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Abstract

Despite recent advances, language models still001
struggle to capture temporal orders between002
events. For example, it is not trivial to teach003
the fine-grained difference between two ques-004
tions “happened right before” or “happened of-005
ten before”. Previous solutions have relied on006
weak supervision, namely answer overlaps, as007
a proxy label to contrast similar and dissimilar008
pairs. In contrast, we claim that answer overlap009
on the question pair is too weak a signal for010
contrastive learning (also known as shortcut011
problem). So we propose to leverage question012
“bundles”, a related question subset we group013
with respect to the events in the passage, as014
a stronger supervision to approximate a time-015
line of a passage. We introduce the Timeline016
Deliberation Network (TDN), which reasons017
over the timeline in a two-level process: The018
drafting layer drafts answers based on semantic019
and syntactic evidence. The refinement layer020
aggregates over contrast question groups as a021
set of inputs and collectively refines answers022
to maintain temporal consistency. Results on023
TORQUE and TB-dense datasets demonstrate024
that TDN outperforms previous methods, by025
effectively resolving the shortcut problem 1.026

1 Introduction027

Temporal ordering is a challenging area in natural028

language processing that involves understanding029

and reasoning about temporal relations between030

events (Ning et al., 2020; Zhou et al., 2019; Chen031

et al., 2021). Conventional approaches to incor-032

porate the knowledge of temporal orders into the033

model only considered a limited number of coarse034

relations however, such as before/after/simultane-035

ous.036

Meanwhile, our focus is temporal machine037

reading comprehension (TMRC) task, such as038

TORQUE (Ning et al., 2020) aims at fine-grained039

understanding of temporal expressions that capture040

1The code will be released after blind review.

real-world diversity of temporal relations. For ex- 041

ample, it requires the model to distinguish finer 042

granularity like “what event happen right before X” 043

and “what happen often before X”. 044

Specifically, we study “weakly-supervised” con- 045

trastive learning method that leverages answer 046

overlaps between related questions (Shang et al., 047

2021), which performs comparably or outperforms 048

baselines requiring stronger but expensive human- 049

annotated categorization (Han et al., 2020; Huang 050

et al., 2022), as we show in Section 4. For ex- 051

ample, in Figure 1, Q1 “what event started be- 052

fore X” and Q3 “what happened before X” share 053

the overlapping answer “debate” and “protection”. 054

On the other hand, Q1 does not have any com- 055

mon answer with Q5 “what happened when X was 056

made”. Contrastive objective trains to pull Q1 and 057

Q3 closer than Q1 and Q5. 058

The use of weak supervision in TMRC tasks, 059

however, poses a potential threat of “shortcuts” or 060

“spurious overlap”: To illustrate, question Q2 and 061

Q3, “What happened before X” and “What hap- 062

pened after X”, in Figure 1 are temporally distinct, 063

but shares answers “protection” and “debate”. In 064

such scenarios, contrastive learning may overlook 065

the temporal meanings of “before” and “after” by 066

solely depending on answer overlap to determine 067

semantic relations between temporal expressions. 068

Our distinction is discerning meaningful over- 069

laps (Q1 and Q3) from spurious overlaps (Q2 and 070

Q3), by adding another dimension of timeline. Fig- 071

ure 1-(b) shows a full-structured timeline, where 072

event and question are annotated as time spans (e.g. 073

start time and end time) 2. This additional informa- 074

tion can teach the model that Q2 and Q3 spans are 075

disjoint and the overlap of “protection” and “debate” 076

is a coincidence. Despite its importance, previous 077

work does not consider a timeline, as supervision 078

2Relations are simple for illustration purposes, but can
also represent events that might happen (uncertain), or, often
happen (repetitive) (Ning et al., 2020).
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Figure 1: (a) Example of passage and related question set in temporal machine reading comprehension. Events in
the passage are in bold. The passage’s timelines are shown in (b) a full-structured manner and (c) approximated
timeline using questions, i.e. temporal bundles. The timeline is centered around the event e1.

to build one is lacking in most scenarios.079

Our distinction is approximating the timeline,080

without requiring supervision, by “bundling” ques-081

tions that are related to each event. For example, in082

Figure 1-(c), protection (e5) is related to Q1, Q2083

and Q3. When aggregated into a set of questions,084

this temporal bundle for e5 can be used to infer085

a consistent timeline among these questions. We086

illustrate the process using the example in Figure 1.087

For instance, the starting and ending points of the088

two events, debate (e4) and protection (e5) can be089

inferred from the answers to questions Q1 (“What090

event started before”) and Q2 (“What happened091

after”), respectively. In this way, we know that092

Q2 and Q3 are disjoint and answer overlaps for093

these pairs are coincident, such that attention to the094

spurious overlaps can be safely reduced.095

We propose a novel approach for effective rea-096

soning over approximated timelines, which views097

temporal ordering as deliberation with constraints098

inspired by the human cognitive process of iterative099

refinement. Our Timeline Deliberation Network100

(TDN) consists of two levels: a Drafting Layer101

that generates semantic and syntactic evidence for102

each temporal ordering question, and a Refinement103

Layer that uses an attention mechanism to aggre-104

gate temporal relationships from multiple question-105

answer pairs. The resulting temporal information106

acts as a constraint on the original question and107

compels the model to refine the answer for consis-108

tency with the given temporal context.109

We evaluate TDN on TORQUE, a reading com-110

prehension dataset for temporal ordering questions.111

We achieve state-of-the-art performance on the pub- 112

lic leaderboard.3 We quantitatively and qualita- 113

tively analyze TDN’s effectiveness in dealing with 114

shortcuts by the timeline understanding, especially 115

by a new “passage consistency” metric. Lastly, we 116

confirm its generalizability to related tasks through 117

the performance gain on TB-Dense. 118

Our main contributions are three-fold: 119

• We point out the shortcut issue in fine-grained 120

temporal understanding and propose a novel 121

approach to resolve it. 122

• We develop a framework for TMRC based on 123

the human cognitive process: draft and refine. 124

• TDN effectively captures fine-grained tempo- 125

ral orders and outperforms other approaches. 126

2 Related Work 127

Our work is related to the following areas of re- 128

search: temporal reading comprehension (TMRC), 129

deliberation networks, and graph networks. 130

Temporal ordering reasoning Conventional 131

temporal ordering tasks are temporal relation ex- 132

traction (TRE) (Cassidy et al., 2014; Ning et al., 133

2018), whose goal is to categorize the temporal 134

order into pre-defined categories. MATRES (Ning 135

et al., 2018) groups the temporal relations into 4 cat- 136

egories: Before/After/Simultaneous/V ague. 137

TB-Dense (Cassidy et al., 2014) considers 2 more 138

3https://leaderboard.allenai.org/
torque/submissions/public. To be published
after blind review.
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classes, Includes and IsIncluded. Our proposed139

approach can also benefit these tasks as we discuss140

in Section 5.141

However, our main task is the TMRC task142

TORQUE (Ning et al., 2020) requiring finer-143

granular understanding of temporal ordering in144

question form to reflect the real-world diversity145

of temporal relations. Previous approaches to the146

TMRC task include continuously pre-training a147

PLM (Han et al., 2020) and question decomposition148

methods (Huang et al., 2022; Shang et al., 2021).149

ECONET (Han et al., 2020) continually pre-trains150

the PLM to inject the knowledge of temporal or-151

ders. Question decomposition approaches (Huang152

et al., 2022; Shang et al., 2021) divide the question153

into the event part and temporal relation expression154

part to better capture the complex semantics. All155

of the above use contrastive learning to understand156

different temporal relations, either by contrasting157

relations with human annotations (Han et al., 2020;158

Huang et al., 2022) or annotated answers (Shang159

et al., 2021). However, the former can be costly or160

imprecise, while the latter may rely on shortcuts.161

Our distinction is avoiding costly annotations but162

reduce shortcuts using timeline structure.163

Deliberation networks Deliberation networks164

(Xia et al., 2017) incorporate the concept of hu-165

man deliberation into the decision-making process.166

The idea behind the network is to simulate the hu-167

man decision-making process by having multiple168

levels in the network, each representing a differ-169

ent stage in the deliberation process. The lower170

levels use local cues to identify relevant options,171

while the higher levels aggregate global informa-172

tion and make the final decision. However, they173

have been only applied to a sequence-to-sequence174

model (Xiong et al., 2018; Hu et al., 2021), to175

deal with its limited left-to-right attention. We are176

the first to apply them in temporal ordering using177

encoder-only models (Devlin et al., 2018; Liu et al.,178

2019), where the local information corresponds179

to each question and the global information is the180

timeline representing relations between questions181

and events.182

Graph networks Graph Networks (Kipf and183

Welling, 2016; Velickovic et al., 2017) learn fea-184

tures through message passing on graph structures.185

These networks have demonstrated their effective-186

ness in tasks requiring complex reasoning skills,187

such as numerical reasoning (Ran et al., 2019; Chen188

et al., 2020) and logical reasoning (Huang et al., 189

2021). Graph networks also have been applied 190

to TRE (Mathur et al., 2021; Zhang et al., 2022), 191

though their effectiveness in TMRC has not been 192

investigated. 193

3 Proposed Method 194

As overviewed in Figure 2, our approach is com- 195

posed of two steps: Drafting (subsection 3.1) and 196

Refinement (subsection 3.2). For example, in Fig- 197

ure 1, the first step in answering Q1 is to generate 198

“local” drafts considering only Q1. The second 199

step, then follows to collect answers from multiple 200

questions, and checks if there are temporal inconsis- 201

tency (by building semi-structured timeline). These 202

global constraints help that semantics of temporal 203

relations such as “started before” and “happened 204

after” are not misinterpreted. 205

3.1 Drafting Layer 206

We formulate local drafting for query Q as a binary 207

classification for every token in the given passage 208

P , determining whether it is an answer to Q. For 209

this goal, first, PLM encodes the question-passage 210

pairs to get the contextual representation for each 211

token. It takes the concatenated sequence of pair 212

as input [Q,P ] and outputs the representation [Q́, 213

Ṕ ], where each token is q́ and ṕ. 214

After that, we build a syntax-aware graph that 215

captures word-to-word dependency, following the 216

convention of (Cheng and Miyao, 2017; Mathur 217

et al., 2021; Zhang et al., 2022). However, unlike 218

prior work mainly focusing on temporal relations 219

on passage and not on question, comprehending 220

both is critical for TMRC. To consider both, we 221

build dependency trees for the question and pas- 222

sage then connect root nodes and co-mentioned 223

event words bidirectionally. Here event words re- 224

fer to nouns and verbs. Next, we followed graph 225

reasoning step in (Ran et al., 2019) for question- 226

passage interaction. The connections of nodes are 227

categorized into 4 types: (1) question-question (qq) 228

(2) passage-passage (pp) (3) passage-question (pq) 229

(4) question-passage (qp). Each node in the graph 230

is the corresponding word in question and passage. 231

The full pipeline is as follows: 232

[Q̄, P̄ ] = WM [Q́, Ṕ ] (1) 233
234

αi = σ(Wvvi + bv), q̄, p̄ ⊂ v (2) 235
236

ṽi =
1

|Ni|

(
j∈Ni∑

αjW rjiv[j]

)
(3) 237
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Figure 2: Overview of TDN. Drafting layer extracts evidence from syntactic and semantic features. Deliberation
layer aggregates information from temporal bundles and answer the question. We only represent event tokens and
part of the dependency tree for simplicity.

v′i = ReLU(W g
i + ṽ′i) + bg (4)238

The PLM’s hidden outputs pass the projection239

layer WM ∈ Rh×h for node initialization (Equa-240

tion 1). If a word is tokenized into multiple to-241

kens, we use the first token embedding of the242

word.4 The weight for each node is computed243

to find the relevant nodes for answering tempo-244

ral ordering questions (Equation 2). In the mes-245

sage propagation step, the adjacency matrix W rji246

guides the distinguished message passing for each247

type rji ∈ {pp, pq, qp, qq} (Equation 3). The mes-248

sage representation is added with the corresponding249

nodes (Equation 4), where W g is weight and bg is250

the bias term. We iterate the reasoning step (Equa-251

tion 2, Equation 3, Equation 4) for T times. Finally,252

each passage word representation is summed with253

ṕi and normalized. The resulting passage represen-254

tation is P d and each word is pd.255

3.2 Refinement Layer256

Our second and principal objective is to aggregate257

local question-answer drafts to approximate an in-258

ternally consistent timeline. We design a refine-259

ment layer with a specialized attention structure to260

allow optimizing its timeline, constrained by the261

temporal bundle. The temporal bundle is defined262

as a set of questions from the same contrast groups263

in the dataset, or a set of questions asking about264

the same event. This temporal bundle serves as an265

approximated timeline for refining the draft. If a266

temporal bundle with l questions is given, we trans-267

form the conventional equation in MRC to answer268

the i-th question P (a|Qi, P ) to the deliberation269

form:270

4Note that we also indicate the number of words in a pas-
sage as n, as long as there is no confusion between the two.

P (ai|Qi, P, P (a1|Q1, P ), P (a2|Q2, P ), ..., , P (al|Ql, P ))

(5) 271

Due to the unavailability of gold answers during 272

inference, we regard the predictions of the drafting 273

layer as answers for both training and inference. 274

A naive method is to concatenate all the related 275

question-answer pairs and expand them to the orig- 276

inal passage. However, since the predictions are 277

used directly as answer events without proper fil- 278

tering, they may lose the signal of the prediction’s 279

uncertainty or importance in answering questions. 280

Therefore, we gather the bundle on the embed- 281

ding space. The related questions [Qi, Pi]
l
i=2 is 282

sent to the drafting layer to produce [P d
i ]

l
i=2, then 283

stacked with the original one [P d
i ]

l
i=1. Here, the 284

previous drafting layer encodes the question in- 285

formation into the passage, so passage tokens can 286

independently capture temporal relations related 287

to the question event, and create an approximated 288

timeline. 289

Then the refinement layer utilizes the timeline 290

structure that is weaved by the temporal bundle. 291

Our key component is the extended multi-head at- 292

tention mechanism “cross-bundle attention” that 293

attends to the information from the temporal bun- 294

dle, which is otherwise neglected in the origi- 295

nal transformer (Vaswani et al., 2017) and de- 296

liberation network (Xia et al., 2017). In detail, 297

each passage token pk attends to the same po- 298

sitioned token from other instances. The equa- 299

tion is as follows where multi-head attention is 300

(Attention(Q,K, V )) where i, j ≤ l: 301

CrossBundleAttention = Attention(pik, pjk, pjk)

(6) 302

The refinement layer inserts the cross-bundle at- 303

tention following the self-attention module in the 304
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Models
Dev Test

F1 EM C F1 EM C

RoBERTa-large 75.7 50.4 36 75.2 51.1 34.5
ECONET 76.9 52.2 37.7 76.3 52 37
UBA 77.5 52.2 37.5 76.1 51 38.1
OTR-QA 77.1 51.6 40.6 76.3 52.6 37.1
TDN (RoBERTa-large) 77.6 53.6 40.3 76.9 52.8 38.1

Table 1: Comparison between TDN and baselines on
TORQUE dataset. All reported results are statistically
significant (p ≤ .05). Underline denotes statistically
significant (p ≤ .01) improvement over the RoBERTa-
large baseline, using a paired t-test. The best perfor-
mance is denoted in bold.

transformer encoder layer. Via the cross-bundle305

attention, temporal bundles are successfully passed306

to the original instance. Each event in the pas-307

sage grabs the semantics of the temporal relations308

and the timeline that are made by other questions.309

This refinement step corrects the answer by revis-310

iting the passage and leveraging the approximated311

timelines, mitigating the shortcut problem we men-312

tioned in section 1. We iterate the refinement T ′313

times to enhance the process of deliberation.314

3.3 Learning Objectives and Answer315

Prediction316

For each deliberation level, the last output is fed317

to the FFN to get the probability of whether the318

token is an answer to the question or not. During319

the training stage, We adopt the loss minimization320

approach by (Xiong et al., 2019; Li et al., 2019). At321

each level, the last output is fed to the FFN and322

the resulting loss for answer prediction is computed.323

The final loss is the average value of the losses at324

each level:325

L = (Ldraft + Lrefine)/2 (7)326

where Ldraft is the answer prediction loss from the327

draft layer’s output, and Lrefine is the loss from328

the refinement layer’s. During the inference stage,329

the outputs of the refinement layer pass our FFN330

to be our final logits.331

4 Experiment332

4.1 Dataset and Evaluation Metrics333

We evaluate our proposed model on TORQUE334

dataset (Ning et al., 2020), which is a temporal335

reading comprehension dataset. It has 3.2k pas-336

sages and 21.2k user-provided questions. Each337

instance has a question asking the temporal rela-338

tionships between events described in a passage339

of text. TORQUE’s annotation provides groups of 340

questions, where one group consists of questions 341

that were created by modifying the temporal nu- 342

ance of an original seed question that dramatically 343

changes the answers. Following (Ning et al., 2020), 344

we use the official split and evaluation metrics. All 345

instances are split into 80%/5%/15% for train/de- 346

v/test without common passages. We use Macro 347

F1, exact-match (EM), and consistency (C) as eval- 348

uation metrics. C (consistency) is the percentage 349

of question groups for which a model’s predictions 350

have F1 ≥ 80% for all questions in a group. 351

4.2 Baselines 352

We compare our model against several baselines, 353

including a naive PLM and models that use con- 354

trastive methods to teach the model temporal rela- 355

tions. Specifically, OTR-QA (Shang et al., 2021) 356

reformulates the TORQUE task as open tempo- 357

ral relation extraction and uses contrastive loss to 358

model temporal relations. As they target TORQUE 359

without any external supervision like our method, 360

they are our main baseline. ECONET (Han et al., 361

2020) is a continual pre-training approach with ad- 362

versarial training that aims to equip models with 363

knowledge about event temporal relations. They 364

use external corpus for continual learning, and com- 365

pile a lexicon of 40 common temporal expressions 366

to use the discriminator for contrastive learning. 367

UBA (Huang et al., 2022) employ the attention- 368

based question decomposition to understand fine- 369

grained questions. RoBERTa-large (Liu et al., 370

2019) is a baseline model provided together with 371

the TORQUE dataset. As RoBERTa-large is the 372

model that the previous works are based on, we 373

choose it for the naive PLM baseline. They also 374

utilize a dictionary of temporal expressions as ad- 375

ditional supervision, to capture the distinctions in 376

temporal relationships. 377

4.3 Experimental Settings 378

We search hyperparameters, T and T ′ is {2, 3} for 379

the graph iteration step and for refining step. For 380

the attention mechanism in the refinement layer, 381

each layer has 8 attention heads with a hidden 382

size of 1024. Feedforward layers have dimensions 383

{1024, 2048}. A temporal bundle consists of ques- 384

tions from the same question group in TORQUE. 385

During the fine-tuning, the gradient accumulation 386

step is set to 1, dropout ratio is set to 0.2 and 387

other settings are identical with (Ning et al., 2020). 388

(Shang et al., 2021) only report the best single 389
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Models
Dev Test

F1 EM C F1 EM C

BERT-large
Naive 72.8 46.0 30.7 71.9 45.9 29.1
Current SOTA 73.5‡ 46.5‡ 31.8‡ 72.6‡ 45.1‡ 30.1‡
TDN 73.1 47.2 32.6 72.3 46.5 29.8
DeBERTa-large
Naive 75.8 50.1 34.9 75.0 49.8 34.3
TDN 77.4 52.7 40.1 77.0 51.6 36.9
RoBERTa-base
Naive 72.2 44.5 28.7 72.6 45.7 29.9
Current SOTA 75.2† 49.2† 36.1† 73.5‡ 47.1† 32.7†
TDN 73.8 48.9 34.7 73.7 47.1 32.3

Table 2: Comparison with with PLM variants. Re-
ported results are marked. Naive results are from
TORQUE (Ning et al., 2020). Current SOTA results
are from OTR-QA (Shang et al., 2021)†, UBA (Huang
et al., 2022)‡.

model results for all sets, and (Huang et al., 2022)390

report single model results on test set, to make the391

fair comparison with the baselines, we report the392

averaged score on the dev set and the best score393

on the test set. But to establish the concrete result,394

We conducted paired t-tests for both set against395

the naive baseline to establish the statistical signif-396

icance of our method. We use the PyTorch 1.11397

library, and NVIDIA GeForce RTX 3090 GPUs.398

4.4 Experimental Results399

Table 1 compares our approach to the baseline400

methods. The baseline performances are provided401

by previous works (Ning et al., 2020; Han et al.,402

2020; Shang et al., 2021; Huang et al., 2022). For403

the RoBERTa-large model, the results show that404

TDN outperforms all compared baselines on both405

splits of TORQUE, even surpassing ECONET and406

UBA, which use a human-annotated dictionary of407

temporal expressions. One exception is the con-408

sistency score (C) of OTR-QA on dev set. But409

we note that TDN outperforms it in F1 and EM410

and generalizes better to the test set, indicated by a411

much smaller dev-test gap in C (3.5 for OTR-QA vs412

2.2 for TDN). On the test set, the result shows that413

TDN significantly outperforms all the baselines,414

achieving state-of-the-art results on the TORQUE415

leaderboard.416

4.5 PLM variants417

Table 2 displays the results for PLM encoder vari-418

ants. First, Our method shown to be generalizable419

to the BERT model, and its performance is com-420

parable to other previous methods. We also imple-421

ment our method on DeBERTa (He et al., 2021)422

Models F1 EM C

TDN 77.6 53.6 40.3
(d) TDN - Self-Attention 77.4 52.2 38.9
(c) TDN - Cross-Bundle Attention 76.3 51.4 38.6
(b) TDN - Refinement Layer 76.0 51.9 38.1
(a) TDN - Gsyn 76.1 50.9 37.3

Table 3: Ablation study on the dev set of TORQUE.
Results are based on RoBERTa-large. The best perfor-
mance is denoted in bold.

together with the naive baseline, which is known to 423

perform better than RoBERTa on natural language 424

understanding (NLU) tasks. When using a naive 425

PLM encoder, we found that DeBERTa encoder 426

is slightly worse than RoBERTa in most of the 427

metrics. However, with the addition of TDN, our 428

method achieves the best F1 score, demonstrating 429

the effectiveness and generalizability of our method 430

even with other PLM variants. Lastly, when using 431

the RoBERTa-base model, our results are again 432

comparable to other baselines and surpass them in 433

terms of F1 score, highlighting the scalability of 434

TDN. 435

4.6 Ablation Study 436

To validate the effectiveness of each model com- 437

ponent, we conduct an ablation study on dev set 438

and report the results in Table 3. In (a) we remove 439

the syntactic graph network component Gsyn in 440

the draft layer and find the performance decreases 441

significantly. This suggests that syntactic graph 442

reasoning helps the downstream process of delib- 443

eration by collecting temporal cues and creating 444

more fine-grained question-aware passage token 445

representations. For the refinement layer, we first 446

remove (b) the whole layer, (c) the cross-bundle 447

attention layer, and (d) the self-attention layer. The 448

performance drops significantly with (b), indicat- 449

ing the importance of the refinement layer. Com- 450

parison between (c) and (d) indicates that the re- 451

finement layer helps performance gain by virtue 452

of cross-bundle attention. It is the leading part of 453

deliberation by attending over the global temporal 454

bundle for the timeline. Meanwhile, (d) removing 455

the simple stack of the transformer’s self-attention 456

part has the least impact on the performance. 457

5 Discussion 458

While we empirically validated the effectiveness 459

of TDN, its implication and generalizability can be 460
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Models F1 EM C Cp

(a) Draft + Refine (TDN) 77.6 53.6 40.3 11.7
(b) Refine 76.1 50.9 37.3 10.3
(c) CL 75.8 51.7 36.8 8.3

Table 4: Comparison of contrastive learning (CL), and
TDN on the dev set of TORQUE. The best performance
is denoted in bold.

further clarified by the following discussion ques-461

tions:462

• Q1: Does TDN mitigate shortcuts?463

• Q2: Does TDN generalize to another task?464

5.1 Q1: Mitigating shortcuts465

We first address the question of whether the perfor-466

mance gain of TDN can be attributed to a better467

comprehension of the passage timeline (approxi-468

mated as temporal bundles).469

To quantitatively measure whether TDN under-470

stands passage timelines, we adopt a passage-level471

consistency score Cp (Gardner et al., 2020; Ning472

et al., 2020): If a model understands the passage473

timeline, its answers will be internally consistent474

with respect to all questions, which Cp quantifies475

as a ratio of questions with F1 ≥ 80% 5. We476

compare TDN with the model equipped with con-477

trastive learning, which is implemented following478

OTR-QA’s contrastive loss (Shang et al., 2021).479

Table 4 shows that Cp of TDN is significantly480

higher than that of CL. To isolate the effect of the481

Refine phase, where the temporal bundle is used,482

we also present ablated results removing the draft483

layer– We observe that even without a draft layer,484

ours outperforms CL, which indicates that the im-485

proved understanding of timeline plays a critical486

role for performance gains 6.487

Figure 3 groups F1 gains, by bundle sizes, from488

which the gap from CL widens as the size grows.489

It is coherent with our hypothesis that TDN gains490

effectiveness from refining local answers, by com-491

paring with other question-answer in the bundle,492

which would be more effective for a larger bundle493

size. Moreover, our method persistently outper-494

forms contrastive loss, even with a small bundle495

size with a margin of 2.3pp.496

5The threshold of 80% follows the convention of (Gardner
et al., 2020; Ning et al., 2020).

6Though one may argue adding Drafting layer with CL
may further improve CL, we found this was not the case (F1
and EM of 75.4 and 50.7 respectively), which is why we report
CL itself.

.

Figure 3: Plot of the relationship between bundle size
and F1 score. X-axis is the bundle size, binned into
groups of 3. The number of bundles in each bin is de-
noted in brackets. Y-axis is the gap between the average
F1 score of TDN and CL, in percentage.

Models Dev Test

RoBERTa-large 60.0(±1.1) 62.8(±3.2)
ECONET 60.8(±0.6) 64.8(±1.4)

TDN 60.2(±0.4) 65.3(±0.5)

Table 5: Micro-F1 score on the TB-Dense dataset. The
best performance on the test set is denoted in bold.

Lastly, as qualitative observations, Figure 4 com- 497

pares answers from TDN with CL: CL fails to 498

clearly distinguish the semantic difference between 499

Q1 and Q2, while our understanding of the timeline 500

avoids such mistakes. Ours is aware that “exploded” 501

occurred before the tour (Q3), and not after the tour 502

(Q2), so it cannot be during the same time as the 503

tour (Q4). while CL fails. In addition, during the 504

refining process, ours finds the unmentioned events 505

(e.g. “arrested” in Q1) and puts them in the right 506

place on the timeline. 507

5.2 Q2: Generalization 508

To investigate whether our proposed approach gen- 509

eralizes to a related temporal ordering task, we eval- 510

uate on TB-Dense (Cassidy et al., 2014), which is a 511

public benchmark for temporal relation extraction. 512

For TB-Dense, when the passage and two event 513

points in the passage are given, the model must 514

classify the relations between events into one of 6 515

types 7. We implement our method based on the 516

publicly available source code of ECONET (Han 517

et al., 2020) 8. For the drafting layer, as the question 518

7Though the granularity of temporal understanding re-
quired in this task is coarser than in TORQUE, there are no
other fine-grained datasets available to evaluate generalizabil-
ity.

8https://github.com/PlusLabNLP/ECONET
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Figure 4: Qualitative analysis of contrastive learning and TDN. Events in the passage are highlighted in bold. In
answers, correct events are denoted in blue, and incorrect events are denoted in red. Missing events are underlined.

is unavailable in TB-Dense, we prepend two events519

e1, e2 to the passage P , and the model input is520

“[CLS] + e1 + e2 + [SEP] + P + [SEP]”. e1 and521

e2 have self-linked edges and are bidirectionally522

connected to their original positions in the passage.523

For the refinement layer, since no contrast group524

is available in TB-Dense, we manually group data525

instances that are asked on the same passage, and526

they work as a temporal bundle. Hyperparameters527

for fine-tuning are the same as ECONET. Micro-528

F1 score is reported by averaging the runs from 3529

different seeds. Since ECONET is the only model530

that targets both fine-grained and coarse-grained531

temporal ordering, we compare our results with it.532

Our method achieves an F1 score of 65.3% on533

this task, compared to a RoBERTa-large baseline534

that achieves an F1 score of 62.8%. Moreover, our535

method outperforms ECONET, which unlike ours,536

uses an external corpus. These results demonstrates537

that TDN’s ability to build and utilize an approxi-538

mate timeline is effective at various granularities,539

and as such, our method has broader applicability540

beyond the fine-grained temporal ordering task.541

6 Conclusion542

We introduce a novel approach for temporal ma-543

chine reading comprehension, Timeline Delibera-544

tion Network (TDN), which captures fine-grained545

temporal orders between events in a passage. To546

mitigate the shortcut problem in existing works547

introduced by reliance on answer overlap, we in-548

troduce a new dimension of temporal reasoning549

to the model in the form of a timeline. TDN ap-550

proximates an internally consistent timeline using551

question bundles, grouped with respect to events in552

the passage, as a form of stronger supervision.553

TDN consists of a drafting layer which extracts554

evidence by encoding syntax and semantics of the555

passage, and a refinement layer which utilize the556

timeline through a novel attention mechanism. Re- 557

sults on TORQUE and TB-dense datasets demon- 558

strate that TDN outperforms previous methods by 559

effectively mitigating the shortcut problem. 560

7 Limitations 561

Despite the promising results, there are some lim- 562

itations to our approach. One limitation is that 563

our target, fine-grained temporal ordering, while 564

a more realistic setting, is not commonly encoun- 565

tered in current NLP tasks. However, we argue that 566

this is an important area that needs more active re- 567

search, especially considering applications of NLP 568

models in real-world and real-time scenarios. 569

Relatedly, there is a lack of standardized datasets 570

for evaluating models in the fine-grained temporal 571

ordering task, and more datasets are required to 572

effectively evaluate models in this setting. We have 573

tried to remedy this issue by testing generalizability 574

on TB-Dense, a related task with lower granularity. 575
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