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Abstract

Despite recent advances, language models still
struggle to capture temporal orders between
events. For example, it is not trivial to teach
the fine-grained difference between two ques-
tions “happened right before” or “happened of-
ten before”. Previous solutions have relied on
weak supervision, namely answer overlaps, as
a proxy label to contrast similar and dissimilar
pairs. In contrast, we claim that answer overlap
on the question pair is too weak a signal for
contrastive learning (also known as shortcut
problem). So we propose to leverage question
“bundles”, a related question subset we group
with respect to the events in the passage, as
a stronger supervision to approximate a time-
line of a passage. We introduce the Timeline
Deliberation Network (TDN), which reasons
over the timeline in a two-level process: The
drafting layer drafts answers based on semantic
and syntactic evidence. The refinement layer
aggregates over contrast question groups as a
set of inputs and collectively refines answers
to maintain temporal consistency. Results on
TORQUE and TB-dense datasets demonstrate
that TDN outperforms previous methods, by
effectively resolving the shortcut problem !.

1 Introduction

Temporal ordering is a challenging area in natural
language processing that involves understanding
and reasoning about temporal relations between
events (Ning et al., 2020; Zhou et al., 2019; Chen
et al., 2021). Conventional approaches to incor-
porate the knowledge of temporal orders into the
model only considered a limited number of coarse
relations however, such as before/after/simultane-
ous.

Meanwhile, our focus is temporal machine
reading comprehension (TMRC) task, such as
TORQUE (Ning et al., 2020) aims at fine-grained
understanding of temporal expressions that capture

!The code will be released after blind review.

real-world diversity of temporal relations. For ex-
ample, it requires the model to distinguish finer
granularity like “what event happen right before X”
and “what happen often before X"

Specifically, we study “weakly-supervised” con-
trastive learning method that leverages answer
overlaps between related questions (Shang et al.,
2021), which performs comparably or outperforms
baselines requiring stronger but expensive human-
annotated categorization (Han et al., 2020; Huang
et al., 2022), as we show in Section 4. For ex-
ample, in Figure 1, Q1 “what event started be-
Jore X and Q3 “what happened before X share
the overlapping answer “debate” and “protection”.
On the other hand, )1 does not have any com-
mon answer with Q5 “what happened when X was
made”. Contrastive objective trains to pull ()1 and
Q3 closer than Q1 and Q5.

The use of weak supervision in TMRC tasks,
however, poses a potential threat of “shortcuts” or
“spurious overlap”: To illustrate, question ()2 and
Q3, “What happened before X’ and “What hap-
pened after X”, in Figure 1 are temporally distinct,
but shares answers “protection” and “debate”. In
such scenarios, contrastive learning may overlook
the temporal meanings of “before” and “after” by
solely depending on answer overlap to determine
semantic relations between temporal expressions.

Our distinction is discerning meaningful over-
laps (Q1 and @3) from spurious overlaps ()2 and
(23), by adding another dimension of timeline. Fig-
ure 1-(b) shows a full-structured timeline, where
event and question are annotated as time spans (e.g.
start time and end time) 2. This additional informa-
tion can teach the model that )2 and ()3 spans are
disjoint and the overlap of “protection” and “debate”
is a coincidence. Despite its importance, previous
work does not consider a timeline, as supervision

Relations are simple for illustration purposes, but can
also represent events that might happen (uncertain), or, often
happen (repetitive) (Ning et al., 2020).



@ But the government [e1: decided] to [e2: suspend] the [e3: cull] in the face of strong public opposition. The public
[e4: debate] on the conflict between wildlife [e5: protection] and farmers' livelihoods is still [e6: going] on here.

Q1. What event started before the decision?
Q2. What happened after the decision?

Q3. What happened before the decision?
Q4. What happened during the decision?

A. debate, protection

A. suspend, debate, protection, going
A. protection, debate, going

A. cull, debate, protection, going

Q5. What happened when the decision was made? A. suspend
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Figure 1: (a) Example of passage and related question set in temporal machine reading comprehension. Events in
the passage are in bold. The passage’s timelines are shown in (b) a full-structured manner and (c) approximated
timeline using questions, i.e. temporal bundles. The timeline is centered around the event el.

to build one is lacking in most scenarios.

Our distinction is approximating the timeline,
without requiring supervision, by “bundling” ques-
tions that are related to each event. For example, in
Figure 1-(¢c), protection (e5) is related to Q1, Q2
and Q3. When aggregated into a set of questions,
this temporal bundle for 5 can be used to infer
a consistent timeline among these questions. We
illustrate the process using the example in Figure 1.
For instance, the starting and ending points of the
two events, debate (e4) and protection (e5) can be
inferred from the answers to questions Q1 (“What
event started before”) and Q2 (“What happened
after”), respectively. In this way, we know that
(2 and 3 are disjoint and answer overlaps for
these pairs are coincident, such that attention to the
spurious overlaps can be safely reduced.

We propose a novel approach for effective rea-
soning over approximated timelines, which views
temporal ordering as deliberation with constraints
inspired by the human cognitive process of iterative
refinement. Our Timeline Deliberation Network
(TDN) consists of two levels: a Drafting Layer
that generates semantic and syntactic evidence for
each temporal ordering question, and a Refinement
Layer that uses an attention mechanism to aggre-
gate temporal relationships from multiple question-
answer pairs. The resulting temporal information
acts as a constraint on the original question and
compels the model to refine the answer for consis-
tency with the given temporal context.

We evaluate TDN on TORQUE, a reading com-
prehension dataset for temporal ordering questions.

We achieve state-of-the-art performance on the pub-
lic leaderboard.> We quantitatively and qualita-
tively analyze TDN’s effectiveness in dealing with
shortcuts by the timeline understanding, especially
by a new “passage consistency” metric. Lastly, we
confirm its generalizability to related tasks through
the performance gain on TB-Dense.
Our main contributions are three-fold:

* We point out the shortcut issue in fine-grained
temporal understanding and propose a novel
approach to resolve it.

* We develop a framework for TMRC based on
the human cognitive process: draft and refine.

* TDN effectively captures fine-grained tempo-
ral orders and outperforms other approaches.

2 Related Work

Our work is related to the following areas of re-
search: temporal reading comprehension (TMRC),
deliberation networks, and graph networks.

Temporal ordering reasoning Conventional
temporal ordering tasks are temporal relation ex-
traction (TRE) (Cassidy et al., 2014; Ning et al.,
2018), whose goal is to categorize the temporal
order into pre-defined categories. MATRES (Ning
et al., 2018) groups the temporal relations into 4 cat-
egories: Before/After/Simultaneous/V ague.
TB-Dense (Cassidy et al., 2014) considers 2 more
*https://leaderboard.allenai.org/
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classes, Includes and IsIncluded. Our proposed
approach can also benefit these tasks as we discuss
in Section 5.

However, our main task is the TMRC task
TORQUE (Ning et al., 2020) requiring finer-
granular understanding of temporal ordering in
question form to reflect the real-world diversity
of temporal relations. Previous approaches to the
TMRC task include continuously pre-training a
PLM (Han et al., 2020) and question decomposition
methods (Huang et al., 2022; Shang et al., 2021).
ECONET (Han et al., 2020) continually pre-trains
the PLM to inject the knowledge of temporal or-
ders. Question decomposition approaches (Huang
et al., 2022; Shang et al., 2021) divide the question
into the event part and temporal relation expression
part to better capture the complex semantics. All
of the above use contrastive learning to understand
different temporal relations, either by contrasting
relations with human annotations (Han et al., 2020;
Huang et al., 2022) or annotated answers (Shang
et al., 2021). However, the former can be costly or
imprecise, while the latter may rely on shortcuts.
Our distinction is avoiding costly annotations but
reduce shortcuts using timeline structure.

Deliberation networks Deliberation networks
(Xia et al., 2017) incorporate the concept of hu-
man deliberation into the decision-making process.
The idea behind the network is to simulate the hu-
man decision-making process by having multiple
levels in the network, each representing a differ-
ent stage in the deliberation process. The lower
levels use local cues to identify relevant options,
while the higher levels aggregate global informa-
tion and make the final decision. However, they
have been only applied to a sequence-to-sequence
model (Xiong et al., 2018; Hu et al., 2021), to
deal with its limited left-to-right attention. We are
the first to apply them in temporal ordering using
encoder-only models (Devlin et al., 2018; Liu et al.,
2019), where the local information corresponds
to each question and the global information is the
timeline representing relations between questions
and events.

Graph networks Graph Networks (Kipf and
Welling, 2016; Velickovic et al., 2017) learn fea-
tures through message passing on graph structures.
These networks have demonstrated their effective-
ness in tasks requiring complex reasoning skills,
such as numerical reasoning (Ran et al., 2019; Chen

et al., 2020) and logical reasoning (Huang et al.,
2021). Graph networks also have been applied
to TRE (Mathur et al., 2021; Zhang et al., 2022),
though their effectiveness in TMRC has not been
investigated.

3 Proposed Method

As overviewed in Figure 2, our approach is com-
posed of two steps: Drafting (subsection 3.1) and
Refinement (subsection 3.2). For example, in Fig-
ure 1, the first step in answering ()1 is to generate
“local” drafts considering only Q1. The second
step, then follows to collect answers from multiple
questions, and checks if there are temporal inconsis-
tency (by building semi-structured timeline). These
global constraints help that semantics of temporal
relations such as “started before” and “happened
after” are not misinterpreted.

3.1 Drafting Layer

We formulate local drafting for query () as a binary
classification for every token in the given passage
P, determining whether it is an answer to (). For
this goal, first, PLM encodes the question-passage
pairs to get the contextual representation for each
token. It takes the concatenated sequence of pair
as input [Q, P] and outputs the representation [,
]5], where each token is ¢ and p.

After that, we build a syntax-aware graph that
captures word-to-word dependency, following the
convention of (Cheng and Miyao, 2017; Mathur
et al., 2021; Zhang et al., 2022). However, unlike
prior work mainly focusing on temporal relations
on passage and not on question, comprehending
both is critical for TMRC. To consider both, we
build dependency trees for the question and pas-
sage then connect root nodes and co-mentioned
event words bidirectionally. Here event words re-
fer to nouns and verbs. Next, we followed graph
reasoning step in (Ran et al., 2019) for question-
passage interaction. The connections of nodes are
categorized into 4 types: (1) question-question (¢q)
(2) passage-passage (pp) (3) passage-question (pq)
(4) question-passage (gp). Each node in the graph
is the corresponding word in question and passage.

The full pipeline is as follows:
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Figure 2: Overview of TDN. Drafting layer extracts evidence from syntactic and semantic features. Deliberation
layer aggregates information from temporal bundles and answer the question. We only represent event tokens and

part of the dependency tree for simplicity.

v; = ReLU(W{ + v;) + b7 4)
The PLM’s hidden outputs pass the projection
layer WM € R"*" for node initialization (Equa-
tion 1). If a word is tokenized into multiple to-
kens, we use the first token embedding of the
word.* The weight for each node is computed
to find the relevant nodes for answering tempo-
ral ordering questions (Equation 2). In the mes-
sage propagation step, the adjacency matrix W7
guides the distinguished message passing for each
type rj; € {pp,pq, qp, qq} (Equation 3). The mes-
sage representation is added with the corresponding
nodes (Equation 4), where W9 is weight and b9 is
the bias term. We iterate the reasoning step (Equa-
tion 2, Equation 3, Equation 4) for 7" times. Finally,
each passage word representation is summed with
p; and normalized. The resulting passage represen-
tation is P?% and each word is p.

3.2 Refinement Layer

Our second and principal objective is to aggregate
local question-answer drafts to approximate an in-
ternally consistent timeline. We design a refine-
ment layer with a specialized attention structure to
allow optimizing its timeline, constrained by the
temporal bundle. The temporal bundle is defined
as a set of questions from the same contrast groups
in the dataset, or a set of questions asking about
the same event. This temporal bundle serves as an
approximated timeline for refining the draft. If a
temporal bundle with [ questions is given, we trans-
form the conventional equation in MRC to answer
the i-th question P(a|Q;, P) to the deliberation
form:

*Note that we also indicate the number of words in a pas-
sage as n, as long as there is no confusion between the two.

P(a;|Qi, P, P(a1|Q1, P), P(a2|Qs, P), ..., , P(a)|Q1, P))
)

Due to the unavailability of gold answers during
inference, we regard the predictions of the drafting
layer as answers for both training and inference.
A naive method is to concatenate all the related
question-answer pairs and expand them to the orig-
inal passage. However, since the predictions are
used directly as answer events without proper fil-
tering, they may lose the signal of the prediction’s
uncertainty or importance in answering questions.
Therefore, we gather the bundle on the embed-
ding space. The related questions [Q;, Pi]i_, is
sent to the drafting layer to produce [P{]._,, then
stacked with the original one [PZ]._,. Here, the
previous drafting layer encodes the question in-
formation into the passage, so passage tokens can
independently capture temporal relations related
to the question event, and create an approximated
timeline.

Then the refinement layer utilizes the timeline
structure that is weaved by the temporal bundle.
Our key component is the extended multi-head at-
tention mechanism “cross-bundle attention” that
attends to the information from the temporal bun-
dle, which is otherwise neglected in the origi-
nal transformer (Vaswani et al., 2017) and de-
liberation network (Xia et al., 2017). In detail,
each passage token pj attends to the same po-
sitioned token from other instances. The equa-
tion is as follows where multi-head attention is
(Attention(Q, K,V')) where i,j < I:

CrossBundleAttention = Attention(pii, Djk, Djk)
(6)
The refinement layer inserts the cross-bundle at-
tention following the self-attention module in the



Models Dev Test

F1 EM C F1 EM C
RoBERTa-large 7577 504 36 | 752 51.1 345
ECONET 769 522 377|763 52 37
UBA 775 522 375]76.1 51 381
OTR-QA 77.1 51.6 40.6 | 76.3 52.6 37.1
TDN (RoBERTa-large) | 77.6 53.6 40.3 | 769 52.8 38.1

Table 1: Comparison between TDN and baselines on
TORQUE dataset. All reported results are statistically
significant (p < .05). Underline denotes statistically
significant (p < .01) improvement over the ROBERTa-
large baseline, using a paired t-test. The best perfor-
mance is denoted in bold.

transformer encoder layer. Via the cross-bundle
attention, temporal bundles are successfully passed
to the original instance. Each event in the pas-
sage grabs the semantics of the temporal relations
and the timeline that are made by other questions.
This refinement step corrects the answer by revis-
iting the passage and leveraging the approximated
timelines, mitigating the shortcut problem we men-
tioned in section 1. We iterate the refinement 7’
times to enhance the process of deliberation.

3.3 Learning Objectives and Answer
Prediction

For each deliberation level, the last output is fed
to the F'F'N to get the probability of whether the
token is an answer to the question or not. During
the training stage, We adopt the loss minimization
approach by (Xiong et al., 2019; Li et al., 2019). At
each level, the last output is fed to the F'F'N and
the resulting loss for answer prediction is computed.
The final loss is the average value of the losses at
each level:

L= (Ldraft + Lrefine)/2 (7)

where Lg;.q 14 is the answer prediction loss from the
draft layer’s output, and L, f;p. is the loss from
the refinement layer’s. During the inference stage,
the outputs of the refinement layer pass our F'F'N
to be our final logits.

4 Experiment

4.1 Dataset and Evaluation Metrics

We evaluate our proposed model on TORQUE
dataset (Ning et al., 2020), which is a temporal
reading comprehension dataset. It has 3.2k pas-
sages and 21.2k user-provided questions. Each
instance has a question asking the temporal rela-
tionships between events described in a passage

of text. TORQUE’s annotation provides groups of
questions, where one group consists of questions
that were created by modifying the temporal nu-
ance of an original seed question that dramatically
changes the answers. Following (Ning et al., 2020),
we use the official split and evaluation metrics. All
instances are split into 80%/5%/15% for train/de-
v/test without common passages. We use Macro
F1, exact-match (EM), and consistency (C) as eval-
uation metrics. C (consistency) is the percentage
of question groups for which a model’s predictions
have F'1 > 80% for all questions in a group.

4.2 Baselines

We compare our model against several baselines,
including a naive PLM and models that use con-
trastive methods to teach the model temporal rela-
tions. Specifically, OTR-QA (Shang et al., 2021)
reformulates the TORQUE task as open tempo-
ral relation extraction and uses contrastive loss to
model temporal relations. As they target TORQUE
without any external supervision like our method,
they are our main baseline. ECONET (Han et al.,
2020) is a continual pre-training approach with ad-
versarial training that aims to equip models with
knowledge about event temporal relations. They
use external corpus for continual learning, and com-
pile a lexicon of 40 common temporal expressions
to use the discriminator for contrastive learning.
UBA (Huang et al., 2022) employ the attention-
based question decomposition to understand fine-
grained questions. RoBERTa-large (Liu et al.,
2019) is a baseline model provided together with
the TORQUE dataset. As RoBERTa-large is the
model that the previous works are based on, we
choose it for the naive PLM baseline. They also
utilize a dictionary of temporal expressions as ad-
ditional supervision, to capture the distinctions in
temporal relationships.

4.3 Experimental Settings

We search hyperparameters, T and 7" is {2, 3} for
the graph iteration step and for refining step. For
the attention mechanism in the refinement layer,
each layer has 8 attention heads with a hidden
size of 1024. Feedforward layers have dimensions
{1024, 2048}. A temporal bundle consists of ques-
tions from the same question group in TORQUE.
During the fine-tuning, the gradient accumulation
step is set to 1, dropout ratio is set to 0.2 and
other settings are identical with (Ning et al., 2020).
(Shang et al., 2021) only report the best single



Models - 1;;‘[1 - - T;\Zt - Models Fl1 EM C
TDN 77.6 53.6 40.3

iE_RT"arge N o i (d) TDN - Self-Attention 774 522 389

aive . . . . . . .

Current SOTA | 73.5¢ 46.5% 31.8% | 72.65 45.1% 30.1f (c) TDN - Cross-Bundle Attention 76.3 51.4 38.6

TDN 731 472 326 | 723 465 298 (b) TDN - Refinement Layer 76.0 519 38.1

DeBERTa-large (a) TDN - Ggyp, 76.1 509 373

Naive 75.8 50.1 349 75.0 498 343

TDN 774 527 401 | 770 516 369 Table 3: Ablation study on the dev set of TORQUE.

RoBERTa-base Results are based on RoBERTa-large. The best perfor-

Naive 722 445 287 72.6 457 299 is d d in bold

Current SOTA | 7521 4921 36.1% | 73.5; 47.1f 32.7% mance 1s denoted 1n bold.

TDN 73.8 489 347 737 471 323

Table 2: Comparison with with PLM variants. Re-
ported results are marked. Naive results are from
TORQUE (Ning et al., 2020). Current SOTA results
are from OTR-QA (Shang et al., 2021)1, UBA (Huang
et al., 2022)1.

model results for all sets, and (Huang et al., 2022)
report single model results on test set, to make the
fair comparison with the baselines, we report the
averaged score on the dev set and the best score
on the test set. But to establish the concrete result,
We conducted paired t-tests for both set against
the naive baseline to establish the statistical signif-
icance of our method. We use the PyTorch 1.11
library, and NVIDIA GeForce RTX 3090 GPUs.

4.4 Experimental Results

Table 1 compares our approach to the baseline
methods. The baseline performances are provided
by previous works (Ning et al., 2020; Han et al.,
2020; Shang et al., 2021; Huang et al., 2022). For
the RoBERTa-large model, the results show that
TDN outperforms all compared baselines on both
splits of TORQUE, even surpassing ECONET and
UBA, which use a human-annotated dictionary of
temporal expressions. One exception is the con-
sistency score (C) of OTR-QA on dev set. But
we note that TDN outperforms it in F1 and EM
and generalizes better to the test set, indicated by a
much smaller dev-test gap in C (3.5 for OTR-QA vs
2.2 for TDN). On the test set, the result shows that
TDN significantly outperforms all the baselines,
achieving state-of-the-art results on the TORQUE
leaderboard.

4.5 PLM variants

Table 2 displays the results for PLM encoder vari-
ants. First, Our method shown to be generalizable
to the BERT model, and its performance is com-
parable to other previous methods. We also imple-
ment our method on DeBERTa (He et al., 2021)

together with the naive baseline, which is known to
perform better than ROBERTa on natural language
understanding (NLU) tasks. When using a naive
PLM encoder, we found that DeBERTa encoder
is slightly worse than RoBERTa in most of the
metrics. However, with the addition of TDN, our
method achieves the best F1 score, demonstrating
the effectiveness and generalizability of our method
even with other PLM variants. Lastly, when using
the RoBERTa-base model, our results are again
comparable to other baselines and surpass them in
terms of F1 score, highlighting the scalability of
TDN.

4.6 Ablation Study

To validate the effectiveness of each model com-
ponent, we conduct an ablation study on dev set
and report the results in Table 3. In (a) we remove
the syntactic graph network component Gy, in
the draft layer and find the performance decreases
significantly. This suggests that syntactic graph
reasoning helps the downstream process of delib-
eration by collecting temporal cues and creating
more fine-grained question-aware passage token
representations. For the refinement layer, we first
remove (b) the whole layer, (c) the cross-bundle
attention layer, and (d) the self-attention layer. The
performance drops significantly with (b), indicat-
ing the importance of the refinement layer. Com-
parison between (c) and (d) indicates that the re-
finement layer helps performance gain by virtue
of cross-bundle attention. It is the leading part of
deliberation by attending over the global temporal
bundle for the timeline. Meanwhile, (d) removing
the simple stack of the transformer’s self-attention
part has the least impact on the performance.

5 Discussion

While we empirically validated the effectiveness
of TDN, its implication and generalizability can be



Models F1 EM C Cp

(a) Draft + Refine (TDN) 77.6 53.6 403 11.7
(b) Refine 76.1 509 37.3 103
(c) CL 758 51.7 368 83

Table 4: Comparison of contrastive learning (CL), and
TDN on the dev set of TORQUE. The best performance
is denoted in bold.

further clarified by the following discussion ques-
tions:

* QI: Does TDN mitigate shortcuts?
* Q2: Does TDN generalize to another task?

5.1 Q1I1: Mitigating shortcuts

We first address the question of whether the perfor-
mance gain of TDN can be attributed to a better
comprehension of the passage timeline (approxi-
mated as temporal bundles).

To quantitatively measure whether TDN under-
stands passage timelines, we adopt a passage-level
consistency score C), (Gardner et al., 2020; Ning
et al., 2020): If a model understands the passage
timeline, its answers will be internally consistent
with respect to all questions, which C), quantifies
as a ratio of questions with F1 > 80% 3. We
compare TDN with the model equipped with con-
trastive learning, which is implemented following
OTR-QA’s contrastive loss (Shang et al., 2021).

Table 4 shows that C}, of TDN is significantly
higher than that of CL. To isolate the effect of the
Refine phase, where the temporal bundle is used,
we also present ablated results removing the draft
layer— We observe that even without a draft layer,
ours outperforms CL, which indicates that the im-
proved understanding of timeline plays a critical
role for performance gains ¢

Figure 3 groups F1 gains, by bundle sizes, from
which the gap from CL widens as the size grows.
It is coherent with our hypothesis that TDN gains
effectiveness from refining local answers, by com-
paring with other question-answer in the bundle,
which would be more effective for a larger bundle
size. Moreover, our method persistently outper-
forms contrastive loss, even with a small bundle
size with a margin of 2.3pp.

5The threshold of 80% follows the convention of (Gardner
et al., 2020; Ning et al., 2020).

Though one may argue adding Drafting layer with CL
may further improve CL, we found this was not the case (F1
and EM of 75.4 and 50.7 respectively), which is why we report
CL itself.

A45
45

40

35

F1 gap

30 A27

251 A23

4~6(#50) T~(#7)

bundle size(#number of bundles with the size)

1~3(#514)

Figure 3: Plot of the relationship between bundle size
and F1 score. X-axis is the bundle size, binned into
groups of 3. The number of bundles in each bin is de-
noted in brackets. Y-axis is the gap between the average
F1 score of TDN and CL, in percentage.

Models ‘ Dev ‘ Test

RoBERTa-large | 60.0(£1.1) | 62.8(+3.2)
ECONET 60.8(£0.6) | 64.8(1.4)
TDN | 60.2(+0.4) | 65.3(£0.5)

Table 5: Micro-F1 score on the TB-Dense dataset. The
best performance on the test set is denoted in bold.

Lastly, as qualitative observations, Figure 4 com-
pares answers from TDN with CL: CL fails to
clearly distinguish the semantic difference between
QI and Q2, while our understanding of the timeline
avoids such mistakes. Ours is aware that “exploded”
occurred before the tour (()3), and not after the tour
(Q2), so it cannot be during the same time as the
tour (Q4). while CL fails. In addition, during the
refining process, ours finds the unmentioned events
(e.g. “arrested” in (1) and puts them in the right
place on the timeline.

5.2 Q2: Generalization

To investigate whether our proposed approach gen-
eralizes to a related temporal ordering task, we eval-
uate on TB-Dense (Cassidy et al., 2014), which is a
public benchmark for temporal relation extraction.

For TB-Dense, when the passage and two event
points in the passage are given, the model must
classify the relations between events into one of 6
types 7. We implement our method based on the
publicly available source code of ECONET (Han
etal., 2020) 8. For the drafting layer, as the question

7Though the granularity of temporal understanding re-

quired in this task is coarser than in TORQUE, there are no
other fine-grained datasets available to evaluate generalizabil-

ity.
8https://github.com/PlusLabNLP/ECONET



P1. After touring Tanzanian capital Dar es Salaam Thursday and meeting with Kenyan police leaders Friday morning, the FBI chief also said that he is
very satisfied with the close and effective cooperation among the FBI agents and the police in Kenya and Tanzania. The man who hurled a grenade at
security guards at the U.S. embassy here seconds before the bomb exploded was positively identified Thursday as two more suspects -- one Arab ,
one Sudanese -- who had been arrested, Kenya 's national newspapers reported Friday .

Q1. What events had started before the FBI chief toured the Tanzanian capital?

CL: cooperation, hurled, exploded,
TDN: cooperation, hurled, exploded, identified, arrested

Q2. What events occured after the FBI chief toured the Tanzanian capital?

CL: meeting, said, reported
TDN: said, reported

Q3. What events occured before the FBI chief toured the Tanzanian capital?

CL: hurled, exploded, __
TDN: hurled, exploded, arrested

Q4. What events occured during the same time that the FBI chief toured the Tanzanian capital? CL: meeting, cooperation, exploded, identified

TDN: meeting

Figure 4: Qualitative analysis of contrastive learning and TDN. Events in the passage are highlighted in bold. In
answers, correct events are denoted in blue, and incorrect events are denoted in red. Missing events are underlined.

is unavailable in TB-Dense, we prepend two events
el, e2 to the passage P, and the model input is
“[CLS] + el +¢e2 + [SEP] + P + [SEP]”. el and
e2 have self-linked edges and are bidirectionally
connected to their original positions in the passage.
For the refinement layer, since no contrast group
is available in TB-Dense, we manually group data
instances that are asked on the same passage, and
they work as a temporal bundle. Hyperparameters
for fine-tuning are the same as ECONET. Micro-
F1 score is reported by averaging the runs from 3
different seeds. Since ECONET is the only model
that targets both fine-grained and coarse-grained
temporal ordering, we compare our results with it.
Our method achieves an F1 score of 65.3% on
this task, compared to a RoBERTa-large baseline
that achieves an F1 score of 62.8%. Moreover, our
method outperforms ECONET, which unlike ours,
uses an external corpus. These results demonstrates
that TDN’s ability to build and utilize an approxi-
mate timeline is effective at various granularities,
and as such, our method has broader applicability
beyond the fine-grained temporal ordering task.

6 Conclusion

We introduce a novel approach for temporal ma-
chine reading comprehension, Timeline Delibera-
tion Network (TDN), which captures fine-grained
temporal orders between events in a passage. To
mitigate the shortcut problem in existing works
introduced by reliance on answer overlap, we in-
troduce a new dimension of temporal reasoning
to the model in the form of a timeline. TDN ap-
proximates an internally consistent timeline using
question bundles, grouped with respect to events in
the passage, as a form of stronger supervision.
TDN consists of a drafting layer which extracts
evidence by encoding syntax and semantics of the
passage, and a refinement layer which utilize the

timeline through a novel attention mechanism. Re-
sults on TORQUE and TB-dense datasets demon-
strate that TDN outperforms previous methods by
effectively mitigating the shortcut problem.

7 Limitations

Despite the promising results, there are some lim-
itations to our approach. One limitation is that
our target, fine-grained temporal ordering, while
a more realistic setting, is not commonly encoun-
tered in current NLP tasks. However, we argue that
this is an important area that needs more active re-
search, especially considering applications of NLP
models in real-world and real-time scenarios.
Relatedly, there is a lack of standardized datasets
for evaluating models in the fine-grained temporal
ordering task, and more datasets are required to
effectively evaluate models in this setting. We have
tried to remedy this issue by testing generalizability
on TB-Dense, a related task with lower granularity.
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