Mohammadreza Salehi, Niklas Muennighoff, Kyle Lo, Luca Soldaini, et al. Molmo and pixmo:
Open weights and open data for state-of-the-art vision-language models. In Proceedings of the
Computer Vision and Pattern Recognition Conference, pp. 91-104, 2025.

[17] Ashley Edwards, Himanshu Sahni, Yannick Schroecker, and Charles Isbell. Imitating latent
policies from observation. In International conference on machine learning, pp. 1755-1763.
PMLR, 2019.

[18] Shenyuan Gao, Siyuan Zhou, Yilun Du, Jun Zhang, and Chuang Gan. Adaworld: Learning
adaptable world models with latent actions. arXiv preprint arXiv:2503.18938, 2025.

[19] Chenhui Gou, Abdulwahab Felemban, Faizan Farooq Khan, Deyao Zhu, Jianfei Cai, Hamid
Rezatofighi, and Mohamed Elhoseiny. How well can vision language models see image details?
arXiv preprint arXiv:2408.03940, 2024.

[20] Kristen Grauman, Andrew Westbury, Eugene Byrne, Zachary Chavis, Antonino Furnari, Rohit
Girdhar, Jackson Hamburger, Hao Jiang, Miao Liu, Xingyu Liu, Miguel Martin, Tushar Nagara-
jan, Ilija Radosavovic, Santhosh Kumar Ramakrishnan, Fiona Ryan, Jayant Sharma, Michael
Wray, Mengmeng Xu, Eric Zhongcong Xu, Chen Zhao, Siddhant Bansal, Dhruv Batra, Vincent
Cartillier, Sean Crane, Tien Do, Morrie Doulaty, Akshay Erapalli, Christoph Feichtenhofer,
Adriano Fragomeni, Qichen Fu, Abrham Gebreselasie, Cristina Gonzalez, James Hillis, Xuhua
Huang, Yifei Huang, Wengqi Jia, Weslie Khoo, Jachym Kolar, Satwik Kottur, Anurag Kumar,

10


https://arxiv.org/abs/2505.06111
https://arxiv.org/abs/2503.18210

Under review as a conference paper at ICLR 2026

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

Federico Landini, Chao Li, Yanghao Li, Zhenqiang Li, Karttikeya Mangalam, Raghava Mod-
hugu, Jonathan Munro, Tullie Murrell, Takumi Nishiyasu, Will Price, Paola Ruiz Puentes, Merey
Ramazanova, Leda Sari, Kiran Somasundaram, Audrey Southerland, Yusuke Sugano, Ruijie
Tao, Minh Vo, Yuchen Wang, Xindi Wu, Takuma Yagi, Ziwei Zhao, Yunyi Zhu, Pablo Arbelaez,
David Crandall, Dima Damen, Giovanni Maria Farinella, Christian Fuegen, Bernard Ghanem,
Vamsi Krishna Ithapu, C. V. Jawahar, Hanbyul Joo, Kris Kitani, Haizhou Li, Richard Newcombe,
Aude Oliva, Hyun Soo Park, James M. Rehg, Yoichi Sato, Jianbo Shi, Mike Zheng Shou, Anto-
nio Torralba, Lorenzo Torresani, Mingfei Yan, and Jitendra Malik. Ego4d: Around the world in
3,000 hours of egocentric video, 2022. URL https://arxiv.org/abs/2110.07058.

Kristen Grauman, Andrew Westbury, Lorenzo Torresani, Kris Kitani, Jitendra Malik, Tri-
antafyllos Afouras, Kumar Ashutosh, Vijay Baiyya, Siddhant Bansal, Bikram Boote, Eugene
Byrne, Zach Chavis, Joya Chen, Feng Cheng, Fu-Jen Chu, Sean Crane, Avijit Dasgupta, Jing
Dong, Maria Escobar, Cristhian Forigua, Abrham Gebreselasie, Sanjay Haresh, Jing Huang,
Md Mohaiminul Islam, Suyog Jain, Rawal Khirodkar, Devansh Kukreja, Kevin J Liang, Jia-Wei
Liu, Sagnik Majumder, Yongsen Mao, Miguel Martin, Effrosyni Mavroudi, Tushar Nagarajan,
Francesco Ragusa, Santhosh Kumar Ramakrishnan, Luigi Seminara, Arjun Somayazulu, Yale
Song, Shan Su, Zihui Xue, Edward Zhang, Jinxu Zhang, Angela Castillo, Changan Chen, Xinzhu
Fu, Ryosuke Furuta, Cristina Gonzalez, Prince Gupta, Jiabo Hu, Yifei Huang, Yiming Huang,
Weslie Khoo, Anush Kumar, Robert Kuo, Sach Lakhavani, Miao Liu, Mi Luo, Zhengyi Luo,
Brighid Meredith, Austin Miller, Oluwatumininu Oguntola, Xiaqing Pan, Penny Peng, Shraman
Pramanick, Merey Ramazanova, Fiona Ryan, Wei Shan, Kiran Somasundaram, Chenan Song,
Audrey Southerland, Masatoshi Tateno, Huiyu Wang, Yuchen Wang, Takuma Yagi, Mingfei Yan,
Xitong Yang, Zecheng Yu, Shengxin Cindy Zha, Chen Zhao, Ziwei Zhao, Zhifan Zhu, Jeff Zhuo,
Pablo Arbelaez, Gedas Bertasius, David Crandall, Dima Damen, Jakob Engel, Giovanni Maria
Farinella, Antonino Furnari, Bernard Ghanem, Judy Hoffman, C. V. Jawahar, Richard New-
combe, Hyun Soo Park, James M. Rehg, Yoichi Sato, Manolis Savva, Jianbo Shi, Mike Zheng
Shou, and Michael Wray. Ego-exo4d: Understanding skilled human activity from first- and
third-person perspectives, 2024. URL https://arxiv.org/abs/2311.18259,

Dirk Groeneveld, 1z Beltagy, Pete Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord,
Ananya Harsh Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang, et al. Olmo: Accelerating
the science of language models. arXiv preprint arXiv:2402.00838, 2024.

Tiancheng Gu, Kaicheng Yang, Ziyong Feng, Xingjun Wang, Yanzhao Zhang, Dingkun Long,
Yingda Chen, Weidong Cai, and Jiankang Deng. Breaking the modality barrier: Universal
embedding learning with multimodal llms. arXiv preprint arXiv:2504.17432, 2025.

Huang Huang, Fangchen Liu, Letian Fu, Tingfan Wu, Mustafa Mukadam, Jitendra Malik, Ken
Goldberg, and Pieter Abbeel. Otter: A vision-language-action model with text-aware visual
feature extraction. arXiv preprint arXiv:2503.03734, 2025.

Joel Jang, Seonghyeon Ye, Zongyu Lin, Jiannan Xiang, Johan Bjorck, Yu Fang, Fengyuan Hu,
Spencer Huang, Kaushil Kundalia, Yen-Chen Lin, et al. Dreamgen: Unlocking generalization
in robot learning through video world models. arXiv preprint arXiv:2505.12705, 2025.

Ting Jiang, Minghui Song, Zihan Zhang, Haizhen Huang, Weiwei Deng, Feng Sun, Qi Zhang,
Deqing Wang, and Fuzhen Zhuang. ES5-v: Universal embeddings with multimodal large
language models. arXiv preprint arXiv:2407.12580, 2024.

Ziyan Jiang, Rui Meng, Xinyi Yang, Semih Yavuz, Yingbo Zhou, and Wenhu Chen. VIm2vec:
Training vision-language models for massive multimodal embedding tasks. arXiv preprint
arXiv:2410.05160, 2024.

Albina Klepach, Alexander Nikulin, Ilya Zisman, Denis Tarasov, Alexander Derevyagin, Andrei
Polubarov, Nikita Lyubaykin, and Vladislav Kurenkov. Object-centric latent action learning.
arXiv preprint arXiv:2502.09680, 2025.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu,
Joseph Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language
model serving with pagedattention. In Proceedings of the 29th symposium on operating systems
principles, pp. 611-626, 2023.

11


https://arxiv.org/abs/2110.07058
https://arxiv.org/abs/2311.18259

Under review as a conference paper at ICLR 2026

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Wenyan Li, Raphael Tang, Chengzu Li, Caiqi Zhang, Ivan Vuli¢, and Anders Sggaard. Lost in
embeddings: Information loss in vision-language models. arXiv preprint arXiv:2509.11986,
2025.

Anthony Liang, Pavel Czempin, Matthew Hong, Yutai Zhou, Erdem Biyik, and Stephen Tu.
Clam: Continuous latent action models for robot learning from unlabeled demonstrations. arXiv
preprint arXiv:2505.04999, 2025.

YuXuan Liu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Imitation from observation:
Learning to imitate behaviors from raw video via context translation. In 2018 IEEE international
conference on robotics and automation (ICRA), pp. 1118-1125. IEEE, 2018.

Robert McCarthy, Daniel CH Tan, Dominik Schmidt, Fernando Acero, Nathan Herr, Yilun Du,
Thomas G Thuruthel, and Zhibin Li. Towards generalist robot learning from internet video: A
survey. Journal of Artificial Intelligence Research, 83, 2025.

Rui Meng, Ziyan Jiang, Ye Liu, Mingyi Su, Xinyi Yang, Yuepeng Fu, Can Qin, Zeyuan Chen,
Ran Xu, Caiming Xiong, et al. Vim2vec-v2: Advancing multimodal embedding for videos,
images, and visual documents. arXiv preprint arXiv:2507.04590, 2025.

Dipendra Misra, Akanksha Saran, Tengyang Xie, Alex Lamb, and John Langford. Towards
principled representation learning from videos for reinforcement learning, 2024. URL https |
//arxiv.orqg/abs/2403.13765.

Alexander Nikulin, Ilya Zisman, Denis Tarasov, Nikita Lyubaykin, Andrei Polubarov, Igor
Kiselev, and Vladislav Kurenkov. Latent action learning requires supervision in the presence of
distractors. arXiv preprint arXiv:2502.00379, 2025.

Abby O’Neill, Abdul Rehman, Abhiram Maddukuri, Abhishek Gupta, Abhishek Padalkar,
Abraham Lee, Acorn Pooley, Agrim Gupta, Ajay Mandlekar, Ajinkya Jain, et al. Open x-
embodiment: Robotic learning datasets and rt-x models: Open x-embodiment collaboration 0.
In 2024 IEEE International Conference on Robotics and Automation (ICRA), pp. 6892-6903.
IEEE, 2024.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
pp- 8748-8763. PmLR, 2021.

Pooyan Rahmanzadehgervi, Logan Bolton, Mohammad Reza Taesiri, and Anh Totti Nguyen.
Vision language models are blind: Failing to translate detailed visual features into words. arXiv
preprint arXiv:2407.06581, 2024.

Oleh Rybkin, Karl Pertsch, Konstantinos G Derpanis, Kostas Daniilidis, and Andrew Jaegle.
Learning what you can do before doing anything. arXiv preprint arXiv:1806.09655, 2018.

Dominik Schmidt and Minqi Jiang. Learning to act without actions. arXiv preprint
arXiv:2312.10812, 2023.

Mong Yuan Sim, Wei Emma Zhang, Xiang Dai, and Biaoyan Fang. Can VLMs actually
see and read? a survey on modality collapse in vision-language models. In Wanxiang Che,
Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), Findings of the
Association for Computational Linguistics: ACL 2025, pp. 24452-24470, Vienna, Austria, July
2025. Association for Computational Linguistics. ISBN 979-8-89176-256-5. doi: 10.18653/v1/
2025.findings-acl.1256. URL https://aclanthology.org/2025.findings—acl|
1256/l

Austin Stone, Oscar Ramirez, Kurt Konolige, and Rico Jonschkowski. The distracting con-
trol suite—a challenging benchmark for reinforcement learning from pixels. arXiv preprint
arXiv:2101.02722, 2021.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona
Merhej, Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Riviere, et al. Gemma
3 technical report. arXiv preprint arXiv:2503.19786, 2025.

12


https://arxiv.org/abs/2403.13765
https://arxiv.org/abs/2403.13765
https://aclanthology.org/2025.findings-acl.1256/
https://aclanthology.org/2025.findings-acl.1256/

Under review as a conference paper at ICLR 2026

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

Faraz Torabi, Garrett Warnell, and Peter Stone. Recent advances in imitation learning from
observation. arXiv preprint arXiv:1905.13566, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

Boyuan Wang, Yun Qu, Yuhang Jiang, Jianzhun Shao, Chang Liu, Wenming Yang, and Xi-
angyang Ji. Llm-empowered state representation for reinforcement learning, 2024. URL
https://arxiv.org/abs/2407.13237.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing
Liu, Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception
of the world at any resolution. arXiv preprint arXiv:2409.12191, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Jiange Yang, Yansong Shi, Haoyi Zhu, Mingyu Liu, Kaijing Ma, Yating Wang, Gangshan Wu,
Tong He, and Limin Wang. Como: Learning continuous latent motion from internet videos for
scalable robot learning. arXiv preprint arXiv:2505.17006, 2025.

Ruihan Yang, Qinxi Yu, Yecheng Wu, Rui Yan, Borui Li, An-Chieh Cheng, Xueyan Zou,
Yunhao Fang, Hongxu Yin, Sifei Liu, et al. Egovla: Learning vision-language-action models
from egocentric human videos. arXiv preprint arXiv:2507.12440, 2025.

Seonghyeon Ye, Joel Jang, Byeongguk Jeon, Sejune Joo, Jianwei Yang, Baolin Peng, Ajay
Mandlekar, Reuben Tan, Yu-Wei Chao, Bill Yuchen Lin, et al. Latent action pretraining from
videos. arXiv preprint arXiv:2410.11758, 2024.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and
Sergey Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement
learning. In Conference on robot learning, pp. 1094-1100. PMLR, 2020.

Haobo Yuan, Xiangtai Li, Tao Zhang, Zilong Huang, Shilin Xu, Shunping Ji, Yunhai Tong,
Lu Qi, Jiashi Feng, and Ming-Hsuan Yang. Sa2va: Marrying sam2 with llava for dense grounded
understanding of images and videos. arXiv preprint arXiv:2501.04001, 2025.

Chuheng Zhang, Tim Pearce, Pushi Zhang, Kaixin Wang, Xiaoyu Chen, Wei Shen, Li Zhao,
and Jiang Bian. What do latent action models actually learn? arXiv preprint arXiv:2506.15691,
2025.

Qinging Zheng, Mikael Henaff, Brandon Amos, and Aditya Grover. Semi-supervised offline
reinforcement learning with action-free trajectories. In International conference on machine
learning, pp. 42339-42362. PMLR, 2023.

Yifan Zhong, Fengshuo Bai, Shaofei Cai, Xuchuan Huang, Zhang Chen, Xiaowei Zhang,
Yuanfei Wang, Shaoyang Guo, Tianrui Guan, Ka Nam Lui, et al. A survey on vision-language-
action models: An action tokenization perspective. arXiv preprint arXiv:2507.01925, 2025.

13


https://arxiv.org/abs/2407.13237

Under review as a conference paper at ICLR 2026

A ADDITIONAL FIGURES
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Figure 12: Action probes comparison for LAPO and LAPO+VLM:s on full datasets for all tasks in
MT10. Results are averaged over three random seeds. As can be seen, LAPO+VLM significantly
improves upon LAPO in terms of the latent actions quality, and without any supervision closes the
gap with LAPO without distractors. While all VLMs bring improvements, Molmo achieve best
results overall. For resulting success rates see Figure|§|
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Figure 13: Action probes ranking for all combinations of hyperparameters explored for Molmo VLM.
Values are averaged over all tasks and settings, e.g. with and without distractors.
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B VISION-LANGUAGE MODELS DETAILS

Table 1: Prompt templates used in our experiments. We adapt them to each task by inserting
information relevant to the task. All VLMs explored share the same prompts per task.

Prompt

The robot task is to [task]. Briefly, what is the next logical action for the robotic arm?
Do not describe background features. Focus on the robot arm and the [task-obj].

Do you see a robot gripper?

Is there [task-obj] and a robot in the image?

Robot [doing task] on a table.

Point to the robotic arm gripper.

Point to where I should grasp to accomplish the following task - [task].

Segment a robot.

Table 2: Exact HuggingFace IDs for all VLMs we used. We shortened their names in Figures to save
some space.

Name | HuggingFace ID

InstructBLIP Salesforce/instructblip-vicuna-7b
Molmo allenai/Molmo-7B-D-0924

Gemma-3 google/gemma-3-12b-it

Llama-3.2 unsloth/Llama-3.2-11B-Vision-Instruct
Qwen2.5-VL Qwen/Qwen2.5-VL-7B-Instruct
InternVL3 OpenGVLab/InternVL3-8B
Cosmos-Reason nvidia/Cosmos-Reason1-7B

Phi-4 microsoft/Phi-4-multimodal-instruct
LLaVA-OneVision | llava-hf/llava-onevision-qwen2-7b-ov-hf
SmolVLM HuggingFaceTB/SmolVLM2-2.2B-Instruct
Pixtral mistral-community/pixtral-12b
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C HYPERPARAMETERS

Table 3: LAPO-ResNet hyperparameters. Names are exactly follow the configuration files used in

code.

Part | Parameter Value
frame_stack 4
probe_learning_rate 0.0003
disable_distractors True

General
seed 0
eval_seed 0
eval_episodes 50
latent_action_dim 128
idm_encoder_scale 5

Latent action learning

idm_encoder_num_res_blocks
idm_encoder_channels
fdm_encoder_scale
fdm_encoder_num_res_blocks
fdm_encoder_channels

1
[16, 16, 32, 32, 128, 128, 256]
1
1

[16, 16, 32, 32, 128, 128, 256]

num_epochs 10
batch_size 64
learning_rate 0.0001
weight_decay 0.0
warmup_epochs 1
grad_norm -
num_epochs 10
batch_size 64
learning_rate 0.0001
Latent behavior cloning weight decay 0.0
warmup_epochs 0
encoder_scale 5
encoder_num_res_blocks 1
encoder_channels [16, 16, 32, 32, 128, 128, 256]
total_updates 100000
batch_size 64
Latent actions decoding | learning_rate 0.001
hidden_dim 128
num_labeled_trajectories (16,8, 2, 4]
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Table 4: LAPO-Trans hyperparameters. Names exactly follow the configuration files used in code.

Part | Parameter Value
frame_stack 4
probe_learning_rate 0.0003
disable_distractors True
General
seed 0
eval_seed 0
eval_episodes 50
latent_action_dim 128
patch_size 32
fdm_use_cross_attn False
idm_hidden_dim 896
idm_num_layers 4
idm_num_heads 16
fdm_hidden_dim 256
fdm_num_layers 4
Latent action learning fdm_num_heads 8
normalize_gk False
pre_norm True
num_epochs 10
batch_size 64
learning_rate 0.0001
weight_decay 0.0
warmup_epochs 1
grad_norm -
num_epochs 10
batch_size 64
learning_rate 0.0001
Latent behavior cloning weight decay 0.0
warmup_epochs 0
encoder_scale 5
encoder_num_res_blocks 1
encoder_channels [16, 16, 32, 32, 128, 128, 256]
total _updates 100000
batch_size 64
Latent actions decoding | learning_rate 0.001
hidden_dim 128
num_labeled_trajectories [16, 8, 2, 4]
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Table 5: LAPO+VLM hyperparameters. Names exactly follow the configuration files used in code.

Part | Parameter \ Value
frame _stack 4
probe_learning_rate 0.0003
disable_distractors True
General seed 0
eval_seed 0
eval_episodes 50
type molmo
prompt Point to the robotic arm gripper.
VLM (example) layer 27
target output
reduce_strategy mean
latent_action_dim 128
idm_encoder_scale 5
idm_encoder_num_res_blocks 1
idm_encoder_channels [16, 16, 32, 32, 128, 128, 256]
Latent action learning fdm hidden_dim 1024
fdm_num_layers 4
fdm_expand 4
num_epochs 200
batch_size 64
learning_rate 0.0001
weight_decay 0.0
warmup_epochs 1
grad_norm -
num_epochs 10
batch_size 64
learning_rate 0.0001
Latent behavior cloning | weight_decay 0.0
warmup_epochs 0
encoder_scale 5
encoder_num_res_blocks 1
encoder_channels [16, 16, 32, 32, 128, 128, 256]
total_updates 100000
batch_size 64
Latent actions decoding | learning_rate 0.001
hidden_dim 128
num _labeled_trajectories [16, 8, 2, 4]
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