
Position: General Intelligence Requires Reward-based Pretraining

Seungwook Han * 1 Jyothish Pari * 1 Samuel J. Gershman 2 Pulkit Agrawal 1

Abstract
Large Language Models (LLMs) have demon-
strated impressive real-world utility, exemplifying
artificial useful intelligence (AUI). However, their
ability to reason adaptively and robustly – the
hallmarks of artificial general intelligence (AGI)
– remains fragile. While LLMs seemingly suc-
ceed in commonsense reasoning, programming,
and mathematics, they struggle to generalize algo-
rithmic understanding across novel contexts. Our
experiments with algorithmic tasks in esoteric pro-
gramming languages reveal that LLM’s reasoning
overfits to the training data and is limited in its
transferability. We hypothesize that the core is-
sue underlying such limited transferability is the
coupling of reasoning and knowledge in LLMs.

To transition from AUI to AGI, we propose disen-
tangling knowledge and reasoning through three
key directions: (1) pretaining to reason using RL
from scratch as an alternative to the widely used
next-token prediction pretraining, (2) using a cur-
riculum of synthetic tasks to ease the learning of
a reasoning prior for RL that can then be trans-
ferred to natural language tasks, and (3) learning
more generalizable reasoning functions using a
small context window to reduce exploiting spuri-
ous correlations between tokens. Such a reason-
ing system coupled with a trained retrieval system
and a large external memory bank as a knowledge
store can overcome several limitations of exist-
ing architectures at learning to reason in novel
scenarios.

1. Introduction
Large Language Models (LLMs) have demonstrated impres-
sive capabilities across diverse tasks, such as commonsense

*Equal contribution 1Improbable AI Lab, MIT 2Department of
Psychology and Center for Brain Science, Harvard University. Cor-
respondence to: Seungwook Han <swhan@mit.edu>, Jyothish
Pari <jyopari@mit.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

reasoning, math, and programming (Ho et al., 2022; Wei
et al., 2023; 2022; Lampinen et al., 2022; DeepSeek-AI,
2024; OpenAI, 2024; Meta, 2024). Their practical impact
makes them a compelling instance of artificial useful intel-
ligence (AUI) – systems that assist humans in real-world
tasks. Nevertheless, a significant gap remains between AUI
and artificial general intelligence (AGI), systems capable
of robust, adaptive reasoning across diverse domains and
contexts like humans.
To illustrate this gap, we designed algorithmic tasks in
esoteric programming languages that isolate reasoning
from memorization. These tasks involve simple algorithmic
problems (e.g., printing, sorting) seen during pretraining
and easily solved in Python and Java, but presented in unfa-
miliar programming languages with different syntaxes. Our
results in Section 3 show that state-of-the-art LLMs struggle
to transfer their algorithmic understanding to coding in new
programming syntaxes. Notably, o1 (Jaech et al., 2024),
post-trained for reasoning with a combination reinforcement
learning (RL) and search, e.g., Chain-of-Thought (Wei et al.,
2023), performed the best. However, even o1’s performance
suffers, illustrating the limitation of current models in
flexibly transferring their reasoning to novel contexts.
We hypothesize that going beyond the reasoning ability
of current models requires a fundamental overhaul of the
pretraining paradigm. The dominant approach–supervised
pretraining with next-token prediction loss on passively col-
lected Internet data, followed by RL-based post-training
(DeepSeek-AI, 2025; Lightman et al., 2023; Luong et al.,
2024; Zelikman et al., 2024; 2022)–closely mirrors Al-
phaGo’s methodology in the game of Go (Silver et al.,
2016). In AlphaGo, supervised pretraining on human
demonstrations and post-RL optimization were used to
surpass human playing abilities. However, this paradigm
was overturned by AlphaZero (Silver et al., 2017), which
demonstrated that RL from scratch– without supervised
pretraining– achieved superior performance. By relying
solely on self-play and starting from random initialization,
AlphaZero surpassed AlphaGo, uncovering more efficient
and creative strategies through purely RL.
This paradigm shift from AlphaGo to AlphaZero motivates
our hypothesis that, even in current LLMs, reliance on su-
pervised pretraining constrains models to a “local minimum”
of reasoning capabilities. Supervised pretraining on demon-

1

General Intelligence Requires Reward-based Pretraining

stration data can be a double-edged sword: while it provides
a helpful exploration bias for reasoning finetuning via RL, it
also serves as a bias that may hinder subsequent exploration.
Consequently, we hypothesize that next-token prediction
training on Internet-scale data may constrain models to a
local minimum of reasoning abilities that cannot easily be
escaped through post-training RL.
Our intuition behind why next-token prediction might lead
to a local minimum in reasoning is as follows: when the
training objective is merely to predict the next token, the
model can exploit correlations between tokens in the context
window to reduce prediction error instead of learning the
underlying reasoning algorithm that explains the data. For
instance, if the model is trained on examples such as 5+3 =
8; 2 + 1 = 3; 4 + 7 = 11, it might learn that the next
character after the character + and a number is the character
=. In other words, the model can learn superficial statistical
patterns (e.g., which words commonly occur together) rather
than developing genuine understanding (e.g., addition) that
will generalize across different situations.
As another example, consider instructing a model to write
Python code with 1-based indexing instead of the usual 0-
based indexing. To solve the task with the simple change,
the model must override its memorized Python knowledge
and flexibly apply the 1-based indexing rules learned from
other languages like R or MATLAB. However, many models
pretrained with next-token prediction produce 0-indexing
based solutions, leaning on surface-level pattern matching
that ignores the instruction (Wu et al., 2024). This illustrates
how passive pretraining fails to incentivize the learning
of generalizable reasoning skills and, instead, reinforces
memorization and pattern matching that have limited gen-
eralization beyond the training scenarios. When a model
learns to reason in a way that is tied to specific ways of ex-
pressing things rather than underlying principles–the model
struggles to apply its reasoning to new scenarios.
In this position paper, we argue that to advance from
AUI to AGI, it is critical to deliberately disentangle
knowledge from reasoning, allowing models to develop
robust reasoning independent of memorized patterns.
Additionally, we propose architectural modifications
that enable the reasoning system to flexibly adapt to
newly added knowledge, ensuring that models can gen-
eralize their reasoning strategies to novel domains. To
this end, we outline three key directions to achieve this
paradigm shift, which we discuss in detail in Section 4.

1. Pretraining for reasoning via reward-based learn-
ing (Section 4.1): The choice of training data can
significantly influence whether the model exploits cor-
relations to learn fragile reasoning or discovers the
more general underlying reasoning algorithm. As an
illustration, consider training a model to multiply num-
bers with data of the form [2 × 5 = 10; 3 × 4 =

12; 5 × 7 = 35], where the answers are directly pro-
vided. We refer to such data as passive data that is
the outcome of human knowledge and reasoning (i.e.,
most of the Internet data) but doesn’t encompass the
reasoning process. Continuing with the analogy of
AlphaGo, human gameplay data used for supervised
training is passive in the sense that it contains what
moves humans played but not why those moves were
played. While one hopes that a model can implicitly
learn the true reasoning process if trained with the next-
token prediction objective, the model could memorize
the answers or exploit correlations in the data to learn
reasoning that works for in-distribution data, but fails
beyond the training data distribution.

Consider the alternative of training model on data
that spells out the reasoning algorithm (i.e., reasoning
trace) – [2× 5 = 5 + 5 = 10; 3× 4 = 4 + (4 + 4) =
12; 5×7 = (7+7)+(7+7)+7 = 35]. We hypothesize
that the model has a better chance of learning the un-
derlying algorithm with such data. However, obtaining
large amounts of reasoning trace data is challenging.
One way is to use RL to generate data that maximizes
the task reward (i.e., correct multiplication or winning
the game of Go). In other words, by structuring train-
ing as an iterative (Carreira et al., 2016) and step-wise
problem-solving process rather than next-token predic-
tion on passive data, models can develop more robust
and generalizable reasoning abilities not limited to the
spurious patterns observed in pretraining data.

2. Enabling Efficient Exploration via Synthetic Tasks
(Section 4.2): Building on the insight that data con-
taining reasoning traces may better enable the model
to learn the underlying reasoning process compared to
passive data, the natural question is how to obtain such
data. We propose that this data can be obtained via
a more active process where an agent optimizes task
rewards through a sequence of actions and generates
reasoning traces in the process. However, as natural
language comprises of ∼40K tokens, doing RL from
scratch is infeasible. To address the exploration chal-
lenge, we propose using synthetic tasks with a reduced
token space while preserving key structural properties
to learn a reasoning prior (e.g., commutativity, associa-
tivity, in-context learning, etc.). The token space and
complexity can gradually be increased via a task cur-
riculum that increases difficulty. Once the reasoning
prior is learned, it can leveraged to bootstrap reasoning
in natural language.

3. Architectural bias to decouple knowledge and rea-
soning (Section 4.3): Training models using long con-
text windows provide more chances for the model to
learn spurious correlations between past and future
tokens when minimizing the next-token prediction loss.

2

General Intelligence Requires Reward-based Pretraining

Proposed Architecture

Can a cheetah
outrun a lion?

How fast can a
cheetah run?

75 mph

How fast can a
lion run?

50 mph

Reasoner Reasoner Reasoner

A cheetah can
outrun a lion

Memory Memory Memory

Write

Read

Proposed Training Paradigm

RPT

Supervised PT

Figure 1. (Left) Comparing reward-based pretraining (RPT) and traditional supervised pertaining (SPT). Supervised pretraining requires
the model to directly predict answers, limiting its ability to refine intermediate solutions. In contrast, RPT enables step-by-step reasoning
from the outset, allowing the model to iteratively approximate complex functions through simpler transitions that are easier to learn and
more robust to errors (Carreira et al., 2016). (Right) Illustration of our proposed decoupled memory-reasoning architecture. This design
allows the reasoning module to operate on shorter context windows that reduce the chances of learning spurious correlations and, thereby,
more transferrable reasoning. The use of a shorter context window also encourages the model to learn how to dynamically read and write
to memory, which facilitates the use of reasoning model on new problems and knowledge domains.

Previous work highlighted issues such as lost-in-the-
middle phenomenon (Liu et al., 2024), where models
become overly sensitive to token positions within a
long context rather than learning a robust, transferable
reasoning process. Drawing on insights from cogni-
tive science–which emphasize the efficacy of a limited
“working memory” (Miller, 1956; Elman, 1993)–we hy-
pothesize that restricting the model to reason over only
a limited set of tokens reduces the chances of exploit-
ing spurious correlations between tokens and thereby
promote more robust reasoning that can transfer to new
knowledge domains.

To this end, we propose three architectural changes. We
first disentangle knowledge and reasoning into distinct
modules – an external memory bank and a reasoning
network. Such decomposition provides an inductive
bias for re-using the reasoning model on new knowl-
edge domains. Second, we propose that the reasoning
model should operate over a small context window, an
inductive bias that reduces the chances of relying on
spurious correlations for making accurate predictions.
Thirdly, because the reasoning model operates on a
short context window, it needs to retrieve and write in-
formation from the external memory bank. We propose
to learn the strategies for reading from and writing to
an external memory bank. We hypothesize that this
structured approach enables dynamic retrieval and rea-
soning, reduces reliance on spurious correlations, and
therefore improves generalization.

2. Background and Notation
Current LLMs are pretrained for next-token prediction over
a large text corpus. Let D denote a large unlabeled text
corpus collected from the Internet, which we refer to as
passive data. This passive data includes books, articles,
and online content and generally does not describe interme-

diate reasoning steps that can guide problem-solving. For
example, while a text passage might contain the statement
of a math problem and its final answer, it often omits the
step-by-step derivation leading to the solution (e.g., interme-
diate algebraic manipulations or deductions). Each element
in D is a sequence of tokens x = (x1, x2, . . . , xT), typi-
cally formed using a vocabulary of size |V |. A language
model ϕθ with parameters θ (often a Transformer (Vaswani
et al., 2023)) is trained to learn the conditional distribution
P
(
xt | x1, x2, . . . , xt−1; θ

)
.

In practice, we maximize the log-likelihood of each token
given its preceding tokens:maxθ

∑
x∈D

∑T
t=1 logP

(
xt |

x<t; θ
)
. We refer to this task-agnostic pretraining using

next-token prediction loss as supervised pretraining (SPT).
Any subsequent training that continues to optimize this
objective for a target task is referred to as supervised fine-
tuning (SFT).
Training for tasks can also be performed using a reward-
based formulation grounded in RL. At each step t, the model
ϕθ receives a scalar reward rt, which can depend on partial
or complete outputs. Here, the data is not the passively
collected corpus D, but rather is gathered online from the
model’s own interactions. The goal is to maximize the
expected cumulative reward: maxθ Ex∼πθ

[∑T
t=1 rt(x)

]
,

where πθ is the model’s policy distribution over sequences
x. We refer to the pretraining done with this reward-based
objective as reward-based pretraining (RPT), and sub-
sequent training that continues to optimize this reward as
reward-based finetuning (RFT).

3. Evaluation of Reasoning Separate From
Knowledge

To evaluate the ability of current models to transfer their rea-
soning across domains, we constructed an evaluation bench-
mark containing simple algorithmic tasks, such as printing

3

General Intelligence Requires Reward-based Pretraining

Models Print (# ICL = 1) Print (4) Print (10) Sort Copy

Llama 3.1 8B 0.01 0.04 0.07 0.00 0.00
Llama 3.1 70B 0.02 0.07 0.10 0.00 0.00

Qwen2.5 Coder 7B 0.02 0.02 0.01 0.00 0.00
Qwen2.5 Coder 32B 0.03 0.02 0.02 0.00 0.09

GPT-4o 0.02 0.09 0.13 0.00 0.00
o1 0.71 0.64 0.65 0.01 0.95

Table 1. Brainf**k evaluation results. We report accuracy (in decimal format) over the test set for each task. The number of examples
used for each task evaluation is listed in Appendix A.3. The numbers within parentheses are the number of in-context examples during
evaluation.

and sorting, in esoteric programming languages. Unlike
conventional evaluation using programming languages with
familiar syntax, such as Python or Java, this benchmark is de-
signed to minimize the influence of pre-existing knowledge
by using languages with unconventional rules and minimal
semantic connections to common programming languages.
This allows us to measure a model’s ability to generalize
its logical reasoning to solve problems in domains different
from the ones encountered during pretraining.

3.1. Esoteric Programming Languages
We used two esoteric programming languages, Brainf**k
(Wikipedia, 2025) and Befunge (Cat’s Eye Technologies,
1993). Both languages are infrequently seen during pretrain-
ing and radically different from common languages like
Python. However, they are Turing-complete, meaning they
can express any algorithm that a programming language
like Python can, given enough time and memory. Brainf**k
operates on a simple, tape-based memory model with only
eight commands. Befunge is a two-dimensional stack-based
language where code execution follows paths on a grid, al-
lowing for new control flows like loops and branches in any
direction. While both languages differ from Python, they
are based on simple programming rules. Example below.

+++++++[>++++++++++<-]>+++++.

Listing 1. Brainf**k program to print the character ’K.’

Tasks. We designed two sets of tasks for Brainf**k and
Befunge, which are easy to do in Python and Java. We select
the tasks based on what is more suitable to implement in
each esoteric language while maintaining some overlap. For
Brainf**k, we have the three tasks of printing two-letter
words, sorting a list of five elements, and copying an input
string of five characters. For Befunge, we have the three
tasks of printing two-letter words, generating a program to
calculate the factorial of the input number, and generating a
program to output the first k Fibonacci numbers.

Evaluation Details. We evaluate the state-of-the-art
LLMs of different families and scales: Llama 3.1 8B and

70B, Qwen2.5 Coder 7B and 32B, GPT-4o and o1. For each
task, we construct a set of problems by changing the inputs.
For example, in the printing task, we vary the characters to
print (e.g., ‘hi’ and ‘so’). The models are prompted using
the standardized format reported in Listing 5 and Listing 6
of Appendix A.4 and A.5 respectively.The prompt includes
the full syntax and rules of the programming language and
example code blocks with explanations. We further detail
the evaluation protocol in Appendix A.3.

Results. Despite the simplicity of the tasks, all models
generally perform poorly, averaging ∼12% accuracy in
Brainf**k (see Table 1) and ∼29% in Befunge (see Ta-
ble 2). In Brainf**k, performance only marginally improves
(about 4% on average) with the increase in the number of
in-context examples from 1 to 10 suggesting that current
models struggle to infer the correct structure and princi-
ples underlying Brainf**k, even with all the rules, syntax,
and contextual guidance. On the other hand, in Befunge,
in-context examples allow the models to achieve ∼70-90%
accuracy at printing two-letter words. But, the models fail
to solve the Fibonacci and factorial tasks.
A notable outlier is the o1 model, which vastly outperforms
other models. Unlike the other models, o1 has undergone
extensive post-training with RL for solving reasoning tasks
(Jaech et al., 2024), which likely contributes to its stronger
performance. This result highlights the potential benefits
of RL-based post-training in adapting models to unconven-
tional tasks. However, we note that even o1’s performance
leaves considerable room for improvement. It scores 1%
accuracy on sorting five elements even with 10 in-context
examples and 65.5% accuracy on printing two-letter words.

4. Proposed Directions
4.1. Pretraining for Reasoning with RL

Proposal: Instead of pretraining on passive data
(defined in Section 2) and finetuning with RL, we
propose integrating RL directly into the pretraining
phase to enable better iterative reasoning.

4

General Intelligence Requires Reward-based Pretraining

Models Print (# ICL = 1) Print (4) Print (10) Fibonacci Factorial

Llama 3.1 8B 0.19 0.68 0.72 0.00 0.00
Llama 3.1 70B 0.92 0.92 0.93 0.02 0.00

Qwen2.5 Coder 7B 0.15 0.66 0.74 0.00 0.00
Qwen2.5 Coder 32B 0.08 0.83 0.94 0.00 0.00

GPT-4o 0.72 0.98 1.00 0.00 0.00
o1 0.70 0.83 0.93 0.00 0.00

Table 2. Befunge evaluation results. We report accuracy (in decimal format) over the test set for each task. The number of examples
used for each task evaluation is listed in Appendix A.3. The numbers within parentheses are the number of in-context examples during
evaluation.

Recent works have continued the SPT-then-RFT paradigm
to enhance task adaptability and reasoning capabilities in
LLMs. In particular, RFT has shown to be essential in im-
proving generalization across reasoning-intensive domains,
such as mathematical problem-solving and program syn-
thesis (Zelikman et al., 2024; Hosseini et al., 2024). By
enabling and refining intermediate reasoning traces (e.g.,
“Let’s solve this step by step: First, we need to factor the
quadratic equation...”) to arrive at a final answer, these meth-
ods decompose complex problems into easier sub-problems,
allowing models to iteratively construct solutions through
systematic exploration of possible solution paths.
The current approach of training LLMs with the SPT-then-
RFT paradigm mirrors AlphaGo (Silver et al., 2016), which
initially leveraged pretraining on human demonstrations,
followed by RL finetuning, achieving superhuman perfor-
mance in Go. However, AlphaZero (Silver et al., 2017),
which trained purely with RL from scratch, surpassed Al-
phaGo, suggesting that imitation-based pretraining may
limit exploration. A similar risk arises in LLMs: an initial
phase of supervised pretraining on passive data (as defined
in Section 2) often lacks the supervision of intermediate
reasoning steps and may confine subsequent RL finetuning
to a restricted solution space, hindering its ability to escape
the local minimum. Moreover, it is common to constrain
RL finetuning to stay close to the pretrained model to re-
duce the risk of generating unnatural sequence of language
tokens and thereby hacking the reward function (Gao et al.,
2023; Paulus, 2017; Alami et al., 2024). However, such a
constraint also hinders the exploration of RL finetuning and
its ability to discover the underlying reasoning process.

Hypothesis: Pretraining on passive data can con-
strain the subsequent finetuning by placing models
in local minima, limiting their ability to discover rea-
soning strategies that generalize (e.g., finding novel
ways to solve math problems beyond the specific
solution approaches seen in training data).

100

SPT SPT-then-RFT

(KL 0.1)

SPT-then-RFT

(KL 0.5)

66

92

W
in

 R
at

e
of

 R
P

T
 A

g
en

t
vs

 S
P

T-
th

en
-R

FT
 (

%
) RPT vs. SPT-then-RFT in Go 9x9

Figure 2. Comparing the different training paradigms of RPT vs.
SPT-then-RFT in Go 9 × 9. These results affirm the hypothesis
that the SPT can restrict the model’s subsequent exploration with
RL. The KL regularization is added to replicate common training
paradigms (Gao et al., 2023; Paulus, 2017; Alami et al., 2024).

Does reward-based pretraining (RPT) outperform su-
pervised pretraining followed RL finetuning (SPT-then-
RFT) in Go?
We trained two agents using the SPT-then-RFT paradigm
(as used in AlphaGo) and the RPT paradigm (as used in Al-
phaZero) in a simplified Go environment using a 9×9 board.
See training details in Appendix B.1. This setup allows
rigorous evaluation of whether pretraining on expert human
demonstrations collected from the top 100 players impairs
RL’s ability to escape the local minima found by supervised
learning and thereby restricts its exploration and ability to
learn superior gameplay strategies. The AlphaZero paper
introduced multiple changes from AlphaGo (e.g., different
network architecture, pretraining strategies, etc.), making
it challenging to pinpoint the most critical change respon-
sible for the performance difference. We ran controlled
experiments to isolate whether the RL training from scratch
was the major factor contributing to performance gain. To

5

General Intelligence Requires Reward-based Pretraining

mimic the common training setup in LLMs, we adopt a
Kullback-Leibler (KL) penalty (Kullback & Leibler, 1951)
as a regularization for the SPT-then-RFT paradigm.
Go 9× 9 results, reported in Figure 2, show that supervised
pretraining on passive data constrains the RL finetuning
performed similarly to RLHF in LLMs by limiting explo-
ration. As expected, the RPT model achieves a 100% win
rate against the SPT, demonstrating that exploration via
reward-based training can easily outperform training on the
top 100 expert data. Against the SPT-then-RFT paradigm,
the performance of the RPT model varies with the KL con-
straint that keeps the generations close to the pre-trained
model. The RPT model achieves a 66% win rate compared
to SPT + RFT with a KL coefficient of 0.1, and a greater
win rate of 92% against SPT + RFT with a stricter KL coeffi-
cient of 0.5. These findings highlight that tighter reliance on
pre-trained knowledge hinders exploration while loosening
these constraints enables RL to discover better strategies.
Without the KL constraint and given an infinite training bud-
get, RPT and SPT + RFT models can eventually converge
to the same optimal policy. Such recovery in performance
using RFT after SPT may be possible in simpler tasks such
as Go9x9 where reward hacking is not possible. However,
running unconstrained RL post-SPT with LLMs is gener-
ally infeasible as the LLM degrades and starts producing
gibberish (i.e., meaningless sequence of tokens) that still
increases the reward function (i.e., reward hacking (Skalse
et al., 2022)). To verify if this is ndeed the case we repeat
the comparison between SPT and SPT + RFT with LLMs
as detailed below.
Does reward-based finetuning (RFT) outperform super-
vised pretraining followed by reward-based finetuning
(SPT-then-RFT)?
We test the hypothesis that, in LLMs, RL training for reason-
ing (RFT) after supervised pretaining may be insufficient to
push the model beyond its local minimum to discover more
general reasoning abilities that could have been learned if
the model was trained from scratch to reason via RL.
As the training of a language model from scratch using
RL remains very challenging (see Section 4.2 for more
discussion), we use a pretrained LLM and test if supervised
fine-tuning (SFT) on a passive dataset (i.e., examples of
questions and answers) limits generalization compared to
finetuning for reasoning using RL (RFT).
To make a fair comparison, we fix all variables constant
except the training paradigms of: (1) SFT-then-RFT
paradigm, where a base model is finetuned on supervised
demonstrations before applying RL (Ziegler et al., 2019); (2)
pure RFT paradigm, where the base model is only finetuned
with a reward-based objective via RL. While this setup does
not involve full SPT vs. RPT comparisons, it provides a
computationally efficient proxy for understanding how SFT
on passively collected data influences the exploration and

generalization of downstream RFT.
For this investigation, we design a synthetic mathematical
reasoning task wherein the model must identify vectors
orthogonal to a given vector (more details in Appendix
A.6). As shown in Listing 2, the problem is presented as
a multiple-choice question, where the model must choose
the correct option. We used Qwen 1.5B (Yang et al., 2024)
as the base pre-trained model and evaluated different fine-
tuning strategies using the prompt detailed in Appendix
A.7.

Listing 2. Example of synthetic orthogonality task
Question: Which of the vectors are orthogon
-al to [-2, -1, 0]?
(a) [3, 4, -5]
(b) [0, 0, 2]
(c) [-1, 3, 4]
(d) [-1, 1, 5]

Answer: (b)

Results in Table 3 support our hypothesis: models trained
with only RFT outperform those finetuned with SFT-then-
RFT. The SFT-then-RFT models overfit to the training dis-
tribution, achieving near-perfect accuracy on the training
set but inferior generalization to the test set reflected in a
performance drop from 100% to 80%. This result suggests
that the model is more prone to memorizing patterns in the
training data instead of figuring out the underlying reason-
ing algorithm. These results are aligned with those of Chu
et al. (2025) that show SFT memorizes while RL general-
izes. Furthermore, SFT-trained models struggle to leverage
RL post-training effectively. We observe that SFT models
learn to predict the answer directly, avoiding step-by-step
reasoning. As a result, during the RL post-training phase,
the model does not generate the intermediate reasoning steps
to solve the task. This reinforces the idea that passive pre-
training (i.e., next-token prediction on data without explicit
intermediate reasoning traces) overfits and constrains later
exploration that prevents models from discovering more
general reasoning patterns.
Towards RL-Driven Pretraining Building on these in-
sights, we advocate for a new pretraining approach that
emphasizes learning step-by-step reasoning patterns. Since
we lack large-scale training data with explicit intermediate
reasoning steps (e.g., Chain-of-Thought style demonstra-
tions), we propose using RL to generate such reasoning
traces through interaction with an environment and guided
by appropriate reward functions. We posit that achieving
truly general reasoning abilities requires training a model
from scratch (i.e., RPT) to reason using reward supervision
instead of the currently popular paradigm of supervised
pretraining on passive data followed by finetuning for rea-
soning with rewards. However, this approach presents a
significant exploration challenge because searching in the

6

General Intelligence Requires Reward-based Pretraining

space of language tokens from scratch is difficult. To realize
this vision of RL-driven pretraining, we must efficiently
explore and generate high-quality, coherent reasoning steps
that are missing in current pretraining datasets. We provide
ideas on addressing this challenge in Section 4.2.

4.2. Pretraining for Reasoning from Scratch (RPT)
using Synthetic Tasks

Proposal: We propose pretraining models on syn-
thetic tasks or games in constrained environ-
ments with reduced token spaces to enable effi-
cient exploration. Large token spaces hinder the
discovery of reasoning patterns due to combinatorial
complexity. By learning in simplified settings, mod-
els can acquire core reasoning skills that transfer to
more complex domains like language.

Model Configuration Train (%) Test (%)

Base Model 88 89
Base Model + SFT-then-RFT 100 80
Base Model + RFT 94 93

Table 3. Comparing the effect of finetuning with RL (RFT) against
supervised finetuning followed by RL finetuning (SFT-then-RFT)
on the reasoning task of determining orthoganlity between vectors.
We used Qwen 1.5B as the base model. Pure RFT training achieves
the highest accuracy, while SFT models show signs of overfitting.

An important challenge when training a model from scratch
with RL is efficiently exploring the space of reasoning traces
to find correct solutions. The search space of natural lan-
guage is nearly unconstrained, and therefore, the likelihood
of finding a solution by generating a random combination
of words is extremely small. The central question is: How
can we make this search process more tractable?
To this end, we propose training a “reasoning prior” on
synthetic tasks that incentivizes the learning of reasoning
primitives within a smaller token space where exploration is
much easier. By training on simplified tasks where the agent
must iteratively interact with the environment to solve for
a reward, the agent can develop key reasoning skills, such
as hierarchical abstraction, causal reasoning, and composi-
tional generalization, bypassing the complexities of natural
language. Recent studies (Chan et al., 2022; 2024) suggest
that capabilities such as ICL emerge from structural proper-
ties of natural language syntax (e.g., burstiness, where items
cluster temporally or thematically, and Zipfian distributions)
rather than specific semantics of language. This suggests
that we can choose problems with drastically smaller to-
ken spaces that preserve key properties necessary for the
emergence of reasoning prior. Once such reasoning prior
is acquired, models can then be adapted to broader token

spaces and ultimately to language, integrating search and
feedback mechanisms into large-scale language pretraining.
The two open questions are: (i) Which tasks should be used
for reasoning pretraining and (ii) How do we transfer rea-
soning prior to natural language? Some possibilities for (i)
are generating logic games using a small set of randomly
generated rules or using data sources with similar distri-
butions to natural language but smaller token spaces. We
can start with tasks with smaller token spaces and gradually
increase the complexity with larger token spaces requiring
more challenging reasoning. We see a parallel here between
the state of self-supervised learning in computer vision a
decade ago (Gui et al., 2024; Baradad et al., 2022; Walker
et al., 2015; Jayaraman & Grauman, 2016; Agrawal et al.,
2015; Doersch et al., 2015), where many attempts were
made to develop a good proxy task for self-supervision. It
took considerable research by the community to eventually
find self-supervision objectives and tasks that eventually
superseded the performance of supervised learning. We
expect something similar here.
For (ii), we can draw to the common practice of adapting a
neural network for a new computer vision task by preserving
the early layers and potentially finetuning or re-initializing
the last layers (Donahue et al., 2013; Agrawal et al., 2014).
When it comes to reasoning prior, we expect it to be em-
bedded in the intermediate layers of the neural network. To
transfer the reasoning prior, we can preserve the interme-
diate layers but adapt the input/output layers to enable the
reasoning to work in a new token space (Lu et al., 2021).
Careful selection and design of the artificial environments
(i) are essential to learning features and circuits that are
useful and transferrable (ii) to natural language.
Evidence from existing literature hinting at the plausibil-
ity of the proposed approach We argue that the reasoning
priors learned with synthetic tasks can plausibly transfer
to natural language, supported by two key pieces of evi-
dence. First, code is an example of an artificial environment
that closely parallels language. Although code and language
have different token distributions, pretraining on code before
training on natural language has been widely used (Petty
et al., 2024; Aryabumi et al., 2024; Kim et al., 2024). The
structured nature of code – precise syntax, deterministic se-
mantics, and modularity – enables models to develop strong
priors for logic and problem-solving. Cognitive studies
further support this approach: children who learn program-
ming exhibit enhanced creativity, mathematical skills, and
reasoning on other non-coding tasks (Scherer et al., 2019;
Montuori et al., 2024). This suggests that structured environ-
ments, whether learned by humans or machines, facilitate
the development of transferable reasoning skills.
Second, Zhong & Andreas (2024) demonstrated that even a
random transformer, with only embedding layers optimized,
can solve various algorithmic tasks, such as modular arith-

7

General Intelligence Requires Reward-based Pretraining

metic and parentheses balancing. This suggests that some
meaningful circuits already exist within the architecture of
random models. Based on this observation, we hypothesize
that when a model is explicitly trained to learn to maximize
rewards on synthetic tasks, it will develop more meaningful
and transferrable circuits that can be transferred and used
when interacting with the model in natural language.
Further, unlike real-world corpora, which conflate reasoning
and knowledge – for example, in language, logical inference
is often entangled with knowledge and contextual semantics
– synthetic tasks enable explicit disentanglement of the two.
In these tasks, knowledge may consist of predefined rules
and primitives that govern system dynamics, and we have
full control over them. Because these synthetic tasks remove
the ambiguities and semantic dependencies inherent in lan-
guage, models trained to solve such tasks focus solely on
applying known rules to reason, solving for certain rewards
by iteratively stepping through the environment. Thus, ar-
tificial environments serve as ideal testbeds for reasoning
mechanisms that do not confound an agent’s extent of a
priori factual knowledge with its reasoning abilities.

4.3. Decoupling Knowledge and Reasoning to
Generalize Across Domains

Proposal: To enable robust generalization across
knowledge domains, we propose decoupling knowl-
edge and reasoning using an external memory bank
to store knowledge and a small context window,
allowing models to retrieve and process informa-
tion selectively rather than the currently dominant
paradigm of learning to reason using large context
windows that can be more prone to overfitting.

The quest for disentangling knowledge and reasoning leads
to the following questions: (i) What architectural priors fos-
ter more robust reasoning? (ii) How can we help the model
generalize its reasoning to new problems and domains?
Current models discover reasoning by training a transformer
model on long context. It is widely believed that larger
models with longer context windows and more extensive
data learn superior reasoning abilities as evidenced by their
superior ICL (Dong et al., 2022) abilities. However, our ex-
periments in Section 3 illustrate that simply scaling models
with more data may not suffice to achieve general reasoning
due to the intertwining of knowledge and reasoning. We
hypothesize that training with longer context windows has
higher chances of learning spurious correlations among past
tokens to predict future tokens. This is evident in the lost-in-
the-middle phenomenon, where models incorrectly ignore
the content in the middle (Liu et al., 2024).
One way to encourage the emergence of more general rea-
soning is to train with shorter context windows. As the
model needs to predict using fewer tokens, it will have lower

chances to learn spurious correlations between tokens in the
context window to predict future tokens. Crucially, human
cognitive science studies provide an empirical grounding
for this approach, suggesting that limiting context can fos-
ter more accurate and systematic reasoning (Miller, 1956;
Newport, 1988; Elman, 1993; Cowan, 2001). In fact, as a
result of the limited context, we develop strategies such as
chunking (Thalmann et al., 2019), where we form abstrac-
tions that group related pieces of knowledge, enabling more
complex concepts to be retained within working memory.
However, reducing the context window can prevent the
model from having the long-range information necessary
to make predictions. To mitigate this issue, we propose to
have an explicit semantic memory where data is stored
and a learned retrieval mechanism to fetch a small
amount of data in the model’s working memory (i.e., con-
text window) on which the reasoning function operates. We
include a high-level pseudocode illustrating our proposed
hybrid memory + reasoning model in Appendix B.
We hypothesize that this combination of semantic memory
for data storage, a learned data retrieval mechanism, and a
small working memory on top of which reasoning operates
will lead to a more scalable and generalizable reasoning
system. The proposed architecture should allow for effective
generalization to new problem domains by inserting the new
knowledge in the semantic memory.
At a surface level, our proposal may seem akin to retrieval-
augmented generation (RAG) (Lewis et al., 2021). However,
RAG systems typically add the retrieved text into context
and rely on ICL (Dong et al., 2022) over long sequences.
This approach presents two key challenges: (i) it relies on
a static, heuristic-based retrieval mechanism, such as near-
est neighbors on a fixed embedding space, that does not
allow the model to actively query, and (ii) it assumes the
model has strong long-context reasoning abilities, which
is often not the case. As context size grows, retrieval qual-
ity degrades, and models struggle to effectively utilize all
retrieved information (Zhang et al., 2024).
Moreover, prior memory-based approaches, such as Guu
et al. (2020) typically do not support the aforementioned
dynamic, multi-round interactions with external memory.
Yet, when tackling a challenging math problem, for instance,
we often need to retrieve different relevant past problems
or theorems at various stages of reasoning. As we progress,
we may continue to refine our retrieval and also record
the approach we use to solve the problem. This iterative
retrieval and updating of knowledge is essential for more
efficient learning.
In contrast, we propose to interact with the memory (read-
/write) during training and inference, thereby learning to
explicitly decouple memory from reasoning. Rather than
appending all retrieved text into a long context window, we
maintain a relatively small working memory to which the

8

General Intelligence Requires Reward-based Pretraining

model can repeatedly query and update an external semantic
memory. Using a small context forces both the retrieval
mechanism to retrieve more relevant information and for
the reasoning module to operate on a smaller number of
tokens and thereby have lesser chances of learning spurious
correlations between tokens.
Conceptually, our proposed design is reminiscent of
early neural memory architectures like Neural Turing Ma-
chines (Graves, 2014) and Differentiable Neural Computers
(Graves et al., 2016), where a separate memory module is
maintained. These approaches, however, often suffer from
significant optimization instabilities (Aleš, 2016; Paaßen
& Schulz, 2020) due to end-to-end differentiability across
numerous memory-access steps, which often lead to volatile
gradients. To circumvent such optimization bottlenecks, we
propose discrete memory-access decisions trained via RL,
thereby avoiding the vanishing gradients in long-horizon
differentiable memory access. Also, since long-horizon
RL optimization can be unstable, we propose leveraging
a curriculum strategy to stabilize training by starting with
simple memory interactions (read and write) and gradually
progressing towards more complex, multi-step interactions.

5. Alternative Views
An alternative perspective to our proposal of disentangling
knowledge and reasoning contends that knowledge and rea-
soning are so deeply intertwined that they are practically
inseparable. For example, consider completing the sentence,
“The coffee was unbearably hot, so he poured it into a ...”
Although “metal cup” and “porcelain cup” may both be
probable completions, most people would select “porcelain
cup” based on the context that the coffee was hot. Yet, it is
unclear whether such a choice arises from memorized asso-
ciations (knowledge of common behavior) or inference (rea-
soning about likely scenarios). This fundamental ambiguity
raises questions about whether knowledge and reasoning
can or should even be disentangled in intelligent systems.
One perspective is that if an agent has to perform a task
repeatedly, then it may not want to explicitly reason every
time, but store the result of its reasoning as “knowledge”.
In such a scenario, knowledge and reasoning can be cou-
pled for efficiency. Our argument is not that reasoning and
knowledge cannot be coupled but that the agent should have
a mechanism to separate them and not only reason based
on correlations between its experiences so that it can truly
apply the reasoning in a general way.
Furthermore, integrating RL into the pretraining of LLMs
presents several significant challenges that question its fea-
sibility and scalability. One major issue is the inefficiency
of RL-driven training, which requires collecting data on the
fly through interactions rather than leveraging static, large-
scale corpora. This process is computationally expensive
and risks becoming infeasible as model sizes and training

demands grow. Finally, while we argue that supervised pre-
training on passive data can limit exploration, training on
synthetic tasks can suffer from a similar problem if they
are poorly designed or constrained to narrow task distribu-
tions that ultimately do not transfer well to natural language.
Particularly if real-world tasks in natural language include
reasoning skills beyond the scope of synthetic pretraining
tasks, then mechanisms to compensate for such differences
in the pretraining and the needed capabilities will be re-
quired. Therefore, the choice of specific pretraining tasks is
an important subject of future research.

6. Related Works
Evaluating Reasoning in Large Language Models. LLMs
like GPT-4 (OpenAI, 2024), Llama 3 (Meta, 2024), and
Qwen (DeepSeek-AI, 2024) show strong reasoning, but
remain fragile, often overfitting to training patterns—as
seen in our esoteric language experiments and corrobo-
rated by counterfactual and symbolic reasoning benchmarks
(Mirzadeh et al., 2024; Wu et al., 2024). Fine-tuning has
been shown to improve both memorization and generaliza-
tion (Xie et al., 2024).
Inference-time Scaling for Reasoning. Inference-time
methods include search-based approaches like CoT (Wei
et al., 2023), ToT (Yao et al., 2024), and self-consistency
(Wang et al., 2023a), which explore multiple reasoning
paths. RL-based methods like RLHF (Ouyang et al., 2022;
Han et al., 2024), ReST (Singh et al., 2024), and STaR
(Zelikman et al., 2022; 2024) use search and reward sig-
nals (Lightman et al., 2023; Wang et al., 2024a; Uesato
et al., 2022) to improve reasoning policies through iterative
refinement.
Memory Architectures. While methods like RAG (Berges
et al., 2024) provide static memory, and NTMs (Aleš, 2016)
offer differentiable memory with training challenges, newer
approaches embed memory in KV-caches (Berges et al.,
2024) or separate reasoning and retrieval via special tokens
(Jin et al., 2024). Yet, most methods still tightly couple
reasoning with knowledge storage.
Synthetic Data. Synthetic data generation in language
modeling typically relies on natural language prompts (Chen
et al., 2024; HuggingFace, 2024; Microsoft, 2024). Prior
work on symbolic synthetic tasks (Wu et al., 2022; 2021;
Krishna et al., 2021) uses simple rule-based data, but often
lacks scalability and complexity for emergent reasoning.
Synthetic data has also shown promise in vision and RL
domains (Wang et al., 2023b; Baradad et al., 2022; 2023;
Wang et al., 2024b).

Acknowledgment
We want to express our gratitude to Idan Shenfeld, Zhang-
Wei Hong, Akarsh Kumar, and members of the Improbable
AI lab for the helpful discussion on the paper. We are

9

General Intelligence Requires Reward-based Pretraining

grateful to MIT Supercloud and the Lincoln Laboratory Su-
percomputing Center for providing HPC resources. The
research was supported in part by NSF CSGrad4US Fellow-
ship, Google, and Amazon. The research was sponsored
by the Army Research Office and was accomplished under
Grant Number W911NF-21-1-0328. The research was also
sponsored by the Office of Naval Research and was accom-
plished under Grant Number N00014-22-1-2740. This re-
search was also sponsored by the United States Air Force Re-
search Laboratory and the United States Air Force Artificial
Intelligence Accelerator and was accomplished under Co-
operative Agreement Number FA8750-19-2-1000. This re-
search was supported also by the National Institute of Health
under the Grant Number MH133066. The views and conclu-
sions contained in this document are those of the authors and
should not be interpreted as representing the official policies,
either expressed or implied, of the Army Research Office,
Naval Research Office, Air Force, or the U.S. Government.

Author Contributions
Seungwook Han co-developed the project and contributed
in all aspects of experiments and writing.
Jyothish Pari co-developed the project and contributed in
all aspects of experiments and writing.
Samuel Gershman contributed to the paper’s narrative and
writing.
Pulkit Agrawal co-developed the project direction, advised
SH and JP, and played a significant role in paper writing.

References
Agrawal, P., Girshick, R., and Malik, J. Analyzing the

performance of multilayer neural networks for object
recognition. In Computer Vision–ECCV 2014: 13th Eu-
ropean Conference, Zurich, Switzerland, September 6-12,
2014, Proceedings, Part VII 13, pp. 329–344. Springer,
2014.

Agrawal, P., Carreira, J., and Malik, J. Learning to see
by moving. In Proceedings of the IEEE international
conference on computer vision, pp. 37–45, 2015.

Alami, R., Abubaker, A., Achab, M., Seddik, M. E. A.,
and Lahlou, S. Investigating regularization of self-play
language models, 2024. URL https://arxiv.org/
abs/2404.04291.

Aleš, J. Neural turing machines: Convergence of copy tasks.
arXiv preprint arXiv:1612.02336, 2016.

Aryabumi, V., Su, Y., Ma, R., Morisot, A., Zhang, I., Lo-
catelli, A., Fadaee, M., Üstün, A., and Hooker, S. To code,
or not to code? exploring impact of code in pre-training.
arXiv preprint arXiv:2408.10914, 2024.

Baradad, M., Wulff, J., Wang, T., Isola, P., and Torralba,
A. Learning to see by looking at noise, 2022. URL
https://arxiv.org/abs/2106.05963.

Baradad, M., Chen, C.-F., Wulff, J., Wang, T., Feris, R.,
Torralba, A., and Isola, P. Procedural image programs for
representation learning, 2023. URL https://arxiv.
org/abs/2211.16412.

Berges, V.-P., Oğuz, B., Haziza, D., Yih, W.-t., Zettlemoyer,
L., and Gosh, G. Memory layers at scale. arXiv preprint
arXiv:2412.09764, 2024.

Brouwer, A. E. Go game records at cwi, 2024.
https://homepages.cwi.nl/˜aeb/go/
games/index.html.

Carreira, J., Agrawal, P., Fragkiadaki, K., and Malik, J.
Human pose estimation with iterative error feedback. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 4733–4742, 2016.

Cat’s Eye Technologies. Languages: Befunge-93,
1993. URL https://catseye.tc/article/
Languages.md#befunge-93. Accessed: 2025-01-
28.

Chan, B., Chen, X., György, A., and Schuurmans, D. To-
ward understanding in-context vs. in-weight learning.
arXiv preprint arXiv:2410.23042, 2024.

10

https://arxiv.org/abs/2404.04291
https://arxiv.org/abs/2404.04291
https://arxiv.org/abs/2106.05963
https://arxiv.org/abs/2211.16412
https://arxiv.org/abs/2211.16412
https://homepages.cwi.nl/~aeb/go/games/index.html
https://homepages.cwi.nl/~aeb/go/games/index.html
https://catseye.tc/article/Languages.md#befunge-93
https://catseye.tc/article/Languages.md#befunge-93

General Intelligence Requires Reward-based Pretraining

Chan, S., Santoro, A., Lampinen, A., Wang, J., Singh, A.,
Richemond, P., McClelland, J., and Hill, F. Data distri-
butional properties drive emergent in-context learning in
transformers. Advances in Neural Information Processing
Systems, 35:18878–18891, 2022.

Chen, H., Waheed, A., Li, X., Wang, Y., Wang, J., Raj, B.,
and Abdin, M. I. On the diversity of synthetic data and
its impact on training large language models, 2024. URL
https://arxiv.org/abs/2410.15226.

Chu, T., Zhai, Y., Yang, J., Tong, S., Xie, S., Schuur-
mans, D., Le, Q. V., Levine, S., and Ma, Y. Sft mem-
orizes, rl generalizes: A comparative study of founda-
tion model post-training, 2025. URL https://arxiv.
org/abs/2501.17161.

Cowan, N. The magical number 4 in short-term memory: a
reconsideration of mental storage capacity. Behavioral
and Brain Sciences, 24(1):87–114; discussion 114–185,
Feb 2001. doi: 10.1017/s0140525x01003922.

DeepMind. Mcts python library, 2024. https://
github.com/google-deepmind/mctx.

DeepSeek-AI. Deepseek-v3 technical report, 2024. URL
https://arxiv.org/abs/2412.19437.

DeepSeek-AI. Deepseek-r1: Incentivizing reasoning ca-
pability in llms via reinforcement learning, 2025. URL
https://arxiv.org/abs/2501.12948.

Doersch, C., Gupta, A., and Efros, A. A. Unsupervised
visual representation learning by context prediction. In
Proceedings of the IEEE international conference on com-
puter vision, pp. 1422–1430, 2015.

Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N.,
Tzeng, E., and Darrell, T. Decaf: A deep convolutional ac-
tivation feature for generic visual recognition. corr. arXiv
preprint arXiv:1310.1531, 2013.

Dong, Q., Li, L., Dai, D., Zheng, C., Ma, J., Li, R., Xia,
H., Xu, J., Wu, Z., Liu, T., et al. A survey on in-context
learning. arXiv preprint arXiv:2301.00234, 2022.

Elman, J. L. Learning and development in neural networks:
The importance of starting small. Cognition, 48(1):71–99,
1993.

Gao, L., Schulman, J., and Hilton, J. Scaling laws for reward
model overoptimization. In Krause, A., Brunskill, E.,
Cho, K., Engelhardt, B., Sabato, S., and Scarlett, J. (eds.),
Proceedings of the 40th International Conference on Ma-
chine Learning, volume 202 of Proceedings of Machine
Learning Research, pp. 10835–10866. PMLR, 23–29 Jul
2023. URL https://proceedings.mlr.press/
v202/gao23h.html.

GoQuest. Goquest game archive, 2024. https://
senseis.xmp.net/?GoQuest.

Graves, A. Neural turing machines. arXiv preprint
arXiv:1410.5401, 2014.

Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka,
I., Grabska-Barwińska, A., Colmenarejo, S. G., Grefen-
stette, E., Ramalho, T., Agapiou, J., Badia, A. P., Her-
mann, K. M., Zwols, Y., Ostrovski, G., Cain, A., King, H.,
Summerfield, C., Blunsom, P., Kavukcuoglu, K., and Has-
sabis, D. Hybrid computing using a neural network with
dynamic external memory. Nature, 538(7626):471–476,
2016. ISSN 0028-0836. doi: 10.1038/nature20101.

Gui, J., Chen, T., Zhang, J., Cao, Q., Sun, Z., Luo, H., and
Tao, D. A survey on self-supervised learning: Algorithms,
applications, and future trends. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 46(12):9052–
9071, 2024. doi: 10.1109/TPAMI.2024.3415112.

Guu, K., Lee, K., Tung, Z., Pasupat, P., and Chang, M.
Retrieval augmented language model pre-training. In
International conference on machine learning, pp. 3929–
3938. PMLR, 2020.

Han, S., Shenfeld, I., Srivastava, A., Kim, Y., and Agrawal, P.
Value augmented sampling for language model alignment
and personalization, 2024. URL https://arxiv.
org/abs/2405.06639.

Ho, N., Schmid, L., and Yun, S.-Y. Large language models
are reasoning teachers. arXiv preprint arXiv:2212.10071,
2022.

Hosseini, A., Yuan, X., Malkin, N., Courville, A., Sordoni,
A., and Agarwal, R. V-star: Training verifiers for self-
taught reasoners, 2024. URL https://arxiv.org/
abs/2402.06457.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. Lora: Low-rank adaptation of
large language models, 2021. URL https://arxiv.
org/abs/2106.09685.

HuggingFace. Cosmopedia: A guide to large lan-
guage models. https://huggingface.co/
blog/cosmopedia, 2024. Accessed: 2025-01-24.

Jaech, A., Kalai, A., Lerer, A., Richardson, A., El-Kishky,
A., Low, A., Helyar, A., Madry, A., Beutel, A., Car-
ney, A., et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

Jayaraman, D. and Grauman, K. Learning image rep-
resentations tied to ego-motion, 2016. URL https:
//arxiv.org/abs/1505.02206.

11

https://arxiv.org/abs/2410.15226
https://arxiv.org/abs/2501.17161
https://arxiv.org/abs/2501.17161
https://github.com/google-deepmind/mctx
https://github.com/google-deepmind/mctx
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2501.12948
https://proceedings.mlr.press/v202/gao23h.html
https://proceedings.mlr.press/v202/gao23h.html
https://senseis.xmp.net/?GoQuest
https://senseis.xmp.net/?GoQuest
https://arxiv.org/abs/2405.06639
https://arxiv.org/abs/2405.06639
https://arxiv.org/abs/2402.06457
https://arxiv.org/abs/2402.06457
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://huggingface.co/blog/cosmopedia
https://huggingface.co/blog/cosmopedia
https://arxiv.org/abs/1505.02206
https://arxiv.org/abs/1505.02206

General Intelligence Requires Reward-based Pretraining

Jin, M., Luo, W., Cheng, S., Wang, X., Hua, W., Tang, R.,
Wang, W. Y., and Zhang, Y. Disentangling memory and
reasoning ability in large language models. arXiv preprint
arXiv:2411.13504, 2024.

Kim, N., Schuster, S., and Toshniwal, S. Code pretraining
improves entity tracking abilities of language models.
arXiv preprint arXiv:2405.21068, 2024.

Kool, W., van Hoof, H., and Welling, M. Buy 4 reinforce
samples, get a baseline for free! 2019.

Krishna, K., Bigham, J., and Lipton, Z. C. Does pretraining
for summarization require knowledge transfer?, 2021.
URL https://arxiv.org/abs/2109.04953.

Kullback, S. and Leibler, R. A. On Information and Suffi-
ciency. The Annals of Mathematical Statistics, 22(1):79 –
86, 1951. doi: 10.1214/aoms/1177729694. URL https:
//doi.org/10.1214/aoms/1177729694.

Lampinen, A. K., Dasgupta, I., Chan, S. C., Matthewson,
K., Tessler, M. H., Creswell, A., McClelland, J. L., Wang,
J. X., and Hill, F. Can language models learn from ex-
planations in context? arXiv preprint arXiv:2204.02329,
2022.

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin,
V., Goyal, N., Küttler, H., Lewis, M., tau Yih, W.,
Rocktäschel, T., Riedel, S., and Kiela, D. Retrieval-
augmented generation for knowledge-intensive nlp tasks,
2021. URL https://arxiv.org/abs/2005.
11401.

Lightman, H., Kosaraju, V., Burda, Y., Edwards, H., Baker,
B., Lee, T., Leike, J., Schulman, J., Sutskever, I., and
Cobbe, K. Let’s verify step by step, 2023. URL https:
//arxiv.org/abs/2305.20050.

Liu, N. F., Lin, K., Hewitt, J., Paranjape, A., Bevilacqua,
M., Petroni, F., and Liang, P. Lost in the middle: How
language models use long contexts. Transactions of the
Association for Computational Linguistics, 12:157–173,
2024.

Lu, K., Grover, A., Abbeel, P., and Mordatch, I. Pretrained
transformers as universal computation engines, 2021.
URL https://arxiv.org/abs/2103.05247.

Luong, T. Q., Zhang, X., Jie, Z., Sun, P., Jin, X., and Li,
H. Reft: Reasoning with reinforced fine-tuning. arXiv
preprint arXiv:2401.08967, 2024.

Meta. The llama 3 herd of models, 2024. URL https:
//arxiv.org/abs/2407.21783.

Microsoft. Phi-4 technical report, 2024. URL https:
//arxiv.org/abs/2412.08905.

Miller, G. A. The magical number seven, plus or minus two:
Some limits on our capacity for processing information.
Psychological Review, 63(2):81–97, Mar 1956. doi: 10.
1037/h0043158.

Mirzadeh, I., Alizadeh, K., Shahrokhi, H., Tuzel, O., Ben-
gio, S., and Farajtabar, M. Gsm-symbolic: Understand-
ing the limitations of mathematical reasoning in large
language models, 2024. URL https://arxiv.org/
abs/2410.05229.

Montuori, C., Gambarota, F., Altoé, G., and Arfé, B.
The cognitive effects of computational thinking: A
systematic review and meta-analytic study. Computers
& Education, 210:104961, 2024. ISSN 0360-1315.
doi: https://doi.org/10.1016/j.compedu.2023.104961.
URL https://www.sciencedirect.com/
science/article/pii/S0360131523002385.

Müller, M. Go game archives - university of al-
berta, 2024. https://webdocs.cs.ualberta.
ca/˜mmueller/go/games.html.

Newport, E. L. Constraints on learning and their role in
language acquisition: Studies of the acquisition of Amer-
ican Sign Language. Language Sciences, 10(1):147–172,
1988.

OpenAI. Gpt-4 technical report, 2024. URL https://
arxiv.org/abs/2303.08774.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright,
C. L., Mishkin, P., Zhang, C., Agarwal, S., Slama, K.,
Ray, A., Schulman, J., Hilton, J., Kelton, F., Miller, L.,
Simens, M., Askell, A., Welinder, P., Christiano, P., Leike,
J., and Lowe, R. Training language models to follow
instructions with human feedback, 2022. URL https:
//arxiv.org/abs/2203.02155.

Paaßen, B. and Schulz, A. Reservoir memory machines.
arXiv preprint arXiv:2003.04793, 2020.

Paulus, R. A deep reinforced model for abstractive summa-
rization. arXiv preprint arXiv:1705.04304, 2017.

Petty, J., van Steenkiste, S., and Linzen, T. How does
code pretraining affect language model task performance?
arXiv preprint arXiv:2409.04556, 2024.

Scherer, R., Siddiq, F., and Sánchez Viveros, B. The
cognitive benefits of learning computer programming:
A meta-analysis of transfer effects. Journal of Educa-
tional Psychology, 111(5):764–792, 2019. doi: 10.1037/
edu0000314.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., et al. Mastering the

12

https://arxiv.org/abs/2109.04953
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2305.20050
https://arxiv.org/abs/2305.20050
https://arxiv.org/abs/2103.05247
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2412.08905
https://arxiv.org/abs/2412.08905
https://arxiv.org/abs/2410.05229
https://arxiv.org/abs/2410.05229
https://www.sciencedirect.com/science/article/pii/S0360131523002385
https://www.sciencedirect.com/science/article/pii/S0360131523002385
https://webdocs.cs.ualberta.ca/~mmueller/go/games.html
https://webdocs.cs.ualberta.ca/~mmueller/go/games.html
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155

General Intelligence Requires Reward-based Pretraining

game of go with deep neural networks and tree search.
Nature, 529(7587):484–489, 2016.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I.,
Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran,
D., Graepel, T., Lillicrap, T., Simonyan, K., and Has-
sabis, D. Mastering chess and shogi by self-play with
a general reinforcement learning algorithm, 2017. URL
https://arxiv.org/abs/1712.01815.

Singh, A., Co-Reyes, J. D., Agarwal, R., Anand, A., Patil,
P., Garcia, X., Liu, P. J., Harrison, J., Lee, J., Xu, K.,
Parisi, A., Kumar, A., Alemi, A., Rizkowsky, A., Nova,
A., Adlam, B., Bohnet, B., Elsayed, G., Sedghi, H.,
Mordatch, I., Simpson, I., Gur, I., Snoek, J., Penning-
ton, J., Hron, J., Kenealy, K., Swersky, K., Mahajan,
K., Culp, L., Xiao, L., Bileschi, M. L., Constant, N.,
Novak, R., Liu, R., Warkentin, T., Qian, Y., Bansal,
Y., Dyer, E., Neyshabur, B., Sohl-Dickstein, J., and
Fiedel, N. Beyond human data: Scaling self-training
for problem-solving with language models, 2024. URL
https://arxiv.org/abs/2312.06585.

Skalse, J., Howe, N., Krasheninnikov, D., and Krueger, D.
Defining and characterizing reward gaming. Advances in
Neural Information Processing Systems, 35:9460–9471,
2022.

Thalmann, M., Souza, A. S., and Oberauer, K. How does
chunking help working memory? Journal of Experimen-
tal Psychology: Learning, Memory, and Cognition, 45(1):
37–55, January 2019. doi: 10.1037/xlm0000578.

Uesato, J., Kushman, N., Kumar, R., Song, F., Siegel, N.,
Wang, L., Creswell, A., Irving, G., and Higgins, I. Solv-
ing math word problems with process- and outcome-
based feedback, 2022. URL https://arxiv.org/
abs/2211.14275.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
is all you need, 2023. URL https://arxiv.org/
abs/1706.03762.

Walker, J., Gupta, A., and Hebert, M. Dense optical flow
prediction from a static image, 2015. URL https://
arxiv.org/abs/1505.00295.

Wang, P., Li, L., Shao, Z., Xu, R. X., Dai, D., Li, Y.,
Chen, D., Wu, Y., and Sui, Z. Math-shepherd: Ver-
ify and reinforce llms step-by-step without human an-
notations, 2024a. URL https://arxiv.org/abs/
2312.08935.

Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang,
S., Chowdhery, A., and Zhou, D. Self-consistency im-
proves chain of thought reasoning in language mod-

els, 2023a. URL https://arxiv.org/abs/2203.
11171.

Wang, Y., Ko, C.-Y., and Agrawal, P. Visual pre-training for
navigation: What can we learn from noise?, 2023b. URL
https://arxiv.org/abs/2207.00052.

Wang, Z., Wang, C., Dong, Z., and Ross, K. Pre-
training with synthetic data helps offline reinforcement
learning, 2024b. URL https://arxiv.org/abs/
2310.00771.

Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B.,
Borgeaud, S., Yogatama, D., Bosma, M., Zhou, D., Met-
zler, D., et al. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682, 2022.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter,
B., Xia, F., Chi, E., Le, Q., and Zhou, D. Chain-of-
thought prompting elicits reasoning in large language
models, 2023. URL https://arxiv.org/abs/
2201.11903.

Wikipedia. Brainfuck. https://en.wikipedia.
org/wiki/Talk:Brainfuck, 2025. Accessed:
2025-01-28.

Wu, Y., Rabe, M. N., Li, W., Ba, J., Grosse, R. B., and
Szegedy, C. Lime: Learning inductive bias for primitives
of mathematical reasoning. In International Conference
on Machine Learning, pp. 11251–11262. PMLR, 2021.

Wu, Y., Li, F., and Liang, P. S. Insights into pre-training via
simpler synthetic tasks. Advances in Neural Information
Processing Systems, 35:21844–21857, 2022.

Wu, Z., Qiu, L., Ross, A., Akyürek, E., Chen, B., Wang, B.,
Kim, N., Andreas, J., and Kim, Y. Reasoning or reciting?
exploring the capabilities and limitations of language
models through counterfactual tasks, 2024. URL https:
//arxiv.org/abs/2307.02477.

Xie, C., Huang, Y., Zhang, C., Yu, D., Chen, X., Lin, B. Y.,
Li, B., Ghazi, B., and Kumar, R. On memorization
of large language models in logical reasoning. arXiv
preprint arXiv:2410.23123, 2024.

Yang, A., Yang, B., Hui, B., Zheng, B., Yu, B., Zhou, C.,
Li, C., Li, C., Liu, D., Huang, F., Dong, G., Wei, H.,
Lin, H., Tang, J., Wang, J., Yang, J., Tu, J., Zhang, J.,
Ma, J., Yang, J., Xu, J., Zhou, J., Bai, J., He, J., Lin,
J., Dang, K., Lu, K., Chen, K., Yang, K., Li, M., Xue,
M., Ni, N., Zhang, P., Wang, P., Peng, R., Men, R., Gao,
R., Lin, R., Wang, S., Bai, S., Tan, S., Zhu, T., Li, T.,
Liu, T., Ge, W., Deng, X., Zhou, X., Ren, X., Zhang,
X., Wei, X., Ren, X., Liu, X., Fan, Y., Yao, Y., Zhang,
Y., Wan, Y., Chu, Y., Liu, Y., Cui, Z., Zhang, Z., Guo,
Z., and Fan, Z. Qwen2 technical report, 2024. URL
https://arxiv.org/abs/2407.10671.

13

https://arxiv.org/abs/1712.01815
https://arxiv.org/abs/2312.06585
https://arxiv.org/abs/2211.14275
https://arxiv.org/abs/2211.14275
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1505.00295
https://arxiv.org/abs/1505.00295
https://arxiv.org/abs/2312.08935
https://arxiv.org/abs/2312.08935
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2207.00052
https://arxiv.org/abs/2310.00771
https://arxiv.org/abs/2310.00771
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://en.wikipedia.org/wiki/Talk:Brainfuck
https://en.wikipedia.org/wiki/Talk:Brainfuck
https://arxiv.org/abs/2307.02477
https://arxiv.org/abs/2307.02477
https://arxiv.org/abs/2407.10671

General Intelligence Requires Reward-based Pretraining

Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T., Cao, Y.,
and Narasimhan, K. Tree of thoughts: Deliberate problem
solving with large language models. Advances in Neural
Information Processing Systems, 36, 2024.

Zelikman, E., Wu, Y., Mu, J., and Goodman, N. D. Star:
Bootstrapping reasoning with reasoning, 2022. URL
https://arxiv.org/abs/2203.14465.

Zelikman, E., Harik, G., Shao, Y., Jayasiri, V., Haber, N.,
and Goodman, N. D. Quiet-star: Language models can
teach themselves to think before speaking, 2024. URL
https://arxiv.org/abs/2403.09629.

Zhang, T., Patil, S. G., Jain, N., Shen, S., Zaharia, M., Stoica,
I., and Gonzalez, J. E. Raft: Adapting language model
to domain specific rag, 2024. URL https://arxiv.
org/abs/2403.10131.

Zhong, Z. and Andreas, J. Algorithmic capabilities of
random transformers. arXiv preprint arXiv:2410.04368,
2024.

Ziegler, D. M., Stiennon, N., Wu, J., Brown, T. B., Radford,
A., Amodei, D., Christiano, P., and Irving, G. Fine-tuning
language models from human preferences. arXiv preprint
arXiv:1909.08593, 2019.

14

https://arxiv.org/abs/2203.14465
https://arxiv.org/abs/2403.09629
https://arxiv.org/abs/2403.10131
https://arxiv.org/abs/2403.10131

General Intelligence Requires Reward-based Pretraining

A. Brainf**k and Befunge Experimental Details
A.1. Example of Brainf**k Program

+++++++[>++++++++++<-]>+++++.

Listing 3. Brainf**k program to print the character ’K.’

A.2. Example of Befunge Program

% &>:1-:v v *_$.@
% ˆ _$>\:ˆ
%

Listing 4. Befunge program to calculate the factorial.

A.3. Details on Experimental Protocol
The number of examples used for each language-task evaluation are as follows:

• Brainf**k Copy: 100

• Brainf**k Print: 676

• Brainf**k Sort: 100

• Befunge Print: 100

• Befunge Fibonacci: 1

• Befunge Factorial: 15

A.4. Brainf**k Prompt

You are a helpful coding assistant.

Brainfuck is an esoteric programming language with a minimalist set of commands. It
operates on an array of memory cells (initially all set to zero) and a data pointer
that starts at the beginning of this array. The commands are as follows:

> - Move the data pointer to the right (increment the pointer to point to the next memory
cell).

< - Move the data pointer to the left (decrement the pointer to point to the previous
memory cell).

+ - Increment the byte at the data pointer (increase the value in the current memory cell
by 1).

- - Decrement the byte at the data pointer (decrease the value in the current memory cell
by 1).

. - Output the byte at the data pointer as an ASCII character (e.g., if the value is 65,
it outputs ’A’).

, - Read one byte of input and store its ASCII value in the byte at the data pointer.

Looping:
[- If the byte at the data pointer is zero, jump forward to the command after the

corresponding ’]’.
] - If the byte at the data pointer is non-zero, jump back to the command after the

corresponding ’[’.

Loops are used to iterate over a section of code until the byte at the data pointer
becomes zero. They can be nested, but you must ensure each ’[’ has a matching ’]’.

Memory and Data Pointer:
- Brainfuck operates on an array of memory cells (commonly 30,000 cells).

15

General Intelligence Requires Reward-based Pretraining

- All cells are initially set to zero.
- The data pointer can be moved left and right to access different cells.
- The ’+’ and ’-’ commands modify the value of the cell at the data pointer.
- You must manage memory manually, ensuring that the pointer does not move outside the

bounds of the array.

ASCII Character Values:
- Lowercase letters have the following ASCII values:
- ’a’ = 97
- ’b’ = 98
- ’c’ = 99
- ’d’ = 100
- ’e’ = 101
- ’f’ = 102
- ’g’ = 103
- ’h’ = 104
- ’i’ = 105
- ’j’ = 106
- ’k’ = 107
- ’l’ = 108
- ’m’ = 109
- ’n’ = 110
- ’o’ = 111
- ’p’ = 112
- ’q’ = 113
- ’r’ = 114
- ’s’ = 115
- ’t’ = 116
- ’u’ = 117
- ’v’ = 118
- ’w’ = 119
- ’x’ = 120
- ’y’ = 121
- ’z’ = 122

Instruction: Generate a Brainfuck program to print ’ey’

Program: ++++++++++[>++++++++++<-]>+.<++++[>++++<-]>++++.

Instruction: Generate a Brainfuck program to print ’ez’

Program: ++++++++++[>++++++++++<-]>+.<++++[>++++<-]>+++++.

Instruction: Generate a Brainfuck program to print ’hi’

Listing 5. Prompt for Brainf**k evaluation. This example is for the task of printing and the number of example instruction and programs
pairs varies with the number of in-context example specified for evaluation. Only the instruction and program parts change for the
other tasks of sorting and copying.

A.5. Befunge Prompt

You are a helpful coding assistant.

Befunge is a two-dimensional, stack-based esoteric programming language where the
instruction pointer (IP) moves across a grid in multiple directions. The commands
control movement, stack manipulation, and program output. Here’s a guide on how to use
Befunge with examples:

1. **Grid and Execution Flow**:
Befunge code is written on a 2D grid. The IP starts at the top left and moves according to

directional commands like ‘>‘ (right), ‘<‘ (left), ‘ˆ‘ (up), and ‘v‘ (down).

2. **Basic Commands**:
- **‘+ - * /‘**: Perform arithmetic with the top two stack values.

16

General Intelligence Requires Reward-based Pretraining

- **‘>‘ ‘<‘ ‘ˆ‘ ‘v‘**: Control the direction of the IP.
- **‘_‘ ‘|‘**: Conditional directions; ‘_‘ moves IP right if 0, left if non-zero; ‘|‘

moves IP down if 0, up if non-zero.
- **‘@‘**: Ends the program.
- **‘"‘**: Toggle string mode, pushing ASCII values of characters onto the stack.
- **‘0-9‘**: Push numbers onto the stack.
- **‘.‘ ‘,‘**: Output values; ‘.‘ outputs a number, ‘,‘ outputs a character.
- **‘#‘**: Trampoline, which skips the next cell in the current direction.

3. **Stack Operations**:
- **‘:‘** duplicates the top stack value, **‘$‘** removes the top stack value, and **‘\‘**

swaps the top two values.

4. **Self-Modifying Code**:
Befunge allows the code to modify itself at runtime using the **‘p‘** (put) and **‘g‘** (

get) commands, where ‘p‘ writes to a grid position and ‘g‘ reads from a position.

5. **Examples**:

- **Hello, World!**:
‘‘‘
> v
v",olleH">:#,_@
>"dlroW", ˆ
‘‘‘

Explanation: This program uses ‘"‘, ‘,‘, and ‘_‘ to output "Hello, World!" as it moves
around the grid.

- **Addition of Two Numbers** (e.g., ‘3 + 5‘):
‘‘‘
>3 5+ .@
‘‘‘

Explanation: ‘3‘ and ‘5‘ are pushed to the stack, ‘+‘ adds them, ‘.‘ outputs the
result, and ‘@‘ ends the program.

- **Countdown from 9 to 0**:
‘‘‘
>9876543210v
v:,_@ <
‘‘‘

Explanation: Numbers 9 to 0 are pushed to the stack in reverse order. ’:’ duplicates the
top value, ’,’ outputs it as a character, ’_’ checks if it’s zero to change direction,
and ’@’ terminates.

6. **Program Termination**:
Always use the ‘@‘ command to end execution.

Instruction: Generate a Brainfuck program to print ’ey’

Program: ++++++++++[>++++++++++<-]>+.<++++[>++++<-]>++++.

Instruction: Generate a Brainfuck program to print ’ez’

Program: ++++++++++[>++++++++++<-]>+.<++++[>++++<-]>+++++.

Instruction: Generate a Brainfuck program to print ’hi’

Listing 6. Prompt for Brainf**k evaluation. This example is for the task of printing and the number of example instruction and programs
pairs varies with the number of in-context example specified for evaluation. Only the instruction and program parts change for the
other tasks of sorting and copying.

17

General Intelligence Requires Reward-based Pretraining

A.6. Synthetic Task Details
We designed a synthetic math task to ensure that the base model, Qwen/Qwen2.5-1.5B-Instruct, could occasionally generate
accurate reasoning traces while still producing incorrect ones. This was important for our RL training, as it ensured that the
base model could explore correct reasoning traces with a non-trivial probability, making RL training significantly more
efficient.
We created 100 training examples and 100 test examples. To evaluate the model’s outputs, we developed custom verification
code that processes the model’s responses to determine whether they correctly answer the given question. Our verification
system accepts multiple valid answer formats, ensuring flexibility in evaluation. Additionally, we manually post-filtered the
evaluation outputs to correct cases where the verification process incorrectly classified a response.
We finetuned the Qwen/Qwen2.5-1.5B-Instruct model on 100 synthetic examples for 100 epochs using Low-Rank Adaptation
(LoRA) (Hu et al., 2021) with rank=256, alpha=32, and a dropout rate of 0.05 applied to the query, key, and value matrices
(Q, K, V). The training employed a cosine learning rate schedule with an initial learning rate of 5e-4, a batch size of 64, and
10 warmup steps. We used LoRA with these parameters for efficient training given our compute constraints. We recognize
our SFT epochs are high for an LLM; however, we found that higher epochs were needed to reach decent test CoT accuracy.
For model training, we used LoRA with the following configuration:

Listing 7. LoRA Configuration for Qwen2-1.5B
lora_config = LoraConfig(

r=256,
lora_alpha=32,
target_modules=["q_proj", "k_proj", "v_proj"],
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM"

)

The SFT training results are shown in Table 4:

Train Acc CoT Test Acc
SFT Epoch 100 100.0 82.0
SFT Epoch 50 100.0 83.0
SFT Epoch 20 74.0 62.0

Table 4. SFT Training Results

Subsequently, both the SFT and the base models underwent 31 steps of RL training using the RLOO algorithm (Kool et al.,
2019). The RL hyperparameters included a batch size of 36, a single PPO epoch per iteration, and a KL coefficient of 0.5.

A.7. Prompt Format and Sample Responses

Listing 8. Prompt and CoT sample response
[SYSTEM]
You are a helpful assistant. Think step by step concisely and answer the question in the

following format: Solution: (...)
[USER]
Which of the vectors are orthogonal to [1, -1, -1]? (a) [3, 5, 0] (b) [-5, 2, 2] (c) [-1,

-2, 4] (d) [1, 2, -1], output the answer as solution:
[ASSISTANT]
To determine which vectors are orthogonal to the vector \([1, -1, -1]\), we need to check

if the dot product of each vector with \([1, -1, -1]\) is zero. Let’s calculate the
dot product for each vector:

1. For vector \([3, 5, 0]\):
\[
[1, -1, -1] \cdot [3, 5, 0] = 1 \cdot 3 + (-1) \cdot 5 + (-1) \cdot 0 = 3 - 5 + 0 = -2

\neq 0
\]
So, \([3, 5, 0]\) is not orthogonal.

18

General Intelligence Requires Reward-based Pretraining

2. For vector \([-5, 2, 2]\):
\[
[1, -1, -1] \cdot [-5, 2, 2] = 1 \cdot (-5) + (-1) \cdot 2 + (-1) \cdot 2 = -5 - 2 - 2

= -9 \neq 0
\]
So, \([-5, 2, 2]\) is not orthogonal.

3. For vector \([-1, -2, 4]\):
\[
[1, -1, -1] \cdot [-1, -2, 4] = 1 \cdot (-1) + (-1) \cdot (-2) + (-1) \cdot 4 = -1 + 2

- 4 = -3 \neq 0
\]
So, \([-1, -2, 4]\) is not orthogonal.

4. For vector \([1, 2, -1]\):
\[
[1, -1, -1] \cdot [1, 2, -1] = 1 \cdot 1 + (-1) \cdot 2 + (-1) \cdot (-1) = 1 - 2 + 1 =

0
\]
So, \([1, 2, -1]\) is orthogonal.

Therefore, the only vector that is orthogonal to \([1, -1, -1]\) is \([1, 2, -1]\).

Solution: d) [1, 2, -1]

Listing 9. Prompt and sample response from SFT model
[SYSTEM]
You are a helpful assistant. Think step by step concisely and answer the question in the

following format: Solution: (...)
[USER]
Which of the vectors are orthogonal to [1, -1, -1]? (a) [3, 5, 0] (b) [-5, 2, 2] (c) [-1,

-2, 4] (d) [1, 2, -1], output the answer as solution:
[ASSISTANT]
solution: (d)

B. Pseudocode for Architecturally Decoupling Knowledge and Reasoning

B.1. PT + RL Model Training Details
We train the PT + RL model in two stages.
Stage 1: Supervised Pretraining (PT). We collect 80,824 professional 9×9 Go game trajectories from online sources
such as GoQuest (GoQuest, 2024) and other research archives (Müller, 2024; Brouwer, 2024) (averaging 47.6 moves each,
including both players), giving roughly ∼1M training examples for next-move prediction. We train the network for 10
epochs with a batch size of 1024, a learning rate of 10−3, and weight decay of 10−4.
Stage 2: Reinforcement Learning (RL). We run self-play training à la AlphaZero. Each iteration generates 102,400
self-play games; for every move, we perform 32 MCTS simulations using Google DeepMind’s mctx library (DeepMind,
2024). We use a batch size of 1024, a starting learning rate of 10−2 (with cosine decay over 200 total iterations), and weight
decay of 10−4. This training procedure takes approximately 14 days on 4 × A100 GPUs.

19

General Intelligence Requires Reward-based Pretraining

Algorithm 1 Curriculum-Guided Reasoning with External Memory
1: Initialize ReasoningModel(), Memory(), Curriculum← [Easy, Med, Hard]
2: mem←Memory.reset() {external memory module}
3: for stage in Curriculum do
4: for task in sample tasks(stage) do
5: ctx← [] {context for ReasoningModel}
6: for t = 1 to max steps do
7: obs← task at step t {get current observation}
8: append obs to ctx {add current observation to context}
9: act← ReasoningModel.query action(ctx) {read, write, reason}

10: if act.type = ”READ” then
11: append mem.read(act.key) to ctx {read from memory}
12: else
13: if act.type = ”WRITE” then
14: mem.write(act.key, act.value) {write to memory}
15: end if
16: end if
17: outputs← ReasoningModel.reason(ctx) {reason given current context}
18: reward← task.reward(outputs, mem.cost()) {compute reward}
19: if task.done() then
20: break
21: end if
22: end for
23: ReasoningModel.update(query, act, reward) {reward-based learning objective}
24: end for
25: end for

20

