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ABSTRACT

Persistent homology is a popular computational tool for detecting non-trivial
topology of point clouds, such as the presence of loops or voids. However, many
real-world datasets with low intrinsic dimensionality reside in an ambient space of
much higher dimensionality. We show that in this case vanilla persistent homology
becomes very sensitive to noise and fails to detect the correct topology. The same
holds true for most existing refinements of persistent homology. As a remedy,
we find that spectral distances on the k-nearest-neighbor graph of the data, such
as diffusion distance and effective resistance, allow persistent homology to detect
the correct topology even in the presence of high-dimensional noise. Furthermore,
we derive a novel closed-form expression for effective resistance in terms of the
eigendecomposition of the graph Laplacian, and describe its relation to diffusion
distances. Finally, we apply these methods to several high-dimensional single-
cell RNA-sequencing datasets and show that spectral distances on the k-nearest-
neighbor graph allow robust detection of cell cycle loops.

1 INTRODUCTION

Algebraic topology can describe the shape of a continuous manifold. In particular, it can detect if a
manifold has holes, using its so-called homology groups (Hatcher, 2002). For example, a cup has a
single one-dimensional hole, or ‘loop’ (its handle), whereas a football has a single two-dimensional
hole, or ‘void’ (its hollow interior). These global topological properties of an object are often help-
ful for understanding its overall structure. However, real-world datasets are typically given as point
clouds, a discrete set of points sampled from some underlying manifold. In this setting, true homolo-
gies are trivial, as there is one connected component per point and no holes whatsoever; instead, per-
sistent homology can be used to find holes in point clouds and to assign an importance score called
persistence to each (Edelsbrunner et al., 2002; Zomorodian & Carlsson, 2004). Holes with high per-
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Figure 1: a. 2D PCA of a noisy circle (σ = 0.25, radius 1) in R50. Overlaid are representative
cycles of the most persistent loops. b. Persistence diagrams using Euclidean distance (above) and
the effective resistance (below). c. Loop detection scores of persistent homology using effective
resistance and Euclidean distance. d, e. UMAP and t-SNE reproduced the loop structure in 2D.
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sistence should be detected by persistent homology if the underlying manifold has true holes. The
method has been successfully applied in various application areas such as gait recognition (Lamar-
León et al., 2012), protein binding (Wang et al., 2020), nanoporous materials research (Lee et al.,
2017), instance segmentation (Hu et al., 2019), and neural network analysis (Rieck et al., 2018).

Persistent homology works well for low-dimensional data (Turkes et al., 2022) but has difficulties
in high dimensionality. If data points are sampled from a low-dimensional manifold embedded in
a high-dimensional ambient space (‘manifold hypothesis’), then the measurement noise typically
affects all ambient dimensions. In this setting, vanilla persistent homology is not robust against even
low levels of noise: the true topological feature can get low persistence, while noise-driven features
may be more persistent. Even on a dataset as simple as a circle in R50, persistent homology based on
the Euclidean distance between noisy points can fail to find the correct loop (Figure 1a – c). We are
the first to systematically study the noise sensitivity of persistent homology in high dimensionality.

In contrast, dimensionality reduction methods visualizing the data in 2D, such as PCA, t-SNE (van
der Maaten & Hinton, 2008), or UMAP (McInnes et al., 2018) are able to find and depict the loop in
the same noisy dataset (Figure 1a,d,e). While such methods can be invaluable for exploring the data
and generating hypotheses, they can introduce artifacts (Chari & Pachter, 2023; Wang et al., 2023)
and should not be relied upon without further confirmation.

Inspired by the use of the k-nearest-neighbor (kNN) graph in modern dimensionality reduction
methods (Tenenbaum et al., 2000; Roweis & Saul, 2000; Belkin & Niyogi, 2002; Hinton & Roweis,
2002; van der Maaten & Hinton, 2008; McInnes et al., 2018; Moon et al., 2019), we suggest to use
persistent homology with distances based on the spectral decomposition of the kNN graph Lapla-
cian, such as the effective resistance (Doyle & Snell, 1984) and the diffusion distance (Coifman &
Lafon, 2006). In the same toy example as above, effective resistance succeeds in identifying the
correct loop despite the high-dimensional noise (Figure 1a – c). Our contributions are:

i. an analysis of the failure modes of persistent homology for noisy high-dimensional data;
ii. a synthetic benchmark, with spectral distances outperforming state-of-the-art alternatives;

iii. a closed-form expression for effective resistance, explaining its relation to diffusion distances;
iv. an application to a range of single-cell RNA-sequencing datasets with ground-truth cycles.

2 RELATED WORK

Persistent homology has long been known to be sensitive to outliers (Chazal et al., 2011) and several
extensions have been proposed to make it more robust. The main idea of most of these suggestions
is to replace the Euclidean distance with a different distance matrix, before running persistent ho-
mology. Bendich et al. (2011) suggested to use diffusion distance (Coifman & Lafon, 2006), but
their empirical validation was limited to a single dataset in 2D. Anai et al. (2020) suggested to use
distance-to-measure (DTM) (Chazal et al., 2011) and Fernández et al. (2023) proposed to use Fermat
distances (Groisman et al., 2022). Vishwanath et al. (2020) introduced persistent homology based
on robust kernel density estimation, an approach that itself becomes challenging in high dimension-
ality. All of these works focused mostly on low-dimensional datasets (<10D, mostly 2D or 3D),
while our work specifically addresses the challenges of persistent homology in high dimensions.

Below, we will recommend using effective resistance and diffusion distances for persistent homol-
ogy in high-dimensional spaces. Both of these distances, as well as the shortest path distance, have
been used in combination with persistent homology to analyze the topology of graph data (Petri
et al., 2013; Hajij et al., 2018; Aktas et al., 2019; Mémoli et al., 2022). Shortest paths on the kNN
graph were also used by Naitzat et al. (2020) and Fernández et al. (2023). Motivated by the per-
formance of UMAP (McInnes et al., 2018) for dimensionality reduction, Gardner et al. (2022) and
Hermansen et al. (2022) used UMAP affinities to define distances for persistent homology.

Effective resistance is a well-established graph distance (Doyle & Snell, 1984; Fouss et al., 2016). A
correction to effective resistance, more appropriate for large graphs, was suggested by von Luxburg
et al. (2010a) and von Luxburg et al. (2014). When speaking of effective resistance, we mean
this corrected version, if not otherwise stated. It has not been combined with persistent homology.
Conceptually similar diffusion distances (Coifman & Lafon, 2006) have been used in single-cell
RNA-sequencing data analysis, for dimensionality reduction (Moon et al., 2019), trajectory infer-
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Figure 2: a. Persistent homology applied to a noisy circle (n = 25) in 2D. Dotted lines show
the edges that lead to the birth / death of two loops (Section 3). b. The corresponding persistence
diagram with three detected holes. Our hole detection score measures the gap in persistence between
the first and the second detected holes (Section 7.1.1).

ence (Haghverdi et al., 2015), feature extraction (Chew et al., 2022), and hierarchical clustering,
similar to 0D persistent homology (Brugnone et al., 2019; Kuchroo et al., 2023).

Persistent homology has been applied to single-cell RNA-sequencing data, but only the concurrent
work of Flores-Bautista & Thomson (2023) applies it directly to the high-dimensional data. Wang
et al. (2023) used a Witness complex on a PCA of the data. Other works applied persistent homology
to a derived graph, e.g., a gene regulator network (Masoomy et al., 2021) or a Mapper graph (Singh
et al., 2007; Rizvi et al., 2017). In other biological contexts, persistent homology has also been
applied to a low-dimensional representation of the data: 3D PCA of cytometry data (Mukherjee
et al., 2022), 6D PCA of hippocampal spiking data (Gardner et al., 2022), and 3D PHATE embedding
of calcium signaling (Moore et al., 2023). Several recent applications of persistent homology only
computed 0D features (i.e. clusters) (Hajij et al., 2018; Jia & Chen, 2022; Petenkaya et al., 2022),
which amounts to doing single linkage clustering (Gower & Ross, 1969). Here we only investigate
the detection of higher-dimensional (1D and 2D) holes with persistent homology.

3 BACKGROUND: PERSISTENT HOMOLOGY

Persistent homology computes the homology of a space at different scales. For point clouds, the
different scales are often given by growing a ball around each point (Figure 2a), and letting the
radius τ grow from 0 to infinity. For each value of τ , homology groups of the union of all balls
are computed to find the holes, and holes that persist for longer time periods ∆τ are considered
more prominent. Note that at τ ≈ 0, there are no holes as the balls are non-overlapping, while at
sufficiently large τ ≫ 0 there are no holes as all the balls merge together.

To keep the computation tractable, instead of the union of growing balls, persistent homology op-
erates on a so-called filtered simplicial complex (Figure 2a). A simplicial complex is a hypergraph
containing points as nodes, edges between nodes, triangles bounded by edges, and so forth. These
building blocks are called simplices. At time τ , the hypergraph encodes all intersections between
the balls and suffices to find the holes. The complexes at smaller τ values are nested within the com-
plexes at larger τ values, and together form a filtered simplicial complex, with τ being the filtration
parameter (filtration time). In this work, we only use the Vietoris–Rips complex, which includes
an n-simplex (v0, v1, . . . , vn) at filtration time τ if the distance between all pairs vi, vj is at most
τ . Therefore, to build a Vietoris–Rips complex, it suffices to provide pairwise distances between all
pairs of points. We compute persistent homology via the ripser pckage (Bauer, 2021).

Persistent homology consists of a set of holes for each dimension. We limit ourselves to loops and
voids. Each hole has associated birth and death times (τb, τd), i.e., the first and last filtration value
τ at which that hole exists. Their difference p = τd − τb is called the persistence or life time of
the hole and quantifies its prominence. The birth and death times can be visualized as a scatter plot
(Figure 2b), known as the persistence diagram. Points far from the diagonal have high persistence.

This process is illustrated in Figure 2 for a noisy sample of n = 25 points from a S1 ⊂ R2. At τ1 a
small spurious loop is formed thanks to the inclusion of the dotted edge, but it dies soon afterwards.
The ground-truth loop is formed at τ2 and dies at τ3, once the hole is completely filled in by triangles.
All three loops (one-dimensional holes) found in this dataset are shown in the persistence diagram.
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Figure 3: a – c. Persistence diagrams of a noisy circle in different ambient dimensionality and with
different amount of noise. d – f. Multidimensional scaling of Euclidean, effective resistance and
diffusion distance for a noisy circle in R50. Color indicates the distance to the highlighted point.

4 THE CURSE OF DIMENSIONALITY FOR PERSISTENT HOMOLOGY

While persistent homology has been shown to be robust to small changes in the point posi-
tions (Cohen-Steiner et al., 2005), the curse of dimensionality can still severely hurt its performance.

To illustrate, we consider the same toy setting as in Figure 1: we sample points from S1 ⊂ Rd, and
add Gaussian noise of standard deviation σ to each of the ambient coordinates. When d = 2, higher
noise does not affect the birth times but leads to lower death times (Figure 3a), because some points
get distorted to the middle of the circle and let the hole fill up at earlier τ . When we increase the
ambient dimensionality to d = 20, higher noise leads to later birth times (Figure 3b) because the
distances are now dominated by the noise dimensions rather than by the circular structure.1 Finally,
for d = 50 both the birth and the death times increase with σ (Figure 3c), such that the ground-truth
hole disappears in the cloud of spurious holes.

In other words, in a high-dimensional space, all pairwise distances become similar, and the circular
structure fails to stand out. Applying MDS to the Euclidean distance matrix obtained with d = 50
and σ = 0.25 yields a 2D embedding with almost no visible hole (Figure 3d). This is a 2D shadow of
the fact that the distances due to noise dominate the distances due to the circular structure. Therefore,
the failure modes of persistent homology differ between low- and high-dimensional spaces: While
in low dimensions, persistent homology is susceptible to outlier points in the middle of the circle,
in high dimensions, there are no points in the middle of the circle; instead, all distances become too
similar, hiding the true loops. See Appendix S6 for more details on the effect of outliers.

5 BACKGROUND: EFFECTIVE RESISTANCE AND DIFFUSION DISTANCES

Many modern manifold learning and dimensionality reduction methods rely on the k-nearest-
neighbor (kNN) graph of the data. This works well because although distances become increasingly
similar in high-dimensional spaces, nearest neighbors still carry information about the data mani-
fold. To make persistent homology overcome high-dimensional noise, we therefore suggest to rely
on the kNN graph. A natural choice is to use its geodesics, but as we show below this does not
work well, likely because a single graph edge across a circle can make the corresponding feature die
too early. Instead, we propose to use spectral methods, such as the effective resistance or diffusion
distance. Both methods rely on random walks and thus integrate information about all edges.

For a connected graph G with n nodes, e.g., a symmetric kNN graph, let A be its symmetric, n× n
adjacency matrix with elements aij = 1 if edge ij exits in G and aij = 0 otherwise. Then the
degree matrix D is defined by D = diag{di}, where di =

∑n
j=1 aij are the node degrees. We

define vol(G) =
∑n

i=1 di. Let Hij be the hitting time from node i to j, i.e., the average number of
edges it takes a random walker, that starts at node i randomly moving along edges, to reach node j.
Then the naive effective resistance is defined as d̃eff

ij = (Hij +Hji)/vol(G). This naive version is
known to be unsuitable for large graphs (Figure S7) because it reduces to d̃eff

ij ≈ 1/di + 1/dj (von

1It is easy to see that the expected squared distance between two random samples from a d-dimensional
isotropic Gaussian with standard deviation σ is 2dσ2. The non-squared distance grows with

√
d (Appendix B).

4



Under review as a conference paper at ICLR 2024

1 10 100 1000
Eigenvalue index

10
3

10
2

10
1

10
0

Ei
ge

nv
al

ue

Eigenvalue spectraa

= 0.0
= 0.1
= 0.25

0.0 0.5 1.0
Eigenvalue

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e 
de

ca
y

Decayb

1 10 100 1000
Eigenvector index

= 0.0c

1 10 100 1000
Eigenvector index

= 0.1d

1 10 100 1000
Eigenvector index

= 0.25e
Eff. resistance
Eff. res. naive
Diffusion t = 8
Diffusion t = 64
Lap. Eig. D = 2

Figure 4: a. Eigenvalue spectra of the skNN graph Laplacian for the noisy circle in ambient R50

for noise levels σ = {0.0, 0.1, 0.25}. b. Decay of eigenvector contribution based on the eigenvalue
for effective resistance and diffusion distances. c – e. Relative contribution of each eigenvector for
effective resistance, diffusion distance and Laplacian Eigenmaps for various noise levels (Section 6).

Luxburg et al., 2010a). Therefore we used von Luxburg et al. (2010a)’s corrected version

deff
ij = d̃eff

ij − 1/di − 1/dj + 2aij/(didj)− aii/d
2
i − ajj/d

2
j . (1)

Diffusion distances also rely on random walks. The random walk transition matrix is given by
P = D−1A. Then P t

i,:, the i-th row of P t, holds the probability distribution over nodes after t steps
of a random walker starting at node i. The diffusion distance is then defined as

dij(t) =
√

vol(G)∥(P t
i,: − P t

j,:)D
−1∥. (2)

There are many possible random walks between nodes i and j if they both reside in the same densely
connected region of the graph, while it is unlikely for a random walker to cross between sparsely
connected regions. As a result, both effective resistance and diffusion distance are small between
parts of the graph that are densely connected and are robust against single stray edges. Indeed, the
MDS embedding of the effective resistance and of the diffusion distance of the circle in ambient R50

both clearly show the circular structure (Figure 3e,f).

6 RELATION BETWEEN SPECTRAL DISTANCES

Laplacian Eigenmaps distance and diffusion distance can be written as Euclidean distances in data
representations given by appropriately scaled eigenvectors of the graph Laplacian. In this section
we derive a similar closed-form formula for effective resistance.

Using the definitions from Section 5, let v1, . . . , vn denote the eigenvectors of the Laplacian
L = D −A and λ1, . . . , λn their eigenvalues. Let further Asym = D− 1

2AD− 1
2 and Lsym = I−Asym

be the symmetrically normalized adjacency matrix and the symmetrically normalized graph Lapla-
cian. We denote the eigenvectors of Lsym by u1, . . . , un and their eigenvalues by µ1, . . . , µn in
increasing order. For a connected graph, λ1 = µ1 = 0 and v1 = u1 = (1, . . . , 1)/

√
n.

The D-dimensional Laplacian Eigenmaps embedding is given by the first D nontrivial eigenvectors:

dLE
ij (D) = ∥eLE

i (D)− eLE
j (D)∥, where eLE

i (D) = (v2,i, . . . , v(D+1),i). (3)

The diffusion distance for t diffusion steps is given by (Coifman & Lafon, 2006)

ddiff
ij (t) = ∥ediff

i (t)− ediff
j (t)∥, where ediff

i (t) =
1√
di

(
(1− µ2)

tu2,i, . . . , (1− µn)
tun,i

)
. (4)

Finally, the original uncorrected version of effective resistance is given by (Fouss et al., 2007)

d̃eff
ij = ∥ẽeff

i − ẽeff
j ∥2, where ẽeff

i =

(
1√
λ2

v2,i, . . . ,
1√
λn

vn,i

)
. (5)

Here we show that the corrected effective resistance (von Luxburg et al., 2010a) can also be written
in this form (see the proof in Appendix A):
Proposition 1. The corrected effective resistance distance can be computed by

deff
ij = ∥eeff

i − eeff
j ∥2, where eeff

i =
1√
di

(
1− µ2√

µ2
u2,i, . . . ,

1− µn√
µn

un,i

)
. (6)
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Figure 5: Loop detection score for persistent homology with various distances on a noisy circle
in R50. The best hyperparameter setting for each distance is shown. Methods are grouped for
clarity.

As we operate on the symmetric kNN graph (skNN), which contains edge ij if i is among the k
nearest neighbors of j or vice versa, the degree distribution is close to constant. As a result, the
1/

√
di terms have little effect and the eigenvectors and the relative size of the eigenvalues do not

depend much on the normalization of the Laplacian. Note that effective resistance is a squared
Euclidean distance. However, omitting the square amounts to taking the square root of all birth
and death times, maintaining the loop detection performance of effective resistance (Figure S7).
Therefore, the main difference between the spectral methods boils down to how they decay higher
eigenvectors based on the corresponding eigenvalues.

The naive effective resistance decays the eigenvectors with 1/
√
λi, which is much slower than dif-

fusion distances’ (1− µi)
t for (t ∈ [8, 64]), while corrected effective resistance shows intermediate

behaviour (Figure 4b). The correction matters little for the S1 ⊂ R50 in the absence of noise, when
the first eigenvalues are much smaller than the rest and dominate the embedding (Figure 4a,c) but
becomes important as the noise and consequently the low eigenvalues increase (Figure 4a,d,e). As
the noise increases, the decay for diffusion distances gets closer to a step function preserving only
the first two non-constant eigenvectors, similar to Laplacian Eigenmaps with D = 2 (Figure 4c – e).

7 SPECTRAL DISTANCES FIND HOLES IN HIGH-DIMENSIONAL SPACES

We benchmark various distances as input to persistent homology in high ambient dimensionality.

Distance measures We examined twelve other distances as input to persistent homology, be-
yond the Euclidean distance. Full definitions are given in Appendix C. First, there are some
state-of-the-art approaches for persistent homology in presence of noise and outliers. Fermat dis-
tances (Fernández et al., 2023) aim to exaggerate large over small distances to incorporate the den-
sity of the data. Distance-to-measure (DTM) (Anai et al., 2020) aims for outlier robustness by
combining the Euclidean distance with the distances from each point to its k nearest neighbors,
which are high for low-density outliers. Similarly, the core distance used in the HDBSCAN algo-
rithm (Campello et al., 2015; Damm, 2022) raises each Euclidean distance at least to the distance
between incident points and their k-th nearest neighbors. We evaluate these methods here with re-
spect to Gaussian noise in high-dimensional ambient space, a different noise model than the one
for which these method were designed. Second, we consider some non-spectral graph distances.
The geodesic distance on the kNN graph was popularized by Isomap (Tenenbaum et al., 2000) and
used for persistent homology by Naitzat et al. (2020). Following Gardner et al. (2022) we used dis-
tances based on UMAP affinities, and also experimented with t-SNE affinities. Third, we computed
t-SNE and UMAP embeddings and used distances in the 2D embedding space. Finally, we explored
methods using the spectral decomposition of the kNN graph Laplacian, see Section 6: (corrected)
effective resistance, diffusion distance, and the distance in Laplacian Eigenmaps’ embedding space.

All methods come with hyperparameters. We report the results for the best hyperparameter setting
on each dataset. The selected hyperparameter values can be found in Appendix E.
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Figure 6: Loop detection score for selected methods on all synthetic datasets in ambient R50. More
methods and hyperparameter settings can be found in Figures S10 – S19.

Performance metric The output of persistent homology is a persistence diagram showing birth
and death times for all detected holes. It may be difficult to decide whether this procedure has ac-
tually ‘detected’ a hole in the data. Ideally, for a dataset with m ground-truth holes, the persistence
diagram should have m points with high persistence while all other points should have low persis-
tence and lie close to the diagonal. Therefore, for m ground-truth features, our metric sm ∈ [0, 1],
which we call the hole detection score, is the relative gap between the persistences pm and pm+1 of
the m-th and (m+1)-th most persistent features: sm = (pm − pm+1)/pm. This corresponds to the
visual gap between them in the persistence diagram (Figure 2b).

In addition, we set sm = 0 if all features in the persistence diagram have very low death-to-birth
ratios τd/τb < 1.25. This handles situations with very few detected holes that die very quickly after
being born, which otherwise can have spuriously high sm values. This was done everywhere apart
from the qualitative Figures 1, 8 and in Figure S12. We call this heuristic thresholding.

We report the mean over three random seeds. Shading and error bars indicate the standard deviation.

7.1 SYNTHETIC BENCHMARK

7.1.1 BENCHMARK SETUP

In our synthetic benchmark, we evaluated the performance of various distance measures in conjunc-
tion with persistent homology on five manifolds: a circle, a pair of linked circles, the eyeglasses
dataset (a circle squeezed nearly to a figure eight) (Fernández et al., 2023), the sphere, and the torus.
The radii of the circles, the sphere, and the torus’ tube were set to 1, the bottleneck of the eyeglasses
was 0.7, and the torus’ tube followed a circle of radius 2. In each case, we uniformly sampled
n = 1000 points from the manifold, mapped them isometrically to Rd for d ∈ [2, 50], and then
added isotropic Gaussian noise sampled from N (0, σ2Id) for σ ∈ [0, 0.35]. More details can be
found in Appendix D. For each resulting dataset, we computed persistent homology for loops and,
for the sphere and the torus, also for voids. We never computed holes of dimension 3 or higher.

7.1.2 RESULTS ON SYNTHETIC DATA

On the circle dataset in R50, persistent homology with all distance metrics found the correct hole
when the noise level σ was very low (Figure 5). However, as the amount of noise increased, the
performance of Euclidean distance quickly deteriorated, reaching near-zero score at σ ≈ 0.25. Most
other distances outperformed the Euclidean distance, at least in the low noise regime. Fermat dis-
tance did not have any effect, and neither did DTM distance, which collapsed at σ ≈ 0.15 due to
thresholding (Figure 5a). Geodesics, UMAP/t-SNE graph, and core distance offered only a modest
improvement over Euclidean (Figure 5b). In contrast, embedding-based distances performed very
well on the circle (Figure 5c), but have obvious a priori limitations: for example, a 2D embed-
ding cannot possibly have a void. Finally, all spectral methods (effective resistance, diffusion, and
Laplacian Eigenmaps) showed similarly excellent performance (Figure 5d).
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Figure 7: a. Loop detection score of various methods on a noisy circle depending on the ambient
dimensionality. Noise σ = 0.25. b – e. Heat maps for σ ∈ [0, 0.35] and d ∈ [2, 50].

In line with these results, spectral methods outperformed other methods across most synthetic
datasets in R50 (Figure 6). DTM collapsed earlier than Euclidean but detected loops on the torus
for low noise levels best by a small margin. Fermat distance typically had little effect and provided
a benefit over Euclidean only on the eyeglasses and the sphere. Spectral distances outperformed
all other methods on all datasets apart from the torus, where effective resistance was on par with
Euclidean but diffusion performed poorly. On a more densely sampled torus, all methods performed
better and the spectral methods again outperformed the others (Figure S18). On all other datasets
diffusion had a small edge over effective resistance for large σ. Reassuringly, all methods passed
the negative control and did not find any persistent loops on the sphere (Figure 6e).

As discussed in Section 4, persistent homology with Euclidean distances deteriorates with increasing
ambient dimensionality. Using the circle data in Rd, we found that if the noise level was fixed at
σ = 0.25, no persistent loop was found using Euclidean distances for d ≳ 30 (Figure 7). In the
same setting, DTM deteriorated even more quickly than Euclidean distances. In contrast, effective
resistance and diffusion distance were robust against both the high noise level and the large ambient
dimension (Figure 7a, c – e). For more details, compare Figures S10 and S11.

7.2 DETECTING CYCLES IN SINGLE-CELL RNA-SEQUENCING DATA

We applied our methods to six single-cell RNA-sequencing datasets: Malaria (Howick et al., 2019),
Neurosphere, and Hippocampus from (Zheng et al., 2022), HeLa2 (Schwabe et al., 2020), Neural
IPCs (Braun et al., 2022), and Pancreas (Bastidas-Ponce et al., 2019). Single-cell RNA-sequencing
data consists of expression levels for thousands of genes in individual cells, so the data is high-
dimensional and notoriously noisy. All selected datasets are known to contain circular structures,
usually corresponding to the cell division cycle. In each case, we followed existing preprocessing
pipelines leading to representations with 10 to 5 156 dimensions. Datasets with more than 4 000
cells were downsampled to n = 1000 (Appendix D).

Correlationa DTMb Eff. resistancec Diffusiond
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Figure 8: Malaria dataset. a – d. Representatives of the two most persistent loops overlaid on UMAP
embedding (top) and persistence diagrams (bottom) using four methods. Biology dictates that there
should be two loops (in warm colors and in cold colors) connected as in a figure eight.
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Figure 9: Loop detection scores on six high-dimensional scRNA-seq datasets. Hatched bars indicate
implausible representatives. See Figure S20 for detection scores for different hyperparameter values.

The Malaria dataset is expected to contain two cycles: the parasite replication cycle in red blood
cells, and the parasite transmission cycle between human and mosquito hosts. Following Howick
et al. (2019), we based all computations for this dataset (and all derived distances) on the correlation
distance instead of the Euclidean distance. Persistent homology based on the correlation distance
itself failed to correctly identify the two ground-truth cycles and DTM produced representatives that
only rough approximate the two ground truth cycles (Figure 8a,b). But both effective resistance and
diffusion distance successfully uncovered both cycles, with s2 > 0.9 (Figure 8 c,d).

Across all six datasets, the detection scores were higher for spectral methods than for their com-
petitors (Figure 9). Furthermore, we manually investigated representative loops for all considered
methods on all datasets and found several cases where the most persistent loop(s) was/were likely
not correct (hatched bars in Figure 9). Overall, we found that the spectral methods, and in particular
effective resistance, could reliably find the correct loops with high detection score. Persistent homol-
ogy based on the t-SNE and UMAP embeddings could also often identify the correct loop structure
and on average worked better than vanilla persistent homology, Fermat distances, and DTM.

8 DISCUSSION

In this work we asked how to use persistent homology on high-dimensional noisy datasets. We
demonstrated that, as the dimensionality of the data increases, the main problem for persistent ho-
mology shifts from handling outliers to handling noise dimensions (Section 4, Appendix G). We
used a synthetic benchmark to show that vanilla persistent homology and many of its existing exten-
sions struggle to find the correct topology in this setting, whereas spectral methods based on the kNN
graph, such as the effective resistance and diffusion distances, work well (Section 7.1). We view it
as an advantage that these existing methods can handle the important problem of high-dimensional
noise. We derived an expression for effective resistance based on the eigendecomposition of the
graph Laplacian, relating it to diffusion distances and Laplacian Eigenmaps (Section 6). Finally, we
showed that spectral distances outperform all competitors on single-cell data (Section 7.2).

In the real-world applications, it was important to look at representatives of detected holes as some-
times methods found persistent, but arguably incorrect loops. That said, each hole homology class
has many different representative cycles, making interpretation difficult. Given ground-truth cycles,
an automatic procedure for evaluating cycle correctness remains an interesting research question.

Dimensionality reduction methods are designed to handle high-dimensional data. In the case of
t-SNE and UMAP, we observed that persistent homology based on the 2D embeddings performed
much better than using their skNN graph affinities, underlining that the key to the success of these
methods is in their embedding optimization rather than their notion of similarity (Böhm et al., 2022;
Damrich & Hamprecht, 2021). In contrast, spectral distances on the skNN graph worked well
without a low-dimensional embedding (Sections 7.1, 7.2).

One limitation of persistent homology is its computational complexity. It scales as O(n3(δ+1)) for
n points and topological holes of dimension δ (Myers et al., 2023). This aggravates other prob-
lems of high-dimensional datasets as dense sampling in high-dimensional space would require a
prohibitively large sample size. When combining persistent homology with non-Euclidean distance
measures, the approach of Bendich et al. (2011), who performed subsampling after computation of
the distance matrix, is particularly attractive, and forms an interesting avenue for future research.
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REPRODUCIBILITY STATEMENT

We prove our theoretical statements in Appendices A and B. We describe the methods and datasets
used in detail in Appendices C and D. The hyperparameters for the reported results can be found
in Appendix E. Finally, we give details on our implementation and hardware in Appendix F. Our
complete code is part of the supplementatry material.
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based on Distance Functions. Foundations of Computational Mathematics, 11(6):733–751, 2011.

10

http://jmlr.org/papers/v22/20-275.html
http://jmlr.org/papers/v22/20-275.html


Under review as a conference paper at ICLR 2024

Joyce Chew, Holly Steach, Siddharth Viswanath, Hau-Tieng Wu, Matthew Hirn, Deanna Needell,
Matthew D Vesely, Smita Krishnaswamy, and Michael Perlmutter. The Manifold Scattering
Transform for High-Dimensional Point Cloud Data. In Topological, Algebraic and Geometric
Learning Workshops 2022, pp. 67–78. PMLR, 2022.

David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Stability of Persistence Diagrams.
In Proceedings of the twenty-first annual symposium on Computational geometry, pp. 263–271,
2005.
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SUPPLEMENTARY TEXT

A EFFECTIVE RESISTANCE AS SPECTRAL METHOD

Let G be a weighted, connected graph of n nodes. Denote by A = (aij)i,j=1,...,n the weighted adja-
cency matrix whose entries aij = aji equal the edge weight of edge ij if edge ij is part of the graph
and zero otherwise. Further denote by D = diag(di) the degree matrix, where di =

∑
j=1,...,n aij

are the degrees. We define vol(G) =
∑

i di. Let further Asym = D− 1
2AD− 1

2 and Lsym = I − Asym

be the symmetrically normalized adjacency matrix and the symmetrically normalized graph Lapla-
cian. Denote the eigenvectors of Lsym by u1, . . . , un and their eigenvalues by µ1, . . . , µn in increas-
ing order. The eigenvectors and eigenvalues of Asym are u1, . . . , un and 1− µ1, . . . , 1− µn.
Definition 2. The effective resistance distance between nodes i and j is defined as

d̃eff
ij =

1

vol(G)
(Hij +Hji), (7)

where Hij is the hitting time from i to j, i.e., the expected number of steps that a random walker
starting at node i takes to reach node j for the first time.
The corrected effective resistance distance between nodes i and j is defined as

deff
ij = d̃eff

ij − 1

di
− 1

dj
+ 2

aij
didj

− aii
d2i

− ajj
d2j

. (8)

The following proposition is an elaboration of Prop. 4 in von Luxburg et al. (2010a).
Proposition 3. The corrected effective resistance distance deff

ij between nodes i and j can be com-
puted by deff

ij = ∥ei − ej∥2, where

ei =
1√
di

(
1− µ2√

µ2
u2,i, . . . ,

1− µn√
µn

un,i

)
.

Proof. By the fourth step of the large equation in the proof of Proposition 2 in von Luxburg et al.
(2010b), we have

1

vol(G)
Hij =

1

dj
+ ⟨bj , Asym(bj − bi)⟩+

n∑
r=2

1

µr
⟨Asymbj , ur(ur)

T (Asym(bj − bi))⟩, (9)

where bi =
1√
di
ei = D− 1

2 ei with ei the i-th standard basis vector.

Adding this expression for ij and ji and using the definition of d̃eff
ij , we get

d̃eff
ij − 1

di
− 1

dj
=

1

vol(G)
(Hij +Hji)−

1

di
− 1

dj
(10)

= ⟨bj , Asym(bj − bi)⟩+ ⟨bi, Asym(bi − bj)⟩ (11)

+

n∑
r=2

1

µr
⟨Asymbj , ur(ur)

T (Asym(bj − bi))⟩ (12)

+

n∑
r=2

1

µr
⟨Asymbi, ur(ur)

T (Asym(bi − bj))⟩ (13)

= ⟨bj − bi, A
sym(bj − bi)⟩ (14)

+

n∑
r=2

1

µr
⟨Asym(bj − bi), ur(ur)

T (Asym(bj − bi))⟩ (15)

For ease of exposition, we treat both summands separately. By unpacking the definitions and sym-
merty of D, we get

⟨bj − bi, A
sym(bj − bi)⟩ = ⟨D− 1

2 (ej − ei), A
symD− 1

2 (ej − ei)⟩ (16)

= ⟨(ej − ei), D
−1AD−1(ej − ei)⟩ (17)

=
ajj
d2j

− 2
aij
didj

+
aii
d2i

(18)
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Since the ur are eigenvectors of Asym with eigenvalue 1− µr and Asym is symmetric, we also get

n∑
r=2

1

µr
⟨Asym(bj − bi), ur(ur)

T (Asym(bj − bi))⟩ (19)

=

n∑
r=2

1

µr
⟨(bj − bi), (A

symur)(A
symur)

T (bj − bi))⟩ (20)

=

n∑
r=2

1

µr
⟨(bj − bi), (1− µr)ur((1− µr)ur)

T (bj − bi))⟩ (21)

=

n∑
r=2

(
1− µr√

µr
uT
r D

− 1
2 (ej − ei)

)2

(22)

=

∥∥∥∥∥ 1√
dj

(
1− µr√

µr
ur,j

)
r=2,...,n

− 1√
di

(
1− µr√

µr
ur,i

)
r=2,...,n

∥∥∥∥∥
2

(23)

=∥ej − ei∥2 (24)
Putting everything together yields the result

deff
ij = d̃eff

ij − 1

di
− 1

dj
+ 2

aij
didj

− aii
d2i

− ajj
d2j

(25)

=
ajj
d2j

− 2
aij
didj

+
aii
d2i

+ ∥ej − ei∥2 + 2
aij
didj

− aii
d2i

− ajj
d2j

(26)

= ∥ej − ei∥2. (27)

B PAIRWISE NOISE DISTANCES IN HIGH-DIMENSIONAL SPACES

Consider two independent random variables X and Y , both following a d-dimensional spherical
normal distribution: X,Y ∼ N (0, σ2Id). Their difference X − Y is also normally distributed
X − Y ∼ N (0, 2σ2Id), so the expected squared distance is simply E(∥X − Y ∥2) = 2σ2d.

However, persistent homology operates on non-squared distances, which is why we are interested in
E(∥X − Y ∥). Using a somewhat more involved calculation, it can be shown that it scales as

√
2σd.

Proposition 4. Let X and Y be isotropic d-dimensional normally distributed random variables,
X,Y ∼ N (0, σ2Id), where Id is the d-dimensional identity matrix and σ > 0. Then the expected
distance between X and Y is

E(∥X − Y ∥) = 2σ
Γ(d+1

2 )

Γ(d2 )
= 2σ

(√
d

2
+O(d−0.5)

)
. (28)

Proof. The random variable X−Y is also normally distributed, X−Y ∼ N (0, 2σ2Id). Therefore,
∥X−Y ∥√

2σ
is Chi-distributed, with mean

√
2
Γ( d+1

2 )

Γ( d
2 )

. This shows the first part of the claim.

For the approximate expression, we only treat the case of even d for ease of exposition. Let d = 2d′.
Then by properties of the Gamma function and the binomial coefficient, we have

Γ(d+1
2 )

Γ(d2 )
=

Γ(d′ + 0.5)

Γ(d′)
=

√
π (2d′−1)!!

2d′

(d′ − 1)!
=

√
π

(2d′)!

4d′d′!

(d′ − 1)!
=

√
πd′4−d′

(
2d′

d′

)
(29)

≈
√
πd′4−d′

(
4d

′

√
πd′

+ 4d
′
O(d′−1.5)

)
=

√
d′ +O(d′−0.5) =

√
d

2
+O(d−0.5), (30)

where the approximation of the central binomial coefficient holds asymptotically (Luke, 1969,
p. 35).
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C DETAILS ON THE DISTANCES

Let x1, . . . , xn ∈ Rd. We denote pairwise Euclidean distances by dij = ∥xi − xj∥, the k nearest
neighbors of xi in increasing distance by xi1 , . . . , xik , and the set containing them by Ni. Many
distances rely on the symmetric k-nearest-neighbor (skNN) graph. This graph contains edge ij if xi

is among the k nearest neighbors of xj or vice versa.

Fermat distances For p ≥ 1, the Fermat distance is defined as

dFp (i, j) = inf
π

( ∑
(uv)∈π

dpuv

)
, (31)

where the infimum is taken over all finite paths from xi to xj in the complete graph with edge weights
dpij . As a speed-up, Fernández et al. (2023) suggested to compute the shortest paths only on the kNN
graph, but for our sample sizes we could perform the calculation on the complete graph. For p = 1
this reduces to normal Euclidean distances due to the triangle inequality. We used p ∈ {2, 3, 5, 7}.

DTM distances The DTM distances depend on three hyperparameters: the number of nearest
neighbors k, one hyperparameter controlling the distance to measure p, and finally a hyperparameter
ξ controlling the combination of DTM and Euclidean distance. The DTM value for each point is
given by

dtmi =

{
p
√∑k

κ=1 ∥xi − xiκ∥p/k if p < ∞
∥xi − xik∥ else.

(32)

These values are combined with pairwise Euclidean distances to give pairwise DTM distances:

dDTM
k,p,ξ(i, j) =

{
max(dtmi, dtmj) if ∥xi − xj∥ ≤

ξ
√
|dtmξ

i − dtmξ
j |

θ else,
(33)

where θ is the only positive root of
ξ
√
θξ − dtmξ

i +
ξ
√
θξ − dtmξ

j = dij . We only considered the
values ξ ∈ {1, 2,∞}, for which the there are closed-form solutions:

θ =


(dtmi + dtmj + dij)/2 if ξ = 1√
((dtmi + dtmj)2 + d2ij) · ((dtmi − dtmj)2 + d2ij)/(2dij) if ξ = 2

max(dtmi, dtmj , dij/2) if ξ = ∞.

(34)

We used k ∈ {4, 15, 100}, p ∈ {2,∞}, and ξ ∈ {1, 2,∞}.

The original exposition of DTM-based filtrations Anai et al. (2020) only considered the setting
ξ = 2, while DTM has been defined for arbitrary p ≥ 1 Chazal & Michel (2021). We explore an
additional value, p = ∞, in order to possibly strengthen DTM. Indeed, in several experiments it
outperformed the p = 2 setting.

Moreover, Anai et al. (2020) actually used a small variant of the Vietoris-Rips complex on the above
distance dDTM

ij (k, p, ξ): They only included point xi in the filtered complex once the filtration value
exceeds dtmi. This, however, only affects the 0-th homology, which we do not consider in our
experiments.

Core distance The core distance is similar to the DTM distance with ξ = ∞ and p = ∞ and is
given by

dcore
k (i, j) = max(dij , ∥xi − xik∥, ∥xj − xjk∥). (35)

We used k ∈ {15, 100}.

t-SNE graph affinities The t-SNE affinities are given by

pij =
pi|j + pj|i

2n
, pj|i =

νj|i∑
k ̸=i νk|i

, νj|i =

{
exp

(
∥xi − xj∥2/(2σ2

i )
)

if xj ∈ Ni

0 else,
(36)

where σi is selected such that the distribution pj|i has pre-specified perplexity ρ. Standard imple-
mentations of t-SNE use k = 3ρ. We transformed t-SNE affinities into pairwise distances by taking
the negative logarithm. Pairs xi and xj with pij = 0 (i.e. not in the kNN graph) get distance ∞. We
used ρ ∈ {30, 200, 333}.
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UMAP graph affinities The UMAP affinities are given by

µij = µi|j + µj|i − µi|jµj|i, µj|i =

{
exp

(
− (dij − µi)/σi

)
for j ∈ {i1, . . . , ik}

0 else,
(37)

where µi = ∥xi − xi1∥ is the distance between xi and its nearest non-identical neighbor. The scale
parameter σi is selected such that

k∑
κ=1

exp
(
−
(
d(xi, xiκ)− µi

)
/σi

)
= log2(k). (38)

As above, to convert these affinities into distances, we take the negative logarithm and handle zero
similarities as for the t-SNE case. We used k ∈ {100, 999}; k = 15 resulted in memory overflow
on one of the void-containing datasets.

Gardner et al. (2022) and Hermansen et al. (2022) first used these distances, but omitted µi, which
we included to completely reproduce UMAP’s affinities.

Note that distances derived from UMAP and t-SNE affinities are not guaranteed to obey the triangle
inequality.

Geodesic distances We computed the shortest path distances between all pairs of nodes in the
skNN graph with edges weighted by their Euclidean distances. We used the python function
scipy.sparse.csgraph.shortest path. We used k = {15, 100}.

UMAP embedding We computed the UMAP embeddings in 2 embedding dimensions using 750
optimization epochs, min dist of 0.1, exactly computed k nearest neighbors, and PCA initializa-
tion. Then we used Euclidean distances between the embedding points. We used UMAP commit
a7606f2. We used k ∈ {15, 100, 999}.

t-SNE embedding We computed the t-SNE embeddings in 2 embedding dimensions using
openTSNE (Poličar et al., 2019) with default parameters, but providing manually computed affini-
ties. For that we used standard Gaussian affinities on the skNN graph with k = 3ρ. Then we used
the Euclidean distances between the embedding points. We used perplexity ρ ∈ {8, 30, 333}.

For UMAP and t-SNE affinities as well as for UMAP and t-SNE embeddings we computed the
skNN graph with PyKeOps (Charlier et al., 2021) instead of using the default approximate meth-
ods. The UMAP and t-SNE affinities (without negative logarithm) were used by the corresponding
embedding methods.

Effective resistance We computed the effective resistance on the skNNgraph. Following the anal-
ogy with resistances in an electric circuit, if the skNN graph is disconnected, we computed the ef-
fective resistance separately in each connected component and set resistances between components
to ∞. The uncorrected resistances were computed via the pseudoinverse of the graph Laplacian

d̃eff
ij = l†ii − 2l†ij + l†jj , (39)

where l†ij is the ij-th entry of the pseudoinverse of the non-normalized skNN graph Laplacian. For
the corrected version, we used

deff
ij = d̃eff

ij − 1

di
− 1

dj
+ 2

aij
didj

− aii
d2i

− ajj
d2j

. (40)

For the weighted version of effective resistance, each edge in the skNN graph was weighted by the
inverse of the Euclidean distance. We experimented with the weighted and unweighted versions, but
only reported the unweighted version in the paper (as the difference was always minor). We also
experimented with the unweighted and uncorrected version and saw that correcting is crucial for
high noise levels (Figure S7). We used k ∈ {15, 100}.

Diffusion distance We computed the diffusion distances on the unweighted skNN graph directly
by equation (2), i.e.,

ddiff
t (i, j) =

√
vol(G)∥(P t

i,: − P t
j,:)D

−1∥. (41)
Note that our skNN graphs do not contain self-loops. We used k ∈ {15, 100} and t ∈ {8, 64}.
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Figure S1: Visualization of all distances on the noisy circle in R50 with σ = 0.25. The scatter plots
are all the 2D PCA of the 50D dataset. The colors indicate the distance to the highlighted point.
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Figure S2: Visualization of all distances on the noisy circle in R50 with σ = 0.25. The scatter plots
are 2D multidimensional scaling embeddings using the respective distances. The colors indicate the
distance to the highlighted point. For this seed the t-SNE embedding tore the circle apart.

Laplacian Eigenmaps For a dataset with K connected components, we computed the K +
d̃ eigenvectors v1, . . . , vK+d̃ of the un-normalized graph Laplacian of the skNN graph and
discarded the first K eigenvectors v1, . . . , vK , which are just indicators for the connected
components. Then we computed the Euclidean distances between the embedding vectors
eLE
i = (vK+1,i, . . . , v(K+d̃),i). We used k = 15 and embedding dimensions d̃ ∈ {2, 5, 10}.

Alternatively, one can compute Laplacian Eigenmaps using the normalized graph Laplacian Lsym =

D− 1
2LD− 1

2 . We tried this normalization for d̃ = 2 but obtained very similar embeddings.

For all methods, we replaced infinite distances with twice the maximal finite distance to be able to
compute our hole detection scores.

D DATASETS

D.1 SYNTHETIC DATASETS

The synthetic, noiseless datasets with n = 1000 points each are depicted in Figure S3 noised
versions of the circle for ambient dimensions d = 2, 50 are depicted in Figure S4.

Circle The circle dataset consists of n points equidistantly spaced along a circle of radius r = 1.

19



Under review as a conference paper at ICLR 2024

1 0 1
1

0

1

Circlea

2 0 2
1

0

1

Eyeglassesb

1
0

1
1

0
1

1
0
1

Linked circlesc

1
0

1
1

0
1

1
0

1

Sphered

2.5
0.0

2.5
2.5

0.0
2.5

2
0
2

Toruse

Figure S3: Synthetic, noiseless datasets with n = 1000 points each.

Linked circles The linked circles dataset consists of two circle datasets of n/2 points each, ar-
ranged such that each circle perpendicularly intersects the plane spanned by the other.

Eyeglasses The eyeglasses dataset consists of four parts: Two circle segments of arclength π+2.4
and radius r = 1, centered 3 units apart with the gaps facing each other. The third and fourth part are
two straight line segments of length 1.06, separated by 0.7 units linking up the two circle segments.
The circle segments consist of 0.425n equidistantly distributed points each and the line segments
consist of 0.075n equispaced points each. As the length scale of this dataset is dominated by the
bottleneck between the two line segments, we only considered noise levels σ ∈ [0, 0.15] for this
dataset, as at this point the bottleneck essentially merges in R2.

Sphere The sphere dataset consists of n points sampled uniformly from a sphere S2 with radius
r = 1.

Torus The torus dataset consists of n points sampled uniformly from a torus. The radius of the
torus’ tube was r = 1 and the radius of the center of the tube was R = 2. Note that we do not
sample the points to have uniform angle distribution along the tube’s and the tube center’s circle, but
uniform on the surface of the torus.

High-dimensional noise We mapped each dataset to Rd for d ∈ [2, 50] using a random matrix V
of size d× 2 or d× 3 with orthonormal columns, and then added isotropic Gaussian noise sampled
from N (0, σ2Id) for σ ∈ [0, 0.35].

The orthogonal embedding in Rd does not change the shape of the data. The procedure is equivalent
to adding d− 2 or d− 3 zero dimensions and then randomly rotating the resulting dataset in Rd.

D.2 SINGLE-CELL DATASETS

We depict 2D embeddings of all single-cell datasets in Figure S5.

d
=

2

= 0.0a = 0.05b = 0.1c = 0.15e = 0.2f = 0.25g = 0.3h = 0.35i

d
=

50
 M

D
S

j k l m n o p q

Figure S4: Circle with Gaussian noise of different standard deviation σ. a – i. Original data in
ambient dimension d = 2. j – q. Multidimensional scaling of the Euclidean distance of the data in
ambient dimension d = 50.
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Figure S5: 2D embeddings of all six single-cell datasets. a, f. UMAP embeddings of the
Malaria (Howick et al., 2019) and the Neural IPC datasets (Braun et al., 2022). We recomputed
the embedding for the Malaria dataset using UMAP hyperparameters provided in the original pub-
lication, and subsetted a provided UMAP of a superset of telencephalic exitatory cells to the Neural
IPC. Text legend refers to Malaria cell types. b – e. 2D linear projection constructed to bring out
the cell cycle (‘tricycle embedding’) (Zheng et al., 2022) of the Neurosphere, Hippocampus, HeLa2,
and Pancreas datasets. We used the projection coordinates provided by Zheng et al. (2022).

Malaria The Malaria dataset (Howick et al., 2019) consists of gene expression measurement of
5 126 genes obtained with the modified SmartSeq2 approach of Reid et al. (2018) in n = 1787
cells from the entire life cycle of Plasmodium berghei. The resulting transcripts were pre-processed
with the trimmed mean of M-values method (Robinson & Oshlack, 2010). We obtained the pre-
processed data from https://github.com/vhowick/MalariaCellAtlas/raw/v1.
0/Expression_Matrices/Smartseq2/SS2_tmmlogcounts.csv.zip. The UMAP
embedding shown in Figure 8 follows the authors’ setup and uses correlation distance as input met-
ric, k = 10 nearest neighbors, and a min dist of 1 and spread of 2. Note that when computing
persistent homology with UMAP-related distances, we used our normal UMAP hyperparameters
and never changed min dist or spread.

Neural IPCs The Neural IPC dataset (Braun et al., 2022) consists of gene expressions of
n = 26 625 neural IPCs from the developing human cortex. scVI (Lopez et al., 2018) was used
to integrate cells with different ages and donors based on the 700 most highly variable genes, result-
ing in a d = 10 dimensional embedding. Braun et al. (2022) shared this representation with us for a
superset of 297 927 telencephalic exitatory cells. We limited our analysis to the neural IPCs because
they formed a particularly prominent cell cycle.

Neurosphere The Neurosphere dataset (Zheng et al., 2022) consists of gene expressions for
n = 12 805 cells from the mouse neurosphere. After quality control, the data was library size
normalized and log2 transformed. Seurat was used to integrate different samples based on the
first 30 PCs of the top 2 000 highly variable genes, resulting in a 12 805 × 2 000 matrix of log2
transformed expressions.These were subsetted to the genes in the gene ontology (GO) term cell cy-
cle (GO:0007049). The 500 most highly variable genes are selected and a PCA was computed to
d = 20. The GO PCA representation was downloaded from https://zenodo.org/record/
5519841/files/neurosphere.qs.

Hippocampus The Hippocampus dataset (Zheng et al., 2022) consists of gene expressions for
n = 9188 mouse hippocampal NPCs. The pre-processing was the same as for the Neurosphere
dataset. The GO PCA representation was downloaded from https://zenodo.org/record/
5519841/files/hipp.qs.

HeLa2 The HeLa2 dataset (Schwabe et al., 2020; Zheng et al., 2022) consists of gene expressions
for 2 463 cells from a human cell line derived from cervical cancer. After quality control, the data
was library size normalized and log2 transformed. From here the GO PCA computation was the
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Table S1: The optimal hyperparameters that were selected in Figure 6. For torus and sphere, we
consider the case of loop detection (H1) and void detection (H2) separately.

Dataset Fermat DTM Eff. res. Diffusion

Circle p = 3 k = 4, p = 2, ξ = 1 k = 100 k = 100, t = 8
Eyeglasses p = 7 k = 100, p = 2, ξ = 1 k = 15 k = 15, t = 64
Linked circles p = 7 k = 15, p = ∞, ξ = 1 k = 15 k = 15, t = 8
Torus H1 p = 2 k = 4, p = 2, ξ = ∞ k = 100 k = 15, t = 8
Sphere H1 p = 2 k = 100, p = 2, ξ = 1 k = 15 k = 100, t = 64
Torus H2 p = 2 k = 4, p = 2, ξ = ∞ k = 100 k = 15, t = 8
Sphere H2 p = 2 k = 4, p = 2, ξ = 1 k = 100 k = 100, t = 8

same as for the neurosphere dataset. The GO PCA representation was downloaded from https:
//zenodo.org/record/5519841/files/HeLa2.qs.

Pancreas The Pancreas dataset (Bastidas-Ponce et al., 2019; Zheng et al., 2022) consists of gene
expressions for 3 559 cells from the mouse endocrine pancreas. After quality control, the data was
library size normalized and log2 transformed. From here the GO PCA computation was the same
as for the neurosphere dataset. The GO PCA representation was downloaded from https://
zenodo.org/record/5519841/files/endo.qs.

E HYPERPARAMETER SELECTION

For each of the datasets and hole dimensions, we showed the result with the best hyperparameter
setting. For the synthetic experiments, this meant the highest area under the hole detection score
curve, while for the single-cell datasets it meant the highest loop detection score. Here, we give
details of the selected hyperparamters.

For Figure 1 we used effective resistance with k = 100 as in Figure 5.

For Figure 5 we specified the selected hyperparameters directly in the figure. For the density-based
methods, they were p = 3 for Fermat distances, k = 4, p = 2, ξ = ∞ for DTM, and k = 15 for
the core distance. For the graph-based methods, they were k = 100 for the geodesics, k = 100 for
the UMAP graph affinities, and ρ = 30 for t-SNE graph affinities. The embedding-based methods
used k = 15 for UMAP and ρ = 30 for t-SNE. Finally, as spectral methods, we selected effective
resistance with k = 100, diffusion distance with k = 15, t = 8 and Laplacian Eigenmaps with
k = 15, d = 2.

The hyperparameters for Figure 6 are given in Table S1.

In Figure 7 we specified the hyperparameters used. They were the same as for Figure 5.

For Figure 8, we selected DTM with k = 15, p = ∞, ξ = ∞, effective resistance with k = 15 and
diffusion distance with k = 15, t = 64. They are the same for the Malaria dataset in Figure 9.

The selected hyperparameters for Figure 9 can be found in Table S2.

The hyperparameters for Figures S1 and S2 are the same as those used in Figure 5.

F IMPLEMENTATION DETAILS

We computed persistent homology using the ripser (Bauer, 2021) project’s
representative-cycles branch at commit 140670f to compute persistent homolo-
gies and representative cycles. We used coefficients in Z/2Z. To compute kNN graphs, we used the
PyKeops package (Charlier et al., 2021). The rest of our implementation is in python. Our code is
available in the supplementary material.

Our experiments were run on a machine with a Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz
with 64 kernels and an NVIDIA RTX A6000 GPU.
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Table S2: The optimal hyperparameters that were selected in Figure 9. For DTM we report the best
setting without thresholding (because none of the DTM runs passed our birth/death thresholding, so
all sm scores for all parameter combinations are zero).

Dataset Fermat DTM t-SNE UMAP Eff. res. Diffusion Lap. Eig.

Malaria p = 2 k = 15 ρ = 8 k = 15 k = 15 k = 15 D = 10
p = ∞ t = 64
ξ = ∞

Neurosphere p = 2 k = 100 ρ = 30 k = 999 k = 15 k = 15 D = 2
p = 2 t = 8
ξ = 2

Hippocampus p = 7 k = 100 ρ = 8 k = 15 k = 100 k = 15 D = 10
p = 2 t = 8
ξ = 2

Neural IPC p = 2 k = 4 ρ = 30 k = 15 k = 100 k = 15 D = 2
p = ∞ t = 8
ξ = ∞

HeLa2 p = 3 k = 4 ρ = 30 k = 100 k = 100 k = 100 D = 2
p = 2 t = 8
ξ = ∞

Pancreas p = 7 k = 100 ρ = 8 k = 100 k = 4 k = 15 D = 2
p = 2 t = 64
ξ = ∞

Table S3: Exemplary run times in seconds.

Dataset n σ Distance Feature dim Time distance [s] Time PH [s]

Circle 1 000 0.0 Euclidean 1 0.013± 0.002 12.3± 0.4
Circle 1 000 0.0 Eff. res k = 100 1 0.17± 0.04 12.0± 0.2
Circle 2 000 0.0 Euclidean 1 0.09± 0.04 117± 9
Sphere 1 000 0.0 Euclidean 1 0.012± 0.001 1.31± 0.06
Sphere 1 000 0.0 Euclidean 2 0.017± 0.002 4687± 2501
Circle 1 000 0.35 Euclidean 1 0.016± 0.001 5± 2
Sphere 1 000 0.35 Euclidean 2 0.03± 0.02 258± 18

Our benchmark consisted of many individual experiments. We explored 47 hyperparameter settings
across all distances, computed results for 3 random seeds and 29 noise levels σ. In the synthetic
benchmark, we computed only 1D persistent homology for 3 datasets and both 1D and 2D persistent
homology of 2 more datasets. So the synthetic benchmark with ambient dimension d = 50 alone
consisted of 12 267 computations of 1D persistent homology and 8 178 computations of both 1D
and 2D persistent homology.

The run time of persistent homology vastly dominated the time taken by the distance computation.
The persistent homology run time depended most strongly on the sample size n, the dataset, and on
the highest dimensionality of holes. The difference between distances was usually small. However,
we observed that there were some outliers, depending on the noise level and the random seed, that
had much longer run time. Overall, we found that methods that produce many pairwise distances of
the same value (e.g., because of infinite distance in the graph affinities or maximum operations like
for DTM with p = ∞, ξ = ∞) often had a much longer run time than other settings. We presume
this was because equal distances lead to many simplices being added to the complex at the same
time. We give exemplary run times in Table S3.

As a rough estimate for the total run time, we extrapolated the run times for the circle to all 1D
persistent homology experiments for ambient dimension d = 50 and the times for the sphere to all
2D experiments. In both cases we took the mean between the noiseless (σ = 0) and highest noise
(σ = 0.35) setting in Table S3. This way, we estimated a total sequential run time of about 57 days,
but we parallelized the runs.
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Figure S6: Loop detection performance of various methods on the noisy circle in the presence of
outliers in low- and high-dimensional ambient space. Outliers are sampled uniformly from an axis-
aligned cube around the data. a – c. In low ambient dimension (d = 2) adding 100 outliers hurt the
performance of the Euclidean distance, but barely that of the spectral methods and not at all DTM’s
excellent performance. d – f. In high ambient dimension (d = 50) all methods were fairly robust to
outliers, leading to effective resistance and diffusion distance outperforming the others.

G EFFECT OF OUTLIERS

Persistent homology with the Euclidean distance is known to be sensitive to outliers. Methods
such as DTM were introduced to handle this issue. However, spectral methods can handle outliers
decently, too. Moreover, outliers are very sparse in high ambient dimension making them less of a
problem. We experimented with the noisy circle with n = 1000 points in ambient Rd for d = 2, 50
and added either 10 or 100 outlier points. These were sampled uniformly from axis-aligned cubes
around the data in ambient space. The size of the cube was set just large enough that it contains the
data even with the strongest Gaussian noise added. In low dimension, Euclidean distance suffered
severely for 100 outliers and Fermat distances led to high uncertainty in this setting. Diffusion
distance and effective resistance were much more outlier-resistant than the Euclidean distance and
changed their performance barely. DTM excelled in this setting, being completely insensitive to
outliers and achieving top score for all noise levels. Adding only 10 outliers was unproblematic of
all methods (Figure S6 a – c).

The volume of the bounding box in d = 50 ambient dimensions is much larger and thus the same
number outlier points lie much more sparsely. In particular, it is much less likely that an outlier
happens to fall into the middle of the circle. As a result, even Euclidean and Fermat distance were
very outlier robust in d = 50 ambient dimensions (Figure S6 d – f). Similarly, DTM’s performance
did not change at all in the face of outliers. However, all three methods suffered from the high-
dimensional Gaussian noise. Diffusion distance’s performance dipped for 10 outliers in the low
noise setting and deteriorated overall for 100, while still performing well in the high-noise regime.
Effective resistance performed best, deteriorating only slightly for 100 outliers in the low noise
setting.

To sum up, effective resistance (and to a lesser extent diffusion distance) can handle both outliers
and high-dimensional Gaussian noise, while other methods can handle at most one type of noise.
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Figure S7: Loop detection score on noisy S1 ⊂ R50 for various versions of effective resistance.
There was little difference between using the weighted kNN graph, unweighted kNN graph, and
using the square root of effective resistance based on the unweighted kNN graph. The latter got
filtered out for high noise levels. Using k = 100 instead of k = 15 helped only marginally on this
dataset. The uncorrected (naive) version of effective resistance collapsed at very small noise levels.
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Figure S8: Illustration for the uncertainty of effective resistance on the noisy eyeglasses dataset in
R50 with σ = 0.075. This refers to panel b of Fig. 6. a One dimensional persistence diagrams for
three random seeds. b. Representatives of the most two most persistent features superimposed on
a 2D PCA of the dataset. These always corresponded to the full shape and one of the two circle
segments. For the first two random seeds, some points are distorted in such a way that they form
a bridge in the 2D PCA, while in the third there is not such bridge and the second most persistent
feature is much less persistent. Note that this is just a 2D PCA, in particular, much of the noise in
50D is not visible. A similar explanation applies for the diffusion distance in panel b of Fig. 6.
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Figure S9: t-SNE embeddings and 1D persistence diagrams of the embedding for a circle in ambient
R50 with Gaussian noise of low standard deviation σ. Perplexity ρ = 8 is rather small, such that
each embedding point only has attraction to very few other points. In the noiseless setting this very
sparse attraction is only among immediate neighbors along the circle. This allows the embedding
to have spurious curves. For higher noise, the sparse attraction pattern is less regular and local such
that the spurious curves disappear. The more spurious curves the embedding has, the more high
persistent features, given by bottlenecks in the curvy embedding, exist. This explains the dip for the
t-SNE ρ = 8 curve in panel g of Fig. S10.

0.0

0.5

1.0

Lo
op

 d
et

ec
tio

n 
sc

or
e Fermata

Fermat p = 2
Fermat p = 3
Fermat p = 5
Fermat p = 7

Geodesicsd

Geodesics k = 15
Geodesics k = 100

t-SNEg

t-SNE = 8
t-SNE = 30
t-SNE = 333

Eff. resist.j

Effective resistance k = 15
Effective resistance k = 100

0.0

0.5

1.0

Lo
op

 d
et

ec
tio

n 
sc

or
e DTMb

DTM k = 4, p = 2, = 1
DTM k = 4, p = 2, = 2
DTM k = 4, p = 2, =

t-SNE graphe

t-SNE graph = 30
t-SNE graph = 200
t-SNE graph = 333

UMAPh

UMAP k = 15
UMAP k = 100
UMAP k = 999

Diffusionk

Diffusion k = 15, t = 8
Diffusion k = 100, t = 8
Diffusion k = 15, t = 64
Diffusion k = 100, t = 64

0.0 0.1 0.2 0.3
Noise std 

0.0

0.5

1.0

Lo
op

 d
et

ec
tio

n 
sc

or
e Corec

Core k = 15
Core k = 100
Euclidean

0.0 0.1 0.2 0.3
Noise std 

UMAP graphf

UMAP graph k = 100
UMAP graph k = 999

0.0 0.1 0.2 0.3
Noise std 

Lap. eig.l

Lap. Eig. k = 15, d = 2
Lap. Eig. k = 15, d = 5
Lap. Eig. k = 15, d = 10

Figure S10: Loop detection score for persistent homology with various distances on a noisy circle
in ambient R50. Extension of Figure 5. Spectral and embedding methods perform best. The reason
for the dip for the low-perplexity t-SNE embedding is depicted in Figure S9.
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Figure S11: Loop detection score for persistent homology with various distances on a noisy circle
in ambient R2. Our code for finding the geodesics for k = 15 did not terminate. Nearly all meth-
ods perform near perfects for most noise levels. Note the striking difference to the 50D setting in
Fig. S10
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Figure S12: Loop detection score for persistent homology with various distances on a noisy circle in
ambient R50. No thresholding was used for this figure, in contrast to Fig. S10. Without thresholding,
DTM had better performance, but not much beyond the level of Euclidean distance. Several issues
such as high uncertainty for Core k = 100, t-SNE ρ = 333 and artifactual increasing performance
for several methods at very high noise levels are not handled anymore.
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Figure S13: Loop detection score for persistent homology with various distances on the noisy eye-
glasses dataset in ambient R50. Only Fermat distance, embedding methods and spectral method
could handle noise low noise levels. Some embedding methods performed very well, but UMAP
struggles in the low noise setting. The reason for the high uncertainty for effective resistance with
k = 15 is depicted in Figure S8.
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Figure S14: 2 loop detection score for persistent homology with various distances on two interlinked
circles in ambient R50. Spectral and embedding methods performed best, but the latter sometimes
had issues in the low noise setting.
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Figure S15: Loop detection score for persistent homology with various distances on a noisy sphere
in ambient R50. Most methods pass this negative control.
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Figure S16: Void detection score for persistent homology with various distances on a noisy sphere in
ambient R50. Methods relying on 2D embeddings did not find the loop for any noise level. Spectral
methods performed best.
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Figure S17: 2 loop detection score for persistent homology with various distances on a noisy torus in
ambient R50. All methods struggled here, and only DTM, t-SNE graph and UMAP graph improved
noticeably over the Euclidean distance. On a denser sampled torus effective resistance and diffusion
distance outperformed other methods (Fig. S18.
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Figure S18: 2 loop detection score for persistent homology with various distances on a noisy torus
of different number of points n. For more points, all methods perform better as the shape of the torus
gets sampled more densely. The difference in performance is particularly striking for the spectral
methods which outperform the others for n = 5000 points, but did not for n = 1000.
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Figure S19: Void detection score for persistent homology with various distances on a noisy torus in
ambient R50. Methods relying on 2D embeddings do no find the void for any noise level. Only t-
SNE graph and UMAP graph could reliably improve above the Euclidean distance and only for low
noise levels. However, they had unstable behavior for higher noise levels, resulting in high uncer-
tainties. We suspect that a higher sampling density would benefit effective resistance and diffusion
distance a lot, but the computational complexity of persistent homology makes such experiments
difficult.
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Figure S20: Detection scores for all hyperparameter settings for all six single-cell datasets. We
omitted DTM as no setting passed the thresholding on any dataset. The black bar refers to correlation
distance on the Malaria dataset and to Euclidean distance on the others. Extension of Figure 9. t-
SNE graph and UMAP graph can perform very well, but are very hyperparameter dependent. Their
embedding variants often perform well, but collapse on some datasets. The spectral behave similarly,
but perform better on average.
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Figure S21: Detection scores for effective resistance, Euclidean distance, and various ℓp distances
on the noisy circle, interlinked circles, and the eyeglasses dataset in ambient R50. For p > 2 the
ℓp distance becomes non-isotropic which outweighs any positive effect of accumulating less of the
noise. The detection scores are on par or worse than those of the Euclidean distance.
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