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ABSTRACT

The demand for efficient deployment of large language models (LLMs) has driven
interest in quantization, which reduces inference cost, and parameter-efficient
fine-tuning (PEFT), which lowers training overhead. This motivated the develop-
ment of quantization-aware PEFT to produce accurate yet efficient quantized mod-
els. In this setting, reducing quantization error prior to fine-tuning is crucial for
achieving high model accuracy. However, existing methods that rely on low-rank
adaptation suffer from limited representational capacity. Recent Fourier-related
transform (FT)-based adapters offer greater representational power than low-rank
adapters, but their direct integration into quantized models often results in inef-
fective error reduction and increased computational overhead. To overcome these
limitations, we propose QWHA, a method that integrates FT-based adapters into
quantized models by employing the Walsh-Hadamard Transform (WHT) as the
transform kernel, together with a novel adapter initialization scheme incorporating
adaptive parameter selection and value refinement. We demonstrate that QWHA
effectively mitigates quantization errors while facilitating fine-tuning, and that its
design substantially reduces computational cost. Experimental results show that
QWHA consistently outperforms baselines in low-bit quantization accuracy and
achieves significant training speedups over existing FT-based adapters. The code
is publicly available at https://github.com/vantaa89/qwha.

1 INTRODUCTION

Fine-tuning enables large language models (LLMs) to generalize beyond their pre-training, allowing
adaptation to various domains (Wei et al., 2022; Liu et al., 2023; Qin et al., 2024; DeepSeek-AI et al.,
2025). While full fine-tuning yields superior accuracy, it often incurs significant overhead due to the
extensive computations required to update all the trainable model parameters (Loshchilov & Hutter,
2017; Zhu et al., 2025). Parameter-efficient fine-tuning (PEFT) addresses this issue by optimizing
only a small subset of the parameters while leaving most of them frozen (Li & Liang, 2021; Liu
et al., 2022; Hu et al., 2022; Liu et al., 2024; Kopiczko et al., 2024). Beyond reducing training
overhead, recent studies have shown that combining PEFT with model compression techniques can
enhance inference efficiency at the same time (Dettmers et al., 2023). Among these techniques,
quantization, which lowers the bit precision of model parameters, has gained particular attention
due to its robustness against accuracy degradation under high compression ratios (Frantar et al.,
2023; Lin et al., 2024; Dettmers et al., 2024; Kim et al., 2024b; Shao et al., 2024; Ashkboos et al.,
2024; Zhang et al., 2024; Liu et al., 2025). Consequently, quantization-aware PEFT (QA-PEFT) has
been widely explored as a promising approach for efficient adaptation and inference in LLMs.

Prior works on QA-PEFT typically relied on low-rank adaptation (LoRA) (Li et al., 2024; Guo et al.,
2024; Kim et al., 2024a; Liao et al., 2024; Deng et al., 2025). In contrast, for standard PEFT, several
alternatives to LoRA have recently been proposed to address the representational limitations of low-
rank structures. In particular, Fourier-related transform (FT)-based adapters have emerged as strong
alternatives. They train a sparse set of coefficients to represent weight updates in the transform do-
main, offering superior representational capacity (Gao et al., 2024b; Du et al., 2025; Shen et al.,
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Figure 1: Overview of Quantization-aware Walsh-Hadamard Adaptation (QWHA). The weight up-
date from QWHA is formulated as ∆W = FH−1, where H is a predefined Walsh-Hadamard
transform (WHT) matrix and F is a trainable sparse coefficient matrix consisting of values c and
their indices E. The multiplication FH−1 indicates the expansion of learned coefficients (i.e., c),
over the transform basis (i.e., columns of H−1). Note that, the coefficients c are the only trainable
parameters, and H remains constant. Our key contributions are in the adoption of WHT into the
adapter (WHA) and their initialization, particularly E (AdaAlloc) and c (Refinement).

Table 1: Comparison of adapter types and parameter selection strategies. Adapter types include
low-rank adapters (LoRA), recent FT-based adapters (DCA and DHA), and our proposed adapter
(WHA). Strategies to determine parameter location E in F include magnitude-based selection,
random uniform selection, training via reparameterization, and our proposed method (AdaAlloc).

Adapter Type Parameter Selection Strategy

Ability Factors LoRA DCA DHA WHA Magnitude Random Trainable AdaAlloc

Fine-tuning
Quantization Error Reduction

2025). However, our observations show that directly applying FT-based adapters to quantized mod-
els often yields worse performance than LoRA-based methods specifically designed for QA-PEFT.
This highlights the importance of explicit consideration for quantization effects when fine-tuning
quantized models. LoRA-based methods adopt quantization-aware initialization strategies that com-
pensate for the errors between full- and low-precision weights using low-rank approximation with
the adapters prior to fine-tuning. However, applying such initialization in FT-based adapters is non-
trivial, as identifying the optimal sparse set of parameters and their values to approximate a given
matrix is an NP-hard problem (Natarajan, 1995). Moreover, the choice of transform type becomes
an additional design consideration. This raises a research question: how to effectively exploit FT-
based adapters in QA-PEFT. To the best of our knowledge, neither FT-based adapters nor their
initialization techniques have been explored in the context of QA-PEFT.

In this paper, we present QWHA, a novel QA-PEFT method that introduces a FT-based adapter to-
gether with a quantization-aware initialization scheme, as illustrated in Figure 1 and Table 1. We
adopt WHT in our adapter design (WHA), inspired by its high-fidelity reconstruction ability in the
spectral domain, to effectively compensate for quantization errors (Hedayat, 1978). In addition, the
WHT kernel consists solely of ±1 elements, enabling efficient computations using only additions
and subtractions, thereby eliminating matrix multiplications (Dao-AILab, 2024). We further reduce
computation by applying a single transform in the adapter, unlike conventional FT-based adapters
that apply two transforms. For quantization-aware adapter initialization, we develop a tractable
solution that first selects parameter locations E and then assigns their values c. We introduce a
channel-wise parameter allocation scheme that guarantees a lower bound on the number of param-
eters per channel to facilitate fine-tuning while allocating more parameters to channels with larger
quantization errors, and then select the highest-magnitude coefficients within each channel to ef-
fectively reduce quantization error (AdaAlloc). Finally, we refine the selected parameter values,
thereby enabling substantial reduction of quantization error (Refinement). We theoretically analyze
the superior representation capacity of our proposed adapter and empirically validate the benefits of
our adapter design and initialization method across diverse datasets and models.
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2 BACKGROUND

2.1 LLM QUANTIZATION

LLM quantization is a key technique for improving inference efficiency by reducing the memory
bottleneck caused by model weights through lowering their bit precision (Frantar et al., 2023), typi-
cally expressed by the following equation:

W̃Q = clamp
(

round
(
W0

s

)
− z, 0, 2n − 1

)
WQ = (W̃Q + z)× s (1)

Here, W0 denotes the pre-trained weight matrix, while W̃Q and WQ represent the quantized integer
weights and the corresponding dequantized weights, respectively. s and z are quantization scales
and integer zero-points. Clamping is applied to the rounded and shifted value within the range 0 to
2n − 1, where n is the bit-width.

LLMs generally contain outliers, a small fraction of weights that are exceptionally large compared
to the main distribution, and LLM quantization is highly sensitive to these outliers (Dettmers et al.,
2024; Kim et al., 2024b; Tseng et al., 2024; An et al., 2025). These outliers induce corresponding
outliers in the quantization error. Most quantization errors ∆WQ = W0−WQ are bounded within a
small range (e.g., [− s

2 ,
s
2 )), since most weights within the clamping range are mapped to the nearest

quantization level. In contrast, for outliers, the quantization error is defined as the difference between
the original large weight and the clamping boundary values, resulting in extremely large errors that
lead to significant accuracy degradation. Thus, reducing outlier-induced error is critical, and recent
post-training quantization techniques for LLMs focus on mitigating these errors to preserve model
accuracy (Dettmers et al., 2024; Kim et al., 2024b; Shao et al., 2024; Tseng et al., 2024; Zhang et al.,
2024). Details on the distribution of quantization errors are presented in Appendix A.

2.2 QUANTIZATION-AWARE PEFT

A typical quantization-aware PEFT (QA-PEFT) adopts LoRA (Hu et al., 2022), which injects a pair
of low-rank matrices into linear layers to approximate the weight updates ∆W as follows:

Y = (WQ +∆W )X s.t. ∆W = BA (2)

Here, A ∈ Rr×din and B ∈ Rdout×r are low-rank adapters, fine-tuned instead of frozen quantized
weight WQ ∈ Rdout×din , where X ∈ Rdin×(b×s) is the activation matrix with batch size b and se-
quence length s. Since there is no prior information about the weight updates before fine-tuning,
LoRA typically initializes A as a random matrix and B as a zero matrix. In QA-PEFT, however,
initializing the adapters to minimize quantization error prior to fine-tuning plays a crucial role in
accuracy. Early approaches addressed this by reconstructing quantization errors via singular value
decomposition (SVD) to initialize low-rank adapters (Li et al., 2024; Guo et al., 2024). More re-
cent works, such as RA-LoRA (Kim et al., 2024a) and CLoQ (Deng et al., 2025), adopt advanced
decomposition strategies and improved calibration to further mitigate this limitation. However, ex-
isting QA-PEFT methods remain restricted to LoRA, and no prior studies have explored the use of
other advanced adapters for QA-PEFT, which will be discussed in the next section.

2.3 FOURIER TRANSFORM-BASED ADAPTERS

Sparse adapters have recently emerged as a strong alternative to various low-rank adapters (Bhard-
waj et al., 2024; Gao et al., 2024b; Shen et al., 2025; Du et al., 2025). SHiRA (Bhardwaj et al., 2024)
proposes directly updating a sparse subset of the weight matrix, enabling multi-adapter fusion. More
recent methods adopt Fourier-related Transforms (FT) to represent the weight update ∆W in the
spectral domain by applying transforms along both the rows and columns of the matrix as follows:

F = H ′∆WH =⇒ ∆W = H ′−1FH−1 (3)

Here, H ∈ Rdin×din and H ′ ∈ Rdout×dout are the orthonormal transform kernels. Prior works on
these FT-based adapters have primarily focused on identifying suitable transform kernels. Fouri-
erFT (Gao et al., 2024b) employs the discrete Fourier transform (DFT), while LoCA (Du et al.,
2025) replaces the DFT with the discrete cosine transform (DCT) to avoid discarding imaginary
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components. SSH (Shen et al., 2025) instead leverages the discrete Hartley transform (DHT) for
the same purpose. As these kernels are composed of sinusoidal functions, F corresponds to the
coefficients of the frequency components, which collectively represent ∆W . We denote DCT and
DHT-based adapters as DCA and DHA throughout the paper.

Since the transform kernels are fixed matrices, F is the only learnable parameter during fine-tuning.
To reduce the number of trainable parameters, F is treated as a sparse matrix. Specifically, F =
Scatter(c,E) is constructed from a value vector c ∈ Rp and an index list E ∈ Np×2, where Scatter
assigns F(El,1,El,2) = cl for 0 ≤ l ≤ p − 1, with all other entries fixed to zero throughout training
and inference. At the initialization stage, since there is no information on ∆W , previous works
generally select the locations E randomly and the values of the spectral coefficients c are initialized
to zero (Gao et al., 2024b; Du et al., 2025). SSH (Shen et al., 2025) proposes an advanced parameter
selection strategy under the assumption that the frequency patterns of pre-trained and fine-tuned
weights are similar. It first transforms the pre-trained weights and selects half of the positions with
the largest spectral coefficients, while the remaining half are chosen randomly.

Overall, previous works demonstrate that FT-based adapters achieve superior accuracy improve-
ments in full-precision fine-tuning compared to low-rank adapters. However, their advantages over
low-rank adapters have only been empirically demonstrated, without theoretical justification. In
addition, transforms within FT-based adapters incur heavy computational overhead (H and H ′ in
Equation 3). Moreover, their application to QA-PEFT, particularly with initialization strategies that
reconstruct quantization error, has not yet been explored.

3 METHODOLOGY

In this section, we present our proposed method, QWHA (Quantization-Aware Walsh-Hadamard
Adaptation). First, we present the formulation of our proposed WHT-based adapter. Next, we ana-
lyze the key component that enables FT-based adapters to achieve greater representational capacity
than low-rank adapters, and demonstrate why WHA, in particular, excels at mitigating quantiza-
tion error during adapter initialization. Finally, we introduce a parameter initialization strategy that
reduces quantization error and enhances fine-tuning capability. Note that the experiments in this
section use the 4-bit quantized LLaMA-3.2-3B model, with the total number of trainable parameters
P (r) =

∑
l∈layers

(dl,in + dl,out)× r fixed by setting r = 64 across all adapters.

3.1 QA-PEFT ADAPTER DESIGN

WHT-based Adapter (WHA) We design our proposed adapter by constructing the weight update
as the transformation of a sparse matrix F through an orthogonal transform H−1. Specifically, we
adopt the WHT (Hedayat, 1978; Kunz, 1979), a particular instance of the FT whose kernel consists
only of ±1 entries, for the transform H (details on WHT and other FT kernels are provided in
Appendix B.1). Accordingly, our adapter is formulated as follows:

Y = (WQ +∆W )X s.t. ∆W = FH−1. (4)

The advantages of our adapter design are discussed in the following paragraphs.

Full-Rank Adapter. FT-based adapters exhibit greater representational capability than LoRA
variants because they offer higher rank capacity given the same number of parameters. The repre-
sentational power of low-rank adapters is strictly bounded by their inner dimension r (Equation 2).
In contrast, since the transform kernels in FT-based adapters are orthogonal and therefore full-rank,
the rank of the adapter depends solely on the sparse matrix F (Equation 3 and 4). Given that
nonzero parameters are selected uniformly at random, if both rows and columns receive more than
two parameters on average, then F achieves full rank rmax = min(din, dout) with high probabil-
ity (Coja-Oghlan et al., 2020). Since our adapter initialization in Section 3.2 assigns at least a few
elements to each channel and selects parameters independently per channel, the full-rank conditions
are satisfied. Details of this condition are provided in Appendix B.2. Figure 2(a) presents the em-
pirical analysis of the rank of adapter weights, normalized by the maximum achievable rank rmax
and averaged across layers. While LoRA achieves less than 6.3% of the normalized rank, FT-based
adapters are nearly full-rank. Hence, our proposed WHA exhibits high representational capacity.
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(a) Normalized Rank of Adapter Weights (b) Cumulative Energy of Decomposition and Transforms on Δ𝑊!

Figure 2: (a) Comparison of rank in weight updates between low-rank and FT-based adapters across
linear layers. (b) Cumulative distribution of ℓ2 norm of singular values and transform coefficients
with Pareto hill index η for the quantization error ∆WQ in the 14th-layer Value projection. The
vertical blue line indicates a point where the adapters have the same number of parameters.

(a) Outlier Component Inclusion Ratio

P(r=64)

(b) Quantization Errors for given Number of Parameters in Adapters

P(r=64)

Figure 3: (a) Average coverage of outlier components within the selected parameters. (b) ℓ2 norm
of the layer output error after initialization on the 14th-layer Key projection. The vertical blue lines
indicate points where the adapters have the same number of parameters.

Single transform. Conventional FT-based adapters apply transforms to both the input and output
dimensions of the sparse matrix F as denoted in Equation 3. However, we find no clear advantage
of this approach over a single transform in the context of quantization. Since quantization errors
are defined group-wise within each output channel, the channels can be treated as independent, and
multiple transforms do not improve the representational capacity (i.e., rank) of the adapter. There-
fore, to avoid unnecessary operations, we design WHA to perform a single transform as described
in Equation 4.

Benefits of WHT over other transforms. As discussed in Section 2.1, quantization errors exhibit
heavy-tailed outliers. For QA-PEFT, where mitigating such errors is crucial, the adapter must cap-
ture the outlier structure with a small number of parameters, as in the case of sparse adapters using
the sparse matrix F . We strategically adopt the WHT for our adapter design to effectively capture
such outliers (Hedayat, 1978; Kunz, 1979). The WHT kernel consists only of ±1 entries, and its
basis functions are square-wave patterns with sharp transitions. In contrast, prior FT-based adapters
adopt DCT or DHT, whose sinusoidal bases exhibit smooth transitions. This structural difference
makes the WHT better aligned with abrupt changes such as outlier values. Therefore, WHT inher-
ently provides a more compact coefficient representation of quantization errors compared to DCT
or DHT. We empirically demonstrate this by analyzing the cumulative energy in adapter parame-
ters (Figure 2(b)), defined as the ℓ2 norm of coefficients from the transform of ∆WQ in FT-based
adapters, and the ℓ2 norm of singular values of ∆WQ in low-rank adapters. Both coefficients and
singular values follow a Pareto-like distribution (see Appendix B.3), which can be characterized by
the Pareto hill index η, where a smaller η indicates a sharper distribution (Arnold, 1983). Since the
total cumulative energy equals ∥∆WQ∥2F , the fastest convergence curve of WHT, with the smallest
η, demonstrates that it concentrates the largest portion of energy within a small number of coeffi-
cients, enabling accurate reconstruction with a limited number of parameters. As a result, WHA ef-
fectively compensates for quantization errors, particularly large-magnitude ones from salient weight
channels, as shown empirically in Figure 3. For a fair comparison, we use the same parameter ini-
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Algorithm 1 QWHA Initialization Algorithm

Require: Weight quantization error ∆WQ ∈ Rdout×din , Activation X ∈ Rdin×(b·s), WHT matrix H
Require: Budget p, Accumulated budget p̃, channel-wise budget (p0, . . . , pdout−1) ∈ Ndout

Require: Parameter value vector c ∈ Rp, index list E ∈ Np×2

Initialize p̃, c,E ← 0
Set R← UΣ1/2 ← UΣU⊤ := SVD(XX⊤)
Set (p0, . . . , pdout−1)← AdaAlloc(p,∆WQ),B ←H−1R ▷ Parameter budget allocation
for i = 0 to dout − 1 do

Set v ← (∆WQ)i,:R

Set Ep̃,...,p̃+pi−1 ← TopKIndex
pi

(vB−1) ▷ Channel-wise parameter selection
Set B′ ← B(i1,...,ipi ),:

Set cp̃,...,p̃+pi−1 ← vB′⊤(B′B′⊤)−1 ▷ Value refinement
Accumulate p̃← p̃+ pi

end for
Update F ∈ Rdout×din ← c,E

tialization method described in Section 3.2. We define outlier coverage as the ratio of the ℓ1 sum of
coefficients captured by the selected parameter locations to that of all coefficients corresponding to
the top 10% magnitude outliers of ∆WQ.

3.2 QUANTIZATION-AWARE ADAPTER INITIALIZATION

Objective Function. Our goal in initializing WHA is to minimize the layer output error (∆WQX)
caused by weight quantization, using a coefficient matrix F with p non-zero elements. Formally,
the objective is given by:

argmin
c,E

∥∆WQX − FH−1X∥2F (5)

where ∥·∥F denotes Frobenius norm. Following the reduction procedure used in Frantar et al. (2023)
and Deng et al. (2025), this reduces to:

argmin
c,E

∥∆WQR− FH−1R∥2F (6)

Here, R = UΣ1/2 is the invertible square root of the Hessian matrix attained by SVD as
XX⊤ = UΣU⊤. A detailed derivation on this reduction is provided in Appendix C.1. As we
aim to find a sparse F (c,E) that minimizes Equation 6, it constitutes an NP-hard sparse approxi-
mation problem (SAP) (Natarajan, 1995). To make this problem more tractable, we decompose it
into two subproblems: first, parameter selection to determine the locations of the nonzero elements
to fine-tune (E); and second, value refinement to optimize the values of the selected positions (c).

Parameter Selection with AdaAlloc. Given a number of parameter (budget) p for a layer, a naive
selection method to reduce quantization error is to choose the p largest-magnitude elements from
the dense solution ∆WQH of Equation 6. However, since large-magnitude coefficients are of-
ten clustered in a few channels containing outliers, parameters become overly concentrated in a
small number of channels. As a result, magnitude-based selection yields a low-rank F , degrading
fine-tuning capability. Conventional methods prevent this rank reduction by incorporating random
selection. For example, LoCA initializes parameter locations randomly and then optimizes these
locations during fine-tuning. Thus, from the perspective of initialization, LoCA is equivalent to ran-
dom selection at this stage. Additionally, SSH allocates half of the parameters randomly, while it
selects the other half based on magnitude. However, these randomness-based approaches result in
high layer output error because they fail to capture the parameters critical for reducing the error. To
construct a sparse F that is high-rank and minimizes initialization error, we first allocate the param-
eter budget adaptively across output channels in proportion to their activation error magnitudes:

pi ←

⌊
p · ∥(∆WQX)i,:∥tF∑dout

j=1∥(∆WQX)j,:∥tF

⌋
, (7)
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Figure 4: Rank of adapter weights for
each parameter selection methods.

Table 2: Layer output error (ℓ2 norm, scaled by 1× 103) after
initialization. ‘None’ denotes the error before initialization.

Method None Random SSH Magnitude AdaAlloc

Query 13.84 10.55 6.99 5.95 5.11
Key 0.54 0.43 0.30 0.25 0.27
Value 28.08 22.98 17.38 15.10 14.92
Out 4.66 3.70 2.70 2.24 2.01
Gate 1.88 1.57 1.25 1.04 1.13
Up 25.76 23.05 19.85 16.52 17.97
Down 21.36 19.21 16.96 14.00 15.25
Average 7.21 5.96 4.57 3.82 3.86

where t is a temperature hyperparameter controlling allocation sharpness. Because the parameter
budget must be an integer, we apply the floor operation, which may leave fewer than dout parameters
unassigned. These remainders are distributed to the output channels with the smallest allocations
to ensure

∑dout
i=1 pi = p. Since all output channels receive parameter budgets proportional to their

errors, F maintains full rank, while allocating more parameters to important channels with higher
quantization error. Next, within the budget of each output channel, we select parameters based on
magnitude to effectively reduce the error. We compare the rank and layer output error of previous se-
lection methods and AdaAlloc, as shown in Figure 4 and Table 2. For a fair comparison, all selection
methods use the same value assignment method discussed in the next paragraph. AdaAlloc is the
only parameter selection method that simultaneously achieves a nearly full-rank F and maintains
low layer output error. Examples of the selected parameters are provided in Appendix C.2.

Value Refinement. To assign each parameter a value that effectively reduces layer output error,
we solve the channel-wise SAP derived from Equation 6 for each ith output channel with a given
parameter budget pi:

min
x
∥v − xB∥22, where v = (∆WQ)i,:R, B = H−1R. (8)

Here, x is the ith row of F , constrained to have pi non-zero elements. We first select the pi largest-
magnitude entries from the channel-wise dense solution x0 = vB−1 = (∆WQH)i,:. Next, rather
than directly reusing the values from a dense solution, we refine them to minimize layer output error.
Specifically, we re-project v onto the rows of B corresponding to the selected indices, denoted as
B′ ∈ Rpi×din , which serve as the most relevant basis vectors:

x∗ = vB′⊤(B′B′⊤)−1. (9)

Figure 5: Effect of refinement
on average layer output error.

This allows the selected basis vectors to account for the impact of
unselected vectors, yielding a more accurate approximation. With-
out this step, interactions among basis vectors are ignored, leading
to suboptimal error reduction. Note that the refinement is applica-
ble regardless of the parameter selection strategy. Figure 5 shows
that refinement is crucial for reducing layer output error, presenting
the layer output error after initialization with parameters selected by
AdaAlloc. Further details on the error analysis are provided in Ap-
pendix C.3. Finally, E and c for channel i are initialized to the se-
lected indices and their refined values x∗. Algorithm 1 summarizes
the initialization process, with details provided in Appendix C.4.

4 EXPERIMENTS

We evaluate the effectiveness of QWHA in terms of model accuracy
and training efficiency. We first compare QWHA with state-of-the-art QA-PEFT baseline and sparse
high-rank adapters including FT-based adapters. Then, we provide a detailed analysis of the impact
of using WHA and AdaAlloc. Finally, we demonstrate the efficiency of QWHA regarding WHA.
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Table 3: Accuracy (%) evaluation results on CSQA and GSM8k benchmarks. ‘QA Init.’ denotes the
existence of quantization-aware initialization.

Bits Method Adapter QA Coefficient LLaMA-3.1-8B LLaMA-3.2-3B Mistral-7B-v0.3

Type Init. Selection CSQA GSM8k CSQA GSM8k CSQA GSM8k

16 Pre-trained - - - 70.78 6.22 64.99 3.18 70.49 13.72
Fine-tuned - - - 71.84 59.74 66.43 44.80 71.87 54.51

4

GPTQMagR - - - 69.11 2.58 64.43 3.34 69.54 10.39
CLoQ LoRA ✓ - 69.58 53.83 65.48 39.27 71.32 52.01
SHiRA Sparse ✗ Random 71.07 54.36 63.10 40.71 70.88 51.02
LoCA DCA ✗ LoCA 71.45 54.36 65.59 40.33 71.55 47.99
SSH DHA ✗ SSH 70.75 53.98 65.83 39.80 71.57 47.99
QWHA WHA ✓ AdaAlloc 71.50 56.10 66.11 41.47 71.70 53.68

3

GPTQMagR - - - 67.76 2.65 61.49 2.43 67.57 1.29
CLoQ LoRA ✓ - 68.71 53.75 64.35 39.20 69.91 46.25
SHiRA Sparse ✗ Random 69.68 45.49 62.90 35.33 69.36 46.70
LoCA DCA ✗ LoCA 70.21 53.15 63.30 36.69 69.64 46.10
SSH DHA ✗ SSH 69.86 50.34 63.57 38.13 69.65 47.15
QWHA WHA ✓ AdaAlloc 70.50 55.34 64.80 39.58 70.22 47.84

2

GPTQMagR - - - 41.00 0.45 42.90 0.08 45.91 0.00
CLoQ LoRA ✓ - 56.49 33.89 54.89 26.53 61.80 33.36
SHiRA Sparse ✗ Random 51.84 27.74 52.91 22.59 59.08 33.57
LoCA DCA ✗ LoCA 56.71 33.97 53.87 23.88 62.03 33.89
SSH DHA ✗ SSH 56.06 30.55 54.01 25.77 62.31 32.06
QWHA WHA ✓ AdaAlloc 60.98 37.83 57.03 29.11 63.84 35.33

Models and Datasets. We evaluate QWHA on the Mistral-7B-v0.3 (Mistral AI, 2024) and
LLaMA (Grattafiori et al., 2024) model families, including LLaMA-3.1-8B and LLaMA-3.2-3B.
We evaluate the models on both general question-answering tasks for the models fine-tuned on
instruction-following datasets and arithmetic reasoning tasks for the models fine-tuned on mathemat-
ical reasoning benchmarks. For instruction fine-tuning, we use the Stanford-Alpaca dataset (Taori
et al., 2023)1 with 52k samples. We evaluate on zero-shot commonsense question answering
(CSQA)(Gao et al., 2024a), covering seven multiple-choice benchmarks(Clark et al., 2018; 2019;
Zellers et al., 2019; Talmor et al., 2019; Bisk et al., 2020; Sakaguchi et al., 2021). For arithmetic
reasoning, we fine-tune on the GSM8k (Cobbe et al., 2021) dataset and evaluate with zero-shot
chain-of-thought reasoning questions on its test set, following Cobbe et al. (2021).

Baselines. We include full fine-tuned model (Fine-tuned) and quantized model, which use
GPTQ (Frantar et al., 2023) with MagR (Zhang et al., 2024) (GPTQMagR) as baselines. We note
that our method is also compatible with any other quantization schemes. We also include CLoQ,
a recent QA-PEFT method that shares our goal of layer output error reduction during initialization
for low-rank adapters. Other LoRA-based methods (Kim et al., 2024a; Liao et al., 2024) involving
layer-wise calibration or layer-wise parameter allocation are orthogonal to our approach and can
be integrated in future work. We evaluate sparse adapters, including SSH and LoCA (FT-based)
and SHiRA (non FT-based). We note that LoCA further fine-tunes the randomly selected parameter
indices via reparameterization with a cost of additional training overhead. We also build advanced
hybrid baselines that integrate transforms or parameter selection strategies from prior works into our
schemes by applying DCA and DHA with our AdaAlloc, or applying various parameter selection
strategies to our WHA.

Implementation Details. Following prior work, adapters are applied to linear layers with a pa-
rameter budget of P (r = 64), and quantization is performed with a group size of 64. Note that we
apply a scaling factor α ≃ 1 to all adapters, while the equations in the preceding sections omitted
it by α = 1 for simplicity. We set the AdaAlloc temperature to t = 1, which suffices to meet the
full-rank condition. Further description on the training hyperparameter including scaling factor α
and temperature t are provided in Appendix D.1. We use WikiText-2 (Merity et al., 2016) as a

1https://huggingface.co/datasets/yahma/alpaca-cleaned
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Table 4: Accuracy (%) evaluation results on CSQA and GSM8k benchmarks with variants of adapter
types and parameter selection strategies in LLaMA-3.2-3B. ‘QA Init.’ denotes the existence of
quantization-aware initialization, and ‘Refine.’ denotes the value refinement during initialization.

Adapter QA Coefficient Refine. 4-bit 3-bit 2-bit

Type Init. Selection CSQA GSM8k CSQA GSM8k CSQA GSM8k

WHA ✗ Random ✗ 66.00 40.94 63.53 37.60 54.03 24.41
WHA ✓ Random ✓ 65.91 40.71 63.91 37.30 54.48 24.48
WHA ✓ Magnitude ✓ 66.07 41.01 64.52 36.69 56.49 28.12
WHA ✓ LoCA ✓ 65.75 40.94 63.73 36.92 53.93 21.15
WHA ✓ SSH ✓ 65.96 40.78 62.92 36.92 54.20 27.14
WHA ✓ AdaAlloc ✓ 66.11 41.47 64.80 39.58 57.03 29.11
DCA ✓ AdaAlloc ✓ 65.54 39.72 64.77 37.30 55.95 27.29
DHA ✓ AdaAlloc ✓ 65.92 40.84 64.35 38.89 56.05 27.52

Sparse ✓ AdaAlloc ✓ 65.60 40.94 63.43 37.53 55.97 26.54

Figure 6: Accuracy of CLoQ and QWHA.

Table 5: Training time (hours) on Alpaca dataset.

Batch
CLoQ SHiRA QWHA SSH LoCA

Size

1 12.5 15.5 18.2 63.3 92.3
2 7.1 8.2 9.7 45.8 53.4
4 5.0 5.5 6.0 26.1 30.1
8 4.1 4.3 4.6 13.3 16.5

16 3.6 3.7 3.9 8.3 9.8

calibration dataset for adapter initialization, following Deng et al. (2025), to ensure generality. All
experiments are conducted on NVIDIA A100 80GB GPUs.

4.1 FINE-TUNED MODEL ACCURACY

Main evaluation. Table 3 shows that QWHA outperforms both low-rank adapters with
quantization-aware initialization and conventional sparse adapters. In particular, the effectiveness
of QWHA is evident in the 2-bit setting, where it achieves scores at least 2-3% higher than the
baselines. Without quantization-aware initialization, sparse adapters, including FT-based adapters,
perform worse than low-rank adapters in several cases. This underscores the need for quantization-
aware initialization, especially in sub-4-bit settings where fine-tuning alone cannot fully restore per-
formance. We note that task-specific results of the CSQA benchmark are presented in Appendix D.2.

Effect of WHA and AdaAlloc. We further examine the effectiveness of WHA and AdaAlloc,
with QWHA consistently outperforming both low-rank adapters and advanced variants of sparse
adapters. Figure 6 for 4-bit quantized LLaMA-3.2-3B shows that increasing the number of param-
eters in CLoQ cannot close the accuracy gap with QWHA, as QWHA with P (r > 32) already
surpasses CLoQ’s maximum achievable score. This highlights the advantage of WHA, which pro-
vides superior representational capacity than low-rank adapters. Table 4 further demonstrates that
WHA and AdaAlloc achieve the best results in each respective category of adapter type and parame-
ter selection method. We note that LoCA’s post-hoc location selection undermines the effectiveness
of quantization-aware initialization based on the initially chosen parameters, unlike in PEFT. Abla-
tions on the temperature t in Equation 7 and quantization group size are provided in Appendix D.3
and D.4, respectively.
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4.2 COMPUTATIONAL EFFICIENCY

Training time for QWHA on the Alpaca dataset with LLaMA-3.1-8B is reported in Table 5, where
QWHA achieves a substantial speedup over previous FT-based adapters by leveraging WHA. WHA
employs a single transform instead of the double transform used in conventional FT-based adapters,
while achieving higher accuracy. Moreover, the fast recursive WHT kernel replaces matrix multi-
plications with a smaller number of additions and subtractions. In contrast, the recursive kernels
of DCT and DHT, which require the DFT, are slower than direct matrix multiplication due to du-
plicated computations for imaginary parts. As a result, WHT achieves a similar training time to
low-rank adapters or to a simple sparse adapter. In contrast, LoCA incurs additional latency even
compared to SSH, due to the training of location parameters. Memory usage remains almost iden-
tical across all adapters with the same number of parameters. Detailed results on the training time
of each transform kernel and the memory usage of each adapter are provided in Appendix D.5. In
addition, initialization latency and memory usage of each adapters are provided in Appendix D.6,
and inference throughput and memory usage are provided in Appendix D.7.

5 CONCLUSION

In this work, we introduce QWHA, a novel QA-PEFT framework featuring a Walsh-Hadamard
transform-based adapter and its quantization-aware parameter initialization scheme. WHA offers
strong fine-tuning capability and excels in quantization error reduction. The proposed AdaAlloc
scheme facilitates both fine-tuning and quantization error reduction during parameter selection,
while parameter refinement enables substantial quantization error reduction. We validate QWHA
across diverse models and datasets, where it consistently outperforms existing baselines in accuracy
and demonstrates its effectiveness. We also show that using WHA with a single transform provides
computational benefits, enabling more efficient training than conventional FT-based adapters.
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ETHICS STATEMENT

This paper presents research aimed at advancing the efficiency of large language models through
quantization-aware parameter efficient fine-tuning. We acknowledge that large language models
carry potential societal risks, including biases and misuse; however, our study focuses solely on
methodological improvements in training and inference efficiency. We believe that our contributions
do not introduce additional harms beyond those already inherent in the underlying models.

Regarding the use of large language models in this paper, we employed them as auxiliary tools for
revising writing, checking grammar, and correcting typographical errors, but they did not play a
significant role in research ideation or substantive writing that would warrant their consideration as
contributors.

REPRODUCIBILITY STATEMENT

This paper introduces a novel algorithm for quantization-aware parameter efficient fine-tuning
adapter design and its initialization. To ensure reproducibility, we provide the full source code
as an anonymous, downloadable package in the supplementary materials, including detailed instruc-
tions for environmental setup, training, and evaluation. All datasets used in our experiments for
fine-tuning and evaluation are publicly available, and we supply preprocessing steps and data prepa-
ration scripts to guarantee consistency with our reported results. Furthermore, complete proofs and
derivations of our theoretical claims are presented in the appendix, with additional clarifications
provided in the supplementary materials. Together, these resources are intended to fully enable
independent reproduction and verification of our results.
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A QUANTIZATION ERROR DISTRIBUTION

We present the distribution of quantization errors and their relationship to outliers in the pre-trained
weights, as discussed in Section 2.1, in Figure 7. Figure 7(a) shows the overall error distribution,
while Figure 7(b) highlights the channel-wise similarity between quantization errors and pre-trained
weights in the 14th layer of LLaMA-3.2-3B. During quantization, values are divided by the quanti-
zation scale, typically defined per group within each output channel, and then rounded to an integer
and clamped within a range determined by the bit-width. Most quantization errors remain within
this rounding range, but large-magnitude outliers are often clamped, leading to large errors. Because
model accuracy is highly sensitive to outlier weights, their quantization errors can significantly de-
grade performance. In QA-PEFT, it is therefore crucial to mitigate such outlier-induced errors dur-
ing initialization by adapting the weights, particularly for large-magnitude values originating from
salient outliers.

Clamping Error
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L2 norm of Quantization Error L2 norm of Pre-trained Model Activation
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Figure 7: (a) Weight quantization error distribution and (b) its channel-wise similarity to the pre-
trained weights in 14th layer Key projection of 4-bit quantized LLaMA-3.2-3B. In Figure (b), each
pixel represents the ℓ2 norm of weight quantization errors (left) and that of pre-trained weights
(right) for each output channel ordered by channel index from top-left to bottom-right.
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B WHT-BASED ADAPTER (WHA)

B.1 FT-BASED ADAPTER KERNELS

We describe a class of Fourier-related transform (FT) kernels employed in our adapters and prior
studies in this section (Gao et al., 2024b; Du et al., 2025; Shen et al., 2025).

Walsh-Hadamard Transform (WHT). The Walsh-Hadamard Transform (WHT) matrix H in-
troduced in Equation 4 is constructed following conventions in prior works (Tseng et al., 2024;
Ashkboos et al., 2024). For a dimension N = 2n, a WHT matrix H ∈ RN×N is defined recursively
as the Kronecker product of smaller matrices:

H2 =
1√
2

[
1 1
1 −1

]
, HN = H2 ⊗H2n−1 , (10)

where⊗ denotes the Kronecker product. For non-power-of-two dimensions, Hadamard matrices ex-
ist for certain values (Seberry & Yamada, 1992; Hedayat et al., 1999; Gerakoulis & Ghassemzadeh,
2004), which can be retrieved from Sloane (2004). More generally, for N = 2n ·m, where Hm is a
known Hadamard matrix, the transform is defined as:

HN = H2n ⊗Hm. (11)

The rows of HN form an orthogonal basis, known as Walsh-Hadamard bases, satisfying:

H⊤
NHN = HNH⊤

N = IN . (12)

The matrix H2n can be computed in O(n log n) time (Kunz, 1979). In practice, HN can be pre-
computed once and cached for reuse across layers of the same size, incurring negligible cost in both
computation and memory. To further accelerate computation, we employ the Fast Hadamard multi-
plication kernel from Dao-AILab (2024), which avoids explicit matrix construction by using a fused
kernel of only additions and subtractions.

Discrete Fourier Transform (DFT). FourierFT (Gao et al., 2024b) was the first study of FT-
based adapters and used the discrete Fourier transform (DFT). The transform kernel H ∈ CN×N is
defined as:

Hjk =
1√
N

e−i 2πjk
N =

1√
N

{
cos

(
2πjk

N

)
− i sin

(
2πjk

N

)}
, 0 ≤ j, k < N. (13)

Although effective, later works adopted real-valued FT variants to avoid the complex-domain na-
ture of the DFT, since deep learning frameworks typically discard the imaginary components and
compute only with the real values.

Discrete Hartley Transform (DHT). SSH (Shen et al., 2025) employs the discrete Hartley trans-
form (DHT), a real-valued variant of the FT with kernel:

Hjk = ℜ
( 1√

N
e−i 2πjk

N

)
−ℑ

( 1√
N

e−i 2πjk
N

)
=

1√
N

cas
(
2πjk

N

)
, 0 ≤ j, k < N, (14)

where cas(x) = cosx+ sinx.

Discrete Cosine Transform (DCT). LoCA (Du et al., 2025) employs another real-valued FT, the
discrete cosine transform (DCT), whose kernel is:

Hjk =


1√
N

j = 0√
2
N cos

(
π(2k+1)j

2N

)
0 < j < N

, 0 ≤ k < N. (15)
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B.2 RANK OF WHA

This section provides a detailed explanation of the full-rank property of WHA and its conditions,
as discussed in Section 3.1 and illustrated in Figure 2(a). To preserve the expressiveness of a fine-
tuned model under a limited parameter budget, it is critical to ensure high rank capacity in the
weight update. Unlike low-rank adapters, which inherently restrict the parameter subspace, WHA is
sparsely structured yet can retain high representational capacity by maintaining full rank. This also
holds in typical sparse adapters, including FT-based adapters.

We build on theoretical insights from prior work on sparse random matrices Coja-Oghlan et al.
(2020), which provides conditions under which such matrices are full rank. Specifically, consider
a random sparse matrix F ∈ Rdout×din , where each input and output channel has k and l non-zero
entries on average. Then, F is full rank when k, l ≥ 2 as din, dout → ∞, and thus full rank with
high probability. Following the notations in Coja-Oghlan et al. (2020), we derive the corresponding
condition for our setting to guarantee full-rank behavior in WHA.

Condition Function. We define the probability generating functions for the distributions of ran-
dom non-zero entries per column and per channel. Given that these distributions are degenerate, the
generating functions and their derivatives are:

D(z) = zk, D′(z) = kzk−1, D′(1) = k, (16)

K(z) = zl, K ′(z) = lzl−1, K ′(1) = l, (17)

Then, the condition function Φ(z) that determines the full rank condition is given by:

Φ(z) = D

(
1− K ′(z)

l

)
− k

l
[1−K(z)− (1− z)K ′(z)] . (18)

To ensure the full rank of the matrix A, the inequality must hold as:

Φ(z) < Φ(0), ∀ 0 < z ≤ 1, (19)

Substituting the explicit forms for D(z),K(z), D′(z),K ′(z) into Equation B.2 yields the right
hand side as:

Φ(z) = (1− zl−1)k − k

l
+ kzl−1 − k(l − 1)

l
zl. (20)

As Φ(z = 0) = 1− k
l , the condition in Equation B.2 finally simplifies to:

(1− zl−1)k + kzl−1 − k(l − 1)

l
zl − 1 < 0, 0 < z ≤ 1. (21)

Practical Considerations. The inequality in Equation B.2 shows that the condition generally
holds for integers k, l ≥ 2. For the total number of parameters p = r(din + dout) with r ≥ 2,
we have k = p/din > r and l = p/dout > r under random selection, thus satisfying the full-rank
condition when din, dout are sufficiently large. Importantly, AdaAlloc’s per-channel allocation with
remainder assignment and temperature control guarantees at least two elements in every channel
(i.e., l ≥ 2), which meets the sufficient condition required for the full-rank property. In addi-
tion, although AdaAlloc selects coefficient indices within each channel based on the magnitude
of ∆WQH , the coefficient distribution of ∆WQH under the WHT is close to a random normal
distribution except for a small portion of outliers, as the correlations across input rows are nearly
zero. Consequently, the selected index locations across input rows effectively behave like random
choices. Empirically, parameter budgets corresponding to P (r ≥ 4) ensure at least two elements per
row (i.e., k ≥ 2), even for linear layers with large output dimensions, which might otherwise receive
few parameters per input row. Hence, the full-rank conditions hold, and the matrix F in QWHA is
nearly full rank.
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B.3 ENERGY CONCENTRATION OF WHT

In this section, we quantify the energy concentration property of WHT discussed in Section 3.1,
using Figure 2(b) and Figure 3(a).

Distribution of Singular Values and Coefficients. Figure 8 presents the distributions of singular
values from SVD and of transform coefficients sorted by their squared magnitudes. Here, the area
under each plot is equal to ∥∆WQ∥2F (details in the following paragraph). The distributions follow a
Pareto-like behavior, where sharpness can be quantified using the hill index η. The Pareto hill index
is a value which implies the heaviness of a tail. In fact, this is the reciprocal of the Pareto tail index,
defined as the mean of the log ratios of consecutive order statistics from the top-k largest magnitudes.
A smaller hill index η implies faster convergence of the cumulative distribution (Arnold, 1983).
Hence, WHT exhibits the sharpest distribution, making it feasible to retain more information with
fewer parameters P (r) when implemented in a sparse adapter, as shown in Figure 2.

Figure 8: Singular value and coefficient magnitude (squared) distributions with the Pareto hill index
η in the 14th-layer Key projection of LLaMA-3.2-3B.

Energy of Singular Values and Coefficients. Throughout this work, we use the term energy to
denote the squared ℓ2 norm of the singular values in a decomposition or the spectral coefficients in
a transform. We show that the total energy of both SVD and orthonormal transforms reduces to the
Frobenius norm of the transformed matrix. (For example, in Figure 8, the area under each curve
corresponds to ∥∆WQ∥2F .)
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Proposition 1. Let M ∈ Rm×n be a matrix, and let its singular value decomposition (SVD) be
M = UΣV ⊤, where U ∈ Rm×m and V ∈ Rn×n are orthonormal matrices, and Σ ∈ Rm×n is a
diagonal matrix with entries σi on the diagonal for i = 1, . . . ,min(m,n). Define F = MH for an
orthonormal matrix H ∈ Rn×n. Then, we have:

∥M∥2F =

min(m,n)∑
i=1

σ2
i = ∥F ∥2F .

Proof.
(i) Identity ∥M∥2F =

∑min(m,n)
i=1 σ2

i .

Given M = UΣV ⊤, due to the orthonormality of U , M⊤M reduces to:

M⊤M = (UΣV ⊤)⊤(UΣV ⊤) = V Σ⊤U⊤UΣV ⊤ = V Σ⊤ΣV ⊤. (22)

Therefore, by the cyclic property of trace and the orthonormality of V , ∥M∥2F reduces to:

∥M∥2F = tr(M⊤M) = tr(V Σ⊤ΣV ⊤) = tr
(
Σ⊤Σ(V ⊤V )

)
= tr(Σ⊤Σ) = ∥Σ∥2F . (23)

Since Σ⊤Σ is diagonal with entries σ2
i for i = 1, . . . ,min(m,n):

∥M∥2F = ∥Σ∥2F =

min(m,n)∑
i=1

σ2
i . (24)

(ii) Identity ∥M∥2F = ∥F ∥2F .

Given F = MH , due to the orthonormality of H:

F⊤F = (MH)⊤(MH) = H⊤M⊤MH. (25)

By the cyclic property of trace, ∥F ∥2F reduces to:

∥F ∥2F = tr
(
(M⊤M)(H⊤H)

)
= tr(M⊤M) = ∥M∥2F . (26)

We note that this equivalence also applies to the coefficients defined with F ′ = H ′∆WH , with
H ′ ∈ Rm×m, such that ∥M∥2F = ∥F ∥2F = ∥F ′∥2F .

Outlier Reconstruction Ability of WHT. Due to its energy concentration ability discussed above,
WHT can reconstruct quantization errors with large outliers during initialization, which is critical
for final model performance. Table 6 presents the numerical values corresponding to Figure 3(a),
showing the proportion of outlier coefficients captured by each adapter.

Table 6: Percentage of outlier coefficients captured by each adapter under a parameter budget of
P (r = 64) in the 14th-layer Key projection of LLaMA-3.2-3B. Higher is better.

Adapter Type Query Key Value Out Gate Up Down Average
DCA 6.62 12.50 11.68 6.31 4.62 4.34 4.53 7.23
DHA 18.82 32.29 21.98 13.19 14.14 8.00 11.01 17.06
WHA 20.49 33.60 23.30 14.00 15.20 8.72 11.53 18.12
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C QUANTIZATION-AWARE INITIALIZATION OF WHA

C.1 OBJECTIVE FUNCTION

We reduce the original optimization objective in Equation 5 to the form in Equation 6, following
the approach of Frantar et al. (2023); Deng et al. (2025). Using the notations from Section 3.2, the
reduction proceeds as follows:

∥∆WQX − FH−1X∥2F =∥(∆WQ − FH−1)X∥2F (27)

=tr
(
(∆WQ − FH−1)XX⊤(∆WQ − FH−1)⊤

)
(28)

=tr
(
(∆WQ − FH−1)RR⊤(∆WQ − FH−1)⊤

)
(29)

=∥(∆WQ − FH−1)R∥2F (30)

=∥∆WQR− FH−1R∥2F , (31)

where R = UΣ1/2 ∈ Rdin×din is an invertible square root of the Hessian Gram matrix XX⊤. This
term is obtained by applying the SVD XX⊤ = UΣU⊤, where Σ contains the eigenvalues on
the diagonal and U is the matrix of orthonormal eigenvectors. Following Deng et al. (2025), we
add a small regularization term λ = 0.0001 · tr(XX⊤)/din to the diagonal if R is not originally
invertible. This reduction allows us to replace X with R, enabling efficient and effective calibration
using multiple input data points. Rather than solving the optimization problem separately for each
sample X , we can accumulate the contribution of activations via R and solve a single reduced
problem.

C.2 PARAMETER SELECTION STRATEGIES

We present the parameter selection patterns of each method discussed in Section 3.2. As shown in
Figure 9, magnitude-based selection allocates parameters to a limited number of channels, while
conventional methods such as SSH and LoCA incorporate random selection to avoid rank reduc-
tion. However, these approaches fail to reduce quantization error during initialization because the
selected parameters are not optimal for error reconstruction. In contrast, AdaAlloc identifies the
most important locations within each channel while preventing rank reduction through per-channel
budgets, thereby providing the most effective initialization and fine-tuning.

Selected Coefficient Locations
Magnitude SSH LoCA AdaAllocRandom

Figure 9: Parameter selection patterns and two example zoomed-in results of each method in the
14th-layer Query projection of LLaMA-3.2-3B.
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C.3 VALUE REFINEMENT

We present the layer output error after WHA initialization with and without value refinement in
Table 7, as discussed in Figure 5 in Section 3.2. Without refinement of the selected coefficients in the
initial dense solution matrix ∆WQH , correlations among the columns are ignored, and the impact
of sparsifying other columns cannot be considered, leading to suboptimal error reconstruction.

Table 7: Layer output error (ℓ2 norm, scaled by ×103) after initialization with and without value
refinement in 4-bit quantized LLaMA-3.2-3B. Parameters are selected by AdaAlloc. ‘None’ denotes
the error before initialization.

Method Query Key Value Out Gate Up Down Average

None 13.84 0.54 28.08 4.66 1.88 25.76 21.36 7.21
W/o Refinement 11.39 0.62 26.21 4.39 2.11 24.33 20.97 7.06
Refined 5.11 0.27 14.92 2.01 1.13 17.97 15.25 3.86

C.4 CHANNEL-WISE PARAMETER SELECTION AND INITIALIZATION

We provide a detailed description of the formulation and solution of the sparse approximation prob-
lem underlying Algorithm 1, based on the notations in Section 3.2.

Sparse Approximation Problem. With a channel-wise breakdown of the objective in Equation 6,
the goal is to initialize the i-th channel of the parameter matrix F , denoted Fi,:, given the per-
channel parameter budget pi. The objective is for Fi,:H

−1R to closely approximate the projected
quantization error (∆WQ)i,:R in the ℓ2 sense. As we constrain Fi,: to have exactly pi non-zero
elements, the term Fi,:H

−1R becomes a sparse linear combination of standard basis vectors:

Fi,:H
−1R =

pi∑
k=0

Fi,jke
(jk)H−1R, (32)

where e(jk) is the jk-th standard basis vector. Since e(jk)H−1R corresponds to the jk-th channel of
H−1R, the problem reduces to selecting pi rows from H−1R that best approximate (∆WQ)i,:R.

Greedy Algorithm for Sparse Approximation. The problem generalizes to a standard sparse
approximation problem: given a full set of basis vectors β = {u1,u2, . . . ,un} with each ui ∈ Rd,
we aim to select k vectors whose linear combination best approximates a target vector v ∈ Rd. We
represent the sparse coefficient vector as x = [x1, x2, . . . , xk] ∈ Rk, corresponding to the selected
k basis vectors. Formally, we solve:

min
x
∥v − xB∥22 subject to ∥x∥0 = k, (33)

where B ∈ Rk×d is a submatrix formed from selected rows of the original basis. In our setting,
B = H−1R, v = (∆WQ)i,:R, and k = pi.

Since this problem is NP-hard, we adopt a greedy approximation. We first compute x = vB−1 =
∆WQH , which is in fact the non-sparse solution to the objective in Equation 6, and select the k
entries of x with the largest magnitudes. Let the corresponding indices be i1, i2, . . . , ik, and define
the selected basis B′ = [ui1 ; . . . ;uik ]. We then solve a least-squares problem over the selected
support:

x∗ = argmin(xi1
,··· ,xik

) ∥[xi1 xi2 · · · xik ]B
′ − v∥22 = vB′⊤(B′B′⊤)−1. (34)

While this solution is numerically optimal when B is orthogonal, we empirically demonstrate its
effectiveness under general conditions. Combined with our AdaAlloc-based parameter allocation
strategy, this initialization consistently yields high quantization error reconstruction ability while
maintaining full rank capacity.
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D EXPERIMENTAL DETAILS AND ABLATIVE STUDY

D.1 FINE-TUNING HYPERPARAMETERS

We follow the hyperparameter settings adapted from Gao et al. (2024b) and Deng et al. (2025).
Training is performed using the AdamW optimizer (Loshchilov & Hutter, 2017). Table 8 reports the
key settings, including minibatch size, weight decay, dropout ratio, learning rate scheduler, maxi-
mum sequence length, number of training epochs, warmup ratio, and the adapter scaling factor α,
which can be applied to adapters in Equation 2 through Equation 4. Due to an implementation detail
in our codebase, the explicitly specified scaling factor is internally divided by the layer input dimen-
sion din. As a consequence, the actual scaling applied during training is αeffective = αexplicit/din. To
match the effective scaling used in CLoQ (i.e., αeffective ≈ 1.0), we set the explicit scaling factor to
αexplicit = 4000, which is close to the typical input dimensions of our models (3072 for LLaMA-3.2-
3B and 4096 for LLaMA-3.1-8B and Mistral-7B-v0.3). Under this implementation, the effective
scaling becomes αeffective = 4000/din ≈ 1.0, ensuring consistent gradient scaling between low-rank.
The learning rates for each combination of model, task, method, and bit-width are summarized in

Table 9. We note that 128 sequences of length 2048, randomly sampled from the WikiText-2 (Merity
et al., 2016) dataset, are used as a calibration set for quantization and adapter initialization, as these
processes are robust to the choice of dataset (Frantar et al., 2023; Zhang et al., 2024; Deng et al.,
2025). The total number of parameters for P (r = 64) is reported in Table 10, broken down by each
projection, the layers containing these projections, and the entire model.

Table 8: Hyperparameter settings for Alpaca and GSM8K training

Dataset Alpaca GSM8K
Method CLoQ QWHA CLoQ QWHA
Optimizer AdamW
Batch Size 64
LR Scheduler cosine
Max Sequence Length 512
Epochs 3 6
Warmup Ratio 0.1 0.03
Weight Decay 1 0.1
Dropout 0.1 0 0.1 0
Scale 1 4000 / din 1 4000 / din

Table 9: Learning rate for each model and bit widths on Alpaca and GSM8K training.

Model Bits Alpaca GSM8K
CLoQ QWHA CLoQ QWHA

Llama-3.1-8B
4 1e-5 3e-5 1e-4 5e-5
3 1e-5 3e-5 1e-4 7e-5
2 1e-5 2e-5 7e-5 5e-5

Llama-3.2-3B
4 1e-4 3e-5 1e-4 7e-5
3 1e-4 3e-5 1e-4 1e-4
2 2e-4 5e-5 1e-4 2e-4

Mistral-7B-v0.3
4 3e-5 5e-6 3e-5 2e-5
3 2e-5 5e-6 3e-5 3e-5
2 2e-5 7e-6 3e-5 3e-5

Table 10: Total number of parameters at P (r = 64) for each projection, layer, and model.

Model q proj k proj v proj o proj gate proj up proj down proj per-layer per-model
LLaMA-3.1-8B 524288 327680 327680 524288 1179648 1179648 1179648 5242880 167772160
LLaMA-3.2-3B 393216 262144 262144 393216 720896 720896 720896 3473408 97255424
Mistral-7B-v0.3 524288 327680 327680 524288 1179648 1179648 1179648 5242880 167772160
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D.2 COMMONSENSE QUESTION-ANSWERING BENCHMARK

We present the detailed accuracy scores on the commonsense question answering (CSQA) bench-
mark in this section, while the averaged scores are reported in Section 4. The results for each of the
seven individual tasks, are provided in Table 11 and Table 12, corresponding to Table 3 and Table 4,
respectively.

Table 11: Accuracy (%) evaluation results of CSQA benchmarks.

Model Bits Method Arc-c Arc-e BoolQ Hella. Obqa Piqa Wino. Average
LLaMA-3.1-8B 16 Pre-trained 53.41 81.10 82.11 78.91 44.80 81.23 73.88 70.78

Fine-tuned 56.40 81.57 81.99 79.85 46.40 81.99 74.66 71.84
4 GPTQMagR 48.98 78.96 81.77 75.87 45.00 79.87 73.32 69.11

CLoQ 50.34 79.50 83.12 75.63 45.40 79.92 73.16 69.58
SHiRA 53.24 81.14 82.81 78.76 46.60 81.56 73.40 71.07
LoCA 55.12 80.98 83.06 79.56 47.60 81.56 72.30 71.45
SSH 54.69 78.62 83.18 79.44 44.60 81.56 73.16 70.75
QWHA 55.20 80.26 83.64 79.62 47.00 81.99 72.77 71.50

3 GPTQMagR 48.81 76.52 81.59 73.74 43.80 78.24 71.59 67.76
CLoQ 49.91 77.48 82.42 74.30 44.80 79.05 73.01 68.71
SHiRA 53.41 79.17 80.98 77.63 44.80 80.30 71.51 69.68
LoCA 54.61 79.88 81.13 78.25 45.20 80.25 72.14 70.21
SSH 53.24 75.97 82.81 80.27 43.00 81.56 72.14 69.86
QWHA 54.69 80.05 81.68 78.70 45.20 80.79 72.38 70.50

2 GPTQMagR 24.23 38.51 53.15 36.73 25.00 57.67 51.70 41.00
CLoQ 37.80 56.19 67.74 64.14 35.40 72.31 61.88 56.49
SHiRA 33.28 51.31 64.31 56.76 31.40 68.72 57.14 51.84
LoCA 37.63 59.22 68.13 63.79 35.60 70.95 61.64 56.71
SSH 39.08 57.79 67.58 62.00 35.00 71.38 59.59 56.06
QWHA 41.72 64.94 74.62 68.11 37.40 74.54 65.51 60.98

LLaMA-3.2-3B 16 Pre-trained 45.99 71.63 73.39 73.61 43.00 77.48 69.85 64.99
Fine-tuned 48.29 73.15 74.95 76.71 43.80 77.91 70.17 66.43

4 GPTQMagR 44.97 70.83 74.95 71.34 42.60 77.15 69.14 64.43
CLoQ 47.70 72.35 74.95 74.25 42.40 77.86 68.82 65.48
SHiRA 43.17 68.01 71.80 73.33 41.60 76.99 66.85 63.10
LoCA 47.78 73.40 74.34 74.33 42.20 78.13 68.98 65.59
SSH 47.95 73.32 75.35 74.38 42.80 78.67 68.35 65.83
QWHA 48.98 73.15 75.78 74.44 41.60 79.00 69.85 66.11

3 GPTQMagR 42.92 66.08 70.86 68.29 40.00 76.12 66.14 61.49
CLoQ 46.33 71.25 72.97 72.41 41.40 78.35 67.72 64.35
SHiRA 44.54 68.43 72.26 71.31 40.40 77.75 65.67 62.90
LoCA 44.71 69.74 70.83 72.17 41.20 78.13 66.30 63.30
SSH 44.88 70.37 71.62 72.17 41.80 78.18 65.98 63.57
QWHA 47.18 72.64 72.51 72.72 41.80 79.71 67.01 64.80

2 GPTQMagR 26.62 38.89 54.28 39.32 29.00 59.36 52.80 42.90
CLoQ 35.24 56.27 66.02 59.77 37.40 70.35 59.19 54.89
SHiRA 33.28 56.40 63.64 55.11 34.80 69.86 57.30 52.91
LoCA 34.64 58.42 64.46 56.26 34.60 71.44 57.30 53.87
SSH 34.81 58.33 64.65 56.21 36.00 70.51 57.54 54.01
QWHA 37.29 61.99 65.26 61.76 37.20 73.88 61.80 57.03

Mistral-7B-v0.3 16 Pre-trained 52.30 78.24 82.14 80.42 44.20 82.26 73.88 70.49
Fine-tuned 55.03 80.05 84.19 81.09 45.80 82.43 74.51 71.87

4 GPTQMagR 51.37 76.52 80.55 79.71 44.00 81.72 72.93 69.54
CLoQ 54.52 78.58 83.91 81.09 44.00 82.37 74.74 71.32
SHiRA 53.50 78.41 82.69 80.46 44.60 82.43 74.11 70.88
LoCA 53.84 78.28 83.88 81.12 45.40 82.86 75.45 71.55
SSH 53.75 78.45 84.71 81.18 45.60 82.64 74.66 71.57
QWHA 54.69 78.79 84.74 80.93 45.40 82.70 74.66 71.70

3 GPTQMagR 49.23 75.00 77.06 78.22 42.20 80.63 70.64 67.57
CLoQ 52.99 77.44 80.55 80.37 43.40 81.39 73.24 69.91
SHiRA 51.37 77.31 79.57 79.52 44.20 81.45 72.14 69.36
LoCA 51.96 77.31 80.95 80.17 43.40 81.39 72.30 69.64
SSH 51.54 77.23 81.99 79.93 43.20 81.39 72.30 69.65
QWHA 52.56 76.94 82.32 80.31 44.20 82.21 73.01 70.22

2 GPTQMagR 26.37 41.46 54.37 48.88 29.80 62.62 57.85 45.91
CLoQ 43.94 66.46 74.25 70.95 38.00 75.41 63.61 61.80
SHiRA 39.33 64.27 71.38 66.58 36.60 73.88 61.56 59.08
LoCA 43.77 67.63 75.99 69.78 37.80 74.54 64.72 62.03
SSH 44.03 68.77 76.79 70.15 36.00 75.35 65.11 62.31
QWHA 45.39 69.78 78.53 71.97 37.60 76.44 67.17 63.84
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Table 12: Accuracy (%) evaluation results of CSQA benchmarks on LLaMA-3.2-3B.

Bits
Adapter QA Coeff.

Refine. Arc-c Arc-e BoolQ Hella. OBQA PiQA Wino. Average
Type Init. Selection

4 WHA ✗ Random ✗ 48.55 73.70 74.53 74.43 43.20 78.67 68.90 66.00
WHA ✓ Random ✓ 48.04 73.36 74.22 74.50 42.00 78.78 70.48 65.91
WHA ✓ Magnitude ✓ 48.81 72.01 75.26 74.39 42.80 79.43 69.77 66.07
WHA ✓ LoCA ✓ 47.61 73.06 74.16 74.18 43.20 78.56 69.46 65.75
WHA ✓ SSH ✓ 47.61 73.40 75.26 74.45 43.00 78.07 69.93 65.96
WHA ✓ AdaAlloc ✓ 48.98 73.15 75.78 74.44 41.60 79.00 69.85 66.11
DCA ✓ AdaAlloc ✓ 47.10 72.47 73.24 75.14 43.00 79.11 68.75 65.54
DHA ✓ AdaAlloc ✓ 47.70 73.06 75.60 74.61 41.60 78.67 70.17 65.92
Sparse ✓ AdaAlloc ✓ 47.61 72.52 73.49 75.03 43.60 78.13 68.82 65.60

3 WHA ✗ Random ✗ 44.88 70.54 71.53 71.71 41.40 77.86 66.77 63.53
WHA ✓ Random ✓ 44.97 71.38 71.38 72.38 41.80 78.62 66.85 63.91
WHA ✓ Magnitude ✓ 47.35 72.31 72.69 72.40 41.00 79.38 66.54 64.52
WHA ✓ LoCA ✓ 46.25 69.49 71.38 71.93 41.80 78.51 66.77 63.73
WHA ✓ SSH ✓ 44.45 67.38 71.83 71.38 40.20 78.35 66.85 62.92
WHA ✓ AdaAlloc ✓ 47.18 72.64 72.51 72.72 41.80 79.71 67.01 64.80
DCA ✓ AdaAlloc ✓ 46.08 72.05 73.55 73.11 42.20 78.18 68.19 64.77
DHA ✓ AdaAlloc ✓ 45.31 72.18 72.32 72.91 41.40 78.94 67.40 64.35
Sparse ✓ AdaAlloc ✓ 45.65 70.75 68.35 72.77 41.00 77.58 67.96 63.43

2 WHA ✗ Random ✗ 34.56 59.05 65.17 55.68 34.80 70.67 58.25 54.03
WHA ✓ Random ✓ 34.90 58.54 64.31 58.13 35.40 70.84 59.27 54.48
WHA ✓ Magnitude ✓ 37.71 60.65 64.83 60.88 37.40 72.58 61.40 56.49
WHA ✓ LoCA ✓ 33.96 58.08 64.71 56.27 35.80 70.67 58.01 53.93
WHA ✓ SSH ✓ 34.39 55.77 64.50 58.80 36.00 70.73 59.19 54.20
WHA ✓ AdaAlloc ✓ 37.29 61.99 65.26 61.76 37.20 73.88 61.80 57.03
DCA ✓ AdaAlloc ✓ 35.92 57.15 66.18 61.94 37.00 72.58 60.85 55.95
DHA ✓ AdaAlloc ✓ 36.09 58.59 66.67 61.12 36.00 72.52 61.33 56.05
Sparse ✓ AdaAlloc ✓ 35.67 56.40 67.16 63.06 36.40 73.23 59.91 55.97
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D.3 ABLATION ON TEMPERATURE t

We evaluate the effect of the temperature parameter t in Equation 7 on the fine-tuned accuracy of
LLaMA-3.2-3B under 4-bit quantization using the parameter budget P (r = 64). The results show
that model accuracy remains stable for temperatures between 0.5 and 1.0, while performance slightly
degrades when t is too small or too large. A low temperature distributes the parameter budget nearly
uniformly across channels, preventing sufficient allocation to channels with large quantization er-
rors. Conversely, an overly high temperature over-concentrates parameters in these large-magnitude
channels, neglecting important coefficients within low-magnitude channels and assigning unneces-
sary parameters within high-magnitude ones. As a result, both excessively low and excessively high
temperatures lead to decreased fine-tuned model accuracy. Within the robust range of t ∈ [0.5, 1.0],
we selected t = 1 as the default setting, since it naturally favors allocating more parameters to
outlier-included, large-magnitude channels while still maintaining stable empirical performance and
methodological simplicity.

Table 13: Effect of temperature t on GSM8k accuracy of LLaMA-3.2-3B under 4-bit quantization.

Temperature t 0.25 0.5 1.0 1.5 2.0

GSM8k Acc. (%) 40.11 41.39 41.47 40.64 40.04

D.4 ABLATION ON QUANTIZATION GROUP SIZE

We conduct an ablation study on the effect of quantization group size in the LLaMA-3.2-3B model
using 2-bit quantization, where the impact of group size on model accuracy is most clearly observed,
as shown in Table 14. Smaller group sizes provide finer granularity, leading to higher model accu-
racy. However, they also incur greater computational overhead during the quantization and dequan-
tization process due to the increased number of quantization parameters. Considering this trade-off,
we adopt a group size of 64 for our experiments, consistent with prior works on quantization-aware
PEFT.

Table 14: GSM8k accuracy (%) of QWHA on LLaMA-3.2-3B with 2-bit quantization using various
quantization group sizes.

Group Size 32 64 128 256

Score 29.94 29.11 24.48 22.51
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D.5 TRAINING OVERHEAD OF ADAPTERS

Train time We compare the training time of adapters using single-transform and two-transform
designs on both WHT and conventional transform kernels, such as the DCT used in LoCA and the
DHT used in SSH, in Table 15. While employing WHA reduces training time, applying it with
a single transform further decreases computation. The impact of a single transform is especially
evident in DCT and DHT, where training time is substantially reduced since their computational
overhead due to the transform is larger than that of WHT. Note that DCT and DHT have identi-
cal training times, as their computational cost is the same and differs only in the element values
within the transform kernel. Our proposed WHA employs a 1D WHT in the context of quantization,
whereas conventional FT-based PEFT methods such as LoCA and SSH use 2D DCT and 2D DHT,
respectively.

Table 15: Training time (hours) of FT-based adapters with different transform kernels on LLaMA-
3.1-8B with the Alpaca dataset.

Batch Size WHT DCT / DHT
1D 2D 1D 2D

1 18.2 25.3 46.2 63.3
2 9.7 13.1 32.1 45.8
4 6.0 8.0 17.4 26.1
8 4.6 5.5 9.0 13.3
16 3.9 4.3 6.7 8.3

Memory Usage We report the memory usage of each method under the same experimental setting
as in Section 4, using NVIDIA A100 80GB GPU. As shown in Table 16, QWHA shows memory
usage comparable to LoRA. SSH also exhibits similar memory usage as QWHA, since the only
difference between them is the computation with a pre-defined transform kernel matrix. Since this
matrix is shared across layers, the memory overhead is negligible. In contrast, LoCA incurs addi-
tional memory consumption due to the training of location parameters, resulting in a few gigabytes
of overhead depending on the batch size.

Table 16: GPU memory usage (GB) during fine-tuning on LLaMA-3.1-8B with 4-bit quantization
using the Alpaca dataset. All adapters use the same number of trainable parameters with P (r = 64).

Batch Size CLoQ QWHA LoCA
1 22.1 22.1 23.3
2 26.6 27.2 28.4
4 32.6 33.2 34.4
8 44.7 45.3 46.4
16 68.8 69.4 70.6
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D.6 INITIALIZATION OVERHEAD OF ADAPTERS

Initialization Time. Table 17 reports the initialization latency of the low-rank adapter (CLoQ)
and the FT-based adapters (QWHA and SSH) under the 4-bit setting across different models. The
initialization of CLoQ requires gathering activations and quantization errors, followed by SVD de-
composition before solving the least-squares problem. In contrast, the initialization of FT-based
adapters involves collecting activations and quantization errors, followed by parameter selection
and value assignment through channel-wise transforms and solving least-squares problem. During
this process, the fast Hadamard kernel allows QWHA with WHT to perform efficient computation.
As a result, QWHA achieves comparable initialization time to CLoQ, while SSH with the DHT
kernel incurs significantly higher latency.

Table 17: Initialization latency (hours) of each method under the 4-bit setting.

Method LLaMA-3.2-3B LLaMA-3.1-8B Mistral-7B-v0.3
CLoQ 0.58 1.14 1.26
SSH 3.85 8.09 8.58
QWHA 0.66 1.34 1.46

Memory Usage. We measure the peak memory consumption during initialization for each method
on the LLaMA-3.2-3B model with 4-bit quantization, broken down into cached Hessians and model
weights (Table 18). While every methods require multiple matrix projections, CLoQ additionally
performs SVD, which leads to higher memory usage in layers with large dimensions. Overall,
QWHA achieves slightly lower memory footprint due to its efficient block-wise computational im-
plementation of the fast Hadamard transform.

Table 18: Memory usage (GB) and component breakdown during initialization of each method.

Method Total Usage Model Weight Cached Hessian
CLoQ 12.77 3.04 7.10
SSH 11.93 3.04 7.10
QWHA 11.52 3.04 7.10

27



Published as a conference paper at ICLR 2026

D.7 INFERENCE OVERHEAD OF ADAPTERS

We investigate the inference throughput and memory usage of QWHA and CLoQ and present the
results in Table 19 and Table 20, respectively. The evaluation uses a prefill length of 2048 and a
generation length of 64, with batch size 128. We compare the FP16 pre-trained model, a quan-
tized model with LoRA (corresponding to CLoQ), a sparse adapter (SHiRA), and FT-based adapters
including WHA (QWHA), DCA (LoCA), and DHA (SSH).

As stated in SHiRA, sparse adapters provide a slight speedup over LoRA due to their simple scatter
operations, compared to the low-rank matrix multiplications in LoRA. WHA introduces an addi-
tional WHT operation, but due to the fast Hadamard kernel, its overhead remains small: only a 1.9%
decrease in throughput compared to LoRA. In contrast, conventional FT-based adapters such as
DCA and DHA incur substantial overhead, showing a 50.9% throughput drop. Therefore, although
QWHA applies an inverse WHT during inference, its overhead is marginal compared to LoRA,
whereas other FT-based adapters experience significant efficiency degradation.

Regarding the inference memory usage, QWHA reduces overall memory usage by 13.0% compared
to CLoQ, while both methods use 3.04 GB for model weights. This improvement arises from the
use of a sparse adapter with efficient scatter operations. In addition, because the inverse WHT
in QWHA is implemented without heavy matrix multiplications, it incurs no additional memory
overhead and in fact results in lower peak memory usage. Consequently, QWHA achieves more
than a 10% reduction in total memory consumption.

Table 19: Inference throughput (tokens/sec) of pretrained and quantized models of each adapters.

Method Pre-trained LoRA Sparse WHA DCA/DHA
Throughput (tokens/sec) 66.7 188.1 191.9 184.6 92.4

Table 20: Peak memory usage (GB) for each method.

Method QWHA CLoQ
Memory Usage (GB) 52.68 59.53

D.8 TRAINING CURVE

We analyzed the training loss, gradient norms, and convergence behavior throughout fine-tuning, and
present the training curves and adapter gradient norms in Figure 10. We observe similar convergence
behavior of QWHA and CLoQ. The gradient norms remain on a comparable scale despite QWHA’s
large nominal scaling factor. This is because the effective scaling factor of both QWHA and CLoQ
is close to 1.0. Moreover, under the same effective scaling value, low-rank adapters involve matrix
multiplications during backpropagation, which naturally downscales the gradient norms applied to
their parameters. In contrast, the sparse adapter in QWHA does not undergo this process, resulting
in gradient norms that remain stable and consistently about twice as large throughout training.

Figure 10: Training loss (left) and gradient norm (right) of each methods during Alpaca fine-tuning
in LLaMA-3.2-3B 4-bit model.
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