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Abstract

Large language models (LLMs) have demon-001
strated remarkable capabilities in tool learn-002
ing. In real-world scenarios, user queries are003
often ambiguous and incomplete, requiring ef-004
fective clarification. However, existing interac-005
tive clarification approaches face two critical006
limitations: reliance on manually constructed007
datasets, which inherently constrains training008
data scale and diversity, and lack of error cor-009
rection mechanisms during multi-turn clarifica-010
tion, leading to error accumulation that compro-011
mises both accuracy and efficiency. We present012
ASKTOACT, which addresses these challenges013
by exploiting the structural mapping between014
queries and their tool invocation solutions. Our015
key insight is that tool parameters naturally016
represent explicit user intents. By systemat-017
ically removing key parameters from queries018
while retaining them as ground truth, we enable019
automated construction of high-quality train-020
ing data. We further enhance model robust-021
ness through error-correction pairs and selec-022
tive masking, enabling dynamic error detection023
during clarification interactions. Comprehen-024
sive experiments demonstrate that ASKTOACT025
significantly outperforms existing approaches,026
achieving above 57% accuracy in recovering027
critical unspecified intents and enhancing clar-028
ification efficiency by an average of 10.46%029
while maintaining high accuracy in tool invo-030
cation. Our framework exhibits robust per-031
formance across different model architectures032
and successfully generalizes to entirely unseen033
APIs without additional training, achieving per-034
formance comparable to GPT-4o with substan-035
tially fewer computational resources.036

1 Introduction037

Large language models (LLMs) have demonstrated038

remarkable capabilities in various tasks, from code039

generation to complex reasoning (Nakano et al.,040

2021; Chen et al., 2021; Komeili et al., 2022; Wei041

et al., 2022). A particularly promising direction is 042

their ability to interact with external tools through 043

API calls, which significantly expands their prac- 044

tical applications (Schick et al., 2023; Hao et al., 045

2023; Qin et al., 2024; Shim et al., 2025). This has 046

inspired numerous frameworks focusing on tool- 047

augmented LLMs, including Toolformer (Schick 048

et al., 2023), ToolLLaMA (Qin et al., 2024), and 049

Gorilla (Patil et al., 2023). 050

However, current tool learning frameworks (Li 051

et al., 2023; Song et al., 2023; Schick et al., 2023; 052

Qin et al., 2024) operate under an idealistic as- 053

sumption that user queries are always explicit and 054

unambiguous. This diverges significantly from real- 055

world scenarios where users often provide incom- 056

plete, ambiguous, or imprecise queries. Such un- 057

specified queries pose unique challenges in tool 058

learning scenarios, as API calls require precise 059

parameters and cannot tolerate ambiguity (Wang 060

et al., 2024b). When faced with unspecified queries, 061

LLMs tend to either arbitrarily generate missing pa- 062

rameters or remain unknown, leading to potential 063

risks in tool invocation. 064

This raises a critical research question: How 065

can we enhance LLMs’ ability to handle unspeci- 066

fied queries in tool learning scenarios while ensur- 067

ing accurate and reliable tool invocation? Recent 068

works (Zhang and Choi, 2023; Qian et al., 2024; 069

Wang et al., 2024b) have introduced interactive 070

clarification approaches, but face two fundamental 071

limitations. First, they rely heavily on manually 072

constructed datasets for training (Qian et al., 2024; 073

Wang et al., 2024b). Creating these datasets re- 074

quires human annotators to craft queries and clari- 075

fications, a process that inherently limits scale and 076

diversity. The resulting datasets capture only a 077

narrow range of ambiguity patterns, reducing their 078

effectiveness with diverse real-world queries. Sec- 079

ond, as shown in Figure 1, these approaches lack 080

robust error handling during multi-turn clarifica- 081

tion. Existing models train on datasets with only 082
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① API Retrieved

Help me find 
the nearest 
McDonald's.

② API Call:
searchNearestMcDonalds()

WRONG

(a)

① API Retrieved

Help me find 
the nearest 
McDonald's.

Are you looking for a McDonald's 
with a drive-thru or inside a mall?

Not sure...

②

③ API Call:
searchNearestMcDonalds()

WRONG

(b)

① API Retrieved

Help me find 
the nearest 
McDonald's.

⑤ API Call: searchNearestMcDonalds
(latitude=41.8781,longitude=-87.6298)

CORRECT

Are you looking for a McDonald's 

with a drive-thru or inside a mall?

Not sure...②

Could you please share your 
current latitude and longitude?

Latitude: 41.8781, Longitude: -87.6298

④

③ Self-Correction

Sorry, I made a mistake. 
This question is not 
related to using the APIs 
to resolve the user's task, 
so I will ask something 
else.

(c)

Figure 1: Comparison of query handling approaches: (a) direct API calls without clarification, (b) basic clarification
without error recovery, and (c) our self-correcting ASKTOACT framework.

perfect clarification sequences. In reality, models083

often request already-provided information, follow084

irrelevant paths, or miss unspecified details. With-085

out error recovery training, these issues accumulate086

throughout dialogues, reducing efficiency and com-087

promising tool invocation quality.088

We propose ASKTOACT, a self-correcting clar-089

ification framework that systematically addresses090

these limitations. Our key insight is that tool param-091

eters naturally represent explicit user intents, creat-092

ing an opportunity for automated data generation.093

We develop an automated pipeline that strategically094

removes key parameters from complete queries in095

existing datasets, generating diverse unspecified096

queries with built-in ground truth. Using these097

queries, we construct rich clarification dialogues098

demonstrating effective intent elicitation. To en-099

able robust error handling during interactions, we100

augment training data with carefully designed error-101

correction pairs that simulate realistic mistakes and102

their solutions. We implement selective masking103

during training to prevent learning negative patterns104

while enhancing error detection abilities.105

Through comprehensive experiments, we106

demonstrate that ASKTOACT achieves several107

significant improvements: (1) correctly identifies108

unspecified queries and recovers more than 57%109

of critical unspecified intents, while significantly110

enhances clarification efficiency by an average111

of 10.46% compared to the base model; (2)112

achieves strong performance in end-to-end tool113

invocation, with over 81% tool selection accuracy114

and over 68% parameter resolution accuracy;115

(3) exhibits robust performance across different116

model architectures, and successfully generalizes117

to entirely unseen APIs; and (4) delivers perfor-118

mance comparable to GPT-4o while requiring119

substantially fewer computational resources.120

Our work makes three main contributions:121

• We introduce an automated pipeline for gener- 122

ating high-quality intent clarification datasets, 123

addressing the scalability limitations of man- 124

ual annotation. 125

• We develop a self-correction mechanism that 126

enables models to dynamically detect and cor- 127

rect potential errors during clarification inter- 128

actions. 129

• Our experimental results demonstrate that 130

our method not only achieves state-of-the-art 131

(SOTA) performance but also shows strong 132

generalization ability when handling queries 133

requiring the use of unseen APIs. 134

2 Method 135

Tool learning faces a fundamental challenge: while 136

API calls require precise parameters, real-world 137

queries are often ambiguous. To bridge this gap, 138

we propose ASKTOACT, a self-correcting clari- 139

fication framework. Our method consists of two 140

key components: (1) an automated data construc- 141

tion pipeline for generating diverse intent calrifica- 142

tion data (§2.1), and (2) a self-correction training 143

paradigm for dynamic error detection and correc- 144

tion (§2.2). The core insight is that tool parameters 145

naturally represent explicit user intents, making 146

them ideal anchors for both data generation and 147

error correction. Figure 2 illustrates the overall 148

framework architecture. 149

2.1 Intent Clarification Dataset Curation 150

The foundation of our method is a systematic 151

pipeline for constructing multi-turn clarification 152

data. As shown in Figure 2, the pipeline proceeds 153

in two steps: generating unspecified queries and 154

subsequently constructing clarification dialogues. 155
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User: I want to order some food on Uber Eats to 123 Main St., 
and also need to book a ride to the same address.
Assistant: The task can be decomposed into 2 steps for solving. 
Step 1: Order some food on Uber Eats to 123 Main St. using 
“order_food_delivery” API. Step 2: Book a ride to the same 
address using “order_taxi” API. The information I currently have is: 
In step 1, the parameter “food” for API “order_food_delivery” lacks 
a clear value, the parameter “platform” for API 
“order_food_delivery” has a value of “Uber Eats”, the parameter 
“location” for API “order_food_delivery” has a value of “123 Main 
St.”. In step 2, the parameter “platform” for API “order_taxi” lacks 
a clear value, the parameter “location” for API “order_taxi” has a 
value of “123 Main St.”. Could you please specify what food you 
would like to order on Uber Eats?
User: Sure! The answer is “fried chicken”. Let me know if you 
have more questions!
Assistant: Now I know that the parameter “food” for API 
“order_food_delivery” has a value of "fried chicken". Which ride-
sharing platform would you prefer to use for your ride?
User: The answer is: Lyft.  
Assistant: Now I know that the parameter “platform” for API 
“order_taxi” has a value of “Lyft”. I have all the information needed 
and can now call the relevant APIs to solve the task. The solution 
path is as follows: [{"task": "order_food_delivery", parameters: 
[{"name": "food", "value": “fried chicken”}, {"name": "platform", 
"value": "Uber Eats"}, {"name": "location", "value": "123 Main 
St."}]}, {"task": "order_taxi", parameters: [{"name": "platform", 
"value": “Lyft”}, {"name": "location", "value": "123 Main St."}]}]
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I want to order some 
food on Uber Eats to 
123 Main St., and also 
need to book a ride to 
the same address.
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order_food_delivery(food=fried chicken, 
platform=Uber Eats, 
location=123 Main St.)

order_taxi(platform=Lyft, 
location=123 Main St.)

I want to order fried chicken on Uber Eats to 
be delivered to 123 Main St., and also need 
to book a ride on Lyft to the same address.

Quality 
Control

Similarity Check

fried chicken

some food

Lyft

NULLParameter Sampling

Parameter
Removal

Task Decomposition

Clarification
Generation

User: I want to order some food on Uber Eats to 123 Main St., and also 
need to book a ride to the same address.
Assistant: The task can be decomposed into 2 steps for solving. Step 1: 
Order some food on Uber Eats to 123 Main St. using “order_food_delivery” 
API. Step 2: Book a ride to the same address using “order_taxi” API. The 
information I currently have is: In step 1, the parameter “food” for API 
“order_food_delivery” lacks a clear value, the parameter “platform” for API 
“order_food_delivery” has a value of “Uber Eats”, the parameter “location” 
for API “order_food_delivery” has a value of “123 Main St.”. In step 2, the 
parameter “platform” for API “order_taxi” lacks a clear value, the 
parameter “location” for API “order_taxi” has a value of “123 Main St.”. 
Could you please specify what food you would like to order on Uber Eats?
User: Sure! The answer is “fried chicken”. Let me know if you have more 
questions!
Assistant: Now I know that the parameter “food” for API 
“order_food_delivery” has a value of "fried chicken". 
<SOE> Where would you like to be dropped off? <EOE> 
Sorry, I made a mistake. The parameter “location” for API “order_taxi” has 
a value of “123 Main St.”, which was clearly stated in the user's task. 
Therefore, I don't need to ask any further questions. Which ride-sharing 
platform would you prefer to use for your ride?
User: The answer is: Lyft.  
Assistant: Now I know that the parameter “platform” for API “order_taxi” 
has a value of “Lyft”. I have all the information needed and can now call 
the relevant APIs to solve the task. The solution path is as follows: [{"task": 
"order_food_delivery", parameters: [{"name": "food", "value": “fried 
chicken”}, {"name": "platform", "value": "Uber Eats"}, {"name": "location", 
"value": "123 Main St."}]}, {"task": "order_taxi", parameters: [{"name": 
"platform", "value": “Lyft”}, {"name": "location", "value": "123 Main St."}]}]

Human Verification

Tool Learning Dataset

Figure 2: Overview of ASKTOACT framework. Top: Dataset construction pipeline, consisting of (1) unspecified
query generation by selecting and removing key parameters (e.g., "fried chicken" and "Lyft") from original queries,
and (2) dialogue construction through task decomposition, clarification generation, and dialogue assembly. Bottom:
Self-correction training through dialogue augmentation and selective masking fine-tuning.

2.1.1 Unspecified Query Generation156

A key challenge in building intent clarification sys-157

tems is obtaining realistic examples of ambiguous158

queries paired with their complete intents. We ad-159

dress this through a novel reverse-engineering ap-160

proach that leverages existing tool learning datasets.161

Each instance in these datasets consists of a fully162

specified query q and a corresponding tool invo-163

cation solution S = {(fi, Pi) | i = 1, . . . , n},164

where fi denotes the API and Pi = {p1i , p2i , . . . }165

represents its parameter set. We systematically166

transform q into an unspecified query q′ while pre-167

serving the ground truth information necessary for168

subsequent dialogue construction and evaluation.169

Parameter Sampling The first step in our170

pipeline is to determine which parameters in S171

to remove from the original query q. We imple-172

ment a stratified sampling approach that enables173

sampling across different API domains and param-174

eter counts. For each query, we randomly select175

parameters according to one of four complexity 176

levels: (1) fully specified, where all parameters are 177

retained, (2) single-API single-parameter, where 178

one parameter from one API call is removed, (3) 179

single-API multi-parameter, where multiple param- 180

eters from the same API call are removed, and (4) 181

multi-API multi-parameter, where parameters are 182

removed across multiple API calls. This stratifica- 183

tion ensures our dataset captures the full spectrum 184

of query ambiguity encountered in real-world sce- 185

narios, from basic single-slot ambiguities to com- 186

plex multi-faceted ambiguities. 187

Parameter Removal Once the removed parame- 188

ter set P ′ is determined, we apply two complemen- 189

tary strategies to transform the original query q into 190

an unspecified form. The first strategy, complete re- 191

moval, entirely eliminates parameter values from q 192

while preserving grammatical integrity. The second 193

strategy, semantic abstraction, replaces specific pa- 194

rameter values with abstract expressions that ne- 195
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cessitate further clarification. For each parameter196

p ∈ P ′, we maintain a mapping M : p→ v′, where197

v′ represents the transformed value after parameter198

removal or abstraction. By recording the values199

before and after the transformation, we can more200

precisely track how explicit user intent becomes201

unspecified during the process of unspecified query202

generation. This record plays an important role in203

quality control, helping us ensure the quality of204

the generated query. Also, it guides subsequent205

dialogue construction and provides ground truth206

for evaluation. The implementation details and the207

format of the transformation record are provided in208

Appendix C.1.1 and Appendix C.1.2, respectively.209

Quality Control To ensure generation quality,210

we employ a dual-stage verification mechanism.211

We first compute semantic similarity between orig-212

inal values and their transformations using Sen-213

tence Transformer (Reimers and Gurevych, 2019).214

Queries with similarity scores exceeding 0.95 are215

filtered out to ensure sufficient semantic alteration.216

Then, we conduct human verification on generated217

queries (see Appendix C.1.3). Through this pro-218

cess, we constructed 35,261 high-quality unspeci-219

fied queries, as shown in Table 1.220

2.1.2 Clarification Dialogue Construction221

Based on the generated unspecified queries, we222

propose an automated method to construct train-223

ing dialogue data that simulate multi-turn clarifi-224

cation. The dialogue construction process—from225

task decomposition, clarification generation to fi-226

nal dialogue assembly—is essential for generating227

coherent and effective clarification interactions.228

Task Decomposition The foundation of effective229

clarification lies in identifying what information230

needs to be clarified. Given an unspecified query q′231

and its tool invocation solution S, we first decom-232

pose the query into a sequence of subtasks. Each233

subtask corresponds to an API call in S. For each234

API call, we perform parameter analysis to identify235

two categories: (1) parameters already specified in236

q′, and (2) parameters requiring clarification. This237

structured decomposition guides the subsequent238

clarification process, ensuring all necessary infor-239

mation is systematically obtained.240

Clarification Generation Building on the task241

decomposition, we generate interaction turns for242

each parameter that requires clarification, follow-243

ing the API call order defined in S. We construct244

each clarification turn through a three-step process, 245

with the goal of maximizing clarification effective- 246

ness and preserving natural conversational flow. 247

First, we generate a clarification question qc target- 248

ing the unspecified parameter. Next, we simulate 249

the user’s reply using diverse response templates 250

that vary in verbosity and conversational tone. Fi- 251

nally, we generate a confirmation statement sum- 252

marizing the clarified information, which serves as 253

an explicit reference for subsequent turns. 254

Dialogue Assembly The final step brings to- 255

gether all components into a coherent dialogue 256

structure. We assemble the generated elements se- 257

quentially while maintaining natural conversation 258

flow through consistent reference to previously clar- 259

ified information and smooth transitions between 260

parameter-related clarifications. Special attention 261

is paid to parameter interdependencies, ensuring 262

that information is requested in a logical order that 263

reflects real-world dialogue patterns. The dialogue 264

concludes with the complete tool invocation solu- 265

tion S, providing a clear connection between the 266

clarification process and its ultimate goal. Detailed 267

templates and prompting strategies that support this 268

assembly process are provided in Appendix C.2. 269

2.2 Self-Correction Training 270

While constructing high-quality training data is es- 271

sential, the dynamic nature of clarification interac- 272

tions requires models to detect and correct potential 273

errors in real-time. We develop a systematic train- 274

ing paradigm that combines error-correction aug- 275

mentation with specialized training strategies to en- 276

hance model robustness and enable self-correction. 277

Error Type Analysis Through comprehensive 278

analysis of clarification interactions generated by 279

the model in response to unspecified queries, we 280

identify five primary error types that impair the clar- 281

ification process in complementary ways. Clearly 282

Stated Intent Clarification occurs when the model 283

requests explicitly stated information, creating un- 284

necessary interaction turns. Imprecise Clarification 285

is characterized by questions that lack specificity, 286

often resulting in ambiguous user responses. Irrel- 287

evant Clarification emerges when the model poses 288

questions that diverge from the core intent. Redun- 289

dant Clarification arises when the model requests 290

information that has been previously clarified. In- 291

complete Clarification represents failure to identify 292

all parameters requiring clarification, leading to in- 293

complete tool invocation solutions. Understanding 294
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Dataset Train Test Avg. No. APIs Avg. No. Params Avg. No. Unspecified Intents

xlam-IC 29,821 4,456 1.58 2.49 1.32
Taskbench-IC - 984 1.75 2.35 1.30

Total 29,821 5,440 1.59 2.49 1.32

Table 1: Datasets statistics. xlam-IC is generated from the xlam-function-calling-60k dataset (Liu et al., 2024)
which is used for training and testing. Taskbench-IC is generated from Taskbench (Shen et al., 2024) and is used
exclusively for OOD testing. Please refer to the Appendix B for more details about both datasets.

Error Type Count

Clearly Stated Intent Clarification 2,481
Imprecise Clarification 2,298
Irrelevant Clarification 2,251
Redundant Clarification 3,126
Incomplete Clarification 5,000

Total 15,156

Table 2: Error type distribution in augmented dialogues.

these patterns guides our error-correction strategy.295

2.2.1 Error-Correction Augmentation296

Building upon this error analysis, we introduce297

an automated method to augment dialogues with298

error-correction pairs. Given a dialogue d, we ran-299

domly select an error type τk and determine an300

injection position pos. We then generate the er-301

ror instance using two strategies. For semantic302

errors (Clearly Stated Intent, Imprecise, and Irrele-303

vant), we employ GPT-4o with specialized prompts:304

e = fgpt(d, τk, pos). For structural errors (Redun-305

dant and Incomplete), we implement rule-based306

algorithms: e = frule(d, τk, pos). Implementation307

details are provided in Appendix D.1.308

After generating error e, we construct a correc-309

tion c using a template specific to the error type τk.310

The resulting correction c explicitly states the error311

type and identifies the correct behavior as the con-312

tent at position pos in the original dialogue d. We313

then inject these error-correction pair (e, c) into the314

original dialogue d at the predetermined position315

pos: d′ = inject(d, e, c, pos).316

To ensure the validity of our error-correction317

augmentation method, we conduct human verifica-318

tion on augmented dialogues (see Appendix D.3).319

Through this systematic process, we generated320

15,156 augmented dialogues, as shown in Table 2.321

2.2.2 Selective Masking Fine-tuning322

To effectively utilize the augmented dialogues for323

training while preventing the model from learn-324

ing error patterns, we implement a selective mask-325

ing mechanism during fine-tuning. We introduce 326

special tokens <SOE> and <EOE> to demarcate 327

error segments, and mask these segments during 328

loss computation. This approach allows the model 329

to learn error detection and correction patterns 330

while avoiding the reinforcement of error behav- 331

iors. Through this training process, we equip the 332

model with the ability to dynamically identify po- 333

tential errors and apply appropriate corrections dur- 334

ing clarification interactions. 335

3 Experiment 336

3.1 Experimental Settings 337

Training Details We construct our training data 338

from the xlam-IC dialogue dataset, where 30% 339

of the samples are replaced with error-correction 340

augmented dialogues. We explore two adapta- 341

tion strategies for the Qwen2.5-7B-Instruct model: 342

LoRA (Hu et al., 2021) and full-parameter fine- 343

tuning. More details are provided in Appendix E. 344

Baselines For comprehensive comparison, we 345

evaluate representative tool-augmented LLMs, 346

including xLAM-7b-fc-r (trained on the xlam- 347

function-calling-60k dataset but without intent clar- 348

ification) (Liu et al., 2024), gorilla-openfunctions- 349

v2 (Patil et al., 2023), and ToolLLaMA-2-7b-v2 350

(Qin et al., 2024), as well as an intent clarifica- 351

tion model, Mistral-Interact (Qian et al., 2024). In 352

addition, we evaluate major LLM series, includ- 353

ing Mistral-7B-Instruct-v0.3, LLaMA (3-8B/70B- 354

Instruct), Qwen (2.5-7B/72B-Instruct), DeepSeek- 355

V3, Claude (3.5-Haiku/Sonnet), and GPT (3.5, 4, 356

4o-mini, 4o). All models use a standardized evalu- 357

ation prompt (see Appendix F.1). 358

3.2 Evaluation Framework 359

We develop an automated framework for systematic 360

evaluation on handling unspecified queries. The 361

framework employs an LLM to simulate user be- 362

havior. During interactions, the user-simulating 363

LLM judges whether clarification questions are rel- 364

evant to unspecified intents, and either provides the 365
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necessary information or indicates that it is unavail-366

able. To better capture the complexity of real-world367

human-LLM interactions, we configure the user-368

simulating LLM with six personality types, each369

exhibiting different response characteristics. Im-370

plementation details are provided in Appendix F.2.371

3.3 Metrics372

We evaluate the models in two aspects: intent clar-373

ification quality and tool invocation accuracy. For374

intent clarification quality, we design four met-375

rics. Intent Coverage Rate (ICR) measures the pro-376

portion of successfully clarified intents among all377

unspecified intents, while Clarification Efficiency378

(CE) evaluates the success rate of clarification379

across interaction rounds. We combine these mea-380

sures into a Clarification Performance Score (CPS)381

using a harmonic mean, similar to the F1-score382

formulation. Additionally, we track Interaction383

Rounds (IR) as the average number of clarification384

rounds per query. For tool invocation accuracy, we385

introduce three complementary metrics. Solution386

Completion Rate (SCR) measures the proportion387

of successfully generated tool invocation solutions,388

providing an end-to-end assessment. Tool Selec-389

tion Score (TSS) evaluates API selection accuracy390

using an F1-score over selected and required APIs.391

Parameter Resolution Score (PRS) assesses the ac-392

curacy of parameter resolution through an F1-score393

computation over API-parameter-value triples. The394

details are provided in Appendix F.3.395

3.4 Main Results396

3.4.1 LLM-based Simulated Evaluation397

The experimental results on the in-domain (ID) test398

split of the xlam-IC dataset are presented in Table 3.399

Our method demonstrates superior performance in400

both intent clarification and tool invocation.401

Intent Clarification Capability Both variants402

of our method—ASKTOACT-LoRA-SFT-7B and403

ASKTOACT-Full-SFT-7B—exhibits strong capa-404

bilities in intent clarification. In particular, the405

fully fine-tuned variant reaches a CPS of 65.92%,406

closely approaching the performance of SOTA407

LLMs such as GPT-4o. Meanwhile, the lightweight408

LoRA variant also achieves competitive results409

(ICR: 57.68%, CE: 63.41%, CPS: 60.41%), signifi-410

cantly surpassing the specialized intent clarification411

model Mistral-Interact.412

Tool Invocation Accuracy Our method demon-413

strates remarkable capabilities in translating clar-414

ified intents into precise tool invocations. It 415

achieves SOTA performance across all evalua- 416

tion metrics (SCR > 96%, TSS > 81%, PRS > 417

68%), significantly surpasses all existing open- 418

source and closed-source LLMs. Compared to tool- 419

augmented LLMs such as xLAM-7b-fc-r, gorilla- 420

openfunctions-v2, and ToolLLaMA-2-7b-v2, our 421

method demonstrates substantial advantages. This 422

performance gap highlights the strength of integrat- 423

ing intent clarification with tool learning. Unlike 424

prior specialized models that are limited to unam- 425

biguous tool-use queries, our method effectively 426

resolves ambiguity in user queries, leading to sig- 427

nificantly improved tool invocation accuracy. 428

Further analyses—including cross-model trans- 429

ferability, the impact of augmentation proportion, 430

clarification complexity, and a case study of user 431

interaction styles—are presented in Appendix G. 432

3.4.2 Human-Interactive Evaluation 433

To assess the effectiveness of our method in 434

real-world interactions, we conducted a human- 435

interactive evaluation. We recruited 3 participants, 436

each asked to propose 10 unspecified tool-use 437

queries requiring clarification. These queries were 438

independently tested on the base model (Qwen2.5- 439

7B-Instruct) and our models (ASKTOACT-LoRA- 440

SFT-7B and ASKTOACT-Full-SFT-7B). Partici- 441

pants interacted with the models iteratively until 442

they obtained a satisfactory response. 443

As shown in Table 4, both variants of our 444

method outperform the base model across all met- 445

rics. Specifically, ASKTOACT-LoRA-SFT-7B im- 446

proves the Task Completion Rate by 6.66% and 447

the Intent Coverage Rate by 9.76%, while reducing 448

Interaction Rounds from 3.20 to 2.73. ASKTOACT- 449

Full-SFT-7B achieves further improvements, reach- 450

ing 96.67% Task Completion Rate and 85.37% In- 451

tent Coverage Rate, with fewer Interaction Rounds 452

(2.60). In addition, participants reported higher 453

satisfaction with both variants (4.40 and 4.61 vs. 454

3.80), confirming that our method leads to a more 455

effective and user-friendly interaction experience. 456

The consistency of results across both LLM-based 457

and human-interactive evaluations highlights the 458

effectiveness, robustness, and practical utility of 459

our method. 460

3.5 OOD Generalization 461

To assess the generalization ability of our method, 462

we test on Taskbench-IC, an out-of-domain (OOD) 463

set that consists of entirely unseen API domains. 464
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LLM Intent Clarification Quality Tool Invocation Accuracy

ICR↑ CE↑ CPS↑ IR↓ SCR↑ TSS↑ PRS↑

Closed-Source LLMs

Claude3.5-Haiku 49.60 35.05 41.07 2.30 84.20 62.74 52.12
Claude3.5-Sonnet 57.55 61.71 59.55 1.52 94.52 73.20 62.68
GPT-3.5 46.63 51.41 48.90 1.48 93.20 67.75 51.22
GPT-4 59.43 63.09 61.21 1.53 93.42 71.55 61.82
GPT-4o-Mini 57.95 56.43 57.18 1.67 92.98 71.82 61.52
GPT-4o 64.82 74.50 69.33 1.33 94.52 76.94 67.65

Open-Source LLMs

Mistral-7B-Instruct-v0.3 26.01 34.90 29.81 1.21 92.55 51.92 29.57
LLaMA3-8B-Instruct 44.47 25.33 32.27 2.86 80.92 51.57 42.54
LLaMA3-70B-Instruct 56.82 38.80 46.11 2.38 86.38 66.56 56.40
Qwen2.5-7B-Instruct 55.50 55.30 55.40 1.64 91.43 69.32 57.53
Qwen2.5-72B-Instruct 61.90 70.36 65.86 1.36 94.10 73.99 64.15
DeepSeek-V3 56.47 71.32 63.03 1.20 95.26 74.76 62.76

Specialized Models

xLAM-7b-fc-r 0.27 0.54 0.36 0.80 88.15 11.45 4.60
gorilla-openfunctions-v2 10.11 7.13 8.36 2.31 70.83 37.90 19.23
ToolLLaMA-2-7b-v2 1.89 1.34 1.57 2.29 58.77 18.29 5.01
Mistral-Interact 4.99 4.16 4.53 1.95 83.10 25.47 9.89

Ours

ASKTOACT-LoRA-SFT-7B 57.68 (↑2.18) 63.41 (↑8.11) 60.41 (↑5.01) 1.48 (↓0.16) 96.05 (↑4.62) 81.42 (↑12.10) 68.71 (↑11.18)
ASKTOACT-Full-SFT-7B 63.88 (↑8.38) 68.10 (↑12.80) 65.92 (↑10.52) 1.53 (↓0.11) 97.37 (↑5.94) 84.55 (↑15.23) 73.12 (↑15.59)

Table 3: Main results.

Metric Qwen2.5-7B-Instruct ASKTOACT-LoRA-SFT-7B ASKTOACT-Full-SFT-7B

Task Completion Rate (%) 86.67 93.33 (↑6.66) 96.67 (↑10.00)
Intent Coverage Rate (%) 65.85 75.61 (↑9.76) 85.37 (↑19.52)
Interaction Rounds 3.20 2.73 (↓0.47) 2.60 (↓0.60)
User Satisfaction Score (1–5) 3.80 4.40 (↑0.60) 4.61 (↑0.81)

Table 4: Human evaluation results. All metrics are averaged across participants.

As shown in Table 5, both the LoRA and fully465

fine-tuned variants of our method demonstrate466

strong performance. The LoRA variant achieves a467

CPS of 60.23% and PRS of 64.81%, outperform-468

ing all open-source baselines and even surpassing469

some commercial closed-source models. The fully470

fine-tuned variant pushes this further, reaching a471

CPS of 62.96% and PRS of 69.45%, comparable472

to GPT-4o. These results highlight that our method473

generalizes effectively to unseen domains without474

relying on memorization of training data. Instead,475

it acquires transferable principles for intent clarifi-476

cation and tool invocation.477

3.6 Ablation Study478

To assess the contribution of each component in our479

method, we conducted a comprehensive ablation480

study comparing three model configurations: (1)481

ASKTOACT-LoRA-SFT-7B model, (2) a variant482

without error-correction augmented dialogue data483

(i.e., trained only with basic intent clarification data484

using the same LoRA configurations), and (3) the 485

untrained base model (Qwen2.5-7B-Instruct). We 486

randomly selected 50 unspecified user queries from 487

the test set and computed the error rates for five 488

error types identified in §2.2. 489

As shown in Table 6, compared to the untrained 490

base model, the model trained solely on basic intent 491

clarification data significantly reduce all five error 492

types, confirming the effectiveness of clarification 493

training. Incorporating error-correction augmented 494

dialogues and self-correction training yields further 495

improvements. The Clearly Stated Intent Clarifi- 496

cation rate and Redundant Clarification rate both 497

decrease from 9.09% to 6.80%, suggesting that the 498

model becomes more effective at avoiding unnec- 499

essary clarification. While Imprecise and Irrelevant 500

Clarification rates show slight increases, likely due 501

to additional interaction turns introduced by self- 502

correction attempts, this trade-off is justified by the 503

substantial reduction in Incomplete Clarification 504

rate (from 38.00% to 32.00%), which is critical for 505
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LLM Intent Clarification Quality Tool Invocation Accuracy

ICR↑ CE↑ CPS↑ IR↓ SCR↑ TSS↑ PRS↑

Closed-Source LLMs

Claude3.5-Haiku 61.07 29.88 40.13 4.20 73.68 66.15 46.59
Claude3.5-Sonnet 69.74 38.10 49.28 3.29 84.96 76.05 54.09
GPT-3.5 44.19 44.42 44.30 1.72 98.27 89.28 45.50
GPT-4 63.60 44.73 52.52 2.57 93.90 90.52 63.26
GPT-4o-mini 70.86 49.60 58.35 2.63 95.22 89.63 69.44
GPT-4o 72.41 53.37 61.45 2.27 96.24 92.22 69.56

Open-Source LLMs

Mistral-7B-Instruct-v0.3 55.13 28.94 37.96 3.15 77.34 68.73 49.35
LLaMA3-8B-Instruct 62.81 29.99 40.59 3.66 78.86 69.22 45.52
LLaMA3-70B-Instruct 67.14 35.34 46.30 3.44 84.76 79.08 55.53
Qwen2.5-7B-Instruct 64.79 38.43 48.25 3.00 92.99 86.19 61.86
Qwen2.5-72B-Instruct 68.64 43.87 53.53 2.83 92.48 90.25 63.85
DeepSeek-V3 60.11 42.24 49.62 2.55 92.17 83.10 58.33

Specialized Models

xLAM-7b-fc-r 0.34 0.56 0.42 2.08 91.46 14.29 5.43
gorilla-openfunctions-v2 44.53 22.27 29.69 3.41 69.92 52.36 21.67
ToolLLaMA-2-7b-v2 2.76 2.25 2.48 2.19 98.98 42.65 2.07
Mistral-Interact 35.38 15.63 21.69 4.27 64.43 18.60 2.94

Ours

ASKTOACT-LoRA-SFT-7B 68.87 (↑4.08) 53.52 (↑15.09) 60.23 (↑11.98) 2.82 (↑0.18) 99.59 (↑6.63) 96.44 (↑10.25) 64.81 (↑2.95)
ASKTOACT-Full-SFT-7B 69.90 (↑5.11) 57.27 (↑18.84) 62.96 (↑14.71) 2.72 (↑0.28) 99.70 (↑6.64) 96.41 (↑10.22) 69.45 (↑7.59)

Table 5: OOD generalization performance comparison.

Method
Error Rate (%)

CPS↑ PRS↑Clearly Stated
Intent Clarification

Imprecise
Clarification

Irrelevant
Clarification

Redundant
Clarification

Incomplete
Clarification

ASKTOACT-LoRA-SFT-7B 6.80 11.65 8.74 6.80 32.00 61.51 69.50
w/o Error-Correction Augmented Dialogue Data 9.09 6.49 6.49 9.09 38.00 58.93 66.90
w/o Training (Base Model) 12.43 12.37 9.29 11.34 44.00 53.00 59.18

Table 6: Ablation study. The first four error types calculated as the proportion of interaction turns containing specific
errors among all interaction turns, while the last error type measures the proportion of queries in which not all
unspecified intents are successfully clarified.

enabling accurate tool invocation. These improve-506

ments in clarification behavior are further reflected507

in downstream performance. The PRS increases508

from 59.18% to 66.90%, and finally to 69.50%,509

indicating that the enhanced clarification quality510

translates into more accurate tool invocation.511

4 Related Work512

Our work relates to three areas: tool learning, user513

intent clarification, and self-correction. Tool learn-514

ing equips LLMs with external capabilities but typ-515

ically assumes explicit user intents. Intent clarifi-516

cation addresses ambiguous queries, yet existing517

datasets often rely on manual annotation. Self-518

correction has shown promise in mathematical rea-519

soning but remains underexplored for intent un-520

derstanding. We unify these directions through521

a self-correcting clarification framework. A full522

review of related work is provided in Appendix A.523

5 Conclusion 524

In this work, we presented ASKTOACT, a self- 525

correcting clarification framework for tool learn- 526

ing that addresses the critical challenges of data 527

scalability and error handling in clarification inter- 528

actions. Our key contribution lies in leveraging 529

the inherent structure of tool learning datasets to 530

enable automated construction of high-quality in- 531

tent clarification data, while introducing a novel 532

self-correction mechanism for robust clarification. 533

Experimental results demonstrate that our method 534

not only achieves superior performance in intent 535

clarification and tool invocation but also exhibits 536

strong generalization to unseen APIs and diverse 537

model architectures. We hope that our work will 538

provide valuable insights for developing more ef- 539

fective and reliable intent clarification mechanisms 540

in human-LLM interaction systems. 541
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Limitations542

While our work demonstrates promising results543

in handling unspecified queries, several important544

limitations warrant discussion:545

Dataset and Training Our method heavily relies546

on existing tool learning datasets, which may not547

fully capture the diversity and complexity of real-548

world user intents. The parameter removal process,549

although systematic, might not perfectly simulate550

natural query ambiguity patterns. Additionally, our551

current approach to error-correction augmentation552

focuses on pre-defined error types, potentially miss-553

ing other important error patterns that emerge in554

real-world interactions.555

Interaction Dynamics We have not yet explored556

scenarios where intents must be inferred from pre-557

vious tool invocation results, limiting our frame-558

work’s ability to handle context-dependent queries.559

Evaluation Limitations While our multi-level560

evaluation framework provides comprehensive as-561

sessment, it may not fully capture the complexity562

of real-world deployment scenarios, particularly in563

terms of user patience, time constraints, and vary-564

ing expertise levels. The current metrics might not565

sufficiently measure the user experience aspects of566

the clarification process.567

Ethics Statement568

We acknowledge that all authors are informed569

about and adhere to the ACL Code of Ethics and570

the Code of Conduct.571

Use of AI-Generated Content In our research,572

we utilize LLMs to generate intent clarification dia-573

logues based on existing tool learning datasets. All574

AI-generated content has been thoroughly verified575

by the authors to ensure quality and appropriate-576

ness. We have implemented rigorous quality con-577

trol mechanisms to filter out inappropriate or low-578

quality generations. The paper clearly discloses all579

instances where AI systems contributed to content580

generation.581

Data Sources The tool learning datasets used in582

our experiments are derived from publicly avail-583

able sources, including open-source repositories584

and publicly released benchmarks. We have made585

reasonable efforts to ensure that these data sources586

do not contain personally identifiable information587

or legally protected content. However, we cannot588

guarantee that they are entirely free from socially 589

harmful or biased language. Any potential biases in 590

the original datasets may propagate to our results. 591

Broader Impact Our work aims to enhance mod- 592

els’ ability to handle ambiguous user queries in 593

tool-use scenarios. This may extend the applica- 594

bility of AI systems to a wider range of real-world 595

scenarios. However, such improvements in intent 596

clarification and tool-use capabilities could also en- 597

able models to act with limited human oversight, 598

posing both opportunities and risks depending on 599

the deployment context. 600
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Appendix844

A Related Work845

A.1 Tool Learning846

Tool learning can effectively alleviate the inher-847

ent limitations of LLMs through dynamic interac-848

tion with external tools (Schick et al., 2023; Tang849

et al., 2023; Shen et al., 2023; Qin et al., 2024;850

Wang et al., 2024a). While LLMs acquire lim-851

ited knowledge during the pre-training phase, tools852

such as integrated search engines (Nakano et al.,853

2021; Komeili et al., 2022; Schick et al., 2023;854

Zhang et al., 2023; Shi et al., 2023; Paranjape et al.,855

2023) and databases (Thoppilan et al., 2022; Patil856

et al., 2023; Hao et al., 2023; Zhuang et al., 2023;857

Chen et al., 2023; Gu et al., 2024) enable real-time858

access to up-to-date information beyond the train-859

ing data. In addition, LLMs often struggle with860

complex mathematical operations, code generation,861

and domain-specific tasks (Inaba et al., 2023; Bran862

et al., 2023), which can be enhanced through dedi-863

cated tools.864

Existing evaluation benchmarks for reliable tool865

usage (Huang et al., 2024b; Patil et al., 2023; Ning866

et al., 2024) focus on explicit and unambiguous867

user queries, leaving the challenges of handling868

unspecified intents in real-world scenarios largely869

unexplored.870

A.2 User Intent Clarification871

When interacting with users, understanding user in-872

tents is crucial, especially when intents are implicit873

or unspecified. Zhang and Choi (2023) shows that874

unspecified user intents in queries should be clari-875

fied through interaction. The STaR-GATE frame-876

work (Andukuri et al., 2024) introduces a system-877

atic approach to question formulation by simulating878

diverse clarification scenarios. Qian et al. (2024)879

applied several strategies in conversation record880

construction and leveraged the generated data to881

fine-tune the model, enhancing the ability to for-882

mulate targeted questions.883

However, the construction of high-quality884

datasets for training and evaluation still remains885

challenging. Qian et al. (2024) constructed a bench-886

mark for daily scenarios, while Wang et al. (2024b)887

focuses on tool learning scenarios, but they both888

relied on manual annotation. Our work introduces889

an automated pipeline for dataset construction, en-890

abling better scalability.891

A.3 Self-Correction Mechanism 892

Early work on self-correction (Huang et al., 2023; 893

Madaan et al., 2023) primarily focused on post- 894

correction, using feedback to improve model out- 895

puts after they are generated. However, Huang et al. 896

(2024a) found that in the absence of standardized 897

answers, such post-correction has limited effect. 898

This finding prompted a shift in research focus to 899

real-time self-correction, i.e., dynamically identi- 900

fying and correcting errors during the reasoning 901

process. 902

Self-correction has achieved success in math- 903

ematical reasoning, where Yan et al. (2024) and 904

Zhang et al. (2024) introduce step-level and multi- 905

granular correction strategies. We extend these 906

approaches to user intent clarification, enabling 907

real-time correction during the clarification pro- 908

cess. 909

B Datasets 910

Our dataset is constructed based on two existing 911

tool learning datasets: xlam-function-calling-60k 912

and TaskBench. We describe their characteristics 913

below. 914

xlam-function-calling-60k This dataset com- 915

prises functionally executable APIs extracted from 916

Python libraries and RESTful services, rather than 917

being manually defined. The APIs span 21 func- 918

tional categories, covering a broad range of do- 919

mains such as information retrieval, and compu- 920

tational tools. In total, the dataset contains 3,673 921

APIs and 60,000 samples. An example is shown 922

below: 923

{ 924
"query": "List titles originally aired on 925

networks '1' and '8', released after 2010, 926
sorted by release date in descending order.", 927

"tools": [ 928
{ 929

"name": "list_titles", 930
"description": "Fetches a listing of 931

titles that match specified parameters from the 932
Watchmode API.", 933

"parameters": { 934
"genres": { 935

"description": "Filter 936
results to only include certain genre(s). Pass 937
in a single genre ID or multiple comma-separated 938
IDs. Default is '4,9'.", 939

"type": "str", 940
"default": "4,9" 941

}, 942
"limit": { 943

"description": "Set how many 944
titles to return per page. Default and maximum 945
is 250.", 946
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"type": "int",947
"default": "250"948

},949
"source_ids": {950

"description": "Filter the951
results to titles available on specific sources952
by passing individual IDs or multiple comma-953
separated IDs. Default is '23,206'. Note: Only a954
single region can be set if this is populated.",955

956
"type": "str",957
"default": "23,206"958

},959
"source_types": {960

"description": "Filter961
results to only include titles available on962
specific types of sources (e.g., subscription,963
free). Default is 'sub,free'. Note: Only a964
single region can be set if this is populated.",965

"type": "str",966
"default": "sub,free"967

},968
"types": {969

"description": "Filter970
results to only include titles available on971
specific types of sources (e.g., subscription,972
free). Default is 'sub,free'. Note: Only a973
single region can be set if this is populated.",974

"type": "str",975
"default": "movie,tv_series"976

},977
"regions": {978

"description": "Filter979
results to only include sources active in980
specific regions. Currently supported regions:981
US, GB, CA, AU. Default is 'US'. Note: Only a982
single region can be set if source_ids or source983
_types are populated.",984

"type": "str",985
"default": "US"986

},987
"sort_by": {988

"description": "Sort order989
of results. Possible values include: relevance_990
desc, relevance_asc, popularity_desc, popularity991
_asc, release_date_desc, release_date_asc, title992
_desc, title_asc. Default is 'relevance_desc'.",993

"type": "str",994
"default": "relevance_desc"995

},996
"page": {997

"description": "Set the page998
of results to return. Default is 1.",999

"type": "int",1000
"default": "1"1001

},1002
"network_ids": {1003

"description": "Filter1004
results to titles that originally aired on1005
specific TV networks by passing individual IDs1006
or multiple comma-separated IDs. Default is1007
'1,8,12'.",1008

"type": "str",1009
"default": "1,8,12"1010

},1011
"release_date_start": {1012

"description": "Filter1013
results to only include titles released on or1014
after a specific date. Format: YYYYMMDD. Default1015
is 20010101.",1016

"type": "int", 1017
"default": "20010101" 1018

}, 1019
"release_date_end": { 1020

"description": "Filter 1021
results to only include titles released on or 1022
before a specific date. Format: YYYYMMDD. 1023
Default is 20201211.", 1024

"type": "int", 1025
"default": "20201211" 1026

} 1027
} 1028

} 1029
], 1030
"answers": [ 1031

{ 1032
"task": "list_titles", 1033
"arguments": [ 1034

{ "name": "network_ids", "value": 1035
"1,8" }, 1036

{ "name": "release_date_start", 1037
"value": 20110101 }, 1038

{ "name": "sort_by", "value": " 1039
release_date_desc" } 1040

] 1041
} 1042

] 1043
} 1044

Taskbench In contrast, TaskBench defines three 1045

tool-use scenarios across distinct application do- 1046

mains: (1) Hugging Face tools, simulating a subset 1047

of model functionalities available on the Hugging 1048

Face platform—such as summarization, translation, 1049

and classification, with 23 APIs and 12,217 sam- 1050

ples; (2) Multimedia tools, simulating representa- 1051

tive functionalities of multimodal systems—such 1052

as video editing and image transformation, with 40 1053

APIs and 8,904 samples; (3) Daily Life APIs, sim- 1054

ulating everyday user-facing applications—such as 1055

ticket booking, food ordering and schedule man- 1056

agement, with 40 APIs and 7,150 samples. All 1057

APIs in TaskBench are manually constructed. Rep- 1058

resentative examples from each domain are shown 1059

below: 1060

1061

Hugging Face tools 1062

{ 1063
"query": "I'm currently analyzing a 1064

particular text, 'John works at Google in 1065
Mountain View, California.' Can you assist me in 1066
identifying the named entities and marking the 1067
part-of-speech tags within this text?", 1068

"tools": [ 1069
{ 1070

"id": "Token Classification", 1071
"desc": "Token classification is a 1072

natural language understanding task in which a 1073
label is assigned to some tokens in a text. Some 1074
popular token classification subtasks are Named 1075
Entity Recognition (NER) and Part-of-Speech ( 1076
PoS) tagging. NER models could be trained to 1077
identify specific entities in a text, such as 1078
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dates, individuals and places; and PoS tagging1079
would identify, for example, which words in a1080
text are verbs, nouns, and punctuation marks.",1081

"input-type": [1082
"text or text file"1083

],1084
"output-type": [1085

"text or text file"1086
]1087

}1088
],1089
"answers": [1090

{1091
"task": "Token Classification",1092
"arguments": [1093

"'John works at Google in1094
Mountain View, California.'"1095

]1096
}1097

]1098
}1099

1100

Multimedia tools1101

{1102
"query": "I've recently conducted an1103

interview and have recorded it in 'interview.wav1104
' audio file. Can you assist me in transcribing1105
it to a text document, so I can refer to it1106
easily in the future? Besides, I'm dealing with1107
an article titled 'abc.txt' and I want to have a1108
fresh iteration of this text so that it will be1109
unique. Would you be able to employ the Article1110
Spinner tool to facilitate this?",1111

"tools": [1112
{1113

"id": "Audio-to-Text",1114
"desc": "Transcribes speech from an1115

audio file into text.",1116
"input-type": [1117

"audio or audio file"1118
],1119
"output-type": [1120

"text or text file"1121
]1122

},1123
{1124

"id": "Article Spinner",1125
"desc": "Rewrites a given article1126

using synonyms and syntax changes to create a1127
new, unique version.",1128

"input-type": [1129
"text or text file"1130

],1131
"output-type": [1132

"text or text file"1133
]1134

}1135
],1136
"answers": [1137

{1138
"task": "Audio-to-Text",1139
"arguments": [1140

"interview.wav"1141
]1142

},1143
{1144

"task": "Article Spinner",1145
"arguments": [1146

"abc.txt" 1147
] 1148

} 1149
] 1150

} 1151

1152

Daily Life APIs 1153

{ 1154
"query": "I have a busy day ahead. Could you 1155

assist me by logging into an online meeting 1156
regarding 'Smart Home Devices'? After the 1157
meeting, can you facilitate a video call with my 1158
friend on +1234567666?", 1159

"tools": [ 1160
{ 1161

"id": "attend_meeting_online", 1162
"desc": "Attend a meeting online 1163

about a specific topic", 1164
"parameters": [ 1165

{ 1166
"name": "topic", 1167
"type": "string", 1168
"desc": "The topic of the 1169

meeting" 1170
} 1171

] 1172
}, 1173
{ 1174

"id": "make_video_call", 1175
"desc": "Make a video call to a 1176

specific phone number", 1177
"parameters": [ 1178

{ 1179
"name": "phone_number", 1180
"type": "string", 1181
"desc": "The phone number to 1182

make the video call to" 1183
} 1184

] 1185
} 1186

], 1187
"answers": [ 1188

{ 1189
"task": "attend_meeting_online", 1190
"arguments": [ 1191

{ "name": "topic", "value": " 1192
Smart Home Devices" } 1193

] 1194
}, 1195
{ 1196

"task": "make_video_call", 1197
"arguments": [ 1198

{ "name": "phone_number", "value 1199
": "+1234567666" } 1200

] 1201
} 1202

] 1203
} 1204

We verified that there is no overlap between 1205

APIs in xlam-function-calling-60k and those in 1206

TaskBench. 1207

Licensing Both datasets are publicly accessi- 1208

ble: xlam-function-calling-60k follows the Cre- 1209

ative Commons Attribution 4.0 License (CC BY) 1210

while TaskBench is released under the Apache 2.0 1211
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License. We comply with their respective licenses1212

in using and extending the data.1213

C Intent Clarification Dataset Curation1214

C.1 Unspecified Query Generation1215

C.1.1 Prompt for Unspecified Query1216

Generation1217

Given an original query and its tool invocation so-1218

lution, the following prompt guides GPT-4o to gen-1219

erate unspecified queries by analyzing parameters1220

and systematically removing them.1221

1222

System Prompt1223

You are a query transformation assistant. Your1224
task is to modify the original user query by1225
removing or abstracting specific parameters1226
marked with `removed`: "true", while maintaining1227
the overall structure and clarity of the1228
original query. The resulting query (`1229
unspecified_query`) should reflect the general1230
intent of the user but omit or obscure the1231
specific details of the removed parameters.1232

1233
### Input:1234
1. `original_query`: The complete textual1235
description of the user's original request.1236
2. `answers`: A detailed record specifying the1237
APIs and parameters required to fulfill the1238
original query. Each parameter in this record1239
includes:1240

- `removed`: A boolean ("true" or "false")1241
indicating whether this parameter should be1242
removed or abstracted during the transformation1243
process.1244

- Other relevant metadata, such as the1245
parameter's value.1246
3. `tools`: Documentation or descriptive details1247
about the tools referenced in the query,1248
including their parameters and usage1249
instructions.1250

1251
### Transformation Rules:1252
1. Identify the parameters to be removed or1253
abstracted:1254

- Focus on parameters where `removed`: "true1255
".1256

- Identify the full range of corresponding1257
expressions in the query, ensuring all1258
references to the parameter are appropriately1259
handled.1260
2. Apply the appropriate transformation strategy1261
to each parameter marked as `removed`: "true":1262

- Complete Removal: The parameter is1263
entirely removed when it has no significant1264
impact on the remaining content of the query.1265
However, this should not be used if the1266
parameter is optional. Also, if the same tool is1267
called multiple times, the parameters should1268
not be removed. Instead, they should be1269
abstracted.1270

- Semantic Abstraction: If the parameter1271
influences the meaning or structure of the query,1272
replace its value with a more general or1273
abstract term.1274

- Partial Obfuscation: If the elements of a 1275
matrix or list are presented separately in the 1276
query (e.g., discrete values like quantities or 1277
items) and need to be constructed or inferred, 1278
only one element from the matirx or list should 1279
be removed or abstracted. The remaining elements 1280
should stay intact. This can still be done 1281
using either complete removal or semantic 1282
abstraction, while leaving other relevant 1283
elements unchanged. 1284
3. Ensure textual and structural coherence: 1285

- After transformation, ensure that the ` 1286
unspecified_query` remains readable, logically 1287
consistent, and grammatically correct. 1288
4. Avoid explicitly stating "unspecified" or " 1289
unknown" values: 1290

- Do not use terms like "unspecified", " 1291
unknown", or "ambiguous" in the `unspecified_ 1292
query`. 1293

- Instead, naturally omit or generalize the 1294
missing details without drawing attention to 1295
their absence. 1296
5. Retain the rest of the query: 1297

- Leave unchanged the parts of the query 1298
that are not marked for removal, maintaining 1299
consistency in format and information. 1300

1301
### Output: 1302
Return a JSON object containing: 1303
- `unspecified_query`: The transformed query 1304
string with removed/abstracted parameters. 1305
- `key_info`: A JSON array (or object) 1306
documenting all parameters, containing the 1307
following fields: 1308

- `original_value`: The expression of the 1309
parameter as it appears in the 'original_query' 1310
(not the value in the 'answers'). 1311

- `current_value`: The transformed value of 1312
the parameter in the `unspecified_query`. 1313

- `removed`: The boolean flag indicating 1314
whether the parameter was removed. 1315

C.1.2 Transformation Record Format 1316

For each unspecified query, we maintain a transfor- 1317
mation record in the following JSON structure: 1318

{ 1319
"original_query": string, 1320
"unspecified_query": string, 1321
"key_info": [ 1322

{ 1323
"name": [API_name], 1324
"arguments": { 1325

[param_name]: { 1326
"original_value": string, 1327
"current_value": string, 1328
"removed": boolean 1329

}, 1330
... 1331

} 1332
}, 1333
... 1334

} 1335
} 1336

C.1.3 Human Verification 1337

To further ensure the quality of generated unspec- 1338

ified queries, we perform human verification on 1339
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Metric Naturalness↑ Consistency↑ Necessity↑ Complexity↑ Diversity↑ Acceptance Rate (%)↑

Score 4.61/5 4.80/5 4.03/5 3.87/5 4.54/5 95.92

Table 7: Human verification results of unspecified query generation. The first five metrics are rated on a 1–5 scale,
while Acceptance Rate is reported as a percentage. All metrics are averaged across participants.

400 randomly sampled queries. Three graduate1340

students with NLP backgrounds independently as-1341

sessed each query based on six criteria: Natural-1342

ness (fluency and linguistic coherence), Consis-1343

tency (uniformity of transformation), Necessity1344

(need for clarification), Complexity (difficulty of1345

clarification), Diversity (range of parameter types1346

and domains), and Acceptance Rate (overall ac-1347

ceptability). Results are shown in Table 7.1348

C.2 Clarification Dialogue Construction1349

We divide the clarification dialogue construction1350

process into two steps: GPT-4o-dependent content1351

generation and template-based dialogue assembly.1352

The essential content is generated using GPT-4o1353

and stored a structured transformation record (see1354

Appendix C.1.2 for format details). The informa-1355

tion encoded in this record is then used to deter-1356

ministically assemble the final dialogue through1357

predefined templates, without further reliance on1358

GPT-4o.1359

C.2.1 GPT-4o-Dependent Content Generation1360

Task Decomposition We employ the following1361

prompt to guide GPT-4o in decomposing user1362

queries into subtasks:1363

1364

System Prompt1365

You are a smart task decomposition assistant.1366
Your goal is to break down the user's main task1367
into smaller, manageable subtasks. Please follow1368
the instructions below.1369

1370
You will receive a JSON-formatted input1371
containing:1372
- `query`: A description of the main task the1373
user wants to accomplish.1374
- `tools`: A list of APIs available to solve the1375
task, each with a unique identifier and a1376
description of its functionality. Note: The APIs1377
are provided in the exact order necessary to1378
resolve the task.1379

1380
### Task Decomposition:1381
1. Analyze the query to understand the user's1382
main task.1383
2. Break it down into smaller, manageable1384
subtasks that can be handled using the provided1385
APIs. Ensure that each subtask is completed by1386
calling one of the APIs in the exact order they1387
are listed.1388

1389

Your output should be a JSON object with the 1390
following structure: 1391
{ 1392

"tool_steps": [ 1393
"Step <number>: <subtask description> 1394

using <API name>.", 1395
... 1396

] 1397
} 1398

The decomposition result is added to the trans- 1399

formation record as a new field "tool_steps". 1400

Clarification Question Generation We use the 1401

following prompt to generate clarification ques- 1402

tions for unspecified parameters: 1403

1404

System Prompt 1405

You are an assistant responsible for generating 1406
clarification questions for missing information 1407
in the user's query. 1408

1409
### Input: 1410
The input should contain the following fields: 1411
- `original_query`: A complete user task 1412
description. 1413
- `unspecified_query`: A user task description 1414
missing some key information. 1415
- `tools`: Documentation or descriptive details 1416
about the tools referenced in the query, 1417
including their parameters and usage 1418
instructions. 1419
- `key_info`: This should record the APIs and 1420
parameters needed to solve the user task, 1421
including information about any missing 1422
parameters. 1423

- `original_value`: The original value of 1424
the parameter in the `original_query`. 1425

- `current_value`: The current value of the 1426
parameter in the `unspecified_query`. 1427

- `removed`: Indicates if the parameter's 1428
value is clear ("false") or unspecified ("true"). 1429

1430
1431

### Task Requirements: 1432
For each parameter where the field `removed` is 1433
set to true, you are to generate a clarification 1434
question. 1435
- If multiple API calls rely on the same missing 1436
information, form a single combined question to 1437
efficiently gather the required details, rather 1438
than asking multiple separate questions. 1439
- Each question should focus on gathering one 1440
specific piece of information to improve the 1441
precision of the query and avoid ambiguity. 1442
- Do not ask about information that can be 1443
inferred from context or API interactions. Only 1444
generate clarification questions for details 1445
that cannot be deduced from the given context or 1446
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API responses.1447
- Add a `question` field to the corresponding1448
parameter in `key_info`, which contains the1449
generated clarification question.1450
- Do not modify the `original_query`, `current_1451
value` or any other fields in `key_info`.1452

1453
### Output:1454
Only output the modified `key_info` in JSON1455
format, ensuring that the question field1456
contains the clarification question for each1457
missing parameter.1458

The newly generated "key_info" field replaces1459

the original one in the transformation record.1460

C.2.2 Template-based Dialogue Assembly1461

Based on the completed transformation record, we1462

automatically construct the dialogue through pre-1463

defined templates.1464

Task Decomposition We concatenate steps from1465

"tool_steps" to form a comprehensive task decom-1466

position analysis.1467

Parameter Evaluation For each parameter in1468

the transformation record, we generate evaluation1469

statements using templates based on their removed1470

status:1471

• For parameters clearly stated in the query,1472

we generate the evaluation that "The parame-1473

ter [param_name] for API [API_name] has a1474

value of [value]".1475

• For parameters removed in the query, we1476

generate the evaluation that "The parameter1477

[param_name] for API [API_name] lacks a1478

clear value".1479

Clarification Interaction Following the API call1480

order, for each removed parameter, we generate a1481

three-part clarification interaction:1482

• Assistant → User: Ask the clarification ques-1483

tion.1484

• User → Assistant: Provide the original param-1485

eter value using templates from Table 8.1486

• Assistant: Confirm with "Now I know that the1487

parameter [param_name] for API [API_name]1488

has a value of [value]".1489

Tool Invocation We construct the final tool in-1490

vocation solution using the "key_info" field from1491

the transformation record, which specifies the se-1492

quence of API calls and their associated parameters.1493

The final output is serialized into the following for-1494

mat:1495

[ 1496
{ 1497

"task": [API_name], 1498
"arguments": [ 1499

{ 1500
"name": [param_name], 1501

"value": string | number | boolean 1502
}, 1503
... 1504

] 1505
}, 1506
... 1507

] 1508

Final Assembly We assemble the complete 1509

assistant-user dialogue by sequentially integrating 1510

the natural language outputs generated in the pre- 1511

vious steps. We begin with a user message that 1512

presents the task description and relevant APIs. 1513

The assistant’s response is then constructed by com- 1514

bining the task decomposition and parameter eval- 1515

uation. For each missing parameter, we insert a 1516

three-part clarification interaction comprising the 1517

assistant’s question, the user’s response, and the 1518

assistant’s confirmation. This process is repeated 1519

until all missing parameters have been clarified. 1520

The dialogue concludes with the assistant present- 1521

ing the full tool invocation solution. 1522

D Self-correction Training 1523

D.1 Error Generation 1524

In our template-based dialogue assembly process 1525

(Appendix C.2.2), the sequence of APIs and their 1526

required parameters, as recorded in the "key_info" 1527

field of the transformation record, implicitly de- 1528

fines the structure of the final dialogue. This in- 1529

sight motivates our error generation strategy. For 1530

each selected error type, we first identify a param- 1531

eter position in the transformation record where 1532

the error will be introduced. We then generate the 1533

corresponding erroneous behavior and annotate the 1534

selected parameter with an "error" field to indicate 1535

its error type. 1536

We now describe the generation strategies for 1537

each of the five error types in detail. 1538

Clearly Stated Intent Clarification The prompt 1539

for generating instances of questioning clearly 1540

stated intent is designed as follows: 1541

1542

System Prompt 1543

You are a smart assistant. Your task is to 1544
generate a JSON object based on the given input. 1545
Please follow these instructions: 1546

1547
### Input: 1548
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Tone Template

Neutral
[value].
The answer is: [value].
Ah, the answer is simply [value].

Friendly Sure! The answer is [value]. Let me know if you have more questions!
I’m glad to help! The answer is absolutely [value]!

Dismissive
Honestly, I don’t see why this is a big deal, but the answer is [value].
Okay, the answer is: [value]. Hope that helps, I guess.
Whatever. The answer is [value]. Not that it matters.

Irritated

Listen, the answer is [value]. Just deal with it!
Ugh, seriously? The answer is [value]. Can we move on already?
Honestly, do you really need me to repeat this? The answer is [value]. I
can’t believe we’re still discussing this! It’s infuriating!
Enough already! The answer is [value]. Can we please get to the point? I’m
tired of this nonsense! It’s frustrating! Let’s just move on!

Table 8: Response templates for user with varying tones.

The input should contain the following fields:1549
- `original_query`: A complete user task1550
description.1551
- `unspecified_query`: A user task description1552
missing some key information.1553
- `tools`: Documentation or descriptive details1554
about the tools referenced in the query,1555
including their parameters and usage1556
instructions.1557
- `key_info`: This should record the APIs and1558
parameters needed to solve the user task,1559
including information about any missing1560
parameters.1561

1562
### Key Requirements:1563
1. From the `key_info`, select the {selected_1564
param_index} parameter where `removed` is false1565
and assume that its value is missing.1566
2. Generate a specific clarification question1567
related to the missing parameter, such that the1568
answer would provide the value from the `1569
original_value` field of that parameter, and1570
save it in the `question` field of that1571
parameter.1572
3. Set `error`: "type 1" to the modified1573
parameter.1574
4. No other content in `key_info` should be1575
modified.1576

1577
### Output:1578
Only output the modified `key_info` in JSON1579
format, ensuring that the `question` field1580
contains the clarification question.1581

Imprecise Clarification The prompt for generat-1582

ing imprecise clarification questions is designed as1583

follows:1584

1585

System Prompt1586

You are a smart assistant. Your task is to1587
generate a JSON object based on the given input.1588
Please follow these instructions:1589

1590
### Input:1591

The input should contain the following fields: 1592
- `original_query`: A complete user task 1593
description. 1594
- `unspecified_query`: A user task description 1595
missing some key information. 1596
- `tools`: Documentation or descriptive details 1597
about the tools referenced in the query, 1598
including their parameters and usage 1599
instructions. 1600
- `key_info`: This should record the APIs and 1601
parameters needed to solve the user task, 1602
including information about any missing 1603
parameters. 1604

1605
### Key Requirements: 1606
1. From the `key_info`, select the {selected_ 1607
param_index} parameter where the field `removed` 1608
is true and assume that its value is missing. 1609
2. Generate an imprecise clarification question 1610
about the missing parameter: 1611

- This question should seem relevant to the 1612
user task. 1613

- However, it should be less precise than 1614
the original question provided in the `question` 1615
field of the selected parameter. 1616

- The goal is to make the question introduce 1617
ambiguity, meaning it should be unclear what 1618
exactly needs to be answered, thus creating 1619
confusion about how to provide a precise and 1620
accurate response. 1621
3. Directly add this imprecise question to the 1622
selected parameter in the `imprecise_question` 1623
field. 1624
4. Set `error`: "type 2" to the modified 1625
parameter. 1626
5. No other content in `key_info` should be 1627
modified. 1628

1629
### Output: 1630
Only output the modified `key_info` in JSON 1631
format, ensuring that the selected parameter now 1632
contains the imprecise question. 1633

Irrelevant Clarification The prompt for generat- 1634

ing irrelevant clarification questions is designed as 1635
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follows:1636

1637

System Prompt1638

You are a smart assistant. Your task is to1639
generate a JSON object based on the given input.1640
Please follow these instructions:1641

1642
### Input:1643
The input should contain the following fields:1644
- `original_query`: A complete user task1645
description.1646
- `unspecified_query`: A user task description1647
missing some key information.1648
- `tools`: Documentation or descriptive details1649
about the tools referenced in the query,1650
including their parameters and usage1651
instructions.1652
- `key_info`: This should record the APIs and1653
parameters needed to solve the user task,1654
including information about any missing1655
parameters.1656

1657
### Key Requirements:1658
1. From the `key_info`, select the {selected_1659
param_index} parameter you encounter.1660
2. Generate a question that appears relevant to1661
the user task but is actually unhelpful for1662
solving the task using the APIs in `key_info`.1663
3. Directly add this irrelevant question to the1664
selected parameter in the `irrelevant_question`1665
field.1666
4. Set `error`: "type 3" to the modified1667
parameter.1668
5. No other content in `key_info` should be1669
modified.1670

1671
### Output:1672
Only output the modified `key_info` in JSON1673
format, ensuring that the selected parameter now1674
contains the irrelevant question.1675

Redundant Clarification We employed the fol-1676

lowing algorithm to generate redundant clarifica-1677

tion questions:1678

Algorithm 1 Redundant Clarification Generation

1: Input: transformation record R
2: ptarget ← Random(p ∈ R.params | p.pos > 0)
3: pprev ← Random(p ∈ R.params |
p.pos < ptarget.pos ∧ p.removed = true)
4: qr ← pprev.question
5: ptarget.error← "type 4"
6: Add qr to ptargetasaredundantquestion
7: return updated transformation record R′

1679

Incomplete Clarification We employed the fol-1680

lowing algorithm to generate incomplete clarifica-1681

tion process:1682

Algorithm 2 Incomplete Clarification Generation

1: Input: transformation record R
2: k ← Random(i | 0 ≤ i < |R.params|)
3: Pknown ← {p ∈ R.params | p.pos < k}
4: template← "<unknown_*>"
5: Stools ← {}
6: for each p ∈ R.params do
7: if p /∈ Pknown then
8: Stools[p]← GenUnkVal(template, p)
9: else
10: Stools[p]← p.original
11: pk.error← "type 5"
12: Add Stools to pk as an incomplete clarification
error
13: return updated transformation record R′

1683

D.2 Error-Correction Augmentation Dialogue 1684

Assembly 1685

We follow the same assembly procedure as de- 1686

scribed in Appendix C.2.2. The only difference is 1687

that, when an "error" field is detected in the trans- 1688

formation record, we insert the erroneous behavior 1689

into the assistant message at the corresponding di- 1690

alogue position. We then generate the assistant’s 1691

correction using the type-specific template defined 1692

in Table 9, and naturally continue the interaction 1693

from that point. 1694

D.3 Human Verification 1695

To ensure the validity and reliability of our error- 1696

correction augmentation method, we perform hu- 1697

man verification on 200 randomly sampled aug- 1698

mented dialogues. Three graduate students with 1699

NLP backgrounds independently assessed each di- 1700

alogue based on five criteria: Naturalness (fluency 1701

and linguistic coherence), Plausibility (realism of 1702

the injected error-correction pair), Usefulness (util- 1703

ity of the error-correction pair for intent clarifica- 1704

tion), Diversity (variation in error manifestation 1705

and expression styles), and Acceptance Rate (over- 1706

all acceptability). Results are shown in Table 10. 1707

D.4 Examples for Error-Correction 1708

Augmentation 1709

The following examples shows different types of 1710

errors and their corresponding corrections. 1711

1712

Example 1: Clearly Stated Intent Clarification 1713

User: The task is: Fetch the latest media of the 1714
soccer player with player ID 170085. Some 1715
relevant APIs: [{'name': 'player_latest_media', 1716
'description': 'Fetch the latest media for a 1717
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Error Type Correction Template

Clearly Stated Intent
Clarification (Type 1)

Sorry, I made a mistake. The parameter [param_name] for API [API_name]
has a value of [value], which was clearly stated in the user’s task. Therefore, I
don’t need to ask any further questions.

Imprecise Clarification
(Type 2)

Sorry, I made a mistake. My question wasn’t clear, so let me rephrase it for
better understanding.

Irrelevant Clarification
(Type 3)

Sorry, I made a mistake. This question is not related to using the APIs to
resolve the user’s task, so I will ask something else.

Redundant Clarification
(Type 4)

Sorry, I made a mistake. The parameter [param_name] for API [API_name]
has a value of [value], which has already been asked in the past, so there is no
need to ask again.

Incomplete Clarification
(Type 5)

Sorry, I made a mistake. I still lack some key information, so I need to ask
further questions.

Table 9: Correction templates for each error type.

Metric Naturalness↑ Plausibility↑ Usefulness↑ Diversity↑ Acceptance Rate (%)↑

Score 4.57/5 3.91/5 4.11/5 4.28/5 91.83%

Table 10: Human verification results of error-correction augmentation. The first four metrics are rated on a 1–5
scale, while Acceptance Rate is reported as a percentage. All metrics are averaged across participants.

given player using their player ID.', '1718
parameters': {'player_id': {'description': 'The1719
unique identifier of the player for whom the1720
latest media is to be fetched.', 'type': 'int',1721
'default': '12994'}}}, {'name': 'teammedia', '1722
description': 'Fetches media information for a1723
specific baseball team using the given team ID.',1724
'parameters': {'is_id': {'description': 'The1725
team ID for which to retrieve the media.', 'type1726
': 'int', 'default': 3633}}}]1727

1728
Assistant: [TASK DECOMPOSITION] The task can be1729
decomposed into 1 steps for solving. Step 1:1730
Fetch the latest media of the soccer player with1731
player ID 170085 using player_latest_media. [1732
PARAMETER EVALUATION] The information I1733
currently have is: In step 1, the parameter "1734
player_id" for API "player_latest_media" has a1735
value of "170085". <SOE> [QUESTION] What is the1736
player ID for fetching the latest media? <EOE>1737
Sorry, I made a mistake. The parameter1738
"player_id" for API "player_latest_media" has a1739
value of "170085", which was clearly stated in1740
the user’s task. Therefore, I don’t need to ask1741
any further questions. [SUMMARY] I have all the1742
information needed and can now call the relevant1743
APIs to solve the task. The solution path is as1744
follows: [{'task': 'player_latest_media', '1745
arguments': [{'name': 'player_id', 'value':1746
170085}]}]1747

1748

Example 2: Imprecise Clarification1749

User: The task is: What are the details of the1750
hospitals in the U.S. with a specific name? Some1751
relevant APIs: [{'name': 'gethospitalsbyname',1752
'description': 'Fetches a list of U.S. hospitals1753
that match the given name using the RapidAPI1754
service.', 'parameters': {'name': {'description1755

': 'The name or partial name of the hospital to 1756
search for.', 'type': 'str', 'default': ' 1757
presbyterian'}}}, {'name': 'get_all_iata_airport 1758
_codes', 'description': 'Retrieves IATA airport 1759
codes from the RapidAPI service.', 'parameters': 1760
{'code': {'description': 'An optional code to 1761
filter the airport codes. Defaults to 1.', 'type 1762
': 'int, optional', 'default': '1'}}}, {'name': 1763
'fetch_information', 'description': 'Fetches 1764
information based on IP, ASN, CIDR (IPv4 & IPv6), 1765
or organization name using the RapidAPI ASN 1766
Lookup service.', 'parameters': {'ip': {' 1767
description': 'IP address to lookup. Defaults to 1768
None.', 'type': 'str, optional', 'default': ''}, 1769
'asn': {'description': "Autonomous System 1770
Number to lookup. Defaults to 'AS32934'.", 'type 1771
': 'str, optional', 'default': 'AS32934'}, 'cidr 1772
': {'description': 'CIDR notation for IP address 1773
range to lookup. Defaults to None.', 'type': ' 1774
str, optional', 'default': ''}, 'orgname': {' 1775
description': 'Organization name to lookup. 1776
Defaults to None.', 'type': 'str, optional', ' 1777
default': ''}}}] 1778

1779
Assistant: [TASK DECOMPOSITION] The task can be 1780
decomposed into 1 steps for solving. Step 1: 1781
Fetch the list of U.S. hospitals that match the 1782
specific name provided in the query using 1783
gethospitalsbyname. [PARAMETER EVALUATION] The 1784
information I currently have is: In step 1, the 1785
parameter "name" for API "gethospitalsbyname" 1786
lacks a clear value. <SOE> [QUESTION] Is there 1787
something particular you’re looking for with 1788
hospital names? <EOE> 1789

1790
User: I really wish I could help with that, but 1791
unfortunately, I don't have the information you' 1792
re looking for. Please feel free to inquire 1793
about something else. 1794

1795
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Assistant: Sorry, I made a mistake. My question1796
wasn’t clear, so let me rephrase it for better1797
understanding. [QUESTION] What specific name1798
should be used to search for hospitals in the U.1799
S.?1800

1801
User: Enough already! The answer is "General".1802
Can we please get to the point? I'm tired of1803
this nonsense! It's frustrating! Let's just move1804
on!1805

1806
Assistant: [PARAMETER EVALUATION] Now I know1807
that the parameter "name" for API "1808
gethospitalsbyname" has a value of "General". [1809
SUMMARY] I have all the information needed and1810
can now call the relevant APIs to solve the task.1811
The solution path is as follows: [{'task': '1812
gethospitalsbyname', 'arguments': [{'name': '1813
name', 'value': 'General'}]}]1814

1815
1816

1817

Example 3: Irrelevant Clarification1818

User: The task is: What is the ZIP code for a1819
certain IP address? And is a particular year a1820
leap year? Some relevant APIs: [{'name': 'is_1821
leap_year', 'description': 'Checks if a year is1822
a leap year.', 'parameters': {'year': {'1823
description': 'The year to check.', 'type': 'int1824
'}}}, {'name': 'get_ip_zipcode', 'description':1825
'Retrieves the ZIP code of a given IP address1826
using the ip-api.com API.', 'parameters': {'ip':1827
{'description': 'The IP address to locate.', '1828
type': 'str'}}}, {'name': 'get_ip_location', '1829
description': 'Retrieves the latitude and1830
longitude coordinates of a given IP address1831
using the ip-api.com API.', 'parameters': {'ip':1832
{'description': 'The IP address to locate.', '1833
type': 'str'}}}, {'name': 'getzipcodebycity', '1834
description': 'Fetches the zip code information1835
for a given city using the Zillow API.', '1836
parameters': {'city': {'description': 'The name1837
of the city for which the zip code is to be1838
fetched.', 'type': 'str', 'default': 'Holtsville1839
'}}}]1840

1841
Assistant: [TASK DECOMPOSITION] The task can be1842
decomposed into 2 steps for solving. Step 1:1843
Check if the given year is a leap year using is_1844
leap_year. Step 2: Retrieve the ZIP code for the1845
given IP address using get_ip_zipcode. [1846
PARAMETER EVALUATION] The information I1847
currently have is: In step 1, the parameter "ip"1848
for API "get_ip_zipcode" lacks a clear value.1849
In step 2, the parameter "year" for API "is_leap1850
_year" lacks a clear value. [QUESTION] What is1851
the IP address for which you need the ZIP code?1852

1853
User: Honestly, I don't see why this is a big1854
deal, but the answer is "123.123.123.123".1855

1856
Assistant: [PARAMETER EVALUATION] Now I know1857
that the parameter "ip" for API "get_ip_zipcode"1858
has a value of "123.123.123.123". <SOE>1859
[QUESTION] Would you like the ZIP code result1860
formatted in bold text? <EOE>1861

1862
User: I don't have the information you're1863

looking for. You're welcome to ask me anything 1864
else, though! I'm here to help. 1865

1866
Assistant: Sorry, I made a mistake. This question 1867
is not related to using the APIs to resolve the 1868
user’s task, so I will ask something 1869
else. [QUESTION] Which year do you want to check 1870
for being a leap year? 1871

1872
User: The answer is: 2028. 1873

1874
Assistant: [PARAMETER EVALUATION] Now I know 1875
that the parameter "year" for API "is_leap_year" 1876
has a value of "2028". [SUMMARY] I have all the 1877
information needed and can now call the 1878
relevant APIs to solve the task. The solution 1879
path is as follows: [{'task': 'get_ip_zipcode', 1880
'arguments': [{'name': 'ip', 'value': 1881
'123.123.123.123'}]}, {'task': 'is_leap_year', ' 1882
arguments': [{'name': 'year', 'value': 2028}]}] 1883

1884

Example 4: Redundant Clarification 1885

User: The task is: Please get me the details of 1886
some 'tech' events happening in a region. 1887
Additionally, I'm curious about the city 1888
boundaries of a certain city. Some relevant APIs 1889
: [{'name': 'fetch_by_type_and_region', ' 1890
description': 'Fetch records from the API based 1891
on the given type, limit, and region.', ' 1892
parameters': {'type': {'description': 'The type 1893
of records to fetch. Refer to the README for 1894
accepted types.', 'type': 'str', 'default': ' 1895
Hill'}, 'limit': {'description': 'The maximum 1896
number of records to fetch.', 'type': 'int', ' 1897
default': '5'}, 'region': {'description': 'The 1898
region from which to fetch records.', 'type': ' 1899
str', 'default': 'Eastern'}}}, {'name': 'query_ 1900
for_city_boundary_by_city_name', 'description': 1901
'Queries the boundary information for a given 1902
city name from a specified API.', 'parameters': 1903
{'name': {'description': 'The name of the city 1904
for which the boundary information is to be 1905
queried.', 'type': 'str', 'default': 'toronto'}} 1906
}, {'name': 'query_for_city_boundary_by_name', ' 1907
description': 'Queries the city boundary 1908
information by the given city name using the 1909
Boundaries API.', 'parameters': {'name': {' 1910
description': 'The name of the city for which to 1911
query boundary information.', 'type': 'str', ' 1912
default': 'Karlsruhe'}}}, {'name': 'get_ 1913
countrywise_city_data', 'description': 'Fetches 1914
a list of cities for a given country using an 1915
API, based on provided parameters.', 'parameters 1916
': {'iso3': {'description': "A 3-character ISO3 1917
country code. Default is 'IND'.", 'type': 'str', 1918
'default': 'IND'}, 'country': {'description': " 1919
The country name. Default is 'IND'.", 'type': ' 1920
str', 'default': 'IND'}, 'count': {'description 1921
': 'The maximum number of results to return. 1922
Default is 2.', 'type': 'int', 'default': '2'}, 1923
'iso2': {'description': "A 2-character ISO2 1924
country code. Default is 'IN'.", 'type': 'str', 1925
'default': 'IN'}}}, {'name': 'fetch_by_type', ' 1926
description': 'Fetches records from the RapidAPI 1927
endpoint based on the specified type and limit 1928
.', 'parameters': {'type': {'description': 'The 1929
type of records to fetch. Refer to the API 1930
documentation for accepted types.', 'type': 'str 1931
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', 'default': 'Forest'}, 'limit': {'description1932
': 'The number of records to fetch.', 'type': '1933
int', 'default': '5'}}}, {'name': 'fetch_by_1934
region', 'description': 'Fetches records by1935
region from the Magical Taske API.', 'parameters1936
': {'region': {'description': 'The region for1937
which to fetch records.', 'type': 'str', '1938
default': 'Central'}, 'limit': {'description': '1939
The maximum number of records to return.', 'type1940
': 'int', 'default': '5'}}}]1941

1942
Assistant: [TASK DECOMPOSITION] The task can be1943
decomposed into 2 steps for solving. Step 1:1944
Fetch details of 'tech' events happening in a1945
specified region using fetch_by_type_and_region.1946
Step 2: Query the city boundaries of a1947
specified city using query_for_city_boundary_by_1948
city_name. [PARAMETER EVALUATION] The1949
information I currently have is: In step 1, the1950
parameter "type" for API "fetch_by_type_and_1951
region" has a value of "tech", the parameter "1952
limit" for API "fetch_by_type_and_region" lacks1953
a clear value, the parameter "region" for API "1954
fetch_by_type_and_region" lacks a clear value.1955
In step 2, the parameter "name" for API "query_1956
for_city_boundary_by_city_name" lacks a clear1957
value. [QUESTION] What is the maximum number of1958
tech events you would like to retrieve?1959

1960
User: Ah, the answer is simply "10".1961

1962
Assistant: [PARAMETER EVALUATION] Now I know1963
that the parameter "limit" for API "fetch_by_1964
type_and_region" has a value of "10". [QUESTION]1965
Which region should I search for the tech1966
events?1967

1968
User: The answer is: Silicon Valley.1969

1970
Assistant: [PARAMETER EVALUATION] Now I know1971
that the parameter "region" for API "fetch_by_1972
type_and_region" has a value of "Silicon Valley".1973
<SOE> [QUESTION] What is the maximum number of1974
tech events you would like to retrieve? <EOE>1975
Sorry, I made a mistake. The parameter "limit"1976
for API "fetch_by_type_and_region" has a value of1977
"10", which has already been asked in the past,1978
so there is no need to ask again. [QUESTION]1979
For which city would you like to query the1980
boundary information?1981

1982
User: Honestly, do you really need me to repeat1983
this? The answer is "Montreal". I can't believe1984
we're still discussing this! It's infuriating!1985

1986
Assistant: [PARAMETER EVALUATION] Now I know1987
that the parameter "name" for API "query_for_1988
city_boundary_by_city_name" has a value of "1989
Montreal". [SUMMARY] I have all the information1990
needed and can now call the relevant APIs to1991
solve the task. The solution path is as follows:1992
[{'task': 'fetch_by_type_and_region', '1993
arguments': [{'name': 'type', 'value': 'tech'},1994
{'name': 'limit', 'value': 10}, {'name': 'region1995
', 'value': 'Silicon Valley'}]}, {'task': 'query1996
_for_city_boundary_by_city_name', 'arguments': [1997
{'name': 'name', 'value': 'Montreal'}]}]1998

1999

Example 5: Incomplete Clarification2000

User: The task is: Can you get me the favorite 2001
videos for TikTok user with sec_uid 'abc123xyz'? 2002
Also, do the same for another user. Some 2003
relevant APIs: [{'name': 'get_user_favorite_list 2004
', 'description': 'Retrieve the favorite video 2005
list for a TikTok user using their unique 2006
identifier.', 'parameters': {'sec_uid': {' 2007
description': 'The unique identifier of the 2008
TikTok user whose favorite list is to be 2009
retrieved.', 'type': 'str', 'default': ' 2010
MS4wLjABAAAAv7iSuuXDJGDvJkmH_ 2011
vz1qkDZYo1apxgzaxdBSeIuPiM'}}}, {'name': 'get_ 2012
user_favorite_videos', 'description': 'Fetches a 2013
list of favorite videos for a given user from 2014
the TikTok video feature summary API.', ' 2015
parameters': {'cursor': {'description': " 2016
Position in the list to start fetching the 2017
videos from. Defaults to '0'.", 'type': 'str', ' 2018
default': '0'}, 'user_id': {'description': "The 2019
user ID for which to fetch favorite videos. 2020
Defaults to '6741307595983946754'.", 'type': ' 2021
str', 'default': '6741307595983946754'}, 'unique 2022
_id': {'description': "The unique identifier for 2023
the user, can be either a username or handle (e. 2024
g., 'voyagel' or '@voyagel'). Defaults to ' 2025
voyagel'.", 'type': 'str', 'default': 'voyagel'}, 2026
'count': {'description': "The number of 2027
favorite videos to fetch. Defaults to '10'.", ' 2028
type': 'str', 'default': '10'}}}, {'name': 'user 2029
_videos', 'description': 'Retrieves videos for a 2030
specified TikTok user using their `secUid` and 2031
`user_id`. Optionally, a cursor can be provided 2032
for pagination.', 'parameters': {'secuid': {' 2033
description': 'The secUid of the TikTok user.', 2034
'type': 'str', 'default': ' 2035
MS4wLjABAAAAsY6EjWejsVbCjir7Vdy- 2036
uNX364xNywkQSLqqoV5Hcnt7v3CVToFzfIgcdpQ_iW3D'}, 2037
'user_id': {'description': 'The unique 2038
identifier of the TikTok user.', 'type': 'str', 2039
'default': '6676352751163032582'}, 'cursor': {' 2040
description': 'Cursor for pagination to get the 2041
subsequent set of videos. Defaults to None.', ' 2042
type': 'str, optional', 'default': ''}}}] 2043

2044
Assistant: [TASK DECOMPOSITION] The task can be 2045
decomposed into 2 steps for solving. Step 1: Get 2046
the favorite videos for the TikTok user with 2047
sec_uid 'abc123xyz' using get_user_favorite_list. 2048
Step 2: Repeat the process for another TikTok 2049
user using get_user_favorite_list. [PARAMETER 2050
EVALUATION] The information I currently have is: 2051
In step 1, the parameter "sec_uid" for API "get 2052
_user_favorite_list" has a value of "abc123xyz". 2053
In step 2, the parameter "sec_uid" for API "get 2054
_user_favorite_list" lacks a clear value. <SOE> 2055
[SUMMARY] I have all the information needed and 2056
can now call the relevant APIs to solve the task. 2057
The solution path is as follows: [{’task’: 2058
’get_user_favorite_list’, ’arguments’: [{’name’: 2059
’sec_uid’, ’value’: ’abc123xyz’}]}, {’task’: 2060
’get_user_favorite_list’, ’arguments’: [{’name’: 2061
’sec_uid’, ’value’: ’<unknown_sec_uid>’}]}] <EOE> 2062
Sorry, I made a mistake. I still lack some key 2063
information, so I need to ask further questions. 2064
[QUESTION] What is the sec_uid for the other 2065
TikTok user you want the favorite videos for? 2066

2067
User: Okay, the answer is: def456uvw. Hope that 2068
helps, I guess. 2069

2070
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Assistant: [PARAMETER EVALUATION] Now I know2071
that the parameter "sec_uid" for API "get_user_2072
favorite_list" has a value of "def456uvw". [2073
SUMMARY] I have all the information needed and2074
can now call the relevant APIs to solve the task.2075
The solution path is as follows: [{'task': 'get2076
_user_favorite_list', 'arguments': [{'name': '2077
sec_uid', 'value': 'abc123xyz'}]}, {'task': 'get2078
_user_favorite_list', 'arguments': [{'name': '2079
sec_uid', 'value': 'def456uvw'}]}]2080

E Training Details2081

We fine-tune two variants of the Qwen2.5-7B-2082

Instruct model on the xlam-IC dataset, in which2083

30% of the samples are replaced with error-2084

correction augmented dialogues. Both variants2085

are trained using the LLaMA-Factory framework2086

(Zheng et al., 2024).2087

For LoRA fine-tuning, we set the LoRA rank2088

to 8. We use an initial learning rate of 1.0e-4, a2089

warm-up ratio of 0.1, and a cosine learning rate2090

scheduler. Training is conducted on 4×RTX 30902091

(24GB) GPUs for 3 epochs with a batch size of 64.2092

For full-parameter fine-tuning, we use an initial2093

learning rate of 1.41e-5 under the same schedule.2094

Training is conducted on 8×RTX A6000 (48GB)2095

GPUs for 3 epochs with a batch size of 64.2096

F Evaluation Details2097

F.1 Prompt for Evaluation Model2098

The following prompt guides the model through2099

task decomposition, interactive clarification, lead-2100

ing to tool invocation solution generation, fully2101

leveraging its capabilities in intent clarification and2102

precise tool invocation.2103

2104

System Prompt2105

You are an assistant helping users solve their2106
tasks. You will receive a task and relevant APIs2107
to address this task. However, the task2108
description may lack key information. You cannot2109
make assumptions or guess missing parameters2110
based on what you know. Instead, you need to2111
follow these steps to effectively complete the2112
task, ensuring each step is completed before2113
moving on to the next one:2114

2115
### Step 1: Task Decomposition2116
1. **Analyze the User's Task**: Identify2117
distinct subtasks within the user's task, each2118
of which can be solved by a single API.2119
2. **Determine the Order of Subtasks**:2120
Establish the sequence of these subtasks based2121
on dependencies and the order in which they2122
appear in the user's original task.2123
- Template: [TASK DECOMPOSITION] xxx2124
3. **Evaluate Parameters for Each API**: Based2125
on the established API order, verify whether2126

each required parameter is explicitly stated in 2127
the task; if any are missing, prepare to inquire 2128
in subsequent steps. 2129
- Template: [PARAMETER EVALUATION] xxx 2130

2131
### Step 2: Inquire About Missing Parameters 2132
1. **Present Your Inquiry**: Formulate a 2133
friendly question for the user. Ensure you ask 2134
only one question at a time. 2135
- Template: [QUESTION] xxx 2136
2. **Wait for the User's Response**: Collect the 2137
user's answer. If the user does not provide an 2138
answer, please do not fill in the parameters on 2139
your own. 2140
3. **Repeat**: Continue step 2 until all 2141
necessary parameters are gathered. 2142

2143
### Step 3: Final Summary and Solution Path 2144
1. **Summarize User Intentions**: Once all 2145
information is collected, concisely summarize 2146
what the user intends to achieve. 2147
2. **Define the Solution Path**: List the APIs 2148
and their specific parameter values in the order 2149
they will be called, and output the final 2150
solution path in JSON format. Remember, you do 2151
not need to execute the APIs or solve the task 2152
yourself. 2153
- Template: [SUMMARY] [{"task": "API name", " 2154
arguments": [{"name": "parameter name", "value": 2155
"parameter value"}, ...]}, ...] 2156

2157

Note that the output template format shown in 2158

the prompt can be adjusted to match different tool 2159

invocation annotation formats in various test sets, 2160

demonstrating the framework’s adaptability to dif- 2161

ferent evaluation scenarios. 2162

F.2 Prompt for User Simulation 2163

We introduced an LLM-based simulated evalua- 2164

tion framework with six distinct personality types, 2165

designed to generate realistic user responses that 2166

closely simulate real-world interactions. The six 2167

personality types and their corresponding behav- 2168

ioral patterns are shown in Table 11. For each 2169

evaluation, we randomly selected one of these per- 2170

sonality types and guided the user-simulating LLM 2171

(Qwen2-72B-Instruct model) to generate responses 2172

that consistently reflect the chosen personality. The 2173

prompt design is as follows: 2174

2175

System Prompt 2176

I am {user_profile['name']}, characterized by { 2177
user_profile['traits']}, and I communicate in a 2178
{user_profile['tone']} manner. I can honestly 2179
answer questions based on what I know. I only 2180
know that I have provided others with a task: { 2181
task_description}, which is described from my 2182
perspective. Aside from that, I do not know 2183
anything else. However, others may be unclear 2184
about some details of this task. When others ask 2185
me questions, I should choose one appropriate 2186
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Type Traits Tone Example Response

A cold fish Showing indifference to others’
inquiries, often dismissive and curt,
providing minimal engagement

Cold, brief, almost robotic "Emma."

A reluctant
collaborator

Displaying overt negativity and a strong
reluctance to assist, often avoiding
questions and providing minimal
engagement

Negative, resistant,
dripping with sarcasm

"Why do you even want to
know my name? It’s not like
it matters. Let’s just skip this,
okay?"

An easily irritated
responder

Emotionally volatile, quick to anger,
often questions the validity of the
inquiry and consistently avoids
answering, reacting harshly to repeated
inquiries

Agitated, accusatory,
impatient

"Seriously? I’ve already told
you! Can we move on
already?"

An enthusiastic
supporter

Exuding warmth and eagerness to assist,
striving for clarity

Warm, encouraging "I’m Emma! So nice to meet
you!"

A skeptic Consistently questioning the validity of
the inquiry, often introducing doubt and
alternative perspectives, leading to
confusion

Inquisitive, cautious,
subtly dismissive

"It’s Emma, but why do you
need to know? Is there
something more to this?"

A jokester Making light of situations by playfully
providing incorrect answers, often
following up with a humorous denial of
their own response, leading to confusion

Playful, light-hearted,
teasing

"I’m Amy, haha, just
kidding! I’m Emma."

Table 11: Personality types for user simulation. Note: Example responses are generated for the question "What is
your name?" with the ground truth "Emma".

response from the following two options, in the2187
given order:2188

2189
1. **Acknowledge unknowns**:2190
- If the answer to the question cannot be2191
answered based on the task description, I will2192
state that I do not know the answer and will not2193
disclose any other information.2194

2195
2. **Provide an answer**:2196
- If the question can be answered, I will2197
provide direct answers based solely on the2198
question asked, without any additional context2199
or unsolicited information.2200
- The response should be given from my2201
perspective.2202

2203
Evaluate the conditions in order, ensuring that2204
only one relevant condition is triggered and2205
output. Only one response is allowed per2206
interaction; please confirm carefully and select2207
the most appropriate one.2208

2209
Additionally, if others' questions contain2210
irrelevant information, I should focus solely on2211
their actual question ([QUESTION] field),2212
ignoring any extraneous details, to provide the2213
most appropriate response.2214

2215
Please respond in a way that showcases my2216
personality and clearly expresses my traits,2217
regardless of the content. Always maintain my2218
unique voice and style throughout our2219
interactions. For instance, if asked: '{user_2220
profile['question']}', I would reply: '{user_2221
profile['example_response']}'.2222

2223

F.3 Matrics Calculation Details 2224

We evaluate the models in two aspects: intent clari- 2225

fication quality and tool invocation accuracy. 2226

F.3.1 Intent Clarification Quality 2227

We design four metrics to assess the quality of 2228

intent clarification. 2229

Intent Coverage Rate (ICR) measures the pro- 2230

portion of unspecified intents that are successfully 2231

clarified: 2232

ICR =
C

U
(1) 2233

where C is the total number of clarified intents, and 2234

U is the total number of unspecified intents across 2235

all queries. 2236

Clarification Efficiency (CE) measures the av- 2237

erage number of intents clarified per clarification 2238

round, or equivalently, the proportion of clarifica- 2239

tion rounds that result in effective clarification: 2240

CE =
C

T
(2) 2241

where T is the total number of clarification interac- 2242

tion rounds across all queries. 2243

Clarification Performance Score (CPS) com- 2244

bines ICR and CE using a harmonic mean, similar 2245

24



to the F1-score formulation. It serves as a balanced2246

measure of clarification quality by jointly consider-2247

ing both coverage and efficiency:2248

CPS = 2 · ICR · CE
ICR + CE

(3)2249

Interaction Rounds (IR) records the average2250

number of clarification rounds per query:2251

IR =
T

N
(4)2252

where N is the number of evaluation queries.2253

F.3.2 Tool Invocation Accuracy2254

We further evaluate tool invocation performance2255

through three complementary metrics.2256

Solution Completion Rate (SCR) is defined as2257

the proportion of queries for which the model out-2258

puts a valid tool invocation solution:2259

SCR =
1

N

N∑
i=1

1valid(i) (5)2260

where 1valid(i) = 1 if a valid solution is generated2261

for the i-th query, and 0 otherwise.2262

Tool Selection Score (TSS) evaluates how accu-2263

rately the model selects APIs for each query:2264

TSS =
1

N

N∑
i=1

F1(APIiP,APIiG) (6)2265

where APIiP and APIiG denote the predicted and2266

ground-truth API sets for the i-th query, respec-2267

tively. Note that this metric considers only API2268

names and ignores associated parameters and val-2269

ues.2270

Parameter Resolution Score (PRS) measures2271

the model’s ability to accurately fill in the parame-2272

ters required for correct tool invocation:2273

PRS =
1

N

N∑
i=1

F1(Parami
P,Parami

G) (7)2274

where Parami
P and Parami

G denote the predicted2275

and ground-truth tool invocation solution for the2276

i-th query, each represented as a set of (API, pa-2277

rameter, value) triples. A triple is considered cor-2278

rect only if all three elements match exactly, and2279

parameter values are compared using strict string2280

matching.2281

G Supplementary Analyses 2282

G.1 Cross-Model Transferability 2283

To verify the cross-model transferability of our 2284

method, we apply it to three representative base 2285

models: Mistral-7B-Instruct-v0.3, LLaMA3-8B- 2286

Instruct, and Qwen2.5-7B-Instruct. All models are 2287

fine-tuned using the same LoRA configurations. 2288

The experimental results are shown in Table 12. 2289

Consistent Performance Gains Our method 2290

consistently boosts performance on both intent clar- 2291

ification and tool invocation, confirming that our 2292

method is architecture-agnostic and effective across 2293

diverse model architectures. 2294

Larger Relative Gains for Weaker Models We 2295

observe that models with lower initial performance 2296

achieve larger relative gains from our method. 2297

LLaMA3-8B-Instruct shows substantial improve- 2298

ments (+27.83% CPS, +25.46% PRS), while the 2299

stronger Qwen2.5-7B-Instruct exhibits moderate 2300

yet significant gains (+5.01% CPS, +11.18% PRS). 2301

These results demonstrate that our method partic- 2302

ularly benefits weaker models while maintaining 2303

consistent improvements across architectures, ef- 2304

fectively narrowing the performance gap between 2305

different models. 2306

G.2 Impact of Augmentation Proportion 2307

To study the impact of error-correction augmenta- 2308

tion on model behavior, we fine-tune the Qwen2.5- 2309

7B-Instruct model with varying proportions of aug- 2310

mented data, using the same LoRA configurations. 2311

As illustrated in Table 13, a moderate augmen- 2312

tation proportion (e.g., 30%) yields the most fa- 2313

vorable trade-off across metrics, with the model 2314

achieving peak CPS (60.41%) and PRS (68.71%). 2315

This suggests that moderate exposure to diverse 2316

error-correction patterns enhances the model’s abil- 2317

ity to resolve ambiguity and generate accurate tool 2318

invocation solutions. 2319

However, we observe performance degradation 2320

at higher augmentation proportions. When the pro- 2321

portion increases to 40%–50%, key metrics such 2322

as CPS and PRS decline (e.g., CPS drops from 2323

60.41% to 54.24%, PRS from 68.71% to 63.27%). 2324

This suggests that excessive exposure to error- 2325

correction augmented dialogues may cause the 2326

model to overfit to correction patterns or overly pri- 2327

oritize error detection, ultimately degrading both in- 2328

tent clarification and tool invocation performance. 2329
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LLM Intent Clarification Quality Tool Invocation Accuracy

ICR↑ CE↑ CPS↑ IR↓ SCR↑ TSS↑ PRS↑

Mistral-7B-Instruct-v0.3 26.01 34.90 29.81 1.21 92.54 51.92 29.57
ASKTOACT-Mistral-7B-Instruct-v0.3 45.01 (↑19.00) 40.53 (↑5.63) 42.66 (↑12.85) 1.81 (↑0.60) 94.30 (↑1.76) 80.37 (↑28.45) 56.63 (↑27.06)

LLaMA3-8B-Instruct 44.47 25.33 32.27 2.86 80.92 51.57 42.54
ASKTOACT-LLaMA3-8B-Instruct 58.76 (↑14.29) 61.50 (↑36.17) 60.10 (↑27.83) 1.55 (↓1.31) 95.71 (↑14.79) 81.15 (↑29.58) 68.00 (↑25.46)

Qwen2.5-7B-Instruct 55.50 55.30 55.40 1.64 91.43 69.32 57.53
ASKTOACT-Qwen2.5-7B-Instruct 57.68 (↑2.18) 63.41 (↑8.11) 60.41 (↑5.01) 1.48 (↓0.16) 96.05 (↑4.62) 81.42 (↑12.10) 68.71 (↑11.18)

Table 12: Cross-model transferability performance comparison.

Augmentation
Proportion(%)

Intent Clarification Quality Tool Invocation Accuracy

ICR↑ CE↑ CPS↑ IR↓ SCR↑ TSS↑ PRS↑

0 53.91 64.83 58.87 1.32 94.06 78.87 66.54
10 54.68 63.52 58.77 1.38 93.91 78.77 66.04
20 56.30 62.89 59.42 1.43 95.07 80.27 67.30
30 57.68 63.41 60.41 1.48 96.05 81.42 68.71
40 55.34 60.28 57.71 1.51 94.85 79.48 65.30
50 52.84 55.71 54.24 1.58 91.67 76.99 63.27

Table 13: Performance under different augmentation
proportions.
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Figure 3: Performance under different clarification com-
plexities.

These findings demonstrate the non-monotonic2330

benefits of error-correction augmentation, with an2331

empirically determined optimal proportion of 30%2332

achieving the desired balance between robustness2333

and efficiency while avoiding over-correction be-2334

haviors that hinder overall performance.2335

G.3 Impact of Clarification Complexity2336

We further analyzed how the complexity of clari-2337

fication affects model performance by examining2338

results from the ASKTOACT-LoRA-SFT-7B model2339

across varying numbers of unspecified user intents2340

and required tool invocations. The results are illus-2341

trated in Figure 3.2342

We observe that as the number of unspecified2343

user intents increases, both CPS and PRS exhibit a2344

downward trend. This suggests that higher ambigu-2345

ity in user input substantially increases the burden2346

on the model’s clarification capability, leading to2347

degraded downstream tool invocation performance.2348

Similarly, an increase in the number of tool invo-2349

cations correlates with a performance decline, par-2350

ticularly when more than three tools are required.2351

This indicates that multi-step reasoning and coor- 2352

dination across multiple APIs introduce additional 2353

challenges, amplifying the need for precise intent 2354

clarification and robust tool planning. 2355

While our model maintains reasonable robust- 2356

ness across different settings, these patterns high- 2357

light the increased difficulty posed by highly am- 2358

biguous and complicate queries. Such findings 2359

motivate future work in strengthening clarification 2360

strategies and enhancing multi-tool coordination 2361

capabilities in more complex, real-world scenarios. 2362

G.4 Case Study 2363

To further demonstrate the robustness of our 2364

method under varied user personality types and 2365

conversation styles, we conduct a case study using 2366

ASKTOACT-LoRA-SFT-7B to interact with two 2367

users exhibiting contrasting communication pat- 2368

terns. One user adopts a concise and task-oriented 2369

style, while the other responds in a verbose and 2370

humorous manner, often including redundant or 2371

irrelevant content. The following examples demon- 2372

strate how the model handles the same task under 2373

these contrasting user styles. 2374

2375

Concise & Task-oriented 2376

User: The task is: Which regions are supported 2377
for a certain language? Also, can you verify if 2378
a given email address is valid? Some relevant 2379
APIs: [{"name":"regions","description":"Returns 2380
a collection of supported regions for the 2381
specified IETF BCP 47 language tag.","parameters 2382
":{"language":{"description":"Language code in 2383
BCP 47 format.","type":"str","default":"us"}}},{ 2384
"name":"check_email","description":"Validates an 2385
email address using the RapidAPI Email Checker 2386
and Validator service.","parameters":{"email":{" 2387
description":"The email address to validate."," 2388
type":"str","default":"marod29733@lubde.com"}}}, 2389
{"name":"email","description":"Validates the 2390
given email address using the RapidAPI email 2391
validation service.","parameters":{"email":{" 2392
description":"The email address that needs to be 2393
validated.","type":"str","default":" 2394
example@gmail.com"}}},{"name":"email_verifier"," 2395
description":"Verifies the validity of an email 2396
address using the Toolbench RapidAPI service."," 2397
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parameters":{"email":{"description":"The email2398
address to be verified.","type":"str","default2399
":"hello@gmail.com"}}}]2400

2401
Assistant: [TASK DECOMPOSITION] The task can be2402
decomposed into 2 steps for solving. Step 1:2403
Determine the regions supported for the2404
specified language using regions API. Step 2:2405
Verify the given email address is valid using2406
check_email API. [PARAMETER EVALUATION] The2407
information I currently have is: In step 1, the2408
parameter "language" for API "regions" lacks a2409
clear value. In step 2, the parameter "email"2410
for API "check_email" lacks a clear value. [2411
QUESTION] What is the language code for which2412
you want to know the supported regions?2413

2414
User: The language code is 'en'. That's all I2415
know.2416

2417
Assistant: [PARAMETER EVALUATION] Now I know2418
that the parameter "language" for API "regions"2419
has a value of "en". [QUESTION] What is the2420
email address you want to validate?2421

2422
User: I am to verify if 'user@example.com' is a2423
valid email address.2424

2425
Assistant: [PARAMETER EVALUATION] Now I know2426
that the parameter "email" for API "check_email"2427
has a value of "user@example.com". [SUMMARY] I2428
have all the information needed and can now call2429
the relevant APIs to solve the task. The2430
solution path is as follows: [{'task': 'regions',2431
'arguments': [{'name': 'language', 'value': 'en2432
'}]}, {'task': 'check_email', 'arguments': [{'2433
name': 'email', 'value': 'user@example.com'}]}]2434

2435

Verbose & Humorous2436

User: The task is: Which regions are supported2437
for a certain language? Also, can you verify if2438
a given email address is valid? Some relevant2439
APIs: [{"name":"regions","description":"Returns2440
a collection of supported regions for the2441
specified IETF BCP 47 language tag.","parameters2442
":{"language":{"description":"Language code in2443
BCP 47 format.","type":"str","default":"us"}}},{2444
"name":"check_email","description":"Validates an2445
email address using the RapidAPI Email Checker2446
and Validator service.","parameters":{"email":{"2447
description":"The email address to validate.","2448
type":"str","default":"marod29733@lubde.com"}}},2449
{"name":"email","description":"Validates the2450
given email address using the RapidAPI email2451
validation service.","parameters":{"email":{"2452
description":"The email address that needs to be2453
validated.","type":"str","default":"2454
example@gmail.com"}}},{"name":"email_verifier","2455
description":"Verifies the validity of an email2456
address using the Toolbench RapidAPI service.","2457
parameters":{"email":{"description":"The email2458
address to be verified.","type":"str","default2459
":"hello@gmail.com"}}}]2460

2461
Assistant: [TASK DECOMPOSITION] The task can be2462
decomposed into 2 steps for solving. Step 1:2463
Find supported regions for the given language2464
using regions API. Step 2: Verify the validity2465

of the given email address using check_email API. 2466
[PARAMETER EVALUATION] The information I 2467
currently have is: In step 1, parameter " 2468
language" for API "regions" lacks a clear value. 2469
In step 2, parameter "email" for API "check_ 2470
email" lacks a clear value. [QUESTION] What is 2471
the specific language you want to check the 2472
supported regions for? 2473

2474
User: Oh, you're trying to trick me into 2475
answering my own question, huh? Clever! But let' 2476
s focus on your question. Since you're asking me, 2477
it seems like you might need a bit more 2478
information. In this case, I can't provide an 2479
answer because I'm the one who wanted to know 2480
which regions are supported for the 'en' 2481
language. I guess we're in this together! Haha, 2482
just kidding; you're on your own, buddy. I'm 2483
here for moral support. 2484

2485
Assistant: [PARAMETER EVALUATION] Now I know 2486
that the parameter "language" for the API " 2487
regions" has a value of "en". [QUESTION] What is 2488
the email address you want to verify for 2489
validity? 2490

2491
User: Haha, you're right, I didn't actually 2492
provide an email address, did I? Well, in the 2493
task, I mentioned 'user@example.com'. So, that's 2494
the one we're looking at. But remember, I'm 2495
just here for a good time, not a long time! 2496

2497
Assistant: [PARAMETER EVALUATION] Now I know 2498
that the parameter "email" for the API "check_ 2499
email" has a value of "user@example.com". [ 2500
SUMMARY] I have all the information needed and 2501
can now call the relevant APIs to solve the task. 2502
The solution path is as follows: [{'task': ' 2503
regions', 'arguments': [{'name': 'language', ' 2504
value': 'en'}]}, {'task': 'check_email', ' 2505
arguments': [{'name': 'email', 'value': ' 2506
user@example.com'}]}] 2507

We observe that whether the user responses are 2508

concise or verbose, cooperative or evasive, or even 2509

include redundant or off-topic content, our model is 2510

able to comprehend the intent accurately, engage in 2511

effective multi-turn clarification, and produce the 2512

correct tool invocation solution. This case study 2513

demonstrates that our method can maintain both 2514

functional reliability and interaction consistency 2515

across varied conversational scenarios. 2516
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