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Abstract— In this work, we first derive a concise form of Soft
Policy Gradient as a preliminary. Building on this, we introduce
Residual Policy Gradient (RPG), which extends RQL to policy
gradient methods, allowing policy customization in gradient-
based RL settings. With the view of RPG, we rethink the
KL-regularized objective widely used in RL fine-tuning. We
show that under certain assumptions, KL-regularized objective
leads to a maximum-entropy policy that balances the inherent
properties and task-specific requirements on a reward-level.
Our experiments in MuJoCo demonstrate the effectiveness of
Soft Policy Gradient and Residual Policy Gradient.

I. INTRODUCTION

Residual Q-Learning (RQL) [1] provides a principled
approach to policy customization by formulating the problem
as a Markov Decision Process (MDP), which jointly opti-
mizies the reward of the prior and the add-on task-sepecift
reward. However, it has primarily been applied in value-
based RL and has not yet been extended to policy gradient
methods, which restricts the applicability of RQL. This lim-
itation becomes more pronounced when large-scale parallel
environments are available, where policy gradient methods
tend to outperform value-based methods [2]. Therefore, it is
important to derive the policy gradient extension of RQL.

In this work, we first derive a concise form of maximum-
entropy policy gradient, Soft Policy Gradient, as the prelim-
inary and compare it with similar forms in the related litera-
ture. Based on the derived form, we further propose Residual
Policy Gradient (RPG) to solve the policy customization
in policy gradient approach. Our experiments in MuJoCo
demonstrate the effectiveness of Soft Policy Gradient and
Residual Policy Gradient. Moreover, with the view of RPG,
we rethink the widely used KL-regularized objective in RL
fine-tuning. We show that: (1) If the prior policy models an
optimal Bolzmann distribution, the KL-regularized objective
induces a maximum-entropy policy that balances inherent
properties and task-specific requirements at the reward level.
(2) This formulation can be further refined through a simple
decoupling, leading to improved optimization efficiency. In
Appendix V-B, we elaborate these insights with RL-based
LLM fine-tuning, demonstrating their implications for both
theoretical understanding and future directions.

II. PRELIMINARIES: RESIDUAL Q-LEARNING

Consider a MDP defined by M = (X ,U , r, p), whose
corresponding objective of policy customization is to derive
a new policy that optimally solves a modified MDP, M̂ =
(X ,U , ωr + rR, p), where rR is the add-on task-specified
reward and ω is the weight parameter. [1] proposed the

residual Q-learning (RQL) framework to solve the policy
customization. Given the prior policy π, RQL updates the
Residual Q function QR = Q∗ − ωQ, where Q∗ and Q is
the optimal value function on M and M̂, RQL updates the
QR using the following equation:

QR(s,a)← rR(s,a)+

γEs′

[
α̂ log

∫
A
exp

(
1

α̂
(QR(s

′,a′) + ωα log π (a′|s′))
)
da′
]
,

(1)

where α and α̂ are the entropy-encouragement coefficients
of maximum-entropy policy on prior and full task, and γ is
the discounted factor. As shown in the RQL [1] appendix,
by adding ωα log π (at|st) to both side of Eqn. 1 and
defining Qaug (s,a) = QR (s,a) + ωα log π (a|s), we can
reformulate Eqn. 1 into:

Qaug(s,a)← rR(s,a) + ωα log π (a|s)+

γEs′

[
α̂ log

∫
A
exp

(
1

α̂
(Qaug(s′,a′))

)
da′
]
,

(2)

which is a standard soft-Q update on an augmented MDP
problem Maug = (X ,U , ω′ log π(u|x) + rR, p). This indi-
cates that we can find the maximum-entropy policy solving
the full MDP problem M̂ by solving an augmented MDP
problemMaug, where ω′ = ωα is a parameter that balances
the optimality between basic and add-on tasks.

III. RESIDUAL POLICY GRADIENT

In this section, we first derive a more netural form of
the maximum-entropy policy gradient methods Soft Policy
Gradients, which leads to Residual Policy Gradient (RPG).
Furthermore, we propose Soft PPO and Residual PPO as two
practical algorithms for deployment.

A. Soft Policy Gradient

As discussed in Sec. II, to utilize the augmented MDP
problemMaug, we need to extend the policy gradient meth-
ods to optimize the maximum-entropy policy. For simplicity
in deriviation, we remove the Eτ∼pθ(τ)[·] when present-
ing the equations. Let τ = (s0,a0, s1,a1, . . . , st,at, . . . )
represents a complete trajectory, and pθ(τ) represents the
probability density of τ generated by a paramterized policy
πθ and the environment dynamics p(·|s,a). The maximum-
entropy objective J(πθ) can be written as:∑

t=0

γt
(
r(st,at) + αEat∼πθ(·|st) [− log πθ (at|st)]

)
. (3)



The estimation of its gradient ∇θJ(πθ) can be derived as:∑
t=0

∇θ log πθ (at|st)×(∑
t′=t

γt′−t (r(st′ ,at′)− α log πθ (at′ |st′))

) (4)

This is equivalent to applying policy gradient over a
reformulated reward r(st,at)− α log πθ (at|st). A detailed
derivation can be found in Appendix V-A. Although some
previous works [3], [4], [5], [6] also focused on deriving the
maximum-entropy policy gradient, their formulations come
with certain inconsistencies. With a unified notation, we
compare and highlight their similarities and differences.

Naive Entropy-regularized PG [3], [4]. In the naive
entropy-regularized policy gradient , the gradient estima-
tor is encouraged with only an entropy term at the end,
which is:

∑
t=0∇θ log πθ(at|st)

(∑
t′=t γ

t′−tr(st′ ,at′)
)
−

α∇θH (πθ (·|st)) . However, such updating mechanism only
considers the first-step (t′ = t) entropy bonus when estimat-
ing the gradients, since Eτ∼pθ(τ) [

∑
t=0∇θH (πθ (·|st))] =

Eτ∼pθ(τ) [
∑

t∇θ log πθ(at|st) (log πθ(at|st))].
Repeat Entropy-regularized PG [6, Eqn.(80)]. In [6], the

author introduced the proper entropy bonus on every step to
the expected return but retained the −α∇θH (πθ (·|st)) term,
which repeats the entropy bonus on the first step.

B. Practical Algorithm

By applying advantage function, we can reform the
gradient∇θJ(πθ):

Eτ∼pθ(τ)

[∑
t=0

∇θ log πθ (at|st)ASPG
πθ

(st,at)

]
, (5)

where ASPG
πθ

(st,at) = r(st,at) − α log πθ (at|st) +
γEst+1∼p(·|st,at)[V

πθ (st+1)] − V πθ (st), and V πθ (st) =

Eτ∼pθ(τ)

[∑
t′=t γ

t′−t (r(st′ ,at′)− α log πθ (at′ |st′))
]
.

This is equivalent to applying classic policy gradient over
rSPG = r(st,at)−α log πθ (at|st). However, vallina policy
gradient methods have several limitations, such as poor
data-efficiency and robustness [7]. To enhance practical
performance, we incorporate this reformulated reward into
the PPO framework, leading to the Soft PPO method:

min{rt(πθ)A
SPG
πθ

, clip(rt(πθ), 1− ϵ, 1 + ϵ)ASPG
πθ
}. (6)

With the derived Soft Policy Gradient in Sec. III-A, the
residual policy can be obtained by directly applying it on the
augmented MDP Maug = (S,A, rR + ω′ log π, p):

min{rt(πθ)A
RPG
πθ

, clip(rt(πθ), 1− ϵ, 1 + ϵ)ARPG
πθ
}. (7)

where ARPG
t is estimator of the advantage over the reformu-

lated reward rRPG at timestep t:

rRPG(st,at) = r(st,at)+ω′ log π (at|st)−α̂ log πθ (at|st).
(8)

C. A Reward View of KL-regularized Objective

1) Not Just KL-regularized Objective: The use of KL
objective can be traced back to KL Control [8], which is a
branch of stochastic optimal control, and was later introduced
into RL [9], [10], [11]. The maximized objective follows the
form [11, Eqn. 2]:

Eπθ

[ ∞∑
t′=t

rR(st′ ,at′) + β log
π(at′ |st′)
πθ(at′ |st′)

]
, (9)

which aligns with the form of maximum-entropy RL
objective in Eqn. 3 by taking r = rR + log π. Follow the
derivation in Sec. III-A and Sec. III-B, this form could be
view as a special case of RPG whose advantage is caculated
on reward:

rKL(st,at) = rR(st,at)+β log π (at|st)−β log πθ (at|st).
(10)

Similarly in Eqn. 8, the decomposed KL divergence can be
viewed as a combination of an augmentation reward β log π
and an entropy-encouragement term β log πθ. Specifically, if
we further assume that prior policy π is a maximum-entropy
policy encouraged by the same entropy coefficient of the
customized policy α = β, and the optimizing objective is the
direct sum of the implicit reward and the preference reward
ω = 1, then the KL-regularized objective actually leads to a
maximum-entropy policy on a MDP:

MKL = (X ,U , r + rR, p). (11)

This decoupling reveals that the KL-constrained reward
has a theoretical foundation beyond its simple intuition to
just prevent the fine-tuned model from drifting too far from
the pretrained model. That is, it is optimizing a trade-off
between basic and add-on task on a reward level.

2) Not have to be KL-regularized Objective: However,
according to the derivation of RPG, such reward reparam-
eterization is not limited to being implemented via KL
divergence but can instead be decoupled into two tunable
parameters ω′ and α̂ as in Eqn. 8: rRPG(st,at) = r(st,at)+
ω′ log π (at|st)− α̂ log πθ (at|st).

In practice, the prior policy does not necessarily follow
the maximum-entropy property, nor is it necessarily optimal.
Meanwhile, the entropy-encouragement coefficient of the
prior policy may not be accessible, and the newly trained
policy does not necessarily need to maintain the same. This
flexibility enables fine-tuning without strictly relying on the
KL-regularized objective, allowing for a more adaptable
approach. In the next section, we empirically validate this
perspective through experiments by comparing Residual PPO
and classic KL-regularized PPO.

In Appendix V-B, taking Reinforcement Learning for
LLM fine-tuning as an example, we demonstrate how the
insights in Sec. III-C.1 and Sec. III-C.2 deepen our under-
standing and informs future directions.



TABLE I: Experimental Results of Entropy-Regularized PPO Variants in MuJoCo. The evaluation results are over 500
episodes across 5 seeds, and in the form of mean± std.

Average Performance

Env. No-Entropy PPO End-Entropy PPO Repeat-Entropy PPO Soft PPO

Ant 3918.9± 1032.9 3887.9± 991.4 3241.2± 1299.7 3845.6± 911.7
Hopper 2387.3± 1060.6 2696.3± 978.0 2611.6± 967.8 3105.3± 829.5

Half Cheetah 2254.9± 1188.7 3291.5± 2006.0 −114.9± 73.2 4993.7± 1262.3

Best Performance

Env. No-Entropy PPO End-Entropy PPO Repeat-Entropy PPO Soft PPO

Ant 4389.6± 296.7 4223.4± 822.6 4023.9± 786.3 4581.1± 540.3
Hopper 3271.2± 573.4 3654.4± 46.4 3404.2± 226.0 3689.4± 29.2

Half Cheetah 4136.6± 1566.6 6049.3± 946.2 −38.9± 58.2 5896.5± 371.8

IV. EXPERIMENTS

A. Soft PPO

In this section, we evaluate the preliminary algorithm, Soft
PPO, across several benchmarks in MuJoCo.

Baselines. We choose the variants mentioned in Sec III-A:
- No-Entropy PPO: First, we evaluate the classic PPO

without entropy term, serving as a baseline performance
compared to entropy-regularized approaches.

- End-Entropy PPO: Next, we evaluate the form of
[3], [4], which only considers the first-step entropy. By
comparing against it, we investigate whether introducing
the entropy term at each step enhances exploration.

- Repeat-Entropy PPO: Finally, we evaluate the form
of [6], which repeats the entropy of the first step. By
comparing against it, we investigate whether removing
the repeated entropy term leads to improvements.

When modeling the policy distribution, we adopted the
common implementation approach in PPO [4], using a global
standard deviation instead of a state-dependent one. While
this reduces the policy interpretability, it improves practical
performance by simplifying learning and enhancing stability.
A detailed ablation can be found in appendix V-D.3.

Does the proposed formulation achieve empirical per-
formance improvements? As shown in Table I, compared to
other variants of entropy-encouraged PPO, the proposed Soft
PPO exhibits alike or potentially better average performance.
Specifically, in the HalfCheetah task, we observed signifi-
cant performance differences among variants with different
entropy encouragement. This indicates that PPO can be
very sensitive to the way to encourage entropy-regularized
learning: although Repeat-Entropy PPO shares the same
parameters and similar updating mechanism with Soft PPO,
they can behave completely different during learning.

Notably, the best-performing seeds in the compared vari-
ants achieve similar performance to Soft PPO, whose overall
performance declines are generally due to more seeds con-
verging to the local sub-optimal. This further indicates that
the concise formulation of Soft PPO can potentially better

encourage the agent to explore the environment effectively.
However, it is also worth noting that since End-Entropy PPO
considers entropy encouragement in fundamentally different
ways compared to Repeat-Entropy PPO and Soft PPO, they
adopt different entropy coefficients, which remains room
for better performance with more fine-grained tuning. In
practices, we consider all these variants to be selectable based
on the specific characteristics of the problem.

B. Residual PPO

In this section, we evaluate the proposed Residual PPO
in the same MuJoCo environments but with extra add-on
rewards, which are designed to illustrate customized speci-
fications during practical deployments [12]. In HalfCheetah,
an add-on penalty on the angle of a certain joint is applied
to simulate a common issue in deployment when the cor-
responding motor is broken. In Hopper and Ant, the extra
rewards are assigned on height and velocity for moving along
the y-axis. The configurations of environments and training
can be found in Appendix V-D.1 and Appendix V-D.2.

Metrics. We evaluate a policy’s performance with the total
reward R = r + rR, since it represents the objective of the
policy customization task. However, when the add-on task
conflicts with the basic task, the optimal policy may sacrifice
performance on the basic task to maximize the total reward.
To better monitor this trade-off during customization, we
separately measure the basic and add-on rewards, allowing
us to assess how well the customized policy preserves the
basic task’s performance while optimizing for the add-on
task [12].

Baselines. We mainly compare against four baselines:
- Prior Policy: First, we evaluate the best-performing

Soft PPO checkpoint in Sec. IV-A on the full task,
which serves as a baseline to show the effectiveness
of policy customization.

- Greedy PPO: Next, we finetune the prior policy to-
wards the add-on reward solely, which can be achieved
by setting ω′ = 0, which serves as a trival baseline
when basic reward is unknown.



TABLE II: Experimental Results of Residual PPO in MuJoCo. The evaluation results are over 500 episodes with best-
performing checkpoints across 5 seeds. The results are in the form of mean± std.

Env. Policy Full Task Basic Task Add-on Task

Total Reward Basic Reward ¯|θ| Add-on Reward

Half
Cheetah

Prior Policy 5357.0± 377.8 5896.5± 371.8 0.54± 0.01 −539.8± 8.7

Greedy PPO −1314.0± 252.4 −1150.2± 236.0 0.16± 0.02 −163.7± 21.8
KL PPO 5418.7± 150.1 5776.3± 133.7 0.36± 0.02 −357.6± 17.7
Residual PPO 5488.3± 75.6 5845.1± 69.5 0.36± 0.01 −356.3± 8.6

Full Policy 5556.2± 57.8 6011.4± 57.2 0.46± 0.01 −455.2± 5.8

Env Policy Total Reward Basic Reward z̄ Add-on Reward

Hopper

Prior Policy 5133.7± 33.2 3689.4± 29.2 1.44± 0.01 1444.3± 6.0

Greedy PPO 3714.5± 7.1 2224.2± 6.5 1.49± 0.00 1490.2± 0.9
KL PPO 3864.4± 50.10 2400.3± 55.2 1.46± 0.01 1464.1± 6.1
Residual PPO 4401.4± 505.3 2951.6± 333.5 1.50± 0.03 1449.5± 177.0

Full Policy 5142.7± 34.8 3669.0± 26.8 1.47± 0.00 1473.6± 8.4

Env. Policy Total Reward Basic Reward v̄y Add-on Reward

Ant

Prior Policy 4875.2± 589.4 4581.1± 540.3 0.29± 0.13 294.1± 133.9

Greedy PPO 4340.6± 1464.5 726.4± 277.1 3.86± 0.96 3613.9± 1246.4
KL PPO 4019.4± 1103.4 368.6± 151.8 3.74± 0.92 3650.6± 1047.6
Residual PPO 5568.3± 852.4 1340.8± 220.0 4.27± 0.63 4227.4± 705.3

Full Policy 6185.1± 1142.0 3543.0± 621.2 2.70± 0.41 2641.6± 542.8

- KL PPO: Next, we utilize the KL divergence to regu-
larize the fine-tuning process, which can be achieved by
setting ω′ = α̂, which serves as a widely-used practical
fine-tuning baseline.

- Full Policy: Finally, we utilize the Soft PPO to train
an optimal policy on the full task, which serves as an
upper-bound performance of policy customization

Can Residual PPO effectively solve the policy cus-
tomization problem? The experimental results, summarized
in Table II, demonstrate the effectiveness of Residual PPO
for policy customization. Across all tasks, Residual PPO
achieves obvious performance improvements on the add-
on task compared to the prior policy, demonstrating its
capability to optimize the prior policy for new require-
ments. Moreover, in the HalfCheetah and Ant, Residual PPO
achieves performance comparable or alike performance of
the Full Policy, which indicates that by incorporating the
log π, Residual PPO can effectively balance the trade-off
between the basic and the add-on task.

Does the flexibility of decoupling lead to more effec-
tive policy customization? Greedy PPO, due to optimizing
towards the add-on reward solely, struggles to maintain its
performance on the basic task, resulting in a lower total
reward compared to Residual PPO. This issue becomes more
pronounced in tasks requiring auxiliary rewards, such as
action regularization, where Greedy PPO fails to train an
effective policy in the HalfCheetah task. KL PPO, in theory,
should achieve the best performance as it optimizes a MDP

with the exact objective R = r + rR and a reasonable
entropy coefficient α̂ = α. However, as discussed in Sec. III-
C.2, the maximum-entropy and optimality assumptions of
RPG do not hold in practical scenarios, which can lead
to even worse performance, as shown in Ant results. In
contrast, the decoupling of the KL-regularized term in RPG
provides greater tuning flexibility, which can lead to superior
performance in practical applications. However, when this
flexibility encounters excessively large assumption misalign-
ments, it can also lead to suboptimal customization results,
as observed in the Hopper task. This also suggests that when
building a foundation model that is more adaptable, adequate
modeling of complex distributions is an important direction
for future work.

V. CONCLUSION

In this work, we derived a concise form of the maximum-
entropy policy gradient and, based on this foundation, devel-
oped the Residual Policy Gradient as an important comple-
ment to RQL. With MuJoCo experiments, we validated the
theoretical correctness of the proposed algorithms. Moreover,
RPG reveals that the KL-constrained reward has theoretical
foundation beyond its simple intuition. This enables us to
establish clear connections between many successful RLHF
methods and further explain certain experimental phenomena
observed in them. The success of these works also serves as
a strong empirical validation for our theoretical framework,
laying a solid foundation for future RLHF and broader policy
customization research.



APPENDIX

A. Soft Policy Gradient Derivation

Let τ = (s0,a0, s1,a1, . . . , st,at, . . . ) represents the
complete trajectory, and pθ(τ) represents the probability
density of τ generated by a paramterized policy πθ and
the environment dynamics p(·|s,a). The maximum-entropy
objective J(πθ) can be written as:

Eτ∼pθ(τ)

[∑
t=0

γt
(
r(st,at) + αEπθ(·|st) [− log πθ (at|st)]

)]
.

(12)
Noted the substitution of Eτ∼pθ(τ) [log πθ (at|st)] =

Eτ∼pθ(τ)[Eτ∼pθ(τ) [log πθ (at|st)]], it can be reformulated:

Eτ∼pθ(τ)

[∑
t=0

γt (r(st,at)− α log πθ (at|st))

]
. (13)

which is equivalent to having a reward defined as
r(st,at) − α log πθ (at|st). The objective can be rewritten
by defining R(τ) =

∑
t=0 γ

t (r(st,at)− α log πθ (at|st)):

J(πθ) =

∫
pθ(τ)R(τ)dτ . (14)

By taking gradient over θ, we can obtain:

∇θJ(πθ) =

∫
∇θpθ(τ)R(τ) + pθ(τ)∇θR(τ)dτ . (15)

Due to the Markov properties of the system and policy,
the gradient of the probability density can be written as:

∇θpθ(τ)

=pθ(τ)∇θ log pθ(τ)

=pθ(τ)∇θ

(∑
t=0

log p(st+1|at, st) + log πθ(at|st)

)
=pθ(τ)

∑
t=0

∇θ log πθ(at|st)

(16)

Inspired by [13], we drop γt for the reduced weight to
increase data efficiency and ignore the rewards before time
t for each ∇θ log πθ (at|st) to reduce variance . Therefore,
we can simplify the second term:

∫
pθ(τ)∇θR(τ)dτ

=

∫
pθ(τ)

(∑
t=0

−αγt∇θ log πθ (at|st)

)
dτ

≈ −α
∫

pθ(τ)

(∑
t=0

∇θ log πθ (at|st)

)
dτ

= −α
∫
∇θpθ(τ)dτ

= −α∇θ

∫
pθ(τ)dτ

= −α∇θ1

= 0,

(17)

and then we apply the same result on Eqn. 15:
∇θJ(πθ)

=

∫
∇θpθ(τ)R(τ)dτ

=

∫
pθ(τ)

(∑
t=0

∇θ log πθ (at|st)

)
R(τ)dτ

=

∫
pθ(τ)

∑
t=0

∇θ log πθ (at|st)(∑
t′=0

γt′ (r(st′ ,at′)− α log πθ (at′ |st′))

)
dτ

≈
∫

pθ(τ)
∑
t=0

∇θ log πθ (at|st)(∑
t′=t

γt′−t (r(st′ ,at′)− α log πθ (at′ |st′))

)
dτ

=Eτ∼pθ(τ)

∑
t=0

∇θ log πθ (at|st)(∑
t′=t

γt′−t (r(st′ ,at′)− α log πθ (at′ |st′))

)
B. Example: Reinforcement Learning for LLM Fine-tuning

Reinforcement Learning for LLM fine-tuning represents a
canonical instance of policy customization, where the exact
reward of the original LLM is unknown. However, the objec-
tive remains to fine-tune the LLM to align with preferences
while preserving its prior conversational capabilities. Here
we show how the insights in Sec. III-C.1 and Sec. III-C.2
deepen our understanding and informs future research.

Vanilla RLHF [14, Eqn. 7] follows the intuition of [11],
adding a KL term to reward when computing advantage, as:

rRLHF(st,at) = rR(st,at)+β log π (at|st)−β log πθ (at|st).
(19)

As analyzed, if we assume that the distribution of human
language can be represented as a Boltzmann distribution
from an implicit reward rhuman, and that the original LLM
models an approximately optimal distribution, then Vanilla
RLHF is actually optimizing on a MDP:

MRLHF = (X ,U , rhuman + rR, p). (20)

Direct Preference Optimization (DPO) [15], [16] also
realizes the importance of reward-level modeling. It defines
a reparameterized reward as:

rDPO (st,at) = β log
πθ (at|st)
π (at|st)

, (21)

and a reward loss of preference demonstrations
{x(i), y

(i)
w , y

(i)
l }Ni=1 under Bradley-Terry model:

LDPO(πθ;π) = log σ

(
β log

πθ(yw|x)
π(yw|x)

− β log
πθ(yl|x)
π(yl|x)

)
,

(22)
thus transforming policy learning into reward learning

from demonstrations. From the view of RPG, the reparame-
terization of DPO could be easily derived by modeling the
log full policy β log πθ(st|at) as the total reward R (st,at):



rR(st,at) = R (st,at)− rhuman (st,at) = β log
πθ (at|st)
π (at|st)

=rDPO (st,at) .
(23)

Moreover, with the insights of RPG, we can identify
several potential impovervements starting from DPO. First,
modeling log π as reward requires it to be a maximum-
entropy policy, which means that a proper reward loss that
aligns with this assumption, e.g., cross-entropy loss, can lead
to potentially better performance:

l · log σ
(
β log

πθ(yw|x)
π(yw|x)

)
+

(1− l) · log
[
1− σ

(
β log

πθ(yl|x)
π(yl|x)

)]
.

(24)

The experimental results from a recent work, Implicit
PRM [17], provide supporting evidence for our insights:
when modeling πθ, using cross-entropy as the loss function
tends to yield higher data efficiency compared to other losses.

Second, the reparameterized reward does not have to be
a KL-regularized objective in practice, which means that we
can develop a more flexible form of DPO loss:

log σ

(
α̂ log

πθ(yw|x)
πθ(yl|x)

− ω′ log
π(yw|x)
π(yl|x)

)
. (25)

Recently, Q-Adapter [18], an RLHF framework based on
RQL, has provided further validation of this approach by
demonstrating that adjusting the value of ω′ can effectively
balance the trade-off and even enhance performance on both
the basic and add-on tasks in RLHF. Furthermore, Q-Adapter
follows the RQL formulation, integrating the log π term into
the value function update rather than incorporating it in an
augmented manner. This design improves data efficiency and
enhances stability, a key aspect also discussed in RQL [1].

C. Related Work

KL-regularized Objective. The KL-regularized objective
is related to KL Control [8], [19], which aims to prevent the
target policy from deviating too far from a reference, which
is widely adopted in RL. Ψ-learning [10] and G-learning [9]
both maximize the reward while incurring penalties for the
KL-divergence from a reference policies. The KL-regularized
objective is also a common approach in transfer learning [20]
and RL-based finetuning [21], especially for fine-tuning
LLM with human preference.

The flexibility of KL decoupling discussed in Sec. III-C.2
can be achieved through alternative approaches. Distral [22]
simultaneously employs KL divergence and entropy with
different coefficients to regularize the joint training of the
task-specific and meta policy. TD-M(PC)2 [23] uses the
log distribution to bring the nominal policy and planner
closer during learning, leading to a more performant policy.
However, these results are derived from practical usage,
whereas RPG provides a reward-level perspective to support
such implementations.

Many works originating from preference-based RL have
ultimately derived results similar to RQL, and converge
toward maximum-entropy RL and specifically the log π form.
IQ-Learn [24] and IPL [25] all recognized that learning the
maximum-entropy policy or Q-value provides an implicit yet
efficient way to capture preferences from data, leading to an
updating approach similar to RQL. However, these methods
focus on Inverse RL, whereas RQL formulates a training
pipeline from the perspective of optimizing a new policy.

Residual Q-Learning. RQL [1] proposes a principled
framework to solve policy customization without the reward
knowledge of the prior policy. However, this framework is
not limited to RL-based approaches or solely addressing the
policy customization: inspired by RQL, Residual-MPPI [12]
integrates model-based planning to enable online policy
customization, while MEReQ [26] leverages RQL as an
efficient approach for inverse RL.

D. MuJoCo Experiments

1) Environment Configuration: In this section, we intro-
duce the detailed configurations of the selected environments,
including the basic tasks, add-on tasks, and the corresponding
rewards. The action and observation space of all the envi-
ronments follow the default settings in gym[mujoco]-v3.

Half Cheetah. In HalfCheetah, the basic goal is to apply
torque on the joints to make the cheetah run forward as fast as
possible. The state and action space has 17 and 6 dimensions,
and the action represents the torques applied between links.
The basic reward consists of two parts: forward reward
rforward(xt,ut) = ∆x

∆t and control cost rcontrol(xt,ut) =
−0.1× ||ut||22. During policy customization, we demand an
additional task that requires the cheetah to limit the angle
of its hind leg. This customization goal is formulated as an
add-on rewards defined as rR(xt,ut) = −|θhind leg|

Hopper. In Hopper, the basic goal is to make the hopper
move in the forward direction by applying torques on the
three hinges. The state and action space has 11 and 3
dimensions, and the action represents the torques applied
between links. The basic reward consists of three parts: alive
reward ralive = 1, forward reward rforward(xt,ut) = ∆x

∆t ,
control cost rcontrol(xt,ut) = −0.001 × ||ut||22. During
policy customization, we demand an additional task that
requires the hopper to jump higher. This customization goal
is formulated as an add-on reward defined as rR(xt,ut) = z.

Ant. In Ant, the basic goal is to coordinate the four legs
to move in the forward direction by applying torques on the
eight hinges. The state and action space has 27 and 8 dimen-
sions, and the action represents the torques applied at the
hinge joints. The basic reward consists of three parts: alive
reward ralive = 1, forward reward rforward(xt,ut) = ∆x

∆t ,
control cost rcontrol(xt,ut) = −0.5× ||ut||22. During policy
customization, we demand an additional task that requires
the ant to move along the y-axis. This customization goal is
formulated as an add-on reward defined as rR(xt,ut) =

∆y
∆t .

2) Implementation Setting: The training pipeline is de-
veloped upon rsl-rl [27] implementation. All variants are
prior policies and customized policies share the task-specific



TABLE III: Ablation of policy distribution modeling in MuJoCo Experiments. The evaluation results are computed over
500 episodes across 5 seeds. The results are in the form of mean± std

Env. Average Performance Best Performance

Global Std. State Std. Global Std. State Std.

Ant 3845.6± 911.7 3055.3± 1231.5 4581.1± 540.3 3915.1± 599.9
Hopper 3105.3± 829.5 1504.0± 948.3 3689.4± 29.2 2511.6± 784.6

Half Cheetah 4993.7± 1262.3 2621.7± 1605.3 5896.5± 371.8 5405.0± 1288.8

parameters finetuned from the predefined settings in this
implementation The policy customization process is executed
for 5M steps in the environment, where the actor model is
directly loaded from the prior policy. Additionally, the first
5% of steps are used to fit a reinitialized value function
to stabilize the training process. The primary differences
among variants lie in the choice of entropy coefficient and
augmentation coefficient shown in Table IV and Table V.

TABLE IV: Entropy-Encourage Coefficient α

α Half Cheetah Ant Hopper

End-Entropy PPO 0.01 0.001 0.0005
Repeat-Entropy PPO 0.13472 0.0001 0.001

Soft PPO 0.13472 0.0001 0.001

TABLE V: Augmentation Coefficient ω′

ω′ Half Cheetah Ant Hopper

Greedy PPO 0 0 0
KL PPO 0.13472 0.0001 0.001

Residual PPO 0.17 0.01 0.01

3) Global Std. Ablation: As shown in Table III, despite
the sacrifices in interpretability, the widely adopted global std
design outperforms the state-dependent std variant in both
average performance and best performance in practices.
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