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ABSTRACT

BACKGROUND Prediction of drug-induced long QT syndrome (diLQTS) is of critical importance given its association
with torsades de pointes. There is no reliable method for the outpatient prediction of diLQTS.

OBJECTIVES This study sought to evaluate the use of a convolutional neural network (CNN) applied to electrocar-
diograms (ECGs) to predict diLQTS in an outpatient population.

METHODS We identified all adult outpatients newly prescribed a QT-prolonging medication between January 1, 2003,
and March 31, 2022, who had a 12-lead sinus ECG in the preceding 6 months. Using risk factor data and the ECG signal as
inputs, the CNN QTNet was implemented in TensorFlow to predict diLQTS.

RESULTS Models were evaluated in a held-out test dataset of 44,386 patients (57% female) with a median age of
62 years. Compared with 3 other models relying on risk factors or ECG signal or baseline QTc alone, QTNet achieved the
best (P < 0.001) performance with a mean area under the curve of 0.802 (95% Cl: 0.786-0.818). In a survival analysis,
QTNet also had the highest inverse probability of censorship-weighted area under the receiver-operating characteristic
curve at day 2 (0.875; 95% Cl: 0.848-0.904) and up to 6 months. In a subgroup analysis, QTNet performed best among
males and patients =50 years or with baseline QTc <450 ms. In an external validation cohort of solely suburban
outpatient practices, QTNet similarly maintained the highest predictive performance.

CONCLUSIONS An ECG-based CNN can accurately predict diLQTS in the outpatient setting while maintaining its
predictive performance over time. In the outpatient setting, our model could identify higher-risk individuals who would
benefit from closer monitoring. (J Am Coll Cardiol EP 2024;10:956-966) © 2024 by the American College of Cardiology
Foundation.

he QT interval measures the time from ven-
tricular depolarization to completion of repo-
larization, corresponding to the interval
between the beginning of the QRS to the end of the
T-wave on the electrocardiogram (ECG)." The QTc

interval is tightly conserved between 350 and
470 ms (or 450 ms in men), as QTc prolongation
beyond 500 ms increases the risk of torsades de
pointes (TdP),”* a form of polymorphic ventricular
tachycardia. Congenital long QT syndrome (LQTS) is
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a heritable syndrome caused largely by mutations in 1
of 3 cardiac ion channels and their corresponding cur-
rents IN,, IK;, and IK;.* Drug-induced long QT syn-
drome (diLQTS) is an acquired form of LQTS that
can be caused by various cardiac and noncardiac
medications, most frequently by inhibition of the
rapid component of the delayed rectifier potassium
current (IK,).°

Given a 1% to 10% incidence of TdP among patients
taking certain medications with a known QT-
prolonging effect, predicting diLQTS is of important
clinical significance.” Yet, genetic and acquired fac-
tors including common comorbidities result in sub-
stantial heterogeneity in the susceptibility to diLQTS,
and in turn, suboptimal tools for individual risk
stratification.®” In the outpatient setting, in which
continuous ECG and clinical monitoring is limited,
the importance of predicting diLQTS is augmented.
Reliance on a normal baseline QTc does not ensure
low risk for diLQTS,”® as reduced repolarization
reserve often remains subclinical, with overt diLQTS
appearing only upon drug exposure.”

Given the recent advances in utilizing artificial in-
telligence (AI) to predict complex and occult clinical
syndromes,” we set to develop and test an ECG-based
Al architecture for the prediction of diLQTS in the
outpatient setting. The best-performing model was
externally validated in a cohort of suburban outpa-
tient practices.

METHODS

COHORT SELECTION. We identified all adult
(=18 years of age) patients newly prescribed a
QT-prolonging medication in the outpatient setting
who had a 12-lead (baseline) sinus ECG in the pre-
ceding 6 months at our institution between January 1,
2003, and March 31, 2022 (Figure 1A). For patients
with multiple preceding ECGs, the one temporally
closest to the time of prescription was selected as the
baseline ECG (Figure 1B). A total of 38 cardiac and
noncardiac QT-prolonging medications with either a
known or possible risk for TdP, as classified by
CredibleMeds,'° selected (Supplemental
Table 1). Approximately, 16% of the prescriptions
were prescribed as needed (“PRN”). Dofetilide and
sotalol were excluded because of the Food and Drug
Administration-mandated inpatient loading." This
study was approved by the NYU Langone Health
Institutional Review Board.

We included outpatient practices belonging to NYU
Langone in New York City in our main cohort. Pa-
tients receiving prescriptions at NYU Long Island

were

practices served as an external validation cohort and
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were not included in the main cohort
(Supplemental Table 2). The main cohort was
divided into training, validation, and test
datasets in a 3:1:1 ratio, and a single pre-
scription corresponding to each patient was
randomly selected from the test dataset to
generate the held-out test dataset (Figure 1A,
Supplemental Table 3). No patient was
included in multiple datasets, and 1 pre-
scription instance per patient was isolated at
random to ensure that each patient was
included only once in the held-out test
dataset.

OUTCOMES. For each patient in the entire
cohort, we obtained all follow-up ECGs
occurring 6 months after the time of pre-
scription, as the majority (70%) of patients
were maintained on the newly prescribed
QT-prolonging medication for <6 months.

Severe QT prolongation was the primary outcome and
was defined as a follow-up ECG with either QTc
>500 ms or a change in the QTc from baseline (AQTc)
>60 ms.' The QTc was calculated using the Bazett
formula.'” The task of predicting severe QT prolon-
gation was treated as a survival analysis problem.***
For patients with a follow-up ECG exhibiting severe
QT prolongation, the time of the first such ECG was
used as the event time (Figure 1B). In the external
validation cohort and held-out test dataset, we
implemented a strict outcome criterion for the event
time (ie, severe QT prolongation) in which the event
had to occur while the drug was being prescribed. For
prescription instances without any follow-up ECGs
exhibiting QT prolongation, the time of the last ECG
was used as the censorship time. Patients without any
follow-up ECGs were considered censored at time
zero (ie, at the time of prescription).

Two main reasons underlie the choice of predicting
QT prolongation with a survival analysis approach.
First, the resulting time-to-event prediction models
simultaneously produce risk scores for developing
severe QT prolongation for any given time (30, 60,
90 days, etc.) within the 6-month period, allowing for
the evaluation of temporal patterns. Second, this
approach addresses cases in which patients at high
risk for QT prolongation could have developed it
outside the defined 6-month period or in which pa-
tients were lost to follow-up. Using a survival analysis
approach, both of these cases are not excluded but
instead are treated as censored data points by con-
straining the model to place all of the (nonzero) risk
for QT prolongation after the censoring time. This
process can amount to high-risk prediction even for a
patient with no observed QT prolongation, as long as

ABBREVIATIONS
AND ACRONYMS

Al = artificial intelligence

AUROC = area under the
receiver-operating
characteristic curve

Grad-CAM = gradient-
weighted class activation
mapping

ipcw-AUROC = inverse
probability of censorship-
weighted area under the
receiver-operating
characteristic curve

LQTS = long QT syndrome

TdP = torsades de pointes
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CNN = convolutional neural
network

diLQTS = drug-induced long
QT syndrome
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A

FIGURE 1 Study Design

Adult patients newly prescribed a QT
prolonging medication in the outpatient
setting:

Prescriptions: n=3,469,556

Patients: n=1,055,396

Entire cohort:
Prescriptions: n=455,732
Patients: n=248,483

Excluded cases without a baseline
(within the preceding 6 months)

sinus ECG:
Prescriptions: n=3,013,824
Patients: n=806,913

External validation cohort

Main cohort
(3:1:1)

Training dataset
Prescriptions: n= 240,710
Patients: n=133,137

Validation dataset

Patients: n=44,461

Prescriptions: n= 79,965

Prescriptions: n= 54,958
Patients: n=26,499

Test dataset
Prescriptions: n=80,099
Patients: n=44,386

External validation
cohort (Long Island)
Prescriptions: n= 26,499
Patients: n=26,499

Held-out dataset
Prescriptions: n= 44,386
Patients: n=44,386

Prescription instance:

New QT prolonging
medication prescription

6 months

ECG 1 ECG2=
Baseline ECG

Follow-up Follow-up ECG
ECG with QT
without QT prolongation =

prolongation Event time

J

Drug prescription duration

(A) The flow chart for identifying all adult patients with a new outpatient prescription for a QT-prolonging medication and with a 12-lead
(baseline) sinus electrocardiogram (ECG) within 6 months prior to the prescription instance. The entire cohort corresponded to 249,244
patients and 458,146 prescriptions and was split into the external validation and main cohorts. In turn, the main cohort was further subdivided
into training, validation, and test datasets in a 3:1:1 ratio. (B) An example case in diagram form illustrates the study design by indicating the
instance that a QT-prolonging medication is newly prescribed, with the baseline ECG temporally closest to the prescription instance and the
first follow-up ECG with severe QT prolongation defined as the event time.

they are similar enough to other patients with
observed prolongation. Hence, adjusting for the
probability of censorship allows for the estimation of
predictive performance in the entire cohort.

MODEL INPUTS. The QTNet model takes in the
baseline ECG time series (ie, signal) and all tabular
data (except for Outcomes) listed in Supplemental
Table 3, which include demographic characteristics,
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comorbidities, blood pressure, laboratory values,
medications, and baseline QTc. The input tabular
data (Supplemental Table 3) were selected based on
known risk factors for QT prolongation identified in
prior risk scores.'®'® Demographics, comorbidities,
blood pressure, laboratory values, and medications
were retrieved from NYU’s electronic health record
system (Epic Systems). Comorbidities were ascer-
tained using codes from the International Classifica-
tion of Diseases-10th Revision-Clinical Modification
(Supplemental Table 4). All ECGs and their measure-
ments were accessed through MUSE (GE Healthcare).
Variables with missing values were imputed by
multivariate imputation with chained equations us-
ing the Scikit-learn package.

MODEL ARCHITECTURE. For the QTNet model, we
implemented a convolutional neural network (CNN)
to learn a concise 1-dimensional representation of the
ECG time series. This representation was fused with
the tabular data (Supplemental Table 3) and then fed
through a fully connected neural network with a
softmax output layer to generate the probability of
each binned time-interval: [0, 2], [2, 7], [7, 14], [14,
21], [21, 301, [30, 45], [45, 601, [60, 75], [75, 901, [90,
105], [105, 120], [120,135], [135, 150], [150,165], and
[165, 180] days. The CNN architecture was based on
the current state of the art for arrhythmia detection®®
and is a 34-layer ResNet CNN consisting of 16 residual
connections (Supplemental Figure 1). The input to the
network was a 8 x 2,500 matrix, representing the 8
measured leads (lead III and the augmented leads are
arithmetically computed) by 10-second duration
sampled at 250 Hz (500 Hz ECGs were downsampled
to 250 Hz).

MODEL TRAINING AND HYPERPARAMETER TUNING. The
aforementioned data inputs were used to train the
model in predicting the event time distribution using
an Adam optimizer for 100 epochs to minimize the
negative log-likelihood survival loss for a discrete-
time interval prediction. After each epoch, we eval-
uated the models on the validation dataset. We used a
learning rate scheduler that multiplies the learning
rate by 0.8 after 10 epochs of no validation loss
improvement. Early stopping was triggered after the
validation loss ceased to improve for 20 epochs. We
repeated this process to train each model to predict
the censorship time instead of using the negative log-
likelihood censorship loss for a discrete-time interval
prediction.

We used the validation dataset to select the best
network architecture and hyperparameter configura-
tion. We selected the model with the time-averaged
inverse probability of censorship-weighted area
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under the receiver-operating characteristic curve
(ipcw-AUROC) across times (mean AUROC). We
examined the effect of varying the number and
dimensionality of the fully connected layers, consid-
ering 1, 2, or 3 layers of dimension 100 or 1,000. We
considered the effect of temporal dimensionality
reduction by modifying the stride lengths to reduce
the input 2,500-dimensional vector to either a 10-
dimensional vector or an 80-dimensional vector. We
also tuned the batch size (32, 64, 128) and learning rate
(10-5, 10-4, 10-3). We implemented only the fully
connected portion of the neural network for the
models involving exclusively tabular data and per-
formed hyperparameter tuning accordingly.

MODEL EVALUATION. We used both the held-out
test dataset derived from the main cohort and the
external validation cohort to evaluate our models.
The ability to predict the primary outcome was
measured using the following metrics: the ipcw-
AUROC at each time interval, as well as the mean
AUROC. The ipcw-AUROC at the aforementioned time
points was calculated using the censorship model
trained on the full set of features (Supplemental
Table 3). For comparison, we have trained 3 addi-
tional fully connected neural networks: 1) risk factor;
2) baseline ECG; and 3) baseline QTc. The risk factor
model was trained on the same set of tabular inputs
as QTNet except for the 2 ECG features, while the
baseline ECG and baseline QTc models were trained
using only the baseline ECG signal and measured
scalar baseline QTc, respectively. The baseline ECG
model demonstrates the predictive power with just
the ECG signal, while the risk factor model serves as a
reference point to show the additional predictive
value provided by ECG signal in QTNet. For QTNet,
we also performed subgroup analyses stratified
by race, sex, age, and baseline QT prolongation sta-
tus, comparing mean AUROC and ipcw-AUROC at day
2. For all evaluation metrics, we adopted the boot-
strap method to calculate 95% CIs and permutation
testing to calculate P values when comparing models.
Separately, gradient-weighted class activation map-
ping (Grad-CAM) was used for the heatmap visuali-
zation,”" highlighting which portions of the ECG
waveform the model focuses on when predicting QT
prolongation.

STATISTICS. Values are presented as median (Q1-Q3)
for continuous variables and as count (percentage) for
categorical variables, unless otherwise specified.
Analysis of variance was used for comparisons of
continuous variables among >2 groups, while the chi-
square test was used for comparisons of categorical
variables. Statistical analysis was performed using
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FIGURE 2 Model Performance Over Time
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(A) The inverse probability of censorship-weighted area under the receiver-operating characteristic curve (ipcw-AUROC) plotted over time for
each convolutional neural network (CNN) model applied to the held-out test dataset. QTNet outperforms the discriminative performance of
each other model when estimating the risk of severe QT prolongation within a given time period. The dashed lines represent the mean area
under the receiver-operating characteristic curve (AUROC) for each model. (B) The ipcw-AUROC at day 2 plotted as a bar chart with 95% Cls for
each CNN model applied to the held-out test dataset, with QTNet outperforming all other models with statistically significant margins. (C) The
ipcw-AUROC at day 2 for the QTNet model in subgroups of race, baseline QTc, age, and sex presented as box (Q1-Q3) and whisker (95% Cl)
plots. The dotted line represents the QTNet ipcw-AUROC at day 2 for the whole held-out test dataset. ECG = electrocardiogram.
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the software Scikit-learn (version 1.02). Values of
P < 0.05 were considered statistically significant.

RESULTS

The entire cohort consisted of 400,774 new
QT-prolonging medication outpatient prescriptions
with a 12-lead sinus ECG in the preceding 6 months,
corresponding to 221,984 patients (Figure 1A). The
held-out test dataset and external validation cohort
were used to evaluate model performance. De-
mographic characteristics, comorbidities, baseline
ECG features, laboratory values, blood pressure, and
medications at the time of prescription were collected
(Supplemental Table 2). The held-out test dataset
consisted of 44,386 unique patients, who had a median
age of 62 years (Q1-Q3: 49-74 years), were predomi-
nantly female (56.6%) and White (78.4%), and counted
hypertension (57.0%), thyroid disorders (21.0%), and
diabetes (23.2%) among the most common comorbid-
ities. Patients had normal median potassium
(4.3 mmol/L [Q1-Q3: 4.0-4.6 mmol/L]) and magnesium
(2.0 mmol/L [Q1-Q3: 1.8-2.1 mmol/L]) levels at the time
of prescription, with 9.3% of patients in the held-out
test dataset on a loop diuretic. Approximately 6.7% of
patients were already on at least 1 other medication
with a known or possible risk of diLQTS when pre-
scribed a new QT-prolonging medication. Both the
median baseline QTc (433 ms [Q1-Q3: 416-452 ms]) and
QRS (88 ms [Q1-Q3: 80-96 ms]) were normal. The
baseline QTc was normal (QTc <450 ms for
males, <470 ms for females)? for 36,871 (82.9%) pa-
tients in the held-out test dataset. A total of 21.2% of
prescription instances in the held-out test dataset had
at least 1 follow-up ECG within 6 months following the
prescription. Among them, severe QT prolongation
was observed in 360 (0.8%) patients, of which 188
(52.2%) had a normal baseline QTc.

The time-dependent ipcw-AUROC is depicted in
Figure 2A, showing QTNet outperforming the
discriminative performance of the other 3 models
when estimating the risk of severe QT prolongation
within any given time period <180 days. Focusing on
QT prolongation prediction by day 2 (Figure 2B),
QTNet (ipcw-AUROC: 0.875; 95% CI: 0.848-0.904)
outperformed each of the risk factor (ipcw-AUROC:
0.829; 95% CI: 0.795-0.865; P < 0.001), baseline ECG
(ipcw-AUROC: 0.834; 95% CI: 0.797-0.870; P < 0.001),
and baseline QTc (0.744; 95% CI: 0.686-0.810;
P < 0.001) models. The QTNet ipcw-AUROC at day 2
for subgroups of race, baseline QTc, age, and sex is
presented as a box-and-whisker plot in Figure 2C. The
best performance in each subgroup is noted among
patients with a baseline QTc <450 ms (ipcw-AUROC:
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0.872; 95% CI: 0.821-0.916), age =50 years (ipcw-
AUROC: 0.892; 95% CI: 0.829-0.959), other race
(ipcw-AUROC: 0.906; 95% CI: 0.846-0.966), and
males (ipcw-AUROC: 0.903; 95% CI: 0.866-0.936).

As depicted in Figures 3A and 3B, QTNet achieved
the best performance (mean AUROC: 0.802; 95% CI:
0.786-0.818), outperforming predictions based on the
risk factor (mean AUROC: 0.782; 95% CI: 0.768-0.799),
baseline ECG (mean AUROC: 0.745; 95% CI: 0.725-
0.764), and baseline QTc (mean AUROC: 0.647;
95% CI: 0.622-0.672) models with P < 0.001 for all
comparisons between models. The QTNet mean
AUROC for subgroups stratified by race, sex, age and
baseline QTc can be found in Figure 3C. The best
performance in each subgroup is noted among pa-
tients with a baseline QTc <450 ms (mean AUROC:
0.802; 95% CI: 0.781-0.829), age =50 years (mean
AUROC: 0.847; 95% CI: 0.812-0.885), identifying as
Black (mean AUROC: 0.821; 95% CI: 0.778-0.868), and
males (mean AUROC: 0.808; 95% CI: 0.787-0.826).
Separately, a Grad-CAM heatmap with all leads
overlayed indicates that the model “focuses” most at
the beginning of the T-wave and not the QRS complex
(Figure 4).

The external validation cohort consisted of 26,499
unique patients, with a median age of 64 years
(Q1-Q3: 52-75 years), and who were predominately
female (59.6%) and White (87.7%) (Supplemental
Table 2). The cohort was evaluated using models
developed from the training dataset and performance
metrics are presented in Figure 5. Similar to the pre-
vious results, QTNet maintained high discriminative
performance when estimating the risk of severe QT
prolongation over time (Figure 5A). At day 2, QTNet
had an ipcw-AUROC (0.873; 95% CI: 0.767-0.942)
equivalent to that of the baseline ECG (0.882; 95% CI:
0.800-0.952; P = 0.674), but still outperformed risk
factor (0.828; 95% CI: 0.694-0.917; P < 0.001) and
baseline QTc (0.813; 95% CI: 0.713-0.887; P = 0.011)
models (Figure 5B). The QTNet again achieved the
best mean AUROC among the 4 models (QTNet:
0.804; 95% CI: 0.770-0.836; risk factor: 0.786; 95% CI:
0.750-0.819; baseline ECG: 0.776; 95% CI: 0.743-
0.807; baseline QTc: 0.699; 95% CI: 0.657-0.739) with
significant P values for all comparisons between
models.

DISCUSSION

In recent years, there has been a proliferation in
the successful application of deep neural networks
to the ECG, including for the QT interval.®**> For
example, when applied to smartphone-enabled
mobile ECGs, a CNN accurately calculated the QTc
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FIGURE 3 Time-Averaged Model Performance
A 0.91 P <0.001
0.802
[0.786,0.818] 0.782 p <0.001
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Black = 5,282 (11.9%)
White HH 28,485 (64.2%)
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X
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QTNet Mean-AUC
(A) The time-averaged AUROC (mean AUROC) plotted as a bar chart with 95% Cls for each CNN model applied to the held-out test dataset.
QTNet outperforms all other models with statistically significant margins (P < 0.001). (B) The mean AUROC for the QTNet model in subgroups
of race, baseline QTc, age, and sex presented as a box (Q1-Q3) and whisker (95% Cl) plot. The dotted line represents the QTNet mean AUROC
for the held-out test set in its entirety. The subgroup size is noted on the far right as the number of patients, also expressed as a percentage of
the held-out test dataset. Abbreviations as in Figure 2.

of a standard 12-lead ECG and exhibited high speci-
ficity for correctly measuring severely prolonged
(=500 ms) QTc.>* A model trained to recognize ECG
patterns associated with exposure to the potent IKr
blocker sotalol exhibited high accuracy in identifying
congenital LQTS type 2.% Recently, our group devel-
oped a novel CNN model for prediction of
the projected sinus QTc in patients with atrial
fibrillation.>®

Accurately predicting diLQTS has remained a
challenge, with significant potential clinical impact
considering the preventable nature of diLQTS and
TdP. In addition, diLQTS is a common cause for pre-
mature termination of clinical studies evaluating new
medications and market withdrawal of existing
medications.?® Yet, models to date have been largely
based on the compilation of known risk factors to
acutely (<24-48 hours) predict diLQTS in hospitalized
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FIGURE 4 Gradient-Weighted Class Activation Mapping
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Gradient-weighted class activation mapping was used for the heatmap visualization, highlighting which portions of the electrocardiogram
waveform that the model focuses on when predicting QTc prolongation. Above is an example with all leads overlayed in which a darker red
color indicates parts of the electrocardiogram waveform of greatest contribution to the prediction task.

patients.’®19:273° To our knowledge, we present the
first ECG-based AI model for time-weighted diLQTS
risk prediction in nonhospitalized patients (Central
Illustration).

In the inpatient population, diLQTS can be poten-
tially monitored more reliably given the routine
acquisition of ECGs or the availability of continuous
telemetry monitoring." On the contrary, in the
outpatient setting, such ECG monitoring can be
resource-intensive and impractical. As confirmed in
our study, the predictive utility of the baseline QTc is
limited, inadequately capturing subclinical reduction
in repolarization reserve.””® Our AI model addresses
these issues through its derivation from an outpatient
cohort and its time-weighted predictive architecture
over 6 months (Figures 2A and 5A). To ensure that the
model is predicting diLQTS specifically, we mandated
that severe QT prolongation in the held-out test
dataset and external validation cohort had to occur
within the drug prescription period. Additionally,
median electrolyte levels were within normal limits
both at the time of the prescription instance and
when severe QT prolongation occurred among
diLQTS cases (Supplemental Table 5). The QTNet
model outperformed all reference models over the
entire 6-month period, while also maintaining a pre-
dictive accuracy greater than or equal to its mean
AUROC for at least the initial 3 months.

Compared with the risk factor model, which relied
on traditional clinical risk factors utilized in prior
predictive models,'®'%?® QTNet achieved superior
performance by combining established predictors for
diLQTS with the raw ECG signal. This incremental
improvement achieved by the addition of the ECG
signal (Figures 2, 3, and 5) suggests that the CNN
captures “concealed” risk signal embedded in the
ECG. This can be explained by the Al model’s ability
to capture known risk factors that are inaccurately or

insufficiently reported in the electronic health record,
or by capturing unknown risk features embedded in
the signal, different from the recognized diLQTS
clinical risk markers.?! In turn, this could account for
the ECG-only model outperforming the risk factor
model in the external validation cohort and achieving
equivalent performance with QTNet (Figures 5A
and 5B). Using Grad-CAM analysis to interrogate the
ECG-based prediction signal, we found that the neu-
ral network is “focusing” on the first half of the
T-wave and the PR interval while sparing the QRS
complex (Figure 4). These findings demonstrate the
potential of CNNs to serve as hypothesis-generating
tools by identifying previously undescribed ECG fea-
tures contributing to a prediction task.

Importantly, the QTNet model maintained the best
predictive performance among all models in an
external validation cohort (Figure 5). Unlike the main
cohort used for training QTNet, our external valida-
tion cohort consisted of NYU Long Island outpatient
practices (Figure 1A). Consequently, although the
model was trained on predominantly urban outpa-
tient practices, it was also externally validated on
solely suburban outpatient locations exhibiting
similar predictive performance. This supports
QTNet’s generalizability to outpatient practices of
varying geographic location. To further inform
QTNet’s generalizability from a pharmacotherapy
standpoint, we calculated the percentage breakdown
of the top medication classes among diLQTS
cases (Supplemental Table 6). Notably, QTNet ach-
ieved a similar predictive performance despite
different medication class makeups in the held-out
test dataset and external validation cohort. The sub-
group analysis also speaks to the model’s generaliz-
ability to patients with varying demographic
characteristics. QTNet exhibited higher predictive
performance in groups with male sex and normal
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FIGURE 5 External Validation
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(A) The ipcw-AUROC plotted over time for each CNN model applied to the external validation cohort. QTNet outperforms the discriminative
performance of each other model when estimating the risk of severe QT prolongation within a given time period. The dashed lines represent the
mean AUROC for each model. (B) The ipcw-AUROC at day 2 plotted as a bar chart for each CNN model applied to the external validation cohort,
with QTNet outperforming the risk factor and baseline QTc models with statistically significant margins. (C) The mean AUROC presented with
the 95% Cls for each CNN model applied to the external validation cohort. These results indicate that QTNet outperforms each other CNN
model with statistically significant margins (P < 0.001). Abbreviations as in Figure 2.
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CENTRAL ILLUSTRATION Predicting Time Dependent Drug Induced QT Prolongation Using Artificial Intelligence

Convolutional neural Test dataset CNN dicti
network (CNN) input 44,386 patients PR

* Baseline ECG waveform  \edian age 62 years

« diLQTS risk factors Female 57% diLQTS
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Zhang H, et al. J Am Coll Cardiol EP. 2024;10(5):956-966.

We identified all adult patients with a new outpatient prescription for a QT-prolonging medication and with a 12-lead sinus electrocardiogram (ECG) within 6 months
prior to the prescription instance. Using risk factor data and the ECG signal as inputs, we designed the convolutional neural network (CNN) QTNet to predict
drug-induced long QT syndrome (diLQTS) in the outpatient setting. Compared with 3 other models relying on risk factors or ECG signal or baseline QTc alone, QTNet
achieved the best (P < 0.001) performance with a mean area under the receiver-operating characteristic curve (AUROC) of 0.802 (95% Cl: 0.786-0.818), as well as the
highest inverse probability of censorship-weighted area under the receiver-operating characteristic curve (ipcw-AUROC) in a survival analysis up to 6 months.

baseline QTc (Figures 2C and 3B). Interestingly, the an external population to further characterize its
association of age with predictive performance was predictive performance.

bimodal, with marked precision in the youngest age

group (=50 years of age). In a real-world setting, the CONCLUSIONS

present model could identify higher-risk individuals
who would benefit from more rigorous monitoring in ~ We report QTNet, a CNN model that includes the ECG
an outpatient clinical setting or in a trial assessing the ~ Signal input for the outpatient prediction of diLQTS.
safety of a novel drug. We demonstrate a superior performance over previ-
ously described prediction models, with time-
dependent metrics. In an external validation cohort
of solely suburban outpatient practices, QTNet
maintained its predictive performance. Prospective
studies are warranted to test the applicability of
QTNet, particularly as it relates to ECG monitoring
frequency and modification of drug therapy after
administration of a QT-prolonging medication.

STUDY LIMITATIONS. Limitations of this study
include its single center and retrospective design. The
single-center design limitation is partially mitigated
by the use of the external validation cohort included
in the study. Separately, the future clinical adoption
of this Al model necessitates that a hospital or clinic
utilize an electronic health record and digital ECG
database to derive risk factors and the raw ECG signal
as inputs for the CNN, respectively. Future studies = ACKNOWLEDGMENTS The computational requirements
will focus on the prospective application of QTNet in  for this work were supported in part by the NYU
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PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: An
ECG-based CNN exhibited the highest accuracy in
predicting diLQTS in the outpatient setting over

6 months. Predictive performance was maintained in
an external validation cohort and subgroups with
varying demographic characteristics.

TRANSLATIONAL OUTLOOK: In a real-world
setting, the present model could identify higher-risk
individuals who would benefit from more rigorous QTc
monitoring in the outpatient setting.
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