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ABSTRACT

Uncertainty Quantification (UQ) is paramount for inference in engineering appli-
cations. A common inference task is to recover full-field information of physical
systems from a small number of noisy observations, a usually highly ill-posed
problem. Critically, engineering systems often have complicated and variable
geometries prohibiting the use of standard Bayesian UQ. In this work, we introduce
Geometric Autoencoders for Bayesian Inversion (GABI), a framework for learning
geometry-aware generative models of physical responses that serve as highly in-
formative geometry-conditioned priors for Bayesian inversion. Following a “learn
first, observe later” paradigm, GABI distills information from large datasets of
systems with varying geometries, without requiring knowledge of governing PDEs,
boundary conditions, or observation processes, into a rich latent prior. At inference
time, this prior is seamlessly combined with the likelihood of the specific obser-
vation process, yielding a geometry-adapted posterior distribution. Our proposed
framework is architecture agnostic. A creative use of Approximate Bayesian Com-
putation (ABC) sampling yields an efficient implementation that utilizes modern
GPU hardware. We test our method on: steady-state heat over rectangular domains;
Reynold-Averaged Navier-Stokes (RANS) flow around airfoils; Helmholtz reso-
nance and source localization on 3D car bodies; RANS airflow over terrain. We
find: the predictive accuracy to be comparable to deterministic supervised learning
approaches in the restricted setting where supervised learning is applicable; UQ
to be well calibrated and robust on challenging problems with complex geome-
tries. The method provides a flexible geometry-aware train-once-use-anywhere
foundation model which is independent of any particular observation process.

1 INTRODUCTION

Many important problems in engineering deal with spatially varying quantities that must be inferred.
The task of inferring full-field information from sparse noisy measurement is a type of inverse
problem (Kaipio & Somersalol [2005); these often need to be regularized due to their inherent
ill-posedness (Calvetti & Reichel,2003). Statistically interpretable regularization can be achieved
through the Bayesian paradigm (Stuart, [2010), where we combine a likelihood function characterizing
data fit for a particular observation process, and a prior which characterizes assumptions about the data-
generating process. Bayesian inference allows for robust and principled uncertainty quantification,
where we obtain a distribution on the estimated quantity of interest given data from a particular
physical system. The main challenge in enacting a Bayesian program is prior specification; often, not
much can be said about the prior which often leads to diffuse and vague posteriors with relatively
poor predictive accuracy when compared to deterministic methods. To alleviate this vagueness, one
possible strategy is to learn a suitable prior from a dataset of related but distinct physical setups,
where more data may be available. This is explored in general-purpose Al applications (Shwartz-Ziv
et al.l 2022} [Feng et al., [2023; Boys et al., |2024) and physical applications (Meng et al., [2022;
Akyildiz et al.| 2025} [Patel & Oberail, 2021} [Patel et al.| [2022; |Laloy et al.|[2018;[2017). However, in
engineering, geometry plays a crucial role in determining the dynamics arising for a physical system.
Hence, for truly general purpose, practical methodology, learned priors must incorporate knowledge
about the geometry of the problem at hand. But changing geometries hinder the direct learning of a
prior over fields as the probability spaces involved are tied to the geometry of each individual physical
system, prohibiting a direct Bayesian treatment.
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In this work, we propose a methodology using graph autoencoders to learn highly informative priors
as geometry-aware generative models for use in Bayesian inversion tasks. We also show how to
effectively solve the Bayesian inverse problems resulting from these priors through a pushfoward
model. Importantly, the proposed scheme decouples the task of “learning” and the task of “inferring
from observations”, resulting in train-once use everywhere approach which is independent of the
particular observation process for solving inverse problems, a trait not shared by related supervised
learning approaches. We make the following contributions:

(C1) We propose a methodology to encode geometries and physical fields into a learned latent
prior without specifying the governing PDE or boundary conditions.

(C2) We prove that solving the Bayesian inverse problem in the learned latent representation
solves the same problem as the inversion in the original space with a pushforward prior.

(C3) The proposed methodology is naturally extended to the Bayesian estimation of further
important information on the observation process, such as learning the observational noise.

(C4) We test the proposed methodology on: a steady-state heat problem, RANS flow around
airfoils of varying geometries, damped Helmbholtz resonance and source localization on car
geometries. We compare our methods to supervised neural network-based methods and
Graph Gaussian Processes where relevant.

(C5) We demonstrate the scalability of the method on a large terrain flow problem through a
multi-GPU implementation; showing potential for training GABI foundation models.

Section E] discusses the inference setup in detail; Section @] goes over relevant related works;
Section [2| describes the proposed methodology; Section [3| discusses the implementation of the
proposed method; Section ] tests and compares the proposed method; Appendices[A] [B] [C] elaborate
on proofs, additional numerical results and implementation details, relevant discussions on VAEs.

1.1 SETUP

Let u, € U, = U(M,;R?%) be a (possibly vector valued) function representing the full field
behavior of a physical system on the bounded domain M,, C R?. The space U is the relevant
function space for the full field solution, e.g. a Sobolev space, and the geometric domain M,, may
be a manifold with boundary or a boundaryless closed manifold. In this work, u,, will be: heat
on a surface, fluid flow in a domain, and resonance patterns on an object. Here, the index n refers
to the different physical systems which possibly have different geometries, forcing, and boundary
conditions. In numerically representing these continuous systems, we obtain discretized node values
u, € U, := U(M,;R%) which live on M,, = (V,,,&,) where V,, = {z1,...,24,} C M,, is
a set of vertices and &, is a set of edges connecting the vertices. As such, we represent M,, as
an undirected graph describing the physical geometries on which the physics is taking place, i.e.,
a computational mesh. We assume to have a dataset D = {u,,, M, }_; [H This dataset can be
constructed from simulation data, as is the case in this paper, or from full-field data from experiment
such as through particle image velocimetry, digital image correlation, magnetic resonance, electrical
impedance tomography, infrared thermography etc.

First, in the proposed methodology we learn a M,,-dependent prior generative model for u,,. Second,
using this learned highly informative prior and sparse noisy observations, y, € R% Pl of a new
physical system on a new geometry, M,,, we solve the Bayesian inverse problem to obtain the posterior
distribution p,,,|y,. We assume to know the discretized geometry M,, associated to y,. In this paper,
the observations and discretized solution field are related by:

Yo = Hou, +&,, &, ~ N(0,0°1,). (1)

We take H,, : R% — R% to be a matrix of zeros and ones selecting the nodes to be observed. This
is assumed to be a known observation operator corresponding to sensor placements. We note that
many observation models can be considered with ease, such as surface integrals for computing drag
coefficients, radon transforms for tomography, as well as any number of noise models — additive or not.
As our learned prior is entirely independent of the observation process, changes to the observation
process do not necessitate retraining and can be incorporated “on-the-fly”.

'A dataset with multiple full-fields per geometry M,,, as {{u, ; } ", M, }2_;, can be viewed as a dataset
{ug, M} | indexed by a dummy variable k such that k& maps to (4, 7).

>When discussing observations which are associated to a geometry not in the dataset D we change the index
from n to o for clarity.



Under review as a conference paper at ICLR 2026

The proposed methodology works as follows:

* In the training stage, using a dataset of geometries and full-field solutions on these geome-
tries, D = {u,,, M,,})_,, we learn a graph autoencoder which embeds the joint distribution
of solutions and geometries into a latent Gaussian distribution. This will act as our highly
informative geometry-aware data-driven prior.

* In the application stage, we use this learned prior to solve inverse problems for data coming
from new physical systems not in the dataset D. That is, given sparse and noisy observations
Yo of a solution u, of a physical systems with geometry M,,, we use our previously learned
prior to solve the Bayesian inverse problem for the unknown full-field u,. We recover a
distribution over the solution u, by only observing y,.

Using the proposed methodology, one can encode prior beliefs through geometry-dependent full-field
solution datasets. Practitioners can then construct highly-informative priors from data across varying
physical geometries. This prior is independent of the observation process for any particular inference
task, hence this is a learn-once apply everywhere approach.

1.2 RELATED WORKS
1.2.1 DIRECT MAP INVERSION

Many interesting approaches have been recently proposed which directly learn an amortized map
from observable to solution/parameter. These can be subdivided into deterministic methods and
probabilistic - often Bayesian - approaches. Most related to the setting considered in this paper
is the work in |Duthé et al.| (2025). Here, the authors consider a graph-ML approach to learning a
deterministic map from observable y,, to the underlying vector field u,. The supervised methodology
used in the comparisons in this work draws inspiration from that prior work. Another strongly related
methodology can be found in|Arridge et al.|(2019) although here the problem of changing geometry
is not directly tackled. Other noteworthy works in this area include (Adler & Okteml, [2017; Dittmer
et al.,2020). Interesting works look at probabilistic schemes for constructing probabilistic maps from
observable to quantity of interest (Kaltenbach et al.| 2023} |[Baptista et al., 2024). These works do not
focus on learning priors. Other works in this area include (Adler et al.,|2022; |Ardizzone et al., 2018).

1.2.2 FORWARD AND INVERSE PROBLEMS ON GRAPHS

Graphs are handled in machine learning frameworks through geometric deep learning (Bronstein
et al.;2021; Wu et al., 2022; Kipf}, [2016)). Several important works consider inverse problems where
the quantity inferred lives of a graph description of the geometry. In|Garcia Trillos & Sanz-Alonso
(2018) the authors prove the convergence of the graph posterior to the continuum posterior subject to
some conditions. In|Povala et al.|(2022) the adjacency structure of a mesh is leveraged to accelerate
variational inference inversion. Important works consider solving the PDE forward problem through
physics informed graph machine learning(Seo & Liul |2019; [Valencia et al, 2025; |Wandel et al.,[2020)
Used in our comparisons are linear inverse problems with Gaussian process priors, this leads to graph
Gaussian process methods (Borovitskiy et al.,2021; Mostowsky et al.l 2024). We find it important
to mention important works in the physics informed literature, where assuming complete or partial
knowledge on PDEs, boundary conditions, forcing etc, one can use physics residuals to learn forward
and inverse maps for PDEs (Raissi et al.,[2019} |Gao et al.| 2022; |Vadeboncoeur et al.,[2023; Xu et al.|
2023 |Rixner & Koutsourelakis, [2021). However, in this work, we focus solely on methods which
do not assume knowledge of the governing PDE, boundary conditions, or forcing and are entirely
data-driven in their approach.

1.2.3 STATISTICAL AUTOENCODERS

Related to inverse problem are latent variable representations of graph data structures. In this category
the seminal work of the graph VAE (Kipf & Welling} 2016} Nazari et al.,[2023)). We refer the reader
to Appendix [C]for a more elaborate discussion on the relationship between VAEs and our proposed
framework. Related to this are the works (Mylonas et al., 2021} [Liu et al., 2019). The proposed
work centres around a class of autoencoders dubbed statistical autoencoders, of which there are
many variants (Zhao et al.} 2019; |Kolouri et al.| 2019 |Turinici, 2021} [Tolstikhin et al., 2018). We
specifically focus on the MMD (Gretton et al., 2012) variant of the autoencoder. Many other variants
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could be considered. Another relevant class of autoencoders are conditional autoencoders (Sohn
et al.| 2015), we will make use of related ideas by conditioning encoder and decoder on geometry.

1.3 NOTATION

We denote by P, a probability measure on the measurable space (Z,S), and by p, the associated
density with respect to Lebesgue measure when it exists. Empirical measures are a mixture of
Dirac measures. That is, for D = {a;}M, we have E,cp[0,] = - SN, 8,, where 6,,(A) =
lifz; € A, and ., (A) = 0, if z; ¢ A. We will sometimes refer to mixtures of Diracs measures as
the “densities” p, q to lighten notation. Superscripts in parentheses denote realizations of random
variables. For a function g : Z — U, the pushforward gxp, means gxPP,(A) = P,(g~'(A)) for all
measurable sets A. We note, a sample u(™) ~ gup, is obtained as u() = g(2(?), 2() ~ p,.

2 METHODOLOGY

We now describe the proposed methodology in detail. In Section[2.T| we carefully layout the central
result allowing for the Bayesian treatment of the inference task; that is, the equivalence between the
Bayesian posterior of a pushforward prior (our generative model), and the Bayesian inverse problem
in the implied latent space of the pushforward prior. Following from this result, in Section we
describe our two-step procedure: first, learn a generative model to be used as a Geometry-conditioned
Bayesian prior; second, observe sparse data for the inverse problem and solve the Bayesian inverse
problem in the latent space to push this posterior back out to the desired physical field living on the
geometry of interest. In Section [2.3] we show how to extend our methodology to estimate the noise in
the observations.

2.1 POSTERIOR FROM A PUSHFORWARD PRIOR

We present the lemma motivating our methodology; the equivalence between the Bayesian posterior
with a pushforward latent prior and the pushforward of the Bayesian posterior over the latent space.

Lemma 2.1. Let (U, F,P,), and (Z,S,P,) be measure spaces and g : Z — U be (S, F)-
measurable. Furthermore, let P, be the Bayesian posterior on U with likelihood proportional to
exp(—®(u; y)) and prior P, := g xP,. We find
IP)u\y = g#P2|y7

where AP, (z) = 1/Z(y) exp(—®(g(2); y))dP.(2) is the Bayesian posterior on Z.

Stated simply, in Bayesian inference, when a prior on U/ is specified as the pushforward under g
(Subsection of a latent prior on a space Z, two distributions are equivalent: i) the Bayesian
posterior on U/, and ii) the pushforward under g of the posterior associated to the latent prior on Z.
This result will be explicitly related to the geometric inference setting in Theorem [2.2] showing that
with a latent prior constructed via a geometry aware encoder/decoder, we can solve inverse problems

on U with a single common latent representation relevant to any number of in-distribution geometries.
All proofs can be found in Appendix [A]

2.2 GEOMETRIC AUTOENCODER PRIORS FOR BAYESIAN INVERSION (GABI)

We describe the two-step process of learning a geometry-aware prior and how to use this to solve
inverse problems.

Step 1: Learn Geometric Autoencoder Prior. Let z € Z = R%: be a latent vector. We pose the
M,,-dependent maps

E%:U,—1Z, where E(u,):=E%u,M,); (2a)
DY:7Z —U,, where DY(z) :=D¥(z;M,). (2b)

Both E? (the encoder) and DV (the decoder) are graph neural networks with parameter sets 6, 1)
respectively. These two maps imply a geometry conditioned autoencoder. We use Ep|[-] as a
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shorthand for ; >, . yep|-]- Set the parameters of the auto-encoder to

0*,¢* = argmin Ep|[|lu, — (DY o E?)(u,)[3] + d(pS, ¢2), 3)

s

where pf = Ep [058 (u,)] is the empirical distribution of encoded solutions, g, = N'(0, I), arg min
is to be approximated with gradient descent, and d : P(Z) x P(Z) — [0, c0) may be any suitable
divergence that is well-posed for comparing empirical measures: maximum mean discrepancy
(MMD), energy distance (ED), Wasserstein, or Sliced-Wasserstein distances etc. In this work, we
focus on MMD.

Step 2: Observe and Sample Posterior. For new data y,, associated to a geometry M, we re-write
the data generating model in (I)) in terms of a decoded latent variable as

Yo = H,D¥(z) + &, &, ~N(0,0°L,), )

where DY = D¥(-;M,). We specify our prior distribution over u,, denoted p,, using the trained
decoder; and specify the likelihood, denoted p$ 2 associated to this decoded observation model @)

pa, = Diyts; Py, = N(HDY(2),0°L,). 5)
This likelihood along with prior ¢, imply a posterior

_ Py 12(Yo) 4a(2)

»
Pyy. (2) (6)
7o Py, (¥o)
Theorem 2.2. Assuming the relevant measurability of DY, the posterior
() _nY
puob’o - Do#pz|y0- (7)

The posterior li is sampled by first sampling from pflyo in (@) and decoding with D¥. Hence, by
first solving the inverse problem in the latent space, we can use Theorem [2.2]to easily obtain posterior
samples in the decoded solution space for a given geometry. This allows us to learn a unified prior
over the solution field as a generative model over varying geometries and use it to solve Bayesian
inverse problems with a highly informative learned prior on new geometries.

2.3 OBSERVATIONAL NOISE ESTIMATION

Beyond the benefits of quantifying uncertainty related to model predictions, the Bayesian paradigm
offers a principled framework for estimating other aspects of the data-generating model. We highlight
that such estimations are completely independent of the training of the autoencoder prior — this is
not the case for direct regression methods which need to have all observation variables incorporated
at training time. We now consider the common task of jointly estimating the observational noise
standard deviation o, (now indexed by o as it may vary from one system to another), together with
the field of interest u,. This is achieved through the latent joint posterior

pi}‘z,go (yo)pz,ao (Z, Ua)

Py, (Yo)

where p, . (z,0,) = ¢,(2)ps,(0,) for a specified prior p,, (c,).

pzwvool}% (Z) 00) =

®)

Corollary 2.3. We can sample the joint posterior on the solution fields through the pushforward

p:ﬁ'oao-olyo = (DY ®1d.) pf,ao\yo’ where 1d. is the identity map.

3 IMPLEMENTATION

Neural Networks: We make use of meshes and graph neural networks to describe and manipulate
geometric information. The proposed methodology is agnostic to any particular architecture, however
we need the following characteristics: Geometry aware architecture and data-structure; Mapping
to and from fixed-dimensional vectors; Non-locality. We expand on these points in[B] For the heat,



Under review as a conference paper at ICLR 2026

Algorithm 1: Inversion with GABI-ABC

1: Specify the observation vector y,, discretized geometry M,, total sample budget N, number of
accepted samples V.

2: Train EY, DY through (3) on D.

3: for [Batched/Paralelized] i=1: Ngdo

4:  Sample z(9) ~ ¢,

5. Decode u,') = D¥(z(); M,)

6

7

8

Apply observation process with noise: y’. ) = Hou!, ) + &/, ¢ @ ~ A(0,021,).
Compute r; = ||lyo — v, |-

N5s)

: return return N, samples of ugl: with least residual ;.

airfoil, and car problems we make use of a Graph Convolutional Network with interleaved nonlocal
averaging layers (Lanthaler et al.,[2024)). For the terrain flow problem we use a GEN (Li et al.| 2020)
GNN architecture. We detail these architectures in Appendix [B.1} We also test a Transformer on the
heat problem in Appendix[B.3.3]

Sampling: To realize GABI, we first train the autoencoder; then, we sample from the corresponding
latent posterior as in (6) and decode the resulting latent samples to obtain samples from the posterior
for a given geometry. We note two alternatives for sampling from the posterior: MCMC, and
ABC sampling. We find ABC sampling to be advantageous for this task due to: (i) the massive
parallelization capabilities of neural networks as opposed to the sequential nature of MCMC; (ii)
the specification of a well-tailored prior distribution — the prior is not unnecessarily vague leading
to good overlap between the prior and posterior; (iii) the low dimensionality of the observational
data — removing the need to use possibly problematic summary statistics. In Algorithm [T] we
outline the implementation of the GABI-ABC variant. For MCMC sampling, we use the NUTS
algorithm (Hoffman et al.,[2014).

Notes on Alternative Approaches: Physics Driven Inversion. These require additional knowledge
aside from access to a representative dataset and information specific to each system we wish to
query such as the governing PDE, boundary conditions, forcing etc. VAEs. We refer the reader
to Appendix |C|for an in-depth discussion on the unsuitability of VAEs for the task we are solving,
both in terms of the overall methodology and in terms of the autoencoder used within the proposed
methodology. Supervised learning/Direct Map Inversion. One can choose to learn a supervised
learning direct mapping (y,, M,,) — u,; this approach is the main point of comparison with our
method. The significant disadvantage of this approach is that the observation process (in this paper
y» = Hpu, + &,) must be known at training time and kept the same at inference time (or kept the
same in a distributional sense, as explained in the comparisons). However, in practice, the observation
process for different physical systems can vary enormously as we measure different quantities such as
moments, local averages, summary coefficients, have a variable number of observations, or vary the
type and magnitude of noise etc. In contrast to this, GABI is independent of the observation process
at training time and only requires this information at test time. Thus, GABI offers a train-once-use-
everywhere type foundation model, hugely advantageous for practical/industry uptake of ML models.
Gaussian Process Regression. For an inverse problem over fields, a natural choice of prior is a
Gaussian process prior. As the observation process H,, is linear, the classical Bayesian posterior for
this problem is precisely a Gaussian process regression. We perform hyper-parameter optimization of
this GP, which relates it to common usage of GPs in the context of ML. The GPs are defined directly
on the graphs (Borovitskiy et al, [2021). Bayesian NNs. The problem of specifying informative
priors over varying geometries persists and inherits the problems of direct maps discussed above.

4 NUMERICS

In this section we present numerical results for steady-state heat on rectangles, flow fields around
airfoils, damped resonance and source localization on car bodies, and terrain flows. We compare
our method to direct regression (Direct Map) using graph NNs, and Gaussian process regression
(GPs) with Matérn kernels 1/2, 3/2, and radial basis function (RBF). In all experiments we report the
wall-clock training time (Train) on Nvidia RTX 4090 GPUs (the terrain problem is multi-GPU), and
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Figure 1: Four out of 1k geometries and solutions in dataset for the steady-state heat problem.
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Figure 2: (a) Four selected query locations for the sampled predictive solutions given data, the full
field estimations are in Figure[6] (b) The corresponding histograms for the predictive posterior at
specified query locations; the dashed black line indicates the ground truth for each histogram.

the mean per-geometry prediction time (Pred.). We also note that in using ABC for sampling from
the posterior we do not need to compute the likelihood function. This may have strong advantages in
application where the observation process yields intractable likelihoods. In using GABI with MCMC,
as in the comparisons, we do compute the likelihood. In training the latent prior for GABI, the main
way we have of knowing if the autoencoder networks perform adequately for the inference task, is by
assessing the quality of reconstruction for a holdout set, as well as how close the embed holdout set
is to being Gaussian in the latent space, which assessed qualitatively and quantitatively.

4.1 RECTANGLES — STEADY-STATE HEAT

In this section, we study the homogeneous steady-state heat equation on rectangular domains with
varying width, height, and boundary conditions. Thus, for a given rectangle M,,, boundary condition
hy, any u,, satisfies the steady-state heat equation. We take M,, C R? to be M,, = {z € R? :
0 <21 <lp,0 < zy < wy}. The domain M., is defined by its length and width (I,,, w,,) drawn
from uniform((0.1,0.1),(1,1)); we specify h,, to be zero on the bottom and left side, and drawn
from uniform((0.1,0), (1,1)) on the top and right. The solution to (9) depends on M., h,,. We
generate 1k solutions to be in the training dataset. In Figure[I] we show example geometries and
solutions in the dataset. Once the model is trained on this data (the loss is shown in[B.3)) we select a
new observation vector and geometry M,, y, and use ABC sampling as in Algorithm[I] Figure[2]
(b) shows 4 coloured histograms corresponding to the marginal distribution of a decoded posterior
(based on 10 sparse observations in the vector y,) at the 4 queried locations on Figure[2](a). As the
orange dot is close to a boundary with value O in the entire dataset (4 representative samples from the
1k geometry dataset can be seen in Figure[T), GABI present very small uncertainty in this area. As
we query points in areas where there is more variability of the solution in the dataset, GABI presents
wider uncertainty. In all cases the mean of the GABI posterior is very close to the ground truth
(vertical dashed line). This exemplifies the balance GABI strikes between sparse data and informative
data-driven priors. Comparison — Known Noise. In Table[I|we compare two sampling variants
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Table 1: Comparison on Heat Equation in Rectangular Domain

Method Field MAE % 1std % 2std Train Pred.
2D Heat Rect. Domain
GABI-ABC (u) 1.58-10724+1.36-1072 8091% 95.59% 2.62hr  0.908s
GABI-NUTS (u) 1.11-10724+1.04-1072  66.66% 96.18% ” 410.31s
Direct Map (u) 1.25-107241.02-1072 —~ - 1.47hr  0.0029s
GP M 1/2) (u) 8.46-1072+£4.18-1072 66.36% 89.45% - 0.65s
GP M 3/2) (u) 8.06-10724+4.85-10"2 65.80% 87.22% - 0.64s
GP (RBF) (u) 1.39-10714+6.66-10"2 14.88% 29.36% - 0.64s

Table 2: Comparison on Heat Equation in Rectangular Domain — Unkown Noise

Method Field/Qol MAE % 1std % 2std Train Pred.
GABI-ABC (w) 2.09-1072+£1.62-1072 75.74% 94.76% 2.62hr  0.904s
Direct Map (w) 2.13-10724£2.27- 1072 - - 1.46hr  0.0030s
GP M 1/2) (w) 7.73-10724+£5.18-1072 64.87% 87.50% - 0.615s
GP (M 3/2) (w) 7.56-10724+£556-10"2 51.58% 76.94% - 0.686s
GP (RBF) (w) 1.40-10714+6.94-1072 18.03% 36.69% - 0.694s
GABI-ABC (o) 7.96-1071 £5.74-107"  42.10% 69.11% - o
Direct Map (0) - - - - -
GP M 1/2) (o) 1.08-109 £1.03-10° - - - e
GP M 3/2) (o) 1.10-10° £1.47-10° - - - o
GP (RBF) (o) 2.01-10° +3.61-10° - - - o

of GABI with a direct regression map as well as Gaussian Process Kriging with various kernelsﬂ
M stands for Matérn. In this setup, we keep the number of observations at 10 randomly selected
locations and the noise standard deviation at 10~ 2. Comparison — Unknown Noise. In Table
we test the noise estimation capabilities of GABI. We have the noise standard deviation be random
and drawn from a shifted log-normal distribution as o,, = exp(e,, —4) + 1073; &, ~ N(0,1). We
estimate the noise for each data y,, with the GABI approach outlined in[2.3]

4.2 AIRFOILS — FLOW FIELD

In this section, we test the proposed methodology on the full field reconstruction or airflow around an
airfoil from a dataset of Reynolds averaged Navier-Stokes simulations. We use the setup described
in|Duthé et al.| (2025). Here, the geometric autoencoder is trained on the pressure and 2D velocity
field of 1k airfoil geometries with various inflow conditions. Once trained, the observation vector y,

3GABI-NUTS was tested for 10 runs not 10° due to prediction runtime.

00 05 10 00 05 10 00 05 10

(a) Pressure GT (b) Pressure Mean (c) Pressure Stddev. (d) Pressure Error

Figure 3: Comparison of ground truth (GT), inferred mean, error, and standard deviation for pressure
(p). The red dots correspond to the observation location for the pressure. Full results including
reconstruction of vertical and horizontal velocity fields are in Figure'ﬂl
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Table 3: Comparison on Airfoil

Method Field MAE % 1std % 2std Train Pred.

GABI-ABC  (p) 6.92-10724+4.39-10"2 78.77% 97.28% 8.6lhr 34.76s
Direct Map  (p) 5.35-1072£3.07-102 - - 4.68hr  0.0040s
GABI-ABC  (vp) 1.31-107'4+3.62-1072 80.36% 97.28% o e
Direct Map  (v,) 9.30-1072+1.93-1072 - - « «
GABI-ABC  (v,) 3.94-10724£2.20-10"% 75.87% 96.08% o o
Direct Map  (v,) 3.24-1072+£1.12-107? - - “ «

Table 4: Comparison on Car Resonance — Full Field Reconstruction and Source Localization

Method Field MAE % 1std % 2std Train Pred.

GABI-ABC  (u) 2.32-107'4721-1072 7548% 96.88% 22%hr 18.14s
Direct Map  (u) 6.03-107'£1.46-10"! - - 1.22hr  0.0032s
GABI-ABC  (f) 2.26-10734+4.36-10"* 80.55% 97.49% « «
Direct Map  (f) 2.46-107!£8.76-1072 - - o o

is taken to be noisy pressure observations at a small number of nodes on the surface of the airfoil,
emulating a physical scenario when such pressure sensors may be attached to a wing/blade. The
Bayesian inversion task is to reconstruct the pressure and velocity field around the airfoil, a task far
too ill-posed without a highly informative prior. To compile the results in Table 3] we test GABI-ABC
against the Direct Map with the same architecture type — we randomize the number of observation
locations to be drawn between 5 and 50 observations with probability inversely proportional to the
number of observation locations. For the supervised Direct Map approach the distribution of the
number of observation must be known at train time, this is not the case for GABI who’s training is
independent of the observation process. Figure [3|shows a select number of results. For a discussion
on out-of-distribution inference we refer the reader to Appendix [B.4.2]

4.3 CAR BODY — ACOUSTIC VIBRATION AND SOURCE LOCALIZATION

Here, we study an acoustic resonance problem with a source localization task. We have a collection
of car body geometries which undergo damped vibration due to a localized Gaussian bump forcing
present in the first 1/5 of the vehicle (where the engine is), the inversion task is to reconstruct the full
field acoustic vibration amplitude, u, as well as reconstruct the full field forcing, f , on the surface of
the vehicle from a small number of sparse noisy measurements of the vibration amplitude, we do not
observe the forcing field. The car geometries are taken from (Umetani & Bickel, [2018). We train the
model on 500 car geometries, the number of observation location is randomized as in Section@
The numerical results are in Table ] and we show a reconstruction result in Figure [4]

4.4 TERRAIN — FLOW FIELD

To demonstrate the scalability of our approach, we apply it to the reconstruction of flow fields over
complex terrain. Here, we use a large dataset (127GB) of more than 5k RANS simulations, produced
by /Achermann et al.[(2024). From the original 643 grids, we extract 8-voxel-thick, terrain-conforming
layers, resulting in 64 x 64 x 8 subdomains. Each subdomain is then converted into a graph, where
voxels become nodes connected to their adjacent neighbors. We scale both the training and the
inference methods with multi-GPU pipelines. Using four RTX4090 GPUs, training takes 52hr, while
inference takes 480s. Figure [5|shows the GABI-ABC pressure and velocity results.

5 CONCLUSION

We propose a methodology for learning highly informative priors for solving Bayesian inverse
problems across varying geometries. The scheme is realized through a geometric autoencoder which
learns informative latent representations allowing for sharing of information across geometries. Once
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(a) u truth (b) u pred. mean (c) u pred. stddev

(((((

(e) f truth (f) f pred. mean (g) f pred. stddev (h) f pred. error

Figure 4: Ground truth, inferred mean, stddev., and error for ampltitude u, and forcing f. In magenta
are the observation locations.

(a) Pressure GT (b) Pressure Mean (c) Pressure Std (d) Pressure Error

@© [l GT (®) [|v|| Mean @ [lv] Sud (h) [[v|| Error

Figure 5: Ground truth, inferred mean, error, and standard deviation for pressure and the magnitude
of the velocity vector, (||v]|) across two terrains. The red dots correspond to the observation locations.

trained this foundation model can be used with any observation process to perform Bayesian full
field reconstruction over new geometries. A creative use of ABC sampling leads to an efficient GPU
implementation. The method achieves similar predictive accuracy to supervised direct map methods,
all while outputting a full Bayesian posterior over the fields of interest and being far more flexible
due to the model being independent from the observation process. The method is tested on a wide
range of physical setups and geometries.
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A PROOFS

A.l PROOF OF LEMMA 1]

Proof. We remember

Z(y) = /uexp (=D(u;y)) dPy, Py, = g#P,.

Thus, assuming the relevant measurabilities,
2(5) = [ exp(~B(uiy) dlgyP)
u

_ / exp (—®(g(u);y)) dP.,
Z

where the second equality is given by Theorem 3.6.1 in Bogachev & Ruas| (2007). Applying the same
equality, VA € F,

Puy(4) = 575 | exp(~0uiy) dlg 4P
= % /Z;{ ]lA(U) exp (—(I)(u; y)) d(g#]pz)
= 70 |, 146 e (-0l 0P
- 2 bt s .
N Z(ly) /M) exp (=®(g(2);)) dP-
=Puy(97'(4))
= (Q#Pz\y)(A)a
where 1 4 is the indicator function. Hence, P, = gxP.,. 0

A.2 PROOF OF THEOREM[2.2]

Proof. Using Lemma replacing g with DY, identifying z,u,y with z, u,,y,, we obtain the
desired posterior. O

A.3 PROOF OF COROLLARY 23]

Proof. This follows directly from Lemma 2.1]and Theorem 2.2]by identifying z with (2, ,), P, with
(P, ®P,,), g with (DY ®1d.), changing to potential function to ®(u,, 005 yo) = 52z Yo — Hoto |3,
and finally noting Id. 4P, = Ps, . O

B ADDITIONAL NUMERICAL RESULTS AND DETAILS

The proposed methodology is architecture agnostic, however for an architecture to be appropriate for
the task we require a few particular qualities:
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* Geometry aware architecture and data-structure. As the main premise of this work is to
share information about physical fields which depend on the geometry of the problem to
which they relate, it is essential that the data-structure reflect this geometric information,
and that the neural networks used be effective at processing this information.

* Mapping to and from fixed-dimensional vectors. This framework relies on learning latent
representations between solution to PDEs and the geometries on which these are defined.
Hence, one needs to map to and from fixed dimensional latent spaces from arbitrary geome-
tries.

* Non-locality. All physical processes in this paper behave in non-local ways, the solution
field at one point in the domain affects the solution at all other points in the domain. Hence,
when encoding solution fields for a given geometry, the encoder/decoder should reflect this
non-locality.

We use three architectures, a Graph Convolutional Network (explained in E]) a Generalized
Aggregation Network (explained in[B.2)), and a transformer (explained and tested in[B.3.3).

B.1 GRAPH CONVOLUTIONAL NETWORK

We use graph convolutional layers (Kipfl 2016) in the examples heat on rectangles, RANS around
airfoil, Helmholtz on car. To induce non-locality of mappings across channels, c, at each layer we
set GCN; : M,, x R?® — M,, x R¢ and the output is concatenated with a graph level channel wise
average which is expanded to populate each node of the graph. The edge attributes are the distance
between nodes. The input node values always contain the node coordinates, and, for the encoder, also
the data solution at the node.

In GABI: In the encoder E? we map attributed graphs to latent vectors of fixed dimensions. The
decoder maps a pairing between a latent variable and a graph and populates the node attributes on
the input graph. Hence the last layer in a channel wise averaging across the graph and the channel
dimension is taken to be the latent dimension. The decoder D takes as argument a graph where
the node attributes are only the coordinates, hence only contains geometric information, and we
expand the latent sample z to decode to populate all nodes with channel dimension equal the latent
dimension.

In Direct Map: For the direct map method we use the same GCN layers as explained above. However
now we must map observation vectors y,, and geometry M,, directly to the solution on the geometry,
u,,. To do this, we make the input graph node attributes the coordinates of the nodes as per the
previous section, the observed nodal values y,, (where other values are 0), and a one-hot encoding
indicates where this node is observed or not.

GP Regression: We use a graph Matérn Gaussian process (Mostowsky et al.,2024)) with maximum
marginal likelihood estimation of the hyperparameters.

The rectangle, airfoil, and car examples are run on a single RTX4090 GPU. The terrain example is
run in a multi-GPU manner.

B.2 GENERALIZED AGGREGATION NETWORK (GEN)

For the graph-based autoencoder applied to the flow over complex terrain, we replace standard GCN
layers with Generalized Aggregation Network (GEN) layers (L1 et al.,|2020). This change allows us
to add more complex geometrical information to the edge features (relative coordinates, similarly
to (Pfaff et al.,|[2020)), as GEN layers, unlike GCNs, can process multidimensional edge features. This
message-passing formulation also uses a softmax-based message aggregation scheme, which allows
the model to dynamically weigh the importance of messages from neighboring nodes. Importantly,
we maintain the same non-local pooling operation for each layer as for the GCN-based approach.
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Figure 6: For the heat setup, we overlay in red the observation locations. (a) ground truth (b) decoded
mode of predictive posterior. (c) empirical standard deviation of decoded posterior samples. (d) error
between decoded mode and ground truth.

Table 5: Comparison of Graph Convolutional Network (GCN) and Transformer (T) architectures:
Heat Equation in Rectangular Domain

Method Field MAE % 1std % 2std Train Pred.

T: GABI-ABC (u) 1.19-10724+8.65-1073 82.97% 97.97% 18.8%hr  10.17s
T: Direct Map (u) 1.01-1072+6.69-1073 - - 11.00hr  0.0063s
GCN: GABI-ABC ~ (u) 1.58-10724+1.36-10"2 80.91% 95.59%  2.62hr  0.908s
GCN: Direct Map ~ (u)  1.25-1072 £ 1.02- 1072 - - 1.47hr  0.0029s

B.3 HEAT

In this section, we add numerical information and results for the steady-state heat problem. The
equation used to generate the dataset is

x €M, (9a)

Au(z) =0,
hn(z), x€0M,. (9b)

u(x)

where h,, is described in Section[4.1] We use a finite element solver over an unstructured triangular
mesh to solve the systems to be in the dataset.

B.3.1 IMPLEMENTATION DETAILS

Train: We use a 6-layer GCN as described in [B.I] with a 100 dimensional channel space and
latent space. We use 1k training geometries and train the model for 20k iterations using the Adam
optimizer (Adam et al., 2014) with a learning rate of 10~3. We use a training batch size of 100.

Pred: Once trained, at inference time, in GABI-ABC we decode 10k samples in 100 batches of 100
samples. We keep 100 samples as being drawn from the posterior.

B.3.2 ADDITIONAL RESULTS

In Figure [6] we show the results of inference with GABI-ABC on for the full field reconstructing
based on the small number of sparse noisy observations in red. In Figure[7]we show the two terms in
the loss for training the GABI autoencoder as well as a histogram of the encoded data batch overlaid
with the 1D standard normal distribution. We then test the performance of ABC sampling vs NUTS
sampling as we vary the dimension of the latent space for the heat inversion task. The MAE, quality
of UQ, and inference times are shown in Figure[8] In Figure [9] we perform an ablation study on the
size of the channel space of the graph autoencoder for a fixed latent dimension of 100 for Bayesian
inversion with both ABC and MCMC sampling. From this, we can assess the importance of network
size for accuracy and efficiency.
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Figure 7: (a) Lose functions during training — the total loss is the sum of these. (b) histogram of the
latent p? across all dimensions after training.
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Figure 8: Sampling schemes on the same autoencoder model with the same channel space and different
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under a Gaussian assumption, (c) sampling time.
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Figure 9: Sampling schemes on the same autoencoder model with different channel space dimensions
and same the latent dimension (fixed at 100). We compare (a) mean absolute predictive error, (b)
uncertainty quantification under a Gaussian assumption, (c) sampling time.

B.3.3 TRANSFORMER GABI

As our framework is architecture-agnostic, we also test a Transformer-based variant. Transformers
can function as neural operators [2021), achieving non-locality through attention mechanisms.
Unlike the graph-based approach, this variant treats the input as an unordered point set with coordi-
nates, without exploiting the underlying graph structure. We implement 4-layer Transformers for the
encoding and decoding networks with 64-dimensional embeddings and 8 attention heads per layer,
resulting in a comparable number of trainable parameters: ~ 200k for GABI and ~ 100k for the
direct map. As shown in Table[5] we obtain similar results to the GCN-based approach (with the
same training setup), but much slower training and prediction times, which can be attributed to the
dense self-attention operations of the Transformer layers.
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B.4 AIRFOIL

B.4.1 IMPLEMENTATION DETAILS

Train: We use an 8-layer GCN as described in with a 100 dimensional channel space and
latent space. We use 1k training geometries and train the model for 10k iterations using the Adam
optimizer (Adam et al.,[2014) with a learning rate of 103 with an exponential decay learning rate
with decay rate 0.999. We use a training batch size of 100.

Pred: Once trained, at inference time, in GABI-ABC we decode 50k samples in 100 batches of 500
samples. We keep 100 samples as being drawn from the posterior.

B.4.2 ADDITIONAL RESULTS

In Figure [I0] we show four samples from the full field dataset. In Figure[TT] we show a complete
example of results from the airfoil inversion task. We only measure the noisy pressure along the
surface of the airfoil on the red scatter points and infer from this the full pressure field and 2D velocity
field. In Figure[I2] we show four random samples drawn from the generative prior model for a given
geometry, demonstrating the physical coherence and diversity of the prior.

We now test the behaviour of GABI-ABC inference on 10 out-of-distribution airfoil geometries.
In Figure 13| we plot a histogram of the density of the training dataset geometries and a selection
of out of distribution airfoils. The x-axis shows the Mahalanobis distance (empirical covariance
weighted distance of a point to the mean) between these shapes and the training dataset. The distance
in geometry is computed using 9 summary statistics regarding airfoil thickness, camber, trailing-edge
thickness, etc. We report the MAE and percentage of the ground truth between one and two standard
deviations of the predictive posterior for pressure (reconstructed with GABI using 20 observations).
These tests suggest that the GABI framework has some mild, but limited, robustness to prediction for
outliers. Eventually, the miss-specification of the prior for such out-of-distribution geometries may
lead to unreliable inference.

B.5 CAR

For the car resonance and source localization problem we create the dataset by solving the damped
Helmholtz equation (Liu et al.,[2024) on a closed manifold

(Apm, — k+ivr)u(z) = f(x), =€ M,. (10)

where 7 = v/—1, kK = 500 is a wave speed parameter, and v = 0.2 is a damping parameter.

B.5.1 IMPLEMENTATION DETAILS

Train: We use an 6-layer GCN as described in[B.I| with a 100 dimensional channel space and latent
space. We use 500 training geometries and train the model for 10k iterations using the AdamW
optimizer (Loshchilov & Hutter, 2017) with an initial learning rate of 10~3 with and cosine decay
learning minimum rate of 10~°. We use a training batch size of 100.

Pred: Once trained, at inference time, in GABI-ABC we decode 50k samples in 100 batches of 500
samples. We keep 100 samples as being drawn from the posterior.

B.5.2 ADDITIONAL RESULTS

In Figure T4 we show some example geometries along with the forcing function to and resonance
field to reconstruct. In Figure 15| we show 3 random draws from the prior for a given geometry to
show the diversity of solutions and forcing fields.

B.6 TERRAIN
B.6.1 IMPLEMENTATION DETAILS

Train: For both the encoding and decoding layers of the autoencoder we use an encode-process-
decode backbone (Pfaff et al.,[2020; Duthé et al.| [2025)), where each processing block is composed
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Figure 10: Four samples from the Airfoil dataset for pressure, horizontal and vertical velocity fields.

of a 6-layer GEN-based GNN. Both edge and node features are projected to latent vectors with 64
dimensions. We train the model for around 300 epochs using the Adam optimizer with an exponential
learning rate decay (initial learning rate of 10~2, decay exponent of 0.99). This takes around 52
hours on our distributed training pipeline across four RTX4090 GPUs with an overall batch size of
20 graphs.

We process the training samples from [Achermann et al.| (2024)), which are larger (96 x 96 x 64) than
the testing samples (64 x 64 x 64). Following their procedure, we apply random on-the-fly crops
and rotations during training. We then further reduce the samples by keeping only the 8 fluid cell

layers directly above the terrain, resulting in a final topography-conforming training geometry of
64 x 64 x 8.
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Figure 11: Comparison of ground truth (GT), inferred mean, error, and standard deviation for pressure
(p), horizontal velocity (v, ), and vertical velocity (v,). Columns group physical variables; rows show
different prediction outputs.

Pred: At inference time, we decode 50k samples in batches of 40 samples, distributed over 4 GPUs,
which takes around 480 seconds. We keep 100 samples as being drawn from the posterior.

B.6.2 ADDITIONAL RESULTS

In Figure [I6) we show some examples of flows over different terrain geometries taken from the
training set. In Figure[I7)we show four random samples drawn from the generative prior model for a
given terrain geometry, demonstrating the physical coherence and diversity of the prior. Due to the
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Figure 12: Airfoil field samples drawn from the geometry conditioned joint prior over pressure, v,,,
and v, generated as u; ~ D:/: 20z

nature of the training data (inflows from all directions are possible), the generated samples are more
diverse in nature than the previous numerical setups.

C DiSscussION ON VAES

C.1 ALTERNATIVE VARIATIONAL FORMULATIONS
In this work we propose to: first train an autoencoder to learn an informative prior in the latent

space, second to sample from the posterior given observational data. At first glance, an alternative
approach would be to forgo this two step approach and attempt to directly learn a probabilistic
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Figure 14: Three example meshes in dataset

geometry-conditional autoencoder in the form of a VAE
bt — ar%gﬂn Ep, KL (qglyn Hp;ﬂyn) , (11)

KL (qzem ||P;ﬂyn) = logpy, (yn) + Eg  [~logp} |, (ya)] + KL (qﬁ\yn ||qz) .12

Upon close inspection of the loss for such a model, it is apparent that information from the full

solution field u,, is not incorporated in the learning, hence one cannot hope to learn the correct
relationship between y,, and u,,.
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Figure 15: Given a geometry, we show 3 samples from the conditional prior generated as u; ~ D;f 40z

On could alternatively train a model of the form

. 0
0%t = ar% g}nn EDy KL (qunly" p:ﬁn‘yn> . (13)
However, as u,, are each associated with different geometries M,, we cannot put a common prior
distribution over these in a statistically interpretable manner. Furthermore, such a model would not

learn the correct relationship between y,, and u,, as observational data is ingested in an unsupervised
manner; no regression loss encourages y,, to be close to u,, in any way.

There exist other models such as UQ-VAEs [2022) where the decoder is replaced by the
solution operator for the assumed PDE responsible for generating the data. This of course requires us

to know the governing of the problem, the boundary conditions etc — and has the same challenges

and limitations as other physics-informed methodologies. Furthermore, this framework is not made
to handle variable geometries.

C.2 VAES INSTEAD OF REGULARIZED AUTOENCODERS
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Figure 16: Four examples of flows (p, v, vy, v, ) over complex terrain taken from the training set.
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